
TCPM Working Group O. Bonaventure, Ed.
Internet-Draft Tessares
Intended status: Experimental M. Boucadair, Ed.
Expires: February 2, 2020 Orange
 S. Gundavelli
 Cisco
 S. Seo
 Korea Telecom
 B. Hesmans
 Tessares
 August 01, 2019

 0-RTT TCP Convert Protocol
draft-ietf-tcpm-converters-10

Abstract

 This document specifies an application proxy, called Transport
 Converter, to assist the deployment of TCP extensions such as
 Multipath TCP. This proxy is designed to avoid inducing extra delay
 when involved in a network-assisted connection (that is, 0-RTT).

 This specification assumes an explicit model, where the proxy is
 explicitly configured on hosts.

Editorial Note (To be removed by RFC Editor)

 Please update these statements with the RFC number to be assigned to
 this document: [This-RFC]

 Please update TBA statements with the port number to be assigned to
 the 0-RTT TCP Convert Protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bonaventure, et al. Expires February 2, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-converters-10
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Convert Protocol August 2019

 This Internet-Draft will expire on February 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. The Problem . 3
1.2. Network-Assisted Connections: The Rationale 4

2. Conventions and Definitions 6
3. Architecture . 6
3.1. Functional Elements 6
3.2. Theory of Operation 8

 3.3. Sample Examples of Outgoing Converter-Assisted Multipath
 TCP Connections . 12
 3.4. Sample Example of Incoming Converter-Assisted Multipath
 TCP Connection . 13

4. The Convert Protocol (Convert) 15
4.1. The Convert Fixed Header 15
4.2. Convert TLVs . 16
4.2.1. Generic Convert TLV Format 16
4.2.2. Summary of Supported Convert TLVs 16
4.2.3. The Info TLV . 17
4.2.4. Supported TCP Extensions TLV 18
4.2.5. Connect TLV . 19
4.2.6. Extended TCP Header TLV 21
4.2.7. The Cookie TLV 21
4.2.8. Error TLV . 22

 5. Compatibility of Specific TCP Options with the Conversion
 Service . 25

5.1. Base TCP Options . 25
5.2. Window Scale (WS) . 26
5.3. Selective Acknowledgements 26
5.4. Timestamp . 27
5.5. Multipath TCP . 27

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bonaventure, et al. Expires February 2, 2020 [Page 2]

Internet-Draft Convert Protocol August 2019

5.6. TCP Fast Open . 27
5.7. TCP User Timeout . 28
5.8. TCP-AO . 28
5.9. TCP Experimental Options 28

6. Interactions with Middleboxes 28
7. Security Considerations 29
7.1. Privacy & Ingress Filtering 29
7.2. Authorization . 30
7.3. Denial of Service . 31
7.4. Traffic Theft . 31
7.5. Multipath TCP-specific Considerations 32

8. IANA Considerations . 32
8.1. Convert Service Port Number 32
8.2. The Convert Protocol (Convert) Parameters 33
8.2.1. Convert Versions 33
8.2.2. Convert TLVs . 33
8.2.3. Convert Error Messages 34

9. References . 35
9.1. Normative References 35
9.2. Informative References 37

Appendix A. Change Log . 40
Appendix B. Example Socket API Changes to Support the 0-RTT

 Convert Protocol 42
B.1. Active Open (Client Side) 42
B.2. Passive Open (Converter Side) 42

Appendix C. Some Design Considerations 43
Appendix D. Differences with SOCKSv5 44

 Acknowledgements . 46
 Contributors . 47
 Authors' Addresses . 48

1. Introduction

1.1. The Problem

 Transport protocols like TCP evolve regularly [RFC7414]. TCP has
 been improved in different ways. Some improvements such as changing
 the initial window size [RFC6928] or modifying the congestion control
 scheme can be applied independently on clients and servers. Other
 improvements such as Selective Acknowledgements [RFC2018] or large
 windows [RFC7323] require a new TCP option or to change the semantics
 of some fields in the TCP header. These modifications must be
 deployed on both clients and servers to be actually used on the
 Internet. Experience with the latter TCP extensions reveals that
 their deployment can require many years. Fukuda reports in
 [Fukuda2011] results of a decade of measurements showing the
 deployment of Selective Acknowledgements, Window Scale and TCP

https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323

Bonaventure, et al. Expires February 2, 2020 [Page 3]

Internet-Draft Convert Protocol August 2019

 Timestamps. [ANRW17] describes measurements showing that TCP Fast
 Open (TFO) [RFC7413] is still not widely deployed.

 There are some situations where the transport stack used on clients
 (or servers) can be upgraded at a faster pace than the transport
 stack running on servers (or clients). In those situations, clients
 would typically want to benefit from the features of an improved
 transport protocol even if the servers have not yet been upgraded and
 conversely. Some assistance from the network to make use of these
 features is valuable. For example, Performance Enhancing Proxies
 [RFC3135], and other service functions have been deployed as
 solutions to improve TCP performance over links with specific
 characteristics.

 Recent examples of TCP extensions include Multipath TCP [RFC6824] or
 TCPINC [RFC8548]. Those extensions provide features that are
 interesting for clients such as wireless devices. With Multipath
 TCP, those devices could seamlessly use WLAN (Wireless Local Area
 Network) and cellular networks, for bonding purposes, faster hand-
 overs, or better resiliency. Unfortunately, deploying those
 extensions on both a wide range of clients and servers remains
 difficult.

 More recently, 5G bonding experimentation has been conducted into
 global range of the incumbent 4G (LTE) connectivity using newly
 devised clients and a Multipath TCP proxy. Even if the 5G and the 4G
 bonding relying upon Multipath TCP increases the bandwidth, it is as
 well crucial to minimize latency for all the way between endhosts
 regardless of whether intermediate nodes are inside or outside of the
 mobile core. In order to handle URLLC (Ultra Reliable Low Latency
 Communication) for the next generation mobile network, Multipath TCP
 and its proxy mechanism such as the one used to provide Access
 Traffic Steering, Switching, and Splitting (ATSSS) must be optimized
 to reduce latency [TS23501].

1.2. Network-Assisted Connections: The Rationale

 This document specifies an application proxy, called Transport
 Converter. A Transport Converter is a function that is installed by
 a network operator to aid the deployment of TCP extensions and to
 provide the benefits of such extensions to clients. A Transport
 Converter may provide conversion service for one or more TCP
 extensions. Which TCP extensions are eligible to the conversion
 service is deployment-specific. The conversion service is provided
 by means of the 0-RTT TCP Convert Protocol (Convert), that is an
 application-layer protocol which uses TCP port number TBA
 (Section 8).

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc3135
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc8548

Bonaventure, et al. Expires February 2, 2020 [Page 4]

Internet-Draft Convert Protocol August 2019

 The Convert Protocol provides 0-RTT (Zero Round-Trip Time) conversion
 service since no extra delay is induced by the protocol compared to
 connections that are not proxied. Particularly, the Convert Protocol
 does not require extra signaling setup delays before making use of
 the conversion service. The Convert Protocol does not require any
 encapsulation (no tunnels, whatsoever).

 The Transport Converter adheres to the main principles drawn in
 [RFC1919]. In particular, a Transport Converter achieves the
 following:

 o Listen for client sessions;

 o Receive from a client the address of the final target server;

 o Setup a session to the final server;

 o Relay control messages and data between the client and the server;

 o Perform access controls according to local policies.

 The main advantage of network-assisted conversion services is that
 they enable new TCP extensions to be used on a subset of the path
 between endpoints, which encourages the deployment of these
 extensions. Furthermore, the Transport Converter allows the client
 and the server to directly negotiate TCP extensions for the sake of
 native support along the full path.

 The Convert Protocol is a generic mechanism to provide 0-RTT
 conversion service. As a sample applicability use case, this
 document specifies how the Convert Protocol applies for Multipath
 TCP. It is out of scope of this document to provide a comprehensive
 list of all potential conversion services. Applicability documents
 may be defined in the future.

 This document does not assume that all the traffic is eligible to the
 network-assisted conversion service. Only a subset of the traffic
 will be forwarded to a Transport Converter according to a set of
 policies. These policies, and how they are communicated to
 endpoints, are out of scope. Furthermore, it is possible to bypass
 the Transport Converter to connect directly to the servers that
 already support the required TCP extension(s).

 This document assumes an explicit model in which a client is
 configured with one or a list of Transport Converters (statically or
 through protocols such as [I-D.boucadair-tcpm-dhc-converter]).
 Configuration means are outside the scope of this document.

https://datatracker.ietf.org/doc/html/rfc1919

Bonaventure, et al. Expires February 2, 2020 [Page 5]

Internet-Draft Convert Protocol August 2019

 This document is organized as follows. First, Section 3 provides a
 brief explanation of the operation of Transport Converters. Then,

Section 4 describes the Convert Protocol. Section 5 discusses how
 Transport Converters can be used to support different TCP extensions.

Section 6 then discusses the interactions with middleboxes, while
Section 7 focuses on the security considerations.

Appendix B describes how a TCP stack would need to support the
 protocol described in this document. Appendix C records some
 considerations that impacted the design of the protocol. Appendix D
 provides a comparison with SOCKS proxies that are already used to
 deploy Multipath TCP in some cellular networks (Section 2.2 of
 [RFC8041]).

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The information shown between brackets in the figures refers to
 Convert Protocol messages described in Section 4.

 Only the exchange of control messages is depicted in the figures.

3. Architecture

3.1. Functional Elements

 The Convert Protocol considers three functional elements:

 o Clients;

 o Transport Converters;

 o Servers.

 A Transport Converter is a network function that relays all data
 exchanged over one upstream connection to one downstream connection
 and vice versa (Figure 1). The Transport Converter, thus, maintains
 state that associates one upstream connection to a corresponding
 downstream connection.

 A connection can be initiated from both sides of the Transport
 Converter (Internet-facing interface, customer-facing interface).

https://datatracker.ietf.org/doc/html/rfc8041#section-2.2
https://datatracker.ietf.org/doc/html/rfc8041#section-2.2
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Bonaventure, et al. Expires February 2, 2020 [Page 6]

Internet-Draft Convert Protocol August 2019

 |
 :
 |
 +------------+
 Client <- upstream ->| Transport |<- downstream ->Server
 | Converter |
 +------------+
 |
 customer-facing interface : Internet-facing interface
 |

 Figure 1: A Transport Converter Relays Data between Pairs of TCP
 Connections

 "Client" refers to a software instance embedded on a host that can
 reach a Transport Converter via its customer-facing interface. The
 "Client" can initiate connections via a Transport Converter (referred
 to as outgoing connections (Section 3.3)). Also, the "Client" can
 accept incoming connections via a Transport Converter (referred to as
 incoming connections (Section 3.4)).

 Transport Converters can be operated by network operators or third
 parties. Nevertheless, this document focuses on the single
 administrative deployment case where the entity offering the
 connectivity service to a client is also the entity which owns and
 operates the Transport Converter.

 A Transport Converter can be embedded in a standalone device or be
 activated as a service on a router. How such function is enabled is
 deployment-specific. A sample deployment is depicted in Figure 2.

 +-+ +-+ +-+
 Client - |R| -- |R| -- |R| - - - Server
 +-+ +-+ +-+
 |
 +-+
 |R|
 +-+
 |
 +---------+
 |Transport|
 |Converter|
 +---------+
 R: Router

 Figure 2: A Transport Converter Can Be Installed Anywhere in the
 Network

Bonaventure, et al. Expires February 2, 2020 [Page 7]

Internet-Draft Convert Protocol August 2019

 The architecture assumes that new software will be installed on the
 Client hosts to interact with one or more Transport Converters.
 Furthermore, the architecture allows for making use of new TCP
 extensions even if those are not supported by a given server.

 A Client is configured, through means that are outside the scope of
 this document, with the names and/or the addresses of one or more
 Transport Converters and the TCP extensions that they support. The
 procedure for selecting a Transport Converter among a list of
 configured Transport Converters is outside the scope of this
 document.

 One of the benefits of this design is that different transport
 protocol extensions can be used on the upstream and the downstream
 connections. This encourages the deployment of new TCP extensions
 until they are widely supported by servers, in particular.

 The architecture does not mandate anything on the Server side.

 Similar to address sharing mechanisms, the architecture does not
 interfere with end-to-end TLS connections [RFC8446] between the
 Client and the Server (Figure 3). In other words, end-to-end TLS is
 supported in the presence of a Converter.

 Client Transport Server
 | Converter |
 | | |
 /==\
 | End-to-end TLS |
 \==/

 * TLS messages exchanged between the Client
 and the Server are not shown.

 Figure 3: End-to-end TLS via a Transport Converter

 It is out of scope of this document to elaborate on specific
 considerations related to the use of TLS in the Client-Converter
 connection leg to exchange Convert messages (in addition to the end-
 to-end TLS connection).

3.2. Theory of Operation

 At a high level, the objective of the Transport Converter is to allow
 the use a specific extension, e.g., Multipath TCP, on a subset of the
 path even if the peer does not support this extension. This is
 illustrated in Figure 4 where the Client initiates a Multipath TCP
 connection with the Transport Converter (packets belonging to the

https://datatracker.ietf.org/doc/html/rfc8446

Bonaventure, et al. Expires February 2, 2020 [Page 8]

Internet-Draft Convert Protocol August 2019

 Multipath TCP connection are shown with "===") while the Transport
 Converter uses a regular TCP connection with the Server.

 Client Transport Server
 | Converter |
 | | |
 |==================>|--------------------->|
 | | |
 |<==================|<---------------------|
 | | |
 Multipath TCP packets Regular TCP packets

 Figure 4: An Example of 0-RTT Network-Assisted Outgoing MPTCP
 Connection

 The packets belonging to the pair of connections between the Client
 and Server passing through a Transport Converter may follow a
 different path than the packets directly exchanged between the Client
 and the Server. Deployments should minimize the possible additional
 delay by carefully selecting the location of the Transport Converter
 used to reach a given destination.

 When establishing a connection, the Client can, depending on local
 policies, either contact the Server directly (e.g., by sending a TCP
 SYN towards the Server) or create the connection via a Transport
 Converter. In the latter case (that is, the conversion service is
 used), the Client initiates a connection towards the Transport
 Converter and indicates the IP address and port number of the Server
 within the connection establishment packet. Doing so enables the
 Transport Converter to immediately initiate a connection towards that
 Server, without experiencing an extra delay. The Transport Converter
 waits until the receipt of the confirmation that the Server agrees to
 establish the connection before confirming it to the Client.

 The Client places the destination address and port number of the
 Server in the payload of the SYN sent to the Transport Converter to
 minimize connection establishment delays. The Transport Converter
 maintains two connections that are combined together:

 o the upstream connection is the one between the Client and the
 Transport Converter.

 o the downstream connection is between the Transport Converter and
 the Server.

 Any user data received by the Transport Converter over the upstream
 (or downstream) connection is relayed over the downstream (or
 upstream) connection. In particular, if the initial SYN message

Bonaventure, et al. Expires February 2, 2020 [Page 9]

Internet-Draft Convert Protocol August 2019

 contains data in its payload (e.g., [RFC7413]), that data MUST be
 placed right after the Convert TLVs when generating the relayed SYN.

 The Converter associates a lifetime with state entries used to bind
 an upstream connection with its downstream connection.

 A Transport Converter MAY operate in address preservation or address
 sharing modes as discussed in Section 5.4 of
 [I-D.nam-mptcp-deployment-considerations]. Which behavior to use by
 a Transport Converter is deployment-specific. If address sharing
 mode is enabled, the Transport Converter MUST adhere to REQ-2 of
 [RFC6888] which implies a default "IP address pooling" behavior of
 "Paired" (as defined in Section 4.1 of [RFC4787]) must be supported.
 This behavior is meant to avoid breaking applications that depend on
 the source address remaining constant.

 Figure 5 illustrates the establishment of an outgoing TCP connection
 by a Client through a Transport Converter.

 Transport
 Client Converter Server
 | | |
 |SYN [->Server:port]| SYN |
 |------------------>|--------------------->|
 |<------------------|<---------------------|
 | SYN+ACK [] | SYN+ACK |
 | ... | ... |

 Figure 5: Establishment of an Outgoing TCP Connection Through a
 Transport Converter

 The Client sends a SYN destined to the Transport Converter. The
 payload of this SYN contains the address and port number of the
 Server. The Transport Converter does not reply immediately to this
 SYN. It first tries to create a TCP connection towards the target
 Server. If this upstream connection succeeds, the Transport
 Converter confirms the establishment of the connection to the Client
 by returning a SYN+ACK and the first bytes of the bytestream contain
 information about the TCP options that were negotiated with the
 Server.

 The connection can also be established from the Internet towards a
 Client via a Transport Converter (Figure 6). This is typically the
 case when an application on the Client listens to a specific port
 (the Client hosts an application server, typically). When the
 Converter receives an incoming SYN from a remote host, it checks if
 it can provide the conversion service for the destination IP address
 and destination port number of that SYN. If the check is successful,

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6888
https://datatracker.ietf.org/doc/html/rfc4787#section-4.1

Bonaventure, et al. Expires February 2, 2020 [Page 10]

Internet-Draft Convert Protocol August 2019

 the Converter inserts the source IP address and source port number in
 the SYN packet, rewrites the source IP address to one of its IP
 addresses and, eventually (i.e., only when the Converter is
 configured in an address sharing mode), the destination IP address
 and port number in accordance with any information stored locally.
 That SYN is then forwarded to the next hop. SYN+ACK and ACK will be
 then exchanged between the Client, the Converter, and remote host to
 confirm the establishment of the connection.

 Transport Remote
 Client Converter Host (RH)
 | | |
 |SYN [<-RH IP@:port]| SYN |
 |<------------------|<---------------------|
 |------------------>|--------------------->|
 | SYN+ACK [] | SYN+ACK |
 | ... | ... |

 Figure 6: Establishment of an Incoming TCP Connection Through a
 Transport Converter

 Standard TCP ([RFC0793], Section 3.4) allows a SYN packet to carry
 data inside its payload but forbids the receiver from delivering it
 to the application until completion of the three-way-handshake. To
 enable applications to exchange data in a TCP handshake, this
 specification follows an approach similar to TCP Fast Open [RFC7413]
 and thus removes the constraint by allowing data in SYN packets to be
 delivered to the Transport Converter application.

 As discussed in [RFC7413], such change to TCP semantic raises two
 issues. First, duplicate SYNs can cause problems for some
 applications that rely on TCP. Second, TCP suffers from SYN flooding
 attacks [RFC4987]. TFO solves these two problems for applications
 that can tolerate replays by using the TCP Fast Open option that
 includes a cookie. However, the utilization of this option consumes
 space in the limited TCP header. Furthermore, there are situations,
 as noted in Section 7.3 of [RFC7413] where it is possible to accept
 the payload of SYN packets without creating additional security risks
 such as a network where addresses cannot be spoofed and the Transport
 Converter only serves a set of hosts that are identified by these
 addresses.

 For these reasons, this specification does not mandate the use of the
 TCP Fast Open option when the Client sends a connection establishment
 packet towards a Transport Converter. The Convert protocol includes
 an optional Cookie TLV that provides similar protection as the TCP
 Fast Open option without consuming space in the extended TCP header.
 In particular, this design allows for the use of longer cookies.

https://datatracker.ietf.org/doc/html/rfc0793#section-3.4
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc7413#section-7.3

Bonaventure, et al. Expires February 2, 2020 [Page 11]

Internet-Draft Convert Protocol August 2019

 If the downstream (or upstream) connection fails for some reason
 (excessive retransmissions, reception of an RST segment, etc.), then
 the Converter should force the teardown of the upstream (or
 downstream) connection.

 The same reasoning applies when the upstream connection ends. In
 this case, the Converter should also terminate the downstream
 connection by using FIN segments. If the downstream connection
 terminates with the exchange of FIN segments, the Converter should
 initiate a graceful termination of the upstream connection.

3.3. Sample Examples of Outgoing Converter-Assisted Multipath TCP
 Connections

 As an example, let us consider how the Convert protocol can help the
 deployment of Multipath TCP. We assume that both the Client and the
 Transport Converter support Multipath TCP, but consider two different
 cases depending on whether the Server supports Multipath TCP or not.

 As a reminder, a Multipath TCP connection is created by placing the
 MP_CAPABLE (MPC) option in the SYN sent by the Client.

 Figure 7 describes the operation of the Transport Converter if the
 Server does not support Multipath TCP.

 Transport
 Client Converter Server
 |SYN, | |
 |MPC [->Server:port]| SYN, MPC |
 |------------------>|--------------------->|
 |<------------------|<---------------------|
 | SYN+ACK,MPC [.] | SYN+ACK |
 |------------------>|--------------------->|
 | ACK, MPC | ACK |
 | | |
 | ... | ... |

 Figure 7: Establishment of a Multipath TCP Connection Through a
 Transport Converter towards a Server that Does Not Support Multipath
 TCP

 The Client tries to initiate a Multipath TCP connection by sending a
 SYN with the MP_CAPABLE option (MPC in Figure 7). The SYN includes
 the address and port number of the target Server, that are extracted
 and used by the Transport Converter to initiate a Multipath TCP
 connection towards this Server. Since the Server does not support
 Multipath TCP, it replies with a SYN+ACK that does not contain the
 MP_CAPABLE option. The Transport Converter notes that the connection

Bonaventure, et al. Expires February 2, 2020 [Page 12]

Internet-Draft Convert Protocol August 2019

 with the Server does not support Multipath TCP and returns the
 extended TCP header received from the Server to the Client.

 Note that, if the TCP connection fails for some reason, the Converter
 tears down the Multipath TCP connection by transmitting a
 MP_FASTCLOSE. Likewise, if the Multipath TCP connection ends with
 the transmission of DATA_FINs, the Converter terminates the TCP
 connection by using FIN segments. As a side note, given that with
 Multipath TCP, RST only has the scope of the subflow and will only
 close the concerned subflow but not affect the remaining subflows,
 the Converter does not terminate the TCP connection upon receipt of
 an RST over a Multipath subflow.

 Figure 8 considers a Server that supports Multipath TCP. In this
 case, it replies to the SYN sent by the Transport Converter with the
 MP_CAPABLE option. Upon reception of this SYN+ACK, the Transport
 Converter confirms the establishment of the connection to the Client
 and indicates to the Client that the Server supports Multipath TCP.
 With this information, the Client has discovered that the Server
 supports Multipath TCP natively. This will enable the Client to
 bypass the Transport Converter for the subsequent Multipath TCP
 connections that it will initiate towards this Server.

 Transport
 Client Converter Server
 |SYN, | |
 |MPC [->Server:port]| SYN, MPC |
 |------------------>|--------------------->|
 |<------------------|<---------------------|
 |SYN+ACK, | SYN+ACK, MPC |
 |MPC [MPC supported]| |
 |------------------>|--------------------->|
 | ACK, MPC | ACK, MPC |
 | | |
 | ... | ... |

 Figure 8: Establishment of a Multipath TCP Connection Through a
 Converter Towards an MPTCP-capable Server

3.4. Sample Example of Incoming Converter-Assisted Multipath TCP
 Connection

 An example of an incoming Converter-assisted Multipath TCP connection
 is depicted in Figure 9. In order to support incoming connections
 from remote hosts, the Client may use PCP [RFC6887] to instruct the
 Transport Converter to create dynamic mappings. Those mappings will
 be used by the Transport Converter to intercept an incoming TCP

https://datatracker.ietf.org/doc/html/rfc6887

Bonaventure, et al. Expires February 2, 2020 [Page 13]

Internet-Draft Convert Protocol August 2019

 connection destined to the Client and convert it into a Multipath TCP
 connection.

 Typically, the Client sends a PCP request to the Converter asking to
 create an explicit TCP mapping for (internal IP address, internal
 port number). The Converter accepts the request by creating a TCP
 mapping (internal IP address, internal port number, external IP
 address, external port number). The external IP address and external
 port number will be then advertised using an out-of-band mechanism so
 that remote hosts can initiate TCP connections to the Client via the
 Converter. Note that the external and internal information may be
 the same.

 Then, when the Converter receives an incoming SYN, it checks its
 mapping table to verify if there is an active mapping matching the
 destination IP address and destination port of that SYN. If an entry
 is found, the Converter inserts an MP_CAPABLE option and Connect TLV
 in the SYN packet, rewrites the source IP address to one of its IP
 addresses and, eventually, the destination IP address and port number
 in accordance with the information stored in the mapping. SYN+ACK
 and ACK will be then exchanged between the Client and the Converter
 to confirm the establishment of the initial subflow. The Client can
 add new subflows following normal Multipath TCP procedures.

 Transport Remote
 Client Converter Host
 | | |
 |<--------------------|<-------------------|
 |SYN, | SYN |
 |MPC[Remote Host:port]| |
 |-------------------->|------------------->|
 | SYN+ACK, MPC | SYN+ACK |
 |<--------------------|<-------------------|
 | ACK, MPC | ACK |
 | | |
 | ... | ... |

 Figure 9: Establishment of an Incoming Multipath TCP Connection
 through a Transport Converter

 It is out of scope of this document to define specific Convert TLVs
 to manage incoming connections. These TLVs can be defined in a
 separate document.

Bonaventure, et al. Expires February 2, 2020 [Page 14]

Internet-Draft Convert Protocol August 2019

4. The Convert Protocol (Convert)

 This section defines the Convert protocol (Convert, for short)
 messages that are exchanged between a Client and a Transport
 Converter.

 By default, the Transport Converter listens on TCP port number TBA
 for Convert messages from Clients.

 Clients send packets bound to connections eligible to the conversion
 service to the provisioned Transport Converter using TBA as
 destination port number. This applies for both control and data
 messages. Additional information is supplied by Clients to the
 Transport Converter by means of Convert messages as detailed in the
 following sub-sections.

 Convert messages may appear only in a SYN, SYN+ACK, or ACK.

 Convert messages MUST be included as the first bytes of the
 bytestream. All Convert messages start with a 32 bits long fixed
 header (Section 4.1) followed by one or more Convert TLVs (Type,
 Length, Value) (Section 4.2).

4.1. The Convert Fixed Header

 The Convert Protocol uses a 32 bits long fixed header that is sent by
 both the Client and the Transport Converter over each established
 connection. This header indicates both the version of the protocol
 used and the length of the Convert message.

 The Client and the Transport Converter MUST send the fixed-sized
 header, shown in Figure 10, as the first four bytes of the
 bytestream.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Version | Total Length | Unassigned |
 +---------------+---------------+-------------------------------+

 Figure 10: The Fixed-Sized Header of the Convert Protocol

 The Version is encoded as an 8 bits unsigned integer value. This
 document specifies version 1. Version 0 is reserved by this document
 and MUST NOT be used.

 The Total Length is the number of 32 bits word, including the header,
 of the bytestream that are consumed by the Convert messages. Since

Bonaventure, et al. Expires February 2, 2020 [Page 15]

Internet-Draft Convert Protocol August 2019

 Total Length is also an 8 bits unsigned integer, those messages
 cannot consume more than 1020 bytes of data. This limits the number
 of bytes that a Transport Converter needs to process. A Total Length
 of zero is invalid and the connection MUST be reset upon reception of
 a header with such total length.

 The Unassigned field MUST be set to zero in this version of the
 protocol. These bits are available for future use [RFC8126].

 Data added by the Convert protocol to the TCP bytestream is
 unambiguously distinguished from payload data by the Total Length
 field in the Convert messages.

4.2. Convert TLVs

4.2.1. Generic Convert TLV Format

 The Convert protocol uses variable length messages that are encoded
 using the generic TLV format depicted in Figure 11.

 The length of all TLVs used by the Convert protocol is always a
 multiple of four bytes. All TLVs are aligned on 32 bits boundaries.
 All TLV fields are encoded using the network byte order.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type | Length | Value ... |
 +---------------+---------------+-------------------------------+
 // ... (optional) Value //
 +---+

 Figure 11: Convert Generic TLV Format

 The Length field covers Type, Length, and Value fields. It is
 expressed in units of 32 bits words. If necessary, Value MUST be
 padded with zeroes so that the length of the TLV is a multiple of 32
 bits.

 A given TLV MUST only appear once on a connection. If two or more
 instances of the same TLV are exchanged over a Convert connection,
 the associated TCP connections MUST be closed.

4.2.2. Summary of Supported Convert TLVs

 This document specifies the following Convert TLVs:

https://datatracker.ietf.org/doc/html/rfc8126

Bonaventure, et al. Expires February 2, 2020 [Page 16]

Internet-Draft Convert Protocol August 2019

 +------+-----+----------+--+
 | Type | Hex | Length | Description |
 +------+-----+----------+--+
1	0x1	1	Info TLV
10	0xA	Variable	Connect TLV
20	0x14	Variable	Extended TCP Header TLV
21	0x15	Variable	Supported TCP Extensions TLV
22	0x16	Variable	Cookie TLV
30	0x1E	Variable	Error TLV
 +------+-----+----------+--+

 Figure 12: The TLVs used by the Convert Protocol

 Type 0x0 is a reserved valued. Implementations MUST discard messages
 with such TLV.

 The Client typically sends in the first connection it established
 with a Transport Converter the Info TLV (Section 4.2.3) to learn its
 capabilities. Assuming the Client is authorized to invoke the
 Transport Converter, the latter replies with the Supported TCP
 Extensions TLV (Section 4.2.4).

 The Client can request the establishment of connections to servers by
 using the Connect TLV (Section 4.2.5). If the connection can be
 established with the final server, the Transport Converter replies
 with the Extended TCP Header TLV (Section 4.2.6). If not, the
 Transport Converter returns an Error TLV (Section 4.2.8) and then
 closes the connection.

 When an error is encountered an Error TLV with the appropriate error
 code MUST be returned by the Transport Converter.

4.2.3. The Info TLV

 The Info TLV (Figure 13) is an optional TLV which can be sent by a
 Client to request the TCP extensions that are supported by a
 Transport Converter. It is typically sent on the first connection
 that a Client establishes with a Transport Converter to learn its
 capabilities. Assuming a Client is entitled to invoke the Transport
 Converter, the latter replies with the Supported TCP Extensions TLV
 described in Section 4.2.4.

Bonaventure, et al. Expires February 2, 2020 [Page 17]

Internet-Draft Convert Protocol August 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x1 | Length | Zero |
 +---------------+---------------+-------------------------------+

 Figure 13: The Info TLV

4.2.4. Supported TCP Extensions TLV

 The Supported TCP Extensions TLV (Figure 14) is used by a Transport
 Converter to announce the TCP options for which it provides a
 conversion service. A Transport Converter SHOULD include in this
 list the TCP options that it accepts from Clients; these options are
 included by the Transport Converter in the SYN packets that it sends
 to initiate connections.

 Each supported TCP option is encoded with its TCP option Kind listed
 in the "TCP Parameters" registry maintained by IANA.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x15 | Length | Unassigned |
 +---------------+---------------+-------------------------------+
 | Kind #1 | Kind #2 | ... |
 +---------------+---------------+-------------------------------+
 / ... /
 / /
 +---+

 Figure 14: The Supported TCP Extensions TLV

 TCP option Kinds 0, 1, and 2 defined in [RFC0793] are supported by
 all TCP implementations and thus MUST NOT appear in this list.

 The list of Supported TCP Extensions is padded with 0 to end on a 32
 bits boundary.

 For example, if the Transport Converter supports Multipath TCP,
 Kind=30 will be present in the Supported TCP Extensions TLV that it
 returns in response to Info TLV.

https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires February 2, 2020 [Page 18]

Internet-Draft Convert Protocol August 2019

4.2.5. Connect TLV

 The Connect TLV (Figure 15) is used to request the establishment of a
 connection via a Transport Converter. This connection can be from or
 to a Client.

 The 'Remote Peer Port' and 'Remote Peer IP Address' fields contain
 the destination port number and IP address of the Server, for
 outgoing connections. For incoming connections destined to a Client
 serviced via a Transport Converter, these fields convey the source
 port number and IP address.

 The Remote Peer IP Address MUST be encoded as an IPv6 address. IPv4
 addresses MUST be encoded using the IPv4-Mapped IPv6 Address format
 defined in [RFC4291]. Further, Remote Peer IP address field MUST NOT
 include multicast, broadcast, and host loopback addresses [RFC6890].
 Connect TLVs witch such messages MUST be discarded by the Transport
 Converter.

 We distinguish two types of Connect TLV based on their length: (1)
 the base Connect TLV has a length of 20 bytes and contains a remote
 address and a remote port, (2) the extended Connect TLV spans more
 than 20 bytes and also includes the optional 'TCP Options' field.
 This field is used to specify how specific TCP options should be
 advertised by the Transport Converter to the server.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0xA | Length | Remote Peer Port |
 +---------------+---------------+-------------------------------+
 | |
 | Remote Peer IP Address (128 bits) |
 | |
 | |
 +---+
 / TCP Options (Variable) /
 / ... /
 +---+

 Figure 15: The Connect TLV

 The 'TCP Options' field is a variable length field that carries a
 list of TCP option fields (Figure 16). Each TCP option field is
 encoded as a block of 2+n bytes where the first byte is the TCP
 option Kind and the second byte is the length of the TCP option as
 specified in [RFC0793]. The minimum value for the TCP option Length
 is 2. The TCP options that do not include a length subfield, i.e.,

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6890
https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires February 2, 2020 [Page 19]

Internet-Draft Convert Protocol August 2019

 option types 0 (EOL) and 1 (NOP) defined in [RFC0793] MUST NOT be
 placed inside the TCP options field of the Connect TLV. The optional
 Value field contains the variable-length part of the TCP option. A
 length of two indicates the absence of the Value field. The TCP
 options field always ends on a 32 bits boundary after being padded
 with zeros.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | TCPOpt kind | TCPOpt Length | Value (opt) | |
 +---------------+---------------+---------------+---------------+
 | |
 +---+
 | ... |
 +---+

 Figure 16: The TCP Options Field

 Upon reception of a Connect TLV, and absent any policy (e.g., rate-
 limit) or resource exhaustion conditions, a Transport Converter
 attempts to establish a connection to the address and port that it
 contains. The Transport Converter MUST use by default the TCP
 options that correspond to its local policy to establish this
 connection. These are the options that it advertises in the
 Supported TCP Extensions TLV.

 Upon reception of an extended Connect TLV, and absent any rate limit
 policy or resource exhaustion conditions, a Transport Converter MUST
 attempt to establish a connection to the address and port that it
 contains. It MUST include the options of the 'TCP Options' subfield
 in the SYN sent to the Server in addition to the TCP options that it
 would have used according to its local policies. For the TCP options
 that are listed without an optional value, the Transport Converter
 MUST generate its own value. For the TCP options that are included
 in the 'TCP Options' field with an optional value, it MUST copy the
 entire option for use in the connection with the destination peer.
 This feature is required to support TCP Fast Open.

 The Transport Converter may discard a Connect TLV request for various
 reasons (e.g., authorization failed, out of resources, invalid
 address type). An error message indicating the encountered error is
 returned to the requesting Client (Section 4.2.8). In order to
 prevent denial-of-service attacks, error messages sent to a Client
 SHOULD be rate-limited.

https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires February 2, 2020 [Page 20]

Internet-Draft Convert Protocol August 2019

4.2.6. Extended TCP Header TLV

 The Extended TCP Header TLV (Figure 17) is used by the Transport
 Converter to send to the Client the extended TCP header that was
 returned by the Server in the SYN+ACK packet. This TLV is only sent
 if the Client sent a Connect TLV to request the establishment of a
 connection.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x14 | Length | Unassigned |
 +---------------+---------------+-------------------------------+
 / Returned Extended TCP header /
 / ... /
 +---+

 Figure 17: The Extended TCP Header TLV

 The Returned Extended TCP header field is a copy of the extended
 header that was received in the SYN+ACK by the Transport Converter.

 The Unassigned field MUST be set to zero by the sender and ignored by
 the receiver. These bits are available for future use [RFC8126].

4.2.7. The Cookie TLV

 The Cookie TLV (Figure 18 is an optional TLV which use is similar to
 the TCP Fast Open Cookie [RFC7413]. A Transport Converter may want
 to verify that a Client can receive the packets that it sends to
 prevent attacks from spoofed addresses. This verification can be
 done by using a Cookie that is bound to, for example, the IP
 address(es) of the Client. This Cookie can be configured on the
 Client by means that are outside of this document or provided by the
 Transport Converter as follows.

 A Transport Converter that has been configured to use the optional
 Cookie TLV MUST verify the presence of this TLV in the payload of the
 received SYN. If this TLV is present, the Transport Converter MUST
 validate the Cookie by means similar to those in Section 4.1.2 of
 [RFC7413] (i.e., IsCookieValid). If the Cookie is valid, the
 connection establishment procedure can continue. Otherwise, the
 Transport Converter MUST return an Error TLV set to "Not Authorized"
 and close the connection.

 If the received SYN did not contain a Cookie TLV, and cookie
 validation is required, the Transport Converter should compute a
 Cookie bound to this Client address and return a Convert message

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc7413#section-4.1.2

Bonaventure, et al. Expires February 2, 2020 [Page 21]

Internet-Draft Convert Protocol August 2019

 containing the fixed header, an Error TLV set to "Missing Cookie" and
 the computed Cookie and close the connection. The Client will react
 to this error by storing the received Cookie in its cache and attempt
 to reestablish a new connection to the Transport Converter that
 includes the Cookie TLV.

 The format of the Cookie TLV is shown in Figure 18.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x16 | Length | Zero |
 +---------------+---------------+-------------------------------+
 / Opaque Cookie /
 / ... /
 +---+

 Figure 18: The Cookie TLV

4.2.8. Error TLV

 The Error TLV (Figure 19) is meant to provide information about some
 errors that occurred during the processing of a Convert message.
 This TLV has a variable length. Upon reception of an Error TLV, a
 Client MUST close the associated connection.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+----------------+--------------+
 | Type=0x1E | Length | Error Code | Value |
 +---------------+---------------+----------------+--------------+
 // ... (optional) Value //
 +---+

 Figure 19: The Error TLV

 Different types of errors can occur while processing Convert
 messages. Each error is identified by an Error Code represented as
 an unsigned integer. Four classes of error codes are defined:

 o Message validation and processing errors (0-31 range): returned
 upon reception of an invalid message (including valid messages but
 with invalid or unknown TLVs).

 o Client-side errors (32-63 range): the Client sent a request that
 could not be accepted by the Transport Converter (e.g.,
 unsupported operation).

Bonaventure, et al. Expires February 2, 2020 [Page 22]

Internet-Draft Convert Protocol August 2019

 o Converter-side errors (64-95 range): problems encountered on the
 Transport Converter (e.g., lack of resources) which prevent it
 from fulfilling the Client's request.

 o Errors caused by the destination server (96-127 range): the final
 destination could not be reached or it replied with a reset.

 The following error codes are defined in this document:

 o Unsupported Version (0): The version number indicated in the fixed
 header of a message received from a peer is not supported.

 This error code MUST be generated by a Transport Converter (or
 Client) when it receives a request having a version number that it
 does not support.

 The value field MUST be set to the version supported by the
 Transport Converter (or Client). When multiple versions are
 supported by the Transport Converter (or Client), it includes the
 list of supported version in the value field; each version is
 encoded in 8 bits. The list of supported versions should be
 padded with zeros to end on a 32 bits boundary.

 Upon receipt of this error code, the Client (or Transport
 Converter) checks whether it supports one of the versions returned
 by the Transport Converter (or Client). The highest common
 supported version MUST be used by the Client (or Transport
 Converter) in subsequent exchanges with the Transport Converter
 (or Client).

 o Malformed Message (1): This error code is sent to indicate that a
 message received from a peer is can not be successfully parsed and
 validated.

 Typically, this error code is sent by the Transport Converter if
 it receives a Connect TLV enclosing a multicast, broadcast, or
 loopback IP address.

 To ease troubleshooting, the value field MUST echo the received
 message shifted by one byte to keep to original alignment of the
 message.

 o Unsupported Message (2): This error code is sent to indicate that
 a message type received from a peer is not supported.

 To ease troubleshooting, the value field MUST echo the received
 message shifted by one byte to keep to original alignment of the
 message.

Bonaventure, et al. Expires February 2, 2020 [Page 23]

Internet-Draft Convert Protocol August 2019

 o Missing Cookie (3): If a Transport Converter requires the
 utilization of Cookies to prevent spoofing attacks and a Cookie
 TLV was not included in the Convert message, the Transport
 Converter MUST return this error to the requesting client. The
 first byte of the value field MUST be set to zero and the
 remaining bytes of the Error TLV contain the Cookie computed by
 the Transport Converter for this Client.

 A Client which receives this error code MUST cache the received
 Cookie and include it in subsequent Convert messages sent to that
 Transport Converter.

 o Not Authorized (32): This error code indicates that the Transport
 Converter refused to create a connection because of a lack of
 authorization (e.g., administratively prohibited, authorization
 failure, invalid Cookie TLV, etc.). The Value field MUST be set
 to zero.

 This error code MUST be sent by the Transport Converter when a
 request cannot be successfully processed because the authorization
 failed.

 o Unsupported TCP Option (33): A TCP option that the Client
 requested to advertise to the final Server cannot be safely used.

 The Value field is set to the type of the unsupported TCP option.
 If several unsupported TCP options were specified in the Connect
 TLV, then the list of unsupported TCP options is returned. The
 list of unsupported TCP options MUST be padded with zeros to end
 on a 32 bits boundary.

 o Resource Exceeded (64): This error indicates that the Transport
 Converter does not have enough resources to perform the request.

 This error MUST be sent by the Transport Converter when it does
 not have sufficient resources to handle a new connection. The
 Transport Converter may indicate in the Value field the suggested
 delay (in seconds) that the Client SHOULD wait before soliciting
 the Transport Converter for a new proxied connection. A Value of
 zero corresponds to a default delay of at least 30 seconds.

 o Network Failure (65): This error indicates that the Transport
 Converter is experiencing a network failure to relay the request.

 The Transport Converter MUST send this error code when it
 experiences forwarding issues to relay a connection. The
 Transport Converter may indicate in the Value field the suggested
 delay (in seconds) that the Client SHOULD wait before soliciting

Bonaventure, et al. Expires February 2, 2020 [Page 24]

Internet-Draft Convert Protocol August 2019

 the Transport Converter for a new proxied connection. A Value of
 zero corresponds to a default delay of at least 30 seconds.

 o Connection Reset (96): This error indicates that the final
 destination responded with an RST packet. The Value field MUST be
 set to zero.

 o Destination Unreachable (97): This error indicates that an ICMP
 destination unreachable, port unreachable, or network unreachable
 was received by the Transport Converter. The Value field MUST
 echo the Code field of the received ICMP message.

 Figure 20 summarizes the different error codes.

 +-------+------+---+
 | Error | Hex | Description |
 +-------+------+---+
 | 0 | 0x00 | Unsupported Version |
 | 1 | 0x01 | Malformed Message |
 | 2 | 0x02 | Unsupported Message |
 | 3 | 0x03 | Missing Cookie |
 | 32 | 0x20 | Not Authorized |
 | 33 | 0x21 | Unsupported TCP Option |
 | 64 | 0x40 | Resource Exceeded |
 | 65 | 0x41 | Network Failure |
 | 96 | 0x60 | Connection Reset |
 | 97 | 0x61 | Destination Unreachable |
 +-------+------+---+

 Figure 20: Convert Error Values

5. Compatibility of Specific TCP Options with the Conversion Service

 In this section, we discuss how several standard track TCP options
 can be supported through the Convert protocol. The non-standard
 track options and the experimental options will be discussed in other
 documents.

5.1. Base TCP Options

 Three TCP options were initially defined in [RFC0793]: End-of-Option
 List (Kind=0), No-Operation (Kind=1) and Maximum Segment Size
 (Kind=2). The first two options are mainly used to pad the TCP
 header. There is no reason for a client to request a Transport
 Converter to specifically send these options towards the final
 destination.

https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires February 2, 2020 [Page 25]

Internet-Draft Convert Protocol August 2019

 The Maximum Segment Size option (Kind=2) is used by a host to
 indicate the largest segment that it can receive over each
 connection. This value is function of the stack that terminates the
 TCP connection. There is no reason for a Client to request a
 Transport Converter to advertise a specific MSS value to a remote
 server.

 A Transport Converter MUST ignore options with Kind=0, 1 or 2 if they
 appear in a Connect TLV. It MUST NOT announce them in a Supported
 TCP Extensions TLV.

5.2. Window Scale (WS)

 The Window Scale (WS) option (Kind=3) is defined in [RFC7323]. As
 for the MSS option, the window scale factor that is used for a
 connection strongly depends on the TCP stack that handles the
 connection. When a Transport Converter opens a TCP connection
 towards a remote server on behalf of a Client, it SHOULD use a WS
 option with a scaling factor that corresponds to the configuration of
 its stack. A local configuration MAY allow for WS option in the
 proxied message to be function of the scaling factor of the incoming
 connection.

 There is no benefit from a deployment viewpoint in enabling a Client
 of a Transport Converter to specifically request the utilization of
 the WS option (Kind=3) with a specific scaling factor towards a
 remote Server. For this reason, a Transport Converter MUST ignore
 option Kind=3 if it appears in a Connect TLV. It MUST NOT announce
 it in a Supported TCP Extensions TLV.

5.3. Selective Acknowledgements

 Two distinct TCP options were defined to support selective
 acknowledgements in [RFC2018]. This first one, SACK Permitted
 (Kind=4), is used to negotiate the utilization of selective
 acknowledgements during the three-way handshake. The second one,
 SACK (Kind=5), carries the selective acknowledgements inside regular
 segments.

 The SACK Permitted option (Kind=4) MAY be advertised by a Transport
 Converter in the Supported TCP Extensions TLV. Clients connected to
 this Transport Converter MAY include the SACK Permitted option in the
 Connect TLV.

 The SACK option (Kind=5) cannot be used during the three-way
 handshake. For this reason, a Transport Converter MUST ignore option
 Kind=5 if it appears in a Connect TLV. It MUST NOT announce it in a
 TCP Supported Extensions TLV.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018

Bonaventure, et al. Expires February 2, 2020 [Page 26]

Internet-Draft Convert Protocol August 2019

5.4. Timestamp

 The Timestamp option was initially defined in [RFC1323] and later
 refined in [RFC7323]. It can be used during the three-way handshake
 to negotiate the utilization of timestamps during the TCP connection.
 It is notably used to improve round-trip-time estimations and to
 provide protection against wrapped sequence numbers (PAWS). As for
 the WS option, the timestamps are a property of a connection and
 there is limited benefit in enabling a client to request a Transport
 Converter to use the timestamp option when establishing a connection
 to a remote server. Furthermore, the timestamps that are used by TCP
 stacks are specific to each stack and there is no benefit in enabling
 a client to specify the timestamp value that a Transport Converter
 could use to establish a connection to a remote server.

 A Transport Converter MAY advertise the Timestamp option (Kind=8) in
 the TCP Supported Extensions TLV. The clients connected to this
 Transport Converter MAY include the Timestamp option in the Connect
 TLV but without any timestamp.

5.5. Multipath TCP

 The Multipath TCP options are defined in [RFC6824]. [RFC6824]
 defines one variable length TCP option (Kind=30) that includes a
 subtype field to support several Multipath TCP options. There are
 several operational use cases where clients would like to use
 Multipath TCP through a Transport Converter [IETFJ16]. However, none
 of these use cases require the Client to specify the content of the
 Multipath TCP option that the Transport Converter should send to a
 remote server.

 A Transport Converter which supports Multipath TCP conversion service
 MUST advertise the Multipath TCP option (Kind=30) in the Supported
 TCP Extensions TLV. Clients serviced by this Transport Converter may
 include the Multipath TCP option in the Connect TLV but without any
 content.

5.6. TCP Fast Open

 The TCP Fast Open cookie option (Kind=34) is defined in [RFC7413].
 There are two different usages of this option that need to be
 supported by Transport Converters. The first utilization of the TCP
 Fast Open cookie option is to request a cookie from the server. In
 this case, the option is sent with an empty cookie by the client and
 the server returns the cookie. The second utilization of the TCP
 Fast Open cookie option is to send a cookie to the server. In this
 case, the option contains a cookie.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires February 2, 2020 [Page 27]

Internet-Draft Convert Protocol August 2019

 A Transport Converter MAY advertise the TCP Fast Open cookie option
 (Kind=34) in the Supported TCP Extensions TLV. If a Transport
 Converter has advertised the support for TCP Fast Open in its
 Supported TCP Extensions TLV, it needs to be able to process two
 types of Connect TLV. If such a Transport Converter receives a
 Connect TLV with the TCP Fast Open cookie option that does not
 contain a cookie, it MUST add an empty TCP Fast Open cookie option in
 the SYN sent to the remote server. If such a Transport Converter
 receives a Connect TLV with the TCP Fast Open cookie option that
 contains a cookie, it MUST copy the TCP Fast Open cookie option in
 the SYN sent to the remote server.

5.7. TCP User Timeout

 The TCP User Timeout option is defined in [RFC5482]. The associated
 TCP option (Kind=28) does not appear to be widely deployed.

5.8. TCP-AO

 TCP-AO [RFC5925] provides a technique to authenticate all the packets
 exchanged over a TCP connection. Given the nature of this extension,
 it is unlikely that the applications that require their packets to be
 authenticated end-to-end would want their connections to pass through
 a converter. For this reason, we do not recommend the support of the
 TCP-AO option by Transport Converters. The only use cases where it
 could make sense to combine TCP-AO and the solution in this document
 are those where the TCP-AO-NAT extension [RFC6978] is in use.

 A Transport Converter MUST NOT advertise the TCP-AO option (Kind=29)
 in the Supported TCP Extensions TLV. If a Transport Converter
 receives a Connect TLV that contains the TCP-AO option, it MUST
 reject the establishment of the connection with error code set to
 "Unsupported TCP Option", except if the TCP-AO-NAT option is used.

5.9. TCP Experimental Options

 The TCP Experimental options are defined in [RFC4727]. Given the
 variety of semantics for these options and their experimental nature,
 it is impossible to discuss them in details in this document.

6. Interactions with Middleboxes

 The Convert Protocol is designed to be used in networks that do not
 contain middleboxes that interfere with TCP. Under such conditions,
 it is assumed that the network provider ensures that all involved on-
 path nodes are not breaking TCP signals (e.g., strip TCP options,
 discard some SYNs, etc.).

https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc4727

Bonaventure, et al. Expires February 2, 2020 [Page 28]

Internet-Draft Convert Protocol August 2019

 Nevertheless, and in order to allow for a robust service, this
 section describes how a Client can detect middlebox interference and
 stop using the Transport Converter affected by this interference.

 Internet measurements [IMC11] have shown that middleboxes can affect
 the deployment of TCP extensions. In this section, we only discuss
 the middleboxes that modify SYN and SYN+ACK packets since the Convert
 Protocol places its messages in such packets.

 Consider a middlebox that removes the SYN payload. The Client can
 detect this problem by looking at the acknowledgement number field of
 the SYN+ACK returned by the Transport Converter. The Client MUST
 stop to use this Transport Converter given the middlebox
 interference.

 Consider now a middlebox that drops SYN/ACKs with a payload. The
 Client won't be able to establish a connection via the Transport
 Converter.

 The case of a middlebox that removes the payload of SYN+ACKs (but not
 the payload of SYN) can be detected by a Client. This is hinted by
 the absence of an Error or Extended TCP Header TLV in a response. If
 an Error was returned by the Transport Converter, a message to close
 the connection would normally follow from the Converter. If no such
 message is received, the Client may continue to use this Converter.

 As explained in [RFC7413], some CGNs (Carrier Grade NATs) can affect
 the operation of TFO if they assign different IP addresses to the
 same end host. Such CGNs could affect the operation of the cookie
 validation used by the Convert Protocol. As a reminder CGNs, enabled
 on the path between a Client and a Transport Converter, must adhere
 to the address preservation defined in [RFC6888]. See also the
 discussion in Section 7.1 of [RFC7413].

7. Security Considerations

7.1. Privacy & Ingress Filtering

 The Transport Converter may have access to privacy-related
 information (e.g., subscriber credentials). The Transport Converter
 is designed to not leak such sensitive information outside a local
 domain.

 Given its function and its location in the network, a Transport
 Converter has access to the payload of all the packets that it
 processes. As such, it MUST be protected as a core IP router (e.g.,
 [RFC1812]).

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6888
https://datatracker.ietf.org/doc/html/rfc7413#section-7.1
https://datatracker.ietf.org/doc/html/rfc1812

Bonaventure, et al. Expires February 2, 2020 [Page 29]

Internet-Draft Convert Protocol August 2019

 Furthermore, ingress filtering policies MUST be enforced at the
 network boundaries [RFC2827].

 This document assumes that all network attachments are managed by the
 same administrative entity. Therefore, enforcing anti-spoofing
 filters at these network ensures that hosts are not sending traffic
 with spoofed source IP addresses.

7.2. Authorization

 The Convert Protocol is intended to be used in managed networks where
 end hosts can be identified by their IP address.

 Stronger mutual authentication schemes MUST be defined to use the
 Convert Protocol in more open network environments. One possibility
 is to use TLS to perform mutual authentication between the client and
 the Converter. That is, use TLS when a Client retrieves a Cookie
 from the Converter and rely on certificate-based client
 authentication, pre-shared key based [RFC4279] or raw public key
 based client authentication [RFC7250] to secure this connection.

 If the authentication succeeds, the Converter returns a cookie to the
 Client. Subsequent Connect messages will be authorized as a function
 of the content of the Cookie TLV.

 In deployments where network-assisted connections are not allowed
 between hosts of a domain (i.e., hairpinning), the Converter may be
 instructed to discard such connections. Hairpinned connections are
 thus rejected by the Transport Converter by returning an Error TLV
 set to "Not Authorized". Absent explicit configuration otherwise,
 hairpinning is enabled by the Converter (see Figure 21.

https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc7250

Bonaventure, et al. Expires February 2, 2020 [Page 30]

Internet-Draft Convert Protocol August 2019

 <===Network Provider===>

 +----+ from X1:x1 to X2':x2' +-----+ X1':x1'
 | C1 |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>--+---
 +----+ | v |
 | v |
 | v |
 | v |
 +----+ from X1':x1' to X2:x2 | v | X2':x2'
 | C2 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<<--+---
 +----+ +-----+
 Converter

 Note: X2':x2' may be equal to
 X2:x2

 Figure 21: Hairpinning Example

 See below for authorization considerations that are specific for
 Multipath TCP.

7.3. Denial of Service

 Another possible risk is the amplification attacks since a Transport
 Converter sends a SYN towards a remote Server upon reception of a SYN
 from a Client. This could lead to amplification attacks if the SYN
 sent by the Transport Converter were larger than the SYN received
 from the Client or if the Transport Converter retransmits the SYN.
 To mitigate such attacks, the Transport Converter SHOULD rate limit
 the number of pending requests for a given Client. It SHOULD also
 avoid sending to remote Servers SYNs that are significantly longer
 than the SYN received from the Client. Finally, the Transport
 Converter SHOULD only retransmit a SYN to a Server after having
 received a retransmitted SYN from the corresponding Client. Means to
 protect against SYN flooding attacks MUST also be enabled [RFC4987].

7.4. Traffic Theft

 Traffic theft is a risk if an illegitimate Converter is inserted in
 the path. Indeed, inserting an illegitimate Converter in the
 forwarding path allows traffic interception and can therefore provide
 access to sensitive data issued by or destined to a host. Converter
 discovery and configuration are out of scope of this document.

https://datatracker.ietf.org/doc/html/rfc4987

Bonaventure, et al. Expires February 2, 2020 [Page 31]

Internet-Draft Convert Protocol August 2019

7.5. Multipath TCP-specific Considerations

 Multipath TCP-related security threats are discussed in [RFC6181] and
 [RFC6824].

 The operator that manages the various network attachments (including
 the Transport Converters) can enforce authentication and
 authorization policies using appropriate mechanisms. For example, a
 non-exhaustive list of methods to achieve authorization is provided
 hereafter:

 o The network provider may enforce a policy based on the
 International Mobile Subscriber Identity (IMSI) to verify that a
 user is allowed to benefit from the Multipath TCP converter
 service. If that authorization fails, the Packet Data Protocol
 (PDP) context/bearer will not be mounted. This method does not
 require any interaction with the Transport Converter for
 authorization matters.

 o The network provider may enforce a policy based upon Access
 Control Lists (ACLs), e.g., at a Broadband Network Gateway (BNG)
 to control the hosts that are authorized to communicate with a
 Transport Converter. These ACLs may be installed as a result of
 RADIUS exchanges, e.g., [I-D.boucadair-radext-tcpm-converter].
 This method does not require any interaction with the Transport
 Converter for authorization matters.

 o A device that embeds a Transport Converter may also host a RADIUS
 client that will solicit an AAA server to check whether
 connections received from a given source IP address are authorized
 or not [I-D.boucadair-radext-tcpm-converter].

 A first safeguard against the misuse of Transport Converter resources
 by illegitimate users (e.g., users with access networks that are not
 managed by the same provider that operates the Transport Converter)
 is the Transport Converter to reject Multipath TCP connections
 received on its Internet-facing interfaces. Only Multipath TCP
 connections received on the customer-facing interfaces of a Transport
 Converter will be accepted.

8. IANA Considerations

8.1. Convert Service Port Number

 IANA is requested to assign a TCP port number (TBA) for the Convert
 Protocol from the "Service Name and Transport Protocol Port Number
 Registry" available at https://www.iana.org/assignments/service-

names-port-numbers/service-names-port-numbers.xhtml.

https://datatracker.ietf.org/doc/html/rfc6181
https://datatracker.ietf.org/doc/html/rfc6824
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Bonaventure, et al. Expires February 2, 2020 [Page 32]

Internet-Draft Convert Protocol August 2019

 Service Name: convert
 Port Number: TBD
 Transport Protocol(s): TCP
 Description: 0-RTT TCP Convert Protocol
 Assignee: IESG <iesg@ietf.org>
 Contact: IETF Chair <chair@ietf.org>
 Reference: RFC XXXX

8.2. The Convert Protocol (Convert) Parameters

 IANA is requested to create a new "The Convert Protocol (Convert)
 Parameters" registry.

 The following subsections detail new registries within "The Convert
 Protocol (Convert) Parameters" registry.

8.2.1. Convert Versions

 IANA is requested to create the "Convert versions" sub-registry. New
 values are assigned via IETF Review (Section 4.8 of [RFC8126]).

 The initial values to be assigned at the creation of the registry are
 as follows:

 +---------+--------------------------------------+-------------+
 | Version | Description | Reference |
 +---------+--------------------------------------+-------------+
 | 0 | Reserved by this document | [This-RFC] |
 | 1 | Assigned by this document | [This-RFC] |
 +---------+--------------------------------------+-------------+

8.2.2. Convert TLVs

 IANA is requested to create the "Convert TLVs" sub-registry. The
 procedure for assigning values from this registry is as follows:

 o The values in the range 1-127 can be assigned via IETF Review.

 o The values in the range 128-191 can be assigned via Specification
 Required.

 o The values in the range 192-255 can be assigned for Private Use.

 The initial values to be assigned at the creation of the registry are
 as follows:

https://datatracker.ietf.org/doc/html/rfc8126#section-4.8

Bonaventure, et al. Expires February 2, 2020 [Page 33]

Internet-Draft Convert Protocol August 2019

 +---------+--------------------------------------+-------------+
 | Code | Name | Reference |
 +---------+--------------------------------------+-------------+
 | 0 | Reserved | [This-RFC] |
 | 1 | Info TLV | [This-RFC] |
 | 10 | Connect TLV | [This-RFC] |
 | 20 | Extended TCP Header TLV | [This-RFC] |
 | 21 | Supported TCP Extension TLV | [This-RFC] |
 | 22 | Cookie TLV | [This-RFC] |
 | 30 | Error TLV | [This-RFC] |
 +---------+--------------------------------------+-------------+

8.2.3. Convert Error Messages

 IANA is requested to create the "Convert Errors" sub-registry. Codes
 in this registry are assigned as a function of the error type. Four
 types are defined; the following ranges are reserved for each of
 these types:

 o Message validation and processing errors: 0-31

 o Client-side errors: 32-63

 o Transport Converter-side errors: 64-95

 o Errors caused by destination server: 96-127

 The procedure for assigning values from this sub-registry is as
 follows:

 o 0-127: Values in this range are assigned via IETF Review.

 o 128-191: Values in this range are assigned via Specification
 Required.

 o 192-255: Values in this range are assigned for Private Use.

 The initial values to be assigned at the creation of the registry are
 as follows:

Bonaventure, et al. Expires February 2, 2020 [Page 34]

Internet-Draft Convert Protocol August 2019

 +-------+------+-----------------------------------+-----------+
 | Error | Hex | Description | Reference |
 +-------+------+-----------------------------------+-----------+
 | 0 | 0x00 | Unsupported Version | [This-RFC]|
 | 1 | 0x01 | Malformed Message | [This-RFC]|
 | 2 | 0x02 | Unsupported Message | [This-RFC]|
 | 3 | 0x03 | Missing Cookie | [This-RFC]|
 | 32 | 0x20 | Not Authorized | [This-RFC]|
 | 33 | 0x21 | Unsupported TCP Option | [This-RFC]|
 | 64 | 0x40 | Resource Exceeded | [This-RFC]|
 | 65 | 0x41 | Network Failure | [This-RFC]|
 | 96 | 0x60 | Connection Reset | [This-RFC]|
 | 97 | 0x61 | Destination Unreachable | [This-RFC]|
 +-------+------+-----------------------------------+-----------+

 Figure 22: The Convert Error Codes

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",

RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4727] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727,
 DOI 10.17487/RFC4727, November 2006,
 <https://www.rfc-editor.org/info/rfc4727>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4279
https://www.rfc-editor.org/info/rfc4279
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4727
https://www.rfc-editor.org/info/rfc4727
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://www.rfc-editor.org/info/rfc4787

Bonaventure, et al. Expires February 2, 2020 [Page 35]

Internet-Draft Convert Protocol August 2019

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
RFC 5482, DOI 10.17487/RFC5482, March 2009,

 <https://www.rfc-editor.org/info/rfc5482>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC6888] Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
 A., and H. Ashida, "Common Requirements for Carrier-Grade
 NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
 April 2013, <https://www.rfc-editor.org/info/rfc6888>.

 [RFC6890] Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
 "Special-Purpose IP Address Registries", BCP 153,

RFC 6890, DOI 10.17487/RFC6890, April 2013,
 <https://www.rfc-editor.org/info/rfc6890>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5482
https://www.rfc-editor.org/info/rfc5482
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc6888
https://www.rfc-editor.org/info/rfc6888
https://datatracker.ietf.org/doc/html/bcp153
https://datatracker.ietf.org/doc/html/rfc6890
https://www.rfc-editor.org/info/rfc6890
https://datatracker.ietf.org/doc/html/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Bonaventure, et al. Expires February 2, 2020 [Page 36]

Internet-Draft Convert Protocol August 2019

9.2. Informative References

 [ANRW17] Trammell, B., Kuhlewind, M., De Vaere, P., Learmonth, I.,
 and G. Fairhurst, "Tracking transport-layer evolution with
 PATHspider", Applied Networking Research Workshop 2017
 (ANRW17) , July 2017.

 [Fukuda2011]
 Fukuda, K., "An Analysis of Longitudinal TCP Passive
 Measurements (Short Paper)", Traffic Monitoring and
 Analysis. TMA 2011. Lecture Notes in Computer Science, vol
 6613. , 2011.

 [HotMiddlebox13b]
 Detal, G., Paasch, C., and O. Bonaventure, "Multipath in
 the Middle(Box)", HotMiddlebox'13 , December 2013,
 <http://inl.info.ucl.ac.be/publications/

multipath-middlebox>.

 [I-D.arkko-arch-low-latency]
 Arkko, J. and J. Tantsura, "Low Latency Applications and
 the Internet Architecture", draft-arkko-arch-low-

latency-02 (work in progress), October 2017.

 [I-D.boucadair-mptcp-plain-mode]
 Boucadair, M., Jacquenet, C., Bonaventure, O., Behaghel,
 D., stefano.secci@lip6.fr, s., Henderickx, W., Skog, R.,
 Vinapamula, S., Seo, S., Cloetens, W., Meyer, U.,
 Contreras, L., and B. Peirens, "Extensions for Network-
 Assisted MPTCP Deployment Models", draft-boucadair-mptcp-

plain-mode-10 (work in progress), March 2017.

 [I-D.boucadair-radext-tcpm-converter]
 Boucadair, M. and C. Jacquenet, "RADIUS Extensions for
 0-RTT TCP Converters", draft-boucadair-radext-tcpm-

converter-02 (work in progress), April 2019.

 [I-D.boucadair-tcpm-dhc-converter]
 Boucadair, M., Jacquenet, C., and R. K, "DHCP Options for
 0-RTT TCP Converters", draft-boucadair-tcpm-dhc-

converter-02 (work in progress), April 2019.

 [I-D.nam-mptcp-deployment-considerations]
 Boucadair, M., Jacquenet, C., Bonaventure, O., Henderickx,
 W., and R. Skog, "Network-Assisted MPTCP: Use Cases,
 Deployment Scenarios and Operational Considerations",

draft-nam-mptcp-deployment-considerations-01 (work in
 progress), December 2016.

http://inl.info.ucl.ac.be/publications/multipath-middlebox
http://inl.info.ucl.ac.be/publications/multipath-middlebox
https://datatracker.ietf.org/doc/html/draft-arkko-arch-low-latency-02
https://datatracker.ietf.org/doc/html/draft-arkko-arch-low-latency-02
https://datatracker.ietf.org/doc/html/draft-boucadair-mptcp-plain-mode-10
https://datatracker.ietf.org/doc/html/draft-boucadair-mptcp-plain-mode-10
https://datatracker.ietf.org/doc/html/draft-boucadair-radext-tcpm-converter-02
https://datatracker.ietf.org/doc/html/draft-boucadair-radext-tcpm-converter-02
https://datatracker.ietf.org/doc/html/draft-boucadair-tcpm-dhc-converter-02
https://datatracker.ietf.org/doc/html/draft-boucadair-tcpm-dhc-converter-02
https://datatracker.ietf.org/doc/html/draft-nam-mptcp-deployment-considerations-01

Bonaventure, et al. Expires February 2, 2020 [Page 37]

Internet-Draft Convert Protocol August 2019

 [I-D.olteanu-intarea-socks-6]
 Olteanu, V. and D. Niculescu, "SOCKS Protocol Version 6",

draft-olteanu-intarea-socks-6-07 (work in progress), July
 2019.

 [I-D.peirens-mptcp-transparent]
 Peirens, B., Detal, G., Barre, S., and O. Bonaventure,
 "Link bonding with transparent Multipath TCP", draft-

peirens-mptcp-transparent-00 (work in progress), July
 2016.

 [IETFJ16] Bonaventure, O. and S. Seo, "Multipath TCP Deployment",
 IETF Journal, Fall 2016 , n.d..

 [IMC11] Honda, K., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and T. Hideyuki, "Is it still possible to
 extend TCP?", Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference , 2011.

 [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, DOI 10.17487/RFC1323, May
 1992, <https://www.rfc-editor.org/info/rfc1323>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC1919] Chatel, M., "Classical versus Transparent IP Proxies",
RFC 1919, DOI 10.17487/RFC1919, March 1996,

 <https://www.rfc-editor.org/info/rfc1919>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <https://www.rfc-editor.org/info/rfc1928>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
 May 2000, <https://www.rfc-editor.org/info/rfc2827>.

https://datatracker.ietf.org/doc/html/draft-olteanu-intarea-socks-6-07
https://datatracker.ietf.org/doc/html/draft-peirens-mptcp-transparent-00
https://datatracker.ietf.org/doc/html/draft-peirens-mptcp-transparent-00
https://datatracker.ietf.org/doc/html/rfc1323
https://www.rfc-editor.org/info/rfc1323
https://datatracker.ietf.org/doc/html/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/rfc1919
https://www.rfc-editor.org/info/rfc1919
https://datatracker.ietf.org/doc/html/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://www.rfc-editor.org/info/rfc2827

Bonaventure, et al. Expires February 2, 2020 [Page 38]

Internet-Draft Convert Protocol August 2019

 [RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
 Shelby, "Performance Enhancing Proxies Intended to
 Mitigate Link-Related Degradations", RFC 3135,
 DOI 10.17487/RFC3135, June 2001,
 <https://www.rfc-editor.org/info/rfc3135>.

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 DOI 10.17487/RFC6181, March 2011,
 <https://www.rfc-editor.org/info/rfc6181>.

 [RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <https://www.rfc-editor.org/info/rfc6887>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC6978] Touch, J., "A TCP Authentication Option Extension for NAT
 Traversal", RFC 6978, DOI 10.17487/RFC6978, July 2013,
 <https://www.rfc-editor.org/info/rfc6978>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <https://www.rfc-editor.org/info/rfc7414>.

 [RFC8041] Bonaventure, O., Paasch, C., and G. Detal, "Use Cases and
 Operational Experience with Multipath TCP", RFC 8041,
 DOI 10.17487/RFC8041, January 2017,
 <https://www.rfc-editor.org/info/rfc8041>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

https://datatracker.ietf.org/doc/html/rfc3135
https://www.rfc-editor.org/info/rfc3135
https://datatracker.ietf.org/doc/html/rfc6181
https://www.rfc-editor.org/info/rfc6181
https://datatracker.ietf.org/doc/html/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc6978
https://www.rfc-editor.org/info/rfc6978
https://datatracker.ietf.org/doc/html/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc7414
https://www.rfc-editor.org/info/rfc7414
https://datatracker.ietf.org/doc/html/rfc8041
https://www.rfc-editor.org/info/rfc8041
https://datatracker.ietf.org/doc/html/rfc8305
https://www.rfc-editor.org/info/rfc8305

Bonaventure, et al. Expires February 2, 2020 [Page 39]

Internet-Draft Convert Protocol August 2019

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8548] Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,
 Q., and E. Smith, "Cryptographic Protection of TCP Streams
 (tcpcrypt)", RFC 8548, DOI 10.17487/RFC8548, May 2019,
 <https://www.rfc-editor.org/info/rfc8548>.

 [TS23501] 3GPP (3rd Generation Partnership Project), ., "Technical
 Specification Group Services and System Aspects; System
 Architecture for the 5G System; Stage 2 (Release 16)",
 2019, <https://www.3gpp.org/ftp/Specs/

archive/23_series/23.501/>.

Appendix A. Change Log

 This section to be removed before publication.

 o 00 : initial version, designed to support Multipath TCP and TFO
 only

 o 00 to -01 : added section Section 5 describing the support of
 different standard tracks TCP options by Transport Converters,
 clarification of the IANA section, moved the SOCKS comparison to
 the appendix and various minor modifications

 o 01 to -02: Minor modifications

 o 02 to -03: Minor modifications

 o 03 to -04: Minor modifications

 o 04 to -05: Integrate a lot of feedback from implementors who have
 worked on client and server side implementations. The main
 modifications are the following :

 * TCP Fast Open is not strictly required anymore. Several
 implementors expressed concerns about this requirement. The
 TFO Cookie protects from some attack scenarios that affect open
 servers like web servers. The Convert protocol is different
 and as discussed in RFC7413, there are different ways to
 protect from such attacks. Instead of using a TFO cookie
 inside the TCP options, which consumes precious space in the
 extended TCP header, this version supports the utilization of a
 Cookie that is placed in the SYN payload. This provides the
 same level of protection as a TFO Cookie in environments were
 such protection is required.

https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8548
https://www.rfc-editor.org/info/rfc8548
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/
https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires February 2, 2020 [Page 40]

Internet-Draft Convert Protocol August 2019

 * the Bootstrap procedure has been simplified based on feedback
 from implementers

 * Error messages are not included in RST segments anymore but
 sent in the bytestream. Implementors have indicated that
 processing such segments on clients was difficult on some
 platforms. This change simplifies client implementations.

 * Many minor editorial changes to clarify the text based on
 implementors feedback.

 o 05 to -06: Many clarifications to integrate the comments from the
 chairs in preparation to the WGLC:

 * Updated IANA policy to require "IETF Review" instead of
 "Standard Action"

 * Call out explicitly that data in SYNs are relayed by the
 Converter

 * Reiterate the scope

 * Hairpinning behavior can be disabled (policy-based)

 * Fix nits

 o 07:

 * Update the text about supplying data in SYNs to make it clear
 that a constraint defined in RFC793 is relaxed following the
 same rationale as in RFC7413.

 * Nits

 * Added Appendix A on example Socket API changes

 o 08:

 * Added short discussion on the termination of connections

 o 09:

 * Various to comments received during last call

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires February 2, 2020 [Page 41]

Internet-Draft Convert Protocol August 2019

Appendix B. Example Socket API Changes to Support the 0-RTT Convert
 Protocol

B.1. Active Open (Client Side)

 On the client side, the support of the 0-RTT Converter protocol does
 not require any other changes than those identified in Appendix A of
 [RFC7413]. Those modifications are already supported by multiple TCP
 stacks.

 As an example, on Linux, a client can send the 0-RTT Convert message
 inside a SYN by using sendto with the MSG_FASTOPEN flag as shown in
 the example below:

 s = socket(AF_INET, SOCK_STREAM, 0);

 sendto(s, buffer, buffer_len, MSG_FASTOPEN,
 (struct sockaddr *) &server_addr, addr_len);

 The client side of the Linux TCP TFO can be used in two different
 modes depending on the host configuration (sysctl tcp_fastopen
 variable):

 o 0x1: (client) enables sending data in the opening SYN on the
 client.

 o 0x4: (client) send data in the opening SYN regardless of cookie
 availability and without a cookie option.

 By setting this configuration variable to 0x5, a Linux client using
 the above code would send data inside the SYN without using a TFO
 option.

B.2. Passive Open (Converter Side)

 The Converter needs to enable the reception of data inside the SYN
 independently of the utilization of the TFO option. This implies
 that the Transport Converter application cannot rely on the TFO
 cookies to validate the reachability of the IP address that sent the
 SYN. It must rely on other techniques, such as the Cookie TLV
 described in this document, to verify this reachability.

 [RFC7413] suggested the utilization of a TCP_FASTOPEN socket option
 the enable the reception of SYNs containing data. Later, Appendix A
 of [RFC7413], mentioned:

https://datatracker.ietf.org/doc/html/rfc7413#appendix-A
https://datatracker.ietf.org/doc/html/rfc7413#appendix-A
https://datatracker.ietf.org/doc/html/rfc7413#appendix-A
https://datatracker.ietf.org/doc/html/rfc7413#appendix-A

Bonaventure, et al. Expires February 2, 2020 [Page 42]

Internet-Draft Convert Protocol August 2019

 Traditionally, accept() returns only after a socket is connected.
 But, for a Fast Open connection, accept() returns upon receiving
 SYN with a valid Fast Open cookie and data, and the data is available
 to be read through, e.g., recvmsg(), read().

 To support the 0-RTT Convert protocol, this behavior should be
 modified as follows:

 Traditionally, accept() returns only after a socket is connected.
 But, for a Fast Open connection, accept() returns upon receiving a
 SYN with data, and the data is available to be read through, e.g.,
 recvmsg(), read(). The application that receives such SYNs with data
 must be able to validate the reachability of the source of the SYN
 and also deal with replayed SYNs.

 The Linux server side can be configured with the following sysctls:

 o 0x2: (server) enables the server support, i.e., allowing data in a
 SYN packet to be accepted and passed to the application before
 3-way handshake finishes.

 o 0x200: (server) accept data-in-SYN w/o any cookie option present.

 However, this configuration is system-wide. This is convenient for
 typical Transport Converter deployments where no other applications
 relying on TFO are collocated on the same device.

 Recently, the TCP_FASTOPEN_NO_COOKIE socket option has been added to
 provide the same behavior on a per socket basis. This enables a
 single host to support both servers that require the TFO cookie and
 servers that do not use it.

Appendix C. Some Design Considerations

 Several implementors expressed concerns about the use of TFO. As a
 reminder, the TFO Cookie protects from some attack scenarios that
 affect open servers like web servers. The Convert protocol is
 different and as discussed in RFC7413, there are different ways to
 protect from such attacks. Instead of using a TFO cookie inside the
 TCP options, which consumes precious space in the extended TCP
 header, the Convert protocol supports the utilization of a Cookie
 that is placed in the SYN payload. This provides the same level of
 protection as a TFO Cookie in environments were such protection is
 required.

 Error messages are not included in RST segments but sent in the
 bytestream. Implementors have indicated that processing such

https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires February 2, 2020 [Page 43]

Internet-Draft Convert Protocol August 2019

 segments on clients was difficult on some platforms. This change
 simplifies client implementations.

Appendix D. Differences with SOCKSv5

 At a first glance, the solution proposed in this document could seem
 similar to the SOCKS v5 protocol [RFC1928] which is used to proxy TCP
 connections. The Client creates a connection to a SOCKS proxy,
 exchanges authentication information and indicates the destination
 address and port of the final server. At this point, the SOCKS proxy
 creates a connection towards the final server and relays all data
 between the two proxied connections. The operation of an
 implementation based on SOCKSv5 is illustrated in Figure 23.

https://datatracker.ietf.org/doc/html/rfc1928

Bonaventure, et al. Expires February 2, 2020 [Page 44]

Internet-Draft Convert Protocol August 2019

 Client SOCKS Proxy Server
 -------------------->
 SYN
 <--------------------
 SYN+ACK
 -------------------->
 ACK

 -------------------->
 Version=5, Auth Methods
 <--------------------
 Method
 -------------------->
 Auth Request (unless "No auth" method negotiated)
 <--------------------
 Auth Response
 -------------------->
 Connect Server:Port -------------------->
 SYN

 <--------------------
 SYN+ACK
 <--------------------
 Succeeded

 -------------------->
 Data1
 -------------------->
 Data1

 <--------------------
 Data2
 <--------------------
 Data2

 Figure 23: Establishment of a TCP connection through a SOCKS proxy
 without authentication

 The Convert protocol also relays data between an upstream and a
 downstream connection, but there are important differences with
 SOCKSv5.

 A first difference is that the Convert protocol exchanges all control
 information during the three-way handshake. This reduces the
 connection establishment delay compared to SOCKS that requires two or
 more round-trip-times before the establishment of the downstream
 connection towards the final destination. In today's Internet,
 latency is a important metric and various protocols have been tuned

Bonaventure, et al. Expires February 2, 2020 [Page 45]

Internet-Draft Convert Protocol August 2019

 to reduce their latency [I-D.arkko-arch-low-latency]. A recently
 proposed extension to SOCKS leverages the TFO option
 [I-D.olteanu-intarea-socks-6].

 A second difference is that the Convert protocol explicitly takes the
 TCP extensions into account. By using the Convert protocol, the
 Client can learn whether a given TCP extension is supported by the
 destination Server. This enables the Client to bypass the Transport
 Converter when the destination supports the required TCP extension.
 Neither SOCKS v5 [RFC1928] nor the proposed SOCKS v6
 [I-D.olteanu-intarea-socks-6] provide such a feature.

 A third difference is that a Transport Converter will only accept the
 connection initiated by the Client provided that the downstream
 connection is accepted by the Server. If the Server refuses the
 connection establishment attempt from the Transport Converter, then
 the upstream connection from the Client is rejected as well. This
 feature is important for applications that check the availability of
 a Server or use the time to connect as a hint on the selection of a
 Server [RFC8305].

 A fourth difference is that the Convert protocol only allows the
 client to specify the address/port of the destination server and not
 a DNS name. We evaluated an alternate design for the Connect TLV
 that included the DNS name of the remote peer instead of its IP
 address as in SOCKS [RFC1928]. However, that design was not adopted
 because it induces both an extra load and increased delays on the
 Transport Converter to handle and manage DNS resolution requests.

Acknowledgements

 Although they could disagree with the contents of the document, we
 would like to thank Joe Touch and Juliusz Chroboczek whose comments
 on the MPTCP mailing list have forced us to reconsider the design of
 the solution several times.

 We would like to thank Raphael Bauduin, Stefano Secci, Anandatirtha
 Nandugudi and Gregory Vander Schueren for their help in preparing
 this document. Nandini Ganesh provided valuable feedback about the
 handling of TFO and the error codes. Yuchung Cheng and Praveen
 Balasubramanian helped to clarify the discussion on supplying data in
 SYNs. Phil Eardley and Michael Scharf's helped to clarify different
 parts of the text.

 This document builds upon earlier documents that proposed various
 forms of Multipath TCP proxies [I-D.boucadair-mptcp-plain-mode],
 [I-D.peirens-mptcp-transparent] and [HotMiddlebox13b].

https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc8305
https://datatracker.ietf.org/doc/html/rfc1928

Bonaventure, et al. Expires February 2, 2020 [Page 46]

Internet-Draft Convert Protocol August 2019

 From [I-D.boucadair-mptcp-plain-mode]:

 Many thanks to Chi Dung Phung, Mingui Zhang, Rao Shoaib, Yoshifumi
 Nishida, and Christoph Paasch for their valuable comments.

 Thanks to Ian Farrer, Mikael Abrahamsson, Alan Ford, Dan Wing, and
 Sri Gundavelli for the fruitful discussions in IETF#95 (Buenos
 Aires).

 Special thanks to Pierrick Seite, Yannick Le Goff, Fred Klamm, and
 Xavier Grall for their inputs.

 Thanks also to Olaf Schleusing, Martin Gysi, Thomas Zasowski, Andreas
 Burkhard, Silka Simmen, Sandro Berger, Michael Melloul, Jean-Yves
 Flahaut, Adrien Desportes, Gregory Detal, Benjamin David, Arun
 Srinivasan, and Raghavendra Mallya for the discussion.

Contributors

 Bart Peirens contributed to an early version of the document.

 As noted above, this document builds on two previous documents.

 The authors of [I-D.boucadair-mptcp-plain-mode] were:

 o Mohamed Boucadair

 o Christian Jacquenet

 o Olivier Bonaventure

 o Denis Behaghel

 o Stefano Secci

 o Wim Henderickx

 o Robert Skog

 o Suresh Vinapamula

 o SungHoon Seo

 o Wouter Cloetens

 o Ullrich Meyer

 o Luis M. Contreras

Bonaventure, et al. Expires February 2, 2020 [Page 47]

Internet-Draft Convert Protocol August 2019

 o Bart Peirens

 The authors of [I-D.peirens-mptcp-transparent] were:

 o Bart Peirens

 o Gregory Detal

 o Sebastien Barre

 o Olivier Bonaventure

Authors' Addresses

 Olivier Bonaventure (editor)
 Tessares

 Email: Olivier.Bonaventure@tessares.net

 Mohamed Boucadair (editor)
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Sri Gundavelli
 Cisco

 Email: sgundave@cisco.com

 SungHoon Seo
 Korea Telecom

 Email: sh.seo@kt.com

 Benjamin Hesmans
 Tessares

 Email: Benjamin.Hesmans@tessares.net

Bonaventure, et al. Expires February 2, 2020 [Page 48]

