
TCPM Working Group O. Bonaventure, Ed.
Internet-Draft Tessares
Intended status: Experimental M. Boucadair, Ed.
Expires: September 22, 2020 Orange
 S. Gundavelli
 Cisco
 S. Seo
 Korea Telecom
 B. Hesmans
 Tessares
 March 21, 2020

 0-RTT TCP Convert Protocol
draft-ietf-tcpm-converters-19

Abstract

 This document specifies an application proxy, called Transport
 Converter, to assist the deployment of TCP extensions such as
 Multipath TCP. A Transport Converter may provide conversion service
 for one or more TCP extensions. The conversion service is provided
 by means of the TCP Convert Protocol (Convert).

 This protocol provides 0-RTT (Zero Round-Trip Time) conversion
 service since no extra delay is induced by the protocol compared to
 connections that are not proxied. Also, the Convert Protocol does
 not require any encapsulation (no tunnels, whatsoever).

 This specification assumes an explicit model, where the Transport
 Converter is explicitly configured on hosts. As a sample
 applicability use case, this document specifies how the Convert
 Protocol applies for Multipath TCP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bonaventure, et al. Expires September 22, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-converters-19
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Convert Protocol March 2020

 This Internet-Draft will expire on September 22, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. The Problem . 3
1.2. Network-Assisted Connections: The Rationale 4
1.3. Applicability Scope 6

2. Differences with SOCKSv5 6
3. Conventions and Definitions 8
4. Architecture & Behaviors 9
4.1. Functional Elements 9
4.2. Theory of Operation 11
4.3. Data Processing at the Transport Converter 14
4.4. Address Preservation vs. Address Sharing 16
4.4.1. Address Preservation 16
4.4.2. Address/Prefix Sharing 17

5. Sample Examples . 18
5.1. Outgoing Converter-Assisted Multipath TCP Connections . . 18
5.2. Incoming Converter-Assisted Multipath TCP Connection . . 20

6. The Convert Protocol (Convert) 21
6.1. The Convert Fixed Header 22
6.2. Convert TLVs . 23
6.2.1. Generic Convert TLV Format 23
6.2.2. Summary of Supported Convert TLVs 24
6.2.3. The Info TLV . 25
6.2.4. Supported TCP Extensions TLV 25
6.2.5. Connect TLV . 26
6.2.6. Extended TCP Header TLV 28
6.2.7. The Cookie TLV 29
6.2.8. Error TLV . 30

 7. Compatibility of Specific TCP Options with the Conversion
 Service . 33

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bonaventure, et al. Expires September 22, 2020 [Page 2]

Internet-Draft Convert Protocol March 2020

7.1. Base TCP Options . 33
7.2. Window Scale (WS) . 34
7.3. Selective Acknowledgments 34
7.4. Timestamp . 35
7.5. Multipath TCP . 35
7.6. TCP Fast Open . 35
7.7. TCP-AO . 36

8. Interactions with Middleboxes 36
9. Security Considerations 37
9.1. Privacy & Ingress Filtering 37
9.2. Authentication and Authorization Considerations 38
9.3. Denial of Service . 40
9.4. Traffic Theft . 40
9.5. Logging . 40

10. IANA Considerations . 40
10.1. Convert Service Name 40
10.2. The Convert Protocol (Convert) Parameters 41
10.2.1. Convert Versions 41
10.2.2. Convert TLVs . 42
10.2.3. Convert Error Messages 42

11. References . 43
11.1. Normative References 43
11.2. Informative References 45

Appendix A. Example Socket API Changes to Support the 0-RTT
 Convert Protocol 48

A.1. Active Open (Client Side) 48
A.2. Passive Open (Converter Side) 49

 Acknowledgments . 50
 Contributors . 51
 Authors' Addresses . 52

1. Introduction

1.1. The Problem

 Transport protocols like TCP evolve regularly [RFC7414]. TCP has
 been improved in different ways. Some improvements such as changing
 the initial window size [RFC6928] or modifying the congestion control
 scheme can be applied independently on clients and servers. Other
 improvements such as Selective Acknowledgments [RFC2018] or large
 windows [RFC7323] require a new TCP option or to change the semantics
 of some fields in the TCP header. These modifications must be
 deployed on both clients and servers to be actually used on the
 Internet. Experience with the latter class of TCP extensions reveals
 that their deployment can require many years. Fukuda reports in
 [Fukuda2011] results of a decade of measurements showing the
 deployment of Selective Acknowledgments, Window Scale, and TCP

https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323

Bonaventure, et al. Expires September 22, 2020 [Page 3]

Internet-Draft Convert Protocol March 2020

 Timestamps. [ANRW17] describes measurements showing that TCP Fast
 Open (TFO) [RFC7413] is still not widely deployed.

 There are some situations where the transport stack used on clients
 (or servers) can be upgraded at a faster pace than the transport
 stack running on servers (or clients). In those situations, clients
 would typically want to benefit from the features of an improved
 transport protocol even if the servers have not yet been upgraded and
 conversely. Some assistance from the network to make use of these
 features is valuable. For example, Performance Enhancing Proxies
 [RFC3135], and other service functions have been deployed as
 solutions to improve TCP performance over links with specific
 characteristics.

 Recent examples of TCP extensions include Multipath TCP (MPTCP)
 [RFC6824] or TCPINC [RFC8548]. Those extensions provide features
 that are interesting for clients such as wireless devices. With
 Multipath TCP, those devices could seamlessly use Wireless Local Area
 Network (WLAN) and cellular networks, for bonding purposes, faster
 hand-overs, or better resiliency. Unfortunately, deploying those
 extensions on both a wide range of clients and servers remains
 difficult.

 More recently, 5G bonding experimentation has been conducted into
 global range of the incumbent 4G (LTE) connectivity using newly
 devised clients and a Multipath TCP proxy. Even if the 5G and the 4G
 bonding (that relies upon Multipath TCP) increases the bandwidth, it
 is as well crucial to minimize latency for all the way between
 endhosts regardless of whether intermediate nodes are inside or
 outside of the mobile core. In order to handle Ultra Reliable Low
 Latency Communication (URLLC) for the next generation mobile network,
 Multipath TCP and its proxy mechanism such as the one used to provide
 Access Traffic Steering, Switching, and Splitting (ATSSS) must be
 optimized to reduce latency [TS23501].

1.2. Network-Assisted Connections: The Rationale

 This document specifies an application proxy, called Transport
 Converter. A Transport Converter is a function that is installed by
 a network operator to aid the deployment of TCP extensions and to
 provide the benefits of such extensions to clients in particular. A
 Transport Converter may provide conversion service for one or more
 TCP extensions. Which TCP extensions are eligible to the conversion
 service is deployment-specific. The conversion service is provided
 by means of the 0-RTT TCP Convert Protocol (Convert), that is an
 application-layer protocol which uses a specific TCP port number on
 the Converter.

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc3135
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc8548

Bonaventure, et al. Expires September 22, 2020 [Page 4]

Internet-Draft Convert Protocol March 2020

 The Convert Protocol provides Zero Round-Trip Time (0-RTT) conversion
 service since no extra delay is induced by the protocol compared to
 connections that are not proxied. Particularly, the Convert Protocol
 does not require extra signaling setup delays before making use of
 the conversion service. The Convert Protocol does not require any
 encapsulation (no tunnels, whatsoever).

 The Transport Converter adheres to the main steps drawn in Section 3
 of [RFC1919]. In particular, a Transport Converter achieves the
 following:

 o Listen for client sessions;

 o Receive from a client the address of the server;

 o Setup a session to the server;

 o Relay control messages and data between the client and the server;

 o Perform access controls according to local policies.

 The main advantage of network-assisted conversion services is that
 they enable new TCP extensions to be used on a subset of the path
 between endpoints, which encourages the deployment of these
 extensions. Furthermore, the Transport Converter allows the client
 and the server to directly negotiate TCP extensions for the sake of
 native support along the full path.

 The Convert Protocol is a generic mechanism to provide 0-RTT
 conversion service. As a sample applicability use case, this
 document specifies how the Convert Protocol applies for Multipath
 TCP. It is out of scope of this document to provide a comprehensive
 list of all potential conversion services. Applicability documents
 may be defined in the future.

 This document does not assume that all the traffic is eligible to the
 network-assisted conversion service. Only a subset of the traffic
 will be forwarded to a Transport Converter according to a set of
 policies. These policies, and how they are communicated to
 endpoints, are out of scope. Furthermore, it is possible to bypass
 the Transport Converter to connect directly to the servers that
 already support the required TCP extension(s).

 This document assumes an explicit model in which a client is
 configured with one or a list of Transport Converters (statically or
 through protocols such as [I-D.boucadair-tcpm-dhc-converter]).
 Configuration means are outside the scope of this document.

https://datatracker.ietf.org/doc/html/rfc1919#section-3
https://datatracker.ietf.org/doc/html/rfc1919#section-3

Bonaventure, et al. Expires September 22, 2020 [Page 5]

Internet-Draft Convert Protocol March 2020

 The use of a Transport Converter means that there is no end-to-end
 transport connection between the client and server. This could
 potentially create problems in some scenarios such as those discussed
 in Section 4 of [RFC3135]. Some of these problems may not be
 applicable, for example, a Transport Converter can inform a client by
 means of Network Failure (65) or Destination Unreachable (97) error
 messages (Section 6.2.8) that it encounters a failure problem; the
 client can react accordingly. An endpoint, or its network
 administrator, can assess the benefit provided by the Transport
 Converter service versus the risk. This is one reason why the
 Transport Converter functionality has to be explicitly requested by
 an endpoint.

 This document is organized as follows. First, Section 2 provides a
 brief overview of the differences between the well-known SOCKS
 protocol and the 0-RTT Convert protocol. Section 4 provides a brief
 explanation of the operation of Transport Converters. Then,

Section 6 describes the Convert Protocol. Section 7 discusses how
 Transport Converters can be used to support different TCP extensions.

Section 8 then discusses the interactions with middleboxes, while
Section 9 focuses on the security considerations. Appendix A

 describes how a TCP stack would need to support the protocol
 described in this document.

1.3. Applicability Scope

 0-RTT TCP Convert Protocol specified in this document MUST be used in
 a single administrative domain deployment model. That is, the entity
 offering the connectivity service to a client is also be entity which
 owns and operates the Transport Converter, with no transit over a
 third-party network.

 Future deployment of Transport Converters by third parties MUST
 adhere to the mutual authentication requirements in Section 9.2 to
 prevent illegitimate traffic interception (Section 9.4), in
 particular.

2. Differences with SOCKSv5

 Several IETF protocols provide proxy services; the closest to the
 0-RTT Convert protocol being the SOCKSv5 protocol [RFC1928]. This
 protocol is already used to deploy Multipath TCP in some cellular
 networks (Section 2.2 of [RFC8041]).

 A SOCKS Client creates a connection to a SOCKS Proxy, exchanges
 authentication information, and indicates the IP address and port
 number of the target Server. At this point, the SOCKS Proxy creates
 a connection towards the target Server and relays all data between

https://datatracker.ietf.org/doc/html/rfc3135#section-4
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc8041#section-2.2

Bonaventure, et al. Expires September 22, 2020 [Page 6]

Internet-Draft Convert Protocol March 2020

 the two proxied connections. The operation of an implementation
 based on SOCKSv5 (without authentication) is illustrated in Figure 1.

 Client SOCKS Proxy Server
 | | |
 | --------------------> | |
 | SYN | |
 | <-------------------- | |
 | SYN+ACK | |
 | --------------------> | |
 | ACK | |
 | | |
 | --------------------> | |
 |Version=5, Auth Methods| |
 | <-------------------- | |
 | Method | |
 | --------------------> | |
 |Auth Request (unless "No auth" method negotiated)
 | <-------------------- | |
 | Auth Response | |
 | --------------------> | |
 | Connect Server:Port | --------------------> |
 | | SYN |
 | | <-------------------- |
 | | SYN+ACK |
 | <-------------------- | |
 | Succeeded | |
 | --------------------> | |
 | Data1 | |
 | | --------------------> |
 | | Data1 |
 | | <-------------------- |
 | | Data2 |
 | <-------------------- | |
 | Data2 | |
 ...

 Figure 1: Establishment of a TCP Connection through a SOCKS Proxy
 Without Authentication

 When SOCKS is used, an "end-to-end" connection between a Client and a
 Server becomes a sequence of two TCP connections that are glued
 together on the SOCKS Proxy. The SOCKS Client and Server exchange
 control information at the beginning of the bytestream on the Client-
 Proxy connection. The SOCKS Proxy then creates the connection with
 the target Server and then glues the two connections together so that
 all bytes sent by the application (Client) to the SOCKS Proxy are
 relayed to the Server and vice versa.

Bonaventure, et al. Expires September 22, 2020 [Page 7]

Internet-Draft Convert Protocol March 2020

 The Convert Protocol is also used on TCP proxies that relay data
 between an upstream and a downstream connection, but there are
 important differences with SOCKSv5. A first difference is that the
 0-RTT Convert protocol exchanges all the control information during
 the initial RTT. This reduces the connection establishment delay
 compared to SOCKS which requires two or more round-trip-times before
 the establishment of the downstream connection towards the final
 destination. In today's Internet, latency is an important metric and
 various protocols have been tuned to reduce their latency
 [I-D.arkko-arch-low-latency]. A recently proposed extension to SOCKS
 leverages the TCP Fast Open (TFO) option
 [I-D.olteanu-intarea-socks-6] to reduce this delay.

 A second difference is that the Convert Protocol explicitly takes the
 TCP extensions into account. By using the Convert Protocol, the
 Client can learn whether a given TCP extension is supported by the
 destination Server. This enables the Client to bypass the Transport
 Converter when the Server supports the required TCP extension(s).
 Neither SOCKSv5 [RFC1928] nor the proposed SOCKSv6
 [I-D.olteanu-intarea-socks-6] provide such a feature.

 A third difference is that a Transport Converter will only confirm
 the establishment of the connection initiated by the Client provided
 that the downstream connection has already been accepted by the
 Server. If the Server refuses the connection establishment attempt
 from the Transport Converter, then the upstream connection from the
 Client is rejected as well. This feature is important for
 applications that check the availability of a Server or use the time
 to connect as a hint on the selection of a Server [RFC8305].

 A fourth difference is that the 0-RTT Convert protocol only allows
 the Client to specify the IP address/port number of the destination
 server and not a DNS name. We evaluated an alternate design that
 included the DNS name of the remote peer instead of its IP address as
 in SOCKS [RFC1928]. However, that design was not adopted because it
 induces both an extra load and increased delays on the Transport
 Converter to handle and manage DNS resolution requests. Note that
 the name resolution at the Converter may fail (e.g., private names
 discussed in Section 2.1 of [RFC6731]) or may not match the one that
 would be returned by a Client's resolution library (e.g., Section 2.2
 of [RFC6731]).

3. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc8305
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc6731#section-2.1
https://datatracker.ietf.org/doc/html/rfc6731#section-2.2
https://datatracker.ietf.org/doc/html/rfc6731#section-2.2

Bonaventure, et al. Expires September 22, 2020 [Page 8]

Internet-Draft Convert Protocol March 2020

 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Architecture & Behaviors

4.1. Functional Elements

 The Convert Protocol considers three functional elements:

 o Clients;

 o Transport Converters;

 o Servers.

 A Transport Converter is a network function that proxies all data
 exchanged over one upstream connection to one downstream connection
 and vice versa (Figure 2). The Transport Converter, thus, maintains
 state that associates one upstream connection to a corresponding
 downstream connection.

 A connection can be initiated from both sides of the Transport
 Converter (External realm, Internal realm).

 |
 :
 |
 +------------+
 Client <- upstream ->| Transport |<- downstream -> Server
 connection | Converter | connection
 +------------+
 |
 Internal realm : External realm
 |

 Figure 2: A Transport Converter Proxies Data between Pairs of TCP
 Connections

 "Client" refers to a software instance embedded on a host that can
 reach a Transport Converter in the internal realm. The "Client" can
 initiate connections via a Transport Converter (referred to as
 outgoing connections). Also, the "Client" can accept incoming
 connections via a Transport Converter (referred to as incoming
 connections).

 A Transport Converter can be embedded in a standalone device or be
 activated as a service on a router. How such function is enabled is
 deployment-specific.

https://datatracker.ietf.org/doc/html/rfc2119

Bonaventure, et al. Expires September 22, 2020 [Page 9]

Internet-Draft Convert Protocol March 2020

 The architecture assumes that new software will be installed on the
 Client hosts to interact with one or more Transport Converters.
 Furthermore, the architecture allows for making use of new TCP
 extensions even if those are not supported by a given server.

 A Client is configured, through means that are outside the scope of
 this document, with the names and/or the addresses of one or more
 Transport Converters and the TCP extensions that they support. The
 procedure for selecting a Transport Converter among a list of
 configured Transport Converters is outside the scope of this
 document.

 One of the benefits of this design is that different transport
 protocol extensions can be used on the upstream and the downstream
 connections. This encourages the deployment of new TCP extensions
 until they are widely supported by servers, in particular.

 The architecture does not mandate anything on the Server side.

 Similar to SOCKS, the architecture does not interfere with end-to-end
 TLS connections [RFC8446] between the Client and the Server
 (Figure 3). In other words, end-to-end TLS is supported in the
 presence of a Converter.

 Client Transport Server
 | Converter |
 | | |
 /==\
 | End-to-end TLS |
 \==/

 * TLS messages exchanged between the Client
 and the Server are not shown.

 Figure 3: End-to-end TLS via a Transport Converter

 It is out of scope of this document to elaborate on specific
 considerations related to the use of TLS in the Client-Converter
 connection leg to exchange Convert messages (in addition to the end-
 to-end TLS connection). In particular, (1) assessment whether 0-RTT
 data mode discussed in Section 2.3 of [RFC8446] is safe under replay
 and (2) specification of a profile for its use (Section E.5 of
 [RFC8446]) are out of scope.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-2.3
https://datatracker.ietf.org/doc/html/rfc8446

Bonaventure, et al. Expires September 22, 2020 [Page 10]

Internet-Draft Convert Protocol March 2020

4.2. Theory of Operation

 At a high level, the objective of the Transport Converter is to allow
 the use a specific extension, e.g., Multipath TCP, on a subset of the
 path even if the peer does not support this extension. This is
 illustrated in Figure 4 where the Client initiates a Multipath TCP
 connection with the Transport Converter (packets belonging to the
 Multipath TCP connection are shown with "===") while the Transport
 Converter uses a TCP connection with the Server.

 Client Transport Server
 | Converter |
 | | |
 |==================>|--------------------->|
 | | |
 |<==================|<---------------------|
 | | |
 Multipath TCP packets TCP packets

 Figure 4: An Example of 0-RTT Network-Assisted Outgoing MPTCP
 Connection

 The packets belonging to a connection established through a Transport
 Converter may follow a different path than the packets directly
 exchanged between the Client and the Server. Deployments should
 minimize the possible additional delay by carefully selecting the
 location of the Transport Converter used to reach a given
 destination.

 When establishing a connection, the Client can, depending on local
 policies, either contact the Server directly (e.g., by sending a TCP
 SYN towards the Server) or create the connection via a Transport
 Converter. In the latter case (that is, the conversion service is
 used), the Client initiates a connection towards the Transport
 Converter and indicates the IP address and port number of the Server
 within the connection establishment packet. Doing so enables the
 Transport Converter to immediately initiate a connection towards that
 Server, without experiencing an extra delay. The Transport Converter
 waits until the receipt of the confirmation that the Server agrees to
 establish the connection before confirming it to the Client.

 The Client places the destination address and port number of the
 Server in the payload of the SYN sent to the Transport Converter to
 minimize connection establishment delays. The Transport Converter
 maintains two connections that are combined together:

 o the upstream connection is the one between the Client and the
 Transport Converter.

Bonaventure, et al. Expires September 22, 2020 [Page 11]

Internet-Draft Convert Protocol March 2020

 o the downstream connection is the one between the Transport
 Converter and the Server.

 Any user data received by the Transport Converter over the upstream
 (or downstream) connection is proxied over the downstream (or
 upstream) connection.

 Figure 5 illustrates the establishment of an outgoing TCP connection
 by a Client through a Transport Converter.

 o Note: The information shown between brackets in Figure 5 (and
 other figures in the document) refers to Convert Protocol messages
 described in Section 6.

 Transport
 Client Converter Server
 | | |
 |SYN [->Server:port]| SYN |
 |------------------>|--------------------->|
 |<------------------|<---------------------|
 | SYN+ACK [] | SYN+ACK |
 | ... | ... |

 Figure 5: Establishment of an Outgoing TCP Connection Through a
 Transport Converter

 The Client sends a SYN destined to the Transport Converter. The
 payload of this SYN contains the address and port number of the
 Server. The Transport Converter does not reply immediately to this
 SYN. It first tries to create a TCP connection towards the target
 Server. If this upstream connection succeeds, the Transport
 Converter confirms the establishment of the connection to the Client
 by returning a SYN+ACK and the first bytes of the bytestream contain
 information about the TCP options that were negotiated with the
 Server. Also, a state entry is instantiated for this connection.
 This state entry is used by the Converter to handle subsequent
 messages belonging to the connection.

 The connection can also be established from the Internet towards a
 Client via a Transport Converter (Figure 6). This is typically the
 case when the Client hosts an application server that listens to a
 specific port number. When the Converter receives an incoming SYN
 from a remote host, it checks if it can provide the conversion
 service for the destination IP address and destination port number of
 that SYN. The Transport Converter receives this SYN because it is,
 for example, on the path between the remote host and the Client or it
 provides address sharing service for the Client (Section 2 of
 [RFC6269]). If the check fails, the packet is silently ignored by

https://datatracker.ietf.org/doc/html/rfc6269#section-2
https://datatracker.ietf.org/doc/html/rfc6269#section-2

Bonaventure, et al. Expires September 22, 2020 [Page 12]

Internet-Draft Convert Protocol March 2020

 the Converter. If the check is successful, the Converter tries to
 initiate a TCP connection towards the Client from its own address and
 using its configured TCP options. In the SYN that corresponds to
 this connection attempt, the Transport Convert inserts a TLV message
 that indicates the source address and port number of the remote host.
 A transport session entry is created by the Converter for this
 connection. SYN+ACK and ACK will be then exchanged between the
 Client, the Converter, and remote host to confirm the establishment
 of the connection. The Converter uses the transport session entry to
 proxy packets belonging to the connection.

 Transport Remote
 Client Converter Host (RH)
 | | |
 |SYN [<-RH IP@:port]| SYN |
 |<------------------|<---------------------|
 |------------------>|--------------------->|
 | SYN+ACK [] | SYN+ACK |
 | ... | ... |

 Figure 6: Establishment of an Incoming TCP Connection Through a
 Transport Converter

 Standard TCP ([RFC0793], Section 3.4) allows a SYN packet to carry
 data inside its payload but forbids the receiver from delivering it
 to the application until completion of the three-way-handshake. To
 enable applications to exchange data in a TCP handshake, this
 specification follows an approach similar to TCP Fast Open [RFC7413]
 and thus removes the constraint by allowing data in SYN packets to be
 delivered to the Transport Converter application.

 As discussed in [RFC7413], such change to TCP semantic raises two
 issues. First, duplicate SYNs can cause problems for applications
 that rely on TCP; whether or not a given application is affected
 dependes on the details of that application protocol. Second, TCP
 suffers from SYN flooding attacks [RFC4987]. TFO solves these two
 problems for applications that can tolerate replays by using the TCP
 Fast Open option that includes a cookie. However, the utilization of
 this option consumes space in the limited TCP header. Furthermore,
 there are situations, as noted in Section 7.3 of [RFC7413] where it
 is possible to accept the payload of SYN packets without creating
 additional security risks such as a network where addresses cannot be
 spoofed and the Transport Converter only serves a set of hosts that
 are identified by these addresses.

 For these reasons, this specification does not mandate the use of the
 TCP Fast Open option when the Client sends a connection establishment

https://datatracker.ietf.org/doc/html/rfc0793#section-3.4
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc7413#section-7.3

Bonaventure, et al. Expires September 22, 2020 [Page 13]

Internet-Draft Convert Protocol March 2020

 packet towards a Transport Converter. The Convert Protocol includes
 an optional Cookie TLV that provides similar protection as the TCP
 Fast Open option without consuming space in the TCP header.
 Furthermore, this design allows for the use of longer cookies than
 [RFC7413].

 If the downstream (or upstream) connection fails for some reason
 (excessive retransmissions, reception of an RST segment, etc.), then
 the Converter reacts by forcing the tear-down of the upstream (or
 downstream) connection. In particular, if an ICMP error message that
 indicates a hard error is received on the downstream connection, the
 Converter echoes the Code field of that ICMP message in a Destination
 Unreachable Error TLV (see Section 6.2.8) that it transmits to the
 Client. Note that if an ICMP error message that indicates a soft
 error is received on the downstream connection, the Converter will
 retransmit the corresponding data until it is acknowledged or the
 connection times out. A classification of ICMP soft and hard errors
 is provided in Table 1 of [RFC5461].

 The same reasoning applies when the upstream connection ends with an
 exchange of FIN segments. In this case, the Converter will also
 terminate the downstream connection by using FIN segments. If the
 downstream connection terminates with the exchange of FIN segments,
 the Converter should initiate a graceful termination of the upstream
 connection.

4.3. Data Processing at the Transport Converter

 As mentioned in Section 4.2, the Transport Converter acts as a TCP
 proxy between the upstream connection (i.e., between the Client and
 the Transport Converter) and the downstream connection (i.e., between
 the Transport Converter and the Server).

 The control messages, discussed in Section 6, establish state
 (called, transport session entry) in the Transport Converter that
 will enable it to proxy between the two TCP connections.

 The Transport Converter uses the transport session entry to proxy
 packets belonging to the connection. An implementation example of a
 transport session entry for TCP connections is shown in Figure 7.

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc5461

Bonaventure, et al. Expires September 22, 2020 [Page 14]

Internet-Draft Convert Protocol March 2020

 (C,c) <--> (T,t), (S,s), Lifetime

 Where:
 * C and c are the source IP address and source port number
 used by the Client for the upstream connection.
 * S and s are the Server's IP address and port number.
 * T and t are the source IP address and source port number
 used by the Transport Converter to proxy the connection.
 * Lifetime is a timer that tracks the remaining lifetime of
 the entry as assigned by the Converter. When the timer
 expires, the entry is deleted.

 Figure 7: An Example of Transport Session Entry

 Clients send packets bound to connections eligible to the conversion
 service to the provisioned Transport Converter and destination port
 number. This applies for both control messages and data. Additional
 information is supplied by Clients to the Transport Converter by
 means of Convert messages as detailed in Section 6. User data can be
 included in SYN or non-SYN messages. User data is unambiguously
 distinguished from Convert TLVs by a Transport Converter owing to the
 Convert Fixed Header in the Convert messages (Section 6.1). These
 Convert TLVs are destined to the Transport Convert and are, thus,
 removed by the Transport Converter when proxying between the two
 connections.

 Upon receipt of a packet that belongs to an existing connection
 between a Client and the Transport Converter the Converter proxies
 the user data to the Server using the information stored in the
 corresponding transport session entry. For example, in reference to
 Figure 7, the Transport Converter proxies the data received from (C,
 c) downstream using (T,t) as source transport address and (S,s) as
 destination transport address.

 A similar process happens for data sent from the Server. The
 Converter acts as a TCP proxy and sends the data to the Client
 relying upon the information stored in a transport session entry.
 The Converter associates a lifetime with state entries used to bind
 an upstream connection with its downstream connection.

 When Multipath TCP is used between the Client and the Transport
 Converter, the Converter maintains more state (e.g. information about
 the subflows) for each Multipath TCP connection. The procedure
 described above continues to apply except that the Converter needs to
 manage the establishment/termination of subflows and schedule packets
 among the established ones. These operations are part of the
 Multipath TCP implementation. They are independent of the Convert

Bonaventure, et al. Expires September 22, 2020 [Page 15]

Internet-Draft Convert Protocol March 2020

 protocol that only processes the Convert messages in the beginning of
 the bytestream.

 A Transport Converter may operate in address preservation mode (that
 is, the Converter does not rewrite the source IP address (i.e.,
 C==T)) or address sharing mode (that is, an address pool is shared
 among all Clients serviced by the Converter (i.e., C!=T)); refer to

Section 4.4 for more details. Which behavior to use by a Transport
 Converter is deployment-specific. If address sharing mode is
 enabled, the Transport Converter MUST adhere to REQ-2 of [RFC6888]
 which implies a default "IP address pooling" behavior of "Paired" (as
 defined in Section 4.1 of [RFC4787]) MUST be supported. This
 behavior is meant to avoid breaking applications that depend on the
 source address remaining constant.

4.4. Address Preservation vs. Address Sharing

 The Transport Converter is provided with instructions about the
 behavior to adopt with regards to the processing of source addresses
 of outgoing packets. The following sub-sections discusses two
 deployment models for illustration purposes. It is out of the scope
 of this document to make a recommendation.

4.4.1. Address Preservation

 In this model, the visible source IP address of a packet proxied by a
 Transport Converter to a Server is an IP address of the end host
 (Client). No dedicated IP address pool is provisioned to the
 Transport Converter, but the Transport Converter is located on the
 path between the Client and the Server.

 For Multipath TCP, the Transport Converter preserves the source IP
 address used by the Client when establishing the initial subflow.
 Data conveyed in secondary subflows will be proxied by the Transport
 Converter using the source IP address of the initial subflow. An
 example of a proxied Multipath TCP connection with address
 preservation is shown in Figure 8.

https://datatracker.ietf.org/doc/html/rfc6888
https://datatracker.ietf.org/doc/html/rfc4787#section-4.1

Bonaventure, et al. Expires September 22, 2020 [Page 16]

Internet-Draft Convert Protocol March 2020

 Transport
 Client Converter Server

 @:C1,C2 @:Tc @:S
 || | |
 |src:C1 SYN dst:Tc|src:C1 dst:S|
 |-------MPC [->S:port]------->|-------SYN------->|
 || | |
 ||dst:C1 src:Tc|dst:C1 src:S|
 |<---------SYN/ACK------------|<-----SYN/ACK-----|
 || | |
 |src:C1 dst:Tc|src:C1 dst:S|
 |------------ACK------------->|-------ACK------->|
 | | |
 |src:C2 ... dst:Tc| ... |
 ||<-----Secondary Subflow---->|src:C1 dst:S|
 || |-------data------>|
 | .. | ... |

 Legend:
 Tc: IP address used by the Transport Converter on the internal
 realm.

 Figure 8: Example of Address Preservation

 The Transport Converter must be on the forwarding path of incoming
 traffic. Because the same (destination) IP address is used for both
 proxied and non-proxied connections, the Transport Converter should
 not drop incoming packets it intercepts if no matching entry is found
 for the packets. Unless explicitly configured otherwise, such
 packets are forwarded according to the instructions of a local
 forwarding table.

4.4.2. Address/Prefix Sharing

 A pool of global IPv4 addresses is provisioned to the Transport
 Converter along with possible instructions about the address sharing
 ratio to apply (see Appendix B of [RFC6269]). An address is thus
 shared among multiple clients.

 Likewise, rewriting the source IPv6 prefix [RFC6296] may be used to
 ease redirection of incoming IPv6 traffic towards the appropriate
 Transport Converter. A pool of IPv6 prefixes is then provisioned to
 the Transport Converter for this purpose.

 Adequate forwarding policies are enforced so that traffic destined to
 an address of such pool is intercepted by the appropriate Transport
 Converter. Unlike Section 4.4.1, the Transport Converter drops

https://datatracker.ietf.org/doc/html/rfc6269#appendix-B
https://datatracker.ietf.org/doc/html/rfc6296

Bonaventure, et al. Expires September 22, 2020 [Page 17]

Internet-Draft Convert Protocol March 2020

 incoming packets which do not match an active transport session
 entry.

 An example is shown in Figure 9.

 Transport
 Client Converter Server

 @:C @:Tc|Te @:S
 | | |
 |src:C dst:Tc|src:Te dst:S|
 |-------SYN [->S:port]------->|-------SYN------->|
 | | |
 |dst:C src:Tc|dst:Te src:S|
 |<---------SYN/ACK------------|<-----SYN/ACK-----|
 | | |
 |src:C dst:Tc|src:Te dst:S|
 |------------ACK------------->|-------ACK------->|
 | | |
 | ... | ... |

 Legend:
 Tc: IP address used by the Transport Converter on the internal
 realm.
 Te: IP address used by the Transport Converter on the external
 realm.

 Figure 9: Address Sharing

5. Sample Examples

5.1. Outgoing Converter-Assisted Multipath TCP Connections

 As an example, let us consider how the Convert Protocol can help the
 deployment of Multipath TCP. We assume that both the Client and the
 Transport Converter support Multipath TCP, but consider two different
 cases depending on whether the Server supports Multipath TCP or not.

 As a reminder, a Multipath TCP connection is created by placing the
 MP_CAPABLE (MPC) option in the SYN sent by the Client.

 Figure 10 describes the operation of the Transport Converter if the
 Server does not support Multipath TCP.

Bonaventure, et al. Expires September 22, 2020 [Page 18]

Internet-Draft Convert Protocol March 2020

 Transport
 Client Converter Server
 |SYN, MPC | |
 |[->Server:port] | SYN, MPC |
 |------------------>|--------------------->|
 |<------------------|<---------------------|
 | SYN+ACK,MPC [.] | SYN+ACK |
 |------------------>|--------------------->|
 | ACK, MPC | ACK |
 | ... | ... |

 Figure 10: Establishment of a Multipath TCP Connection through a
 Transport Converter towards a Server that does not support Multipath
 TCP

 The Client tries to initiate a Multipath TCP connection by sending a
 SYN with the MP_CAPABLE option (MPC in Figure 10). The SYN includes
 the address and port number of the target Server, that are extracted
 and used by the Transport Converter to initiate a Multipath TCP
 connection towards this Server. Since the Server does not support
 Multipath TCP, it replies with a SYN+ACK that does not contain the
 MP_CAPABLE option. The Transport Converter notes that the connection
 with the Server does not support Multipath TCP and returns the
 extended TCP header received from the Server to the Client.

 Note that, if the TCP connection is reset for some reason, the
 Converter tears down the Multipath TCP connection by transmitting a
 MP_FASTCLOSE. Likewise, if the Multipath TCP connection ends with
 the transmission of DATA_FINs, the Converter terminates the TCP
 connection by using FIN segments. As a side note, given that with
 Multipath TCP, RST only has the scope of the subflow and will only
 close the concerned subflow but not affect the remaining subflows,
 the Converter does not terminate the downstream TCP connection upon
 receipt of an RST over a Multipath subflow.

 Figure 11 considers a Server that supports Multipath TCP. In this
 case, it replies to the SYN sent by the Transport Converter with the
 MP_CAPABLE option. Upon reception of this SYN+ACK, the Transport
 Converter confirms the establishment of the connection to the Client
 and indicates to the Client that the Server supports Multipath TCP.
 With this information, the Client has discovered that the Server
 supports Multipath TCP. This will enable the Client to bypass the
 Transport Converter for the subsequent Multipath TCP connections that
 it will initiate towards this Server.

Bonaventure, et al. Expires September 22, 2020 [Page 19]

Internet-Draft Convert Protocol March 2020

 Transport
 Client Converter Server
 |SYN, MPC | |
 |[->Server:port] | SYN, MPC |
 |------------------>|--------------------->|
 |<------------------|<---------------------|
 |SYN+ACK, MPC | SYN+ACK, MPC |
 |[MPC supported] | |
 |------------------>|--------------------->|
 | ACK, MPC | ACK, MPC |
 | ... | ... |

 Figure 11: Establishment of a Multipath TCP Connection through a
 Converter towards an MPTCP-capable Server

5.2. Incoming Converter-Assisted Multipath TCP Connection

 An example of an incoming Converter-assisted Multipath TCP connection
 is depicted in Figure 12. In order to support incoming connections
 from remote hosts, the Client may use PCP [RFC6887] to instruct the
 Transport Converter to create dynamic mappings. Those mappings will
 be used by the Transport Converter to intercept an incoming TCP
 connection destined to the Client and convert it into a Multipath TCP
 connection.

 Typically, the Client sends a PCP request to the Converter asking to
 create an explicit TCP mapping for (internal IP address, internal
 port number). The Converter accepts the request by creating a TCP
 mapping (internal IP address, internal port number, external IP
 address, external port number). The external IP address, external
 port number, and assigned lifetime are returned back the Client in
 the PCP response. The external IP address and external port number
 will be then advertised by the Client (or the user) using an out-of-
 band mechanism so that remote hosts can initiate TCP connections to
 the Client via the Converter. Note that the external and internal
 information may be the same.

 Then, when the Converter receives an incoming SYN, it checks its
 mapping table to verify if there is an active mapping matching the
 destination IP address and destination port of that SYN. If no entry
 is found, the Converter silently ignores the message. If an entry is
 found, the Converter inserts an MP_CAPABLE option and Connect TLV in
 the SYN packet, rewrites the source IP address to one of its IP
 addresses and, eventually, the destination IP address and port number
 in accordance with the information stored in the mapping. SYN+ACK
 and ACK will be then exchanged between the Client and the Converter

https://datatracker.ietf.org/doc/html/rfc6887

Bonaventure, et al. Expires September 22, 2020 [Page 20]

Internet-Draft Convert Protocol March 2020

 to confirm the establishment of the initial subflow. The Client can
 add new subflows following normal Multipath TCP procedures.

 Transport Remote
 Client Converter Host
 | | |
 |<--------------------|<-------------------|
 |SYN, MPC | SYN |
 |[Remote Host:port] | |
 |-------------------->|------------------->|
 | SYN+ACK, MPC | SYN+ACK |
 |<--------------------|<-------------------|
 | ACK, MPC | ACK |
 | ... | ... |

 Figure 12: Establishment of an Incoming Multipath TCP Connection
 through a Transport Converter

 It is out of scope of this document to define specific Convert TLVs
 to manage incoming connections (that is, TLVs that mimic PCP
 messages). These TLVs can be defined in a separate document.

6. The Convert Protocol (Convert)

 This section defines the Convert Protocol (Convert, for short)
 messages that are exchanged between a Client and a Transport
 Converter.

 The Transport Converter listens on a specific TCP port number for
 Convert messages from Clients. That port number is configured by an
 administrator. Absent any policy, the Transport Converter SHOULD
 silently ignore SYNs with no Convert TLVs.

 Convert messages may appear only in SYN, SYN+ACK, or ACK.

 Convert messages MUST be included as the first bytes of the
 bytestream. All Convert messages starts with a 32 bits long fixed
 header (Section 6.1) followed by one or more Convert TLVs (Type,
 Length, Value) (Section 6.2).

 If the initial SYN message contains user data in its payload (e.g.,
 [RFC7413]), that data MUST be placed right after the Convert TLVs
 when generating the SYN.

 The protocol can be extended by defining new TLVs or bumping the
 version number if a different message format is needed. If a future
 version is defined but with a different message format, the version
 negotiation procedure defined in Section 6.2.8 (see "Unsupported

https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires September 22, 2020 [Page 21]

Internet-Draft Convert Protocol March 2020

 Version") is meant to agree on a version that is supported by both
 peers.

 o Implementation note 1: Several implementers expressed concerns
 about the use of TFO. As a reminder, the TFO Cookie protects from
 some attack scenarios that affect open servers like web servers.
 The Convert Protocol is different and, as discussed in RFC7413,
 there are different ways to protect from such attacks. Instead of
 using a TFO cookie inside the TCP options, which consumes precious
 space in the extended TCP header, the Convert Protocol supports
 the utilization of a Cookie that is placed in the SYN payload.
 This provides the same level of protection as a TFO Cookie in
 environments were such protection is required.

 o Implementation note 2: Error messages are not included in RST but
 sent in the bytestream. Implementers have indicated that
 processing RST on clients was difficult on some platforms. This
 design simplifies client implementations.

6.1. The Convert Fixed Header

 The Convert Protocol uses a 32 bits long fixed header that is sent by
 both the Client and the Transport Converter over each established
 connection. This header indicates both the version of the protocol
 used and the length of the Convert message.

 The Client and the Transport Converter MUST send the fixed-sized
 header, shown in Figure 13, as the first four bytes of the
 bytestream.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Version | Total Length | Magic Number |
 +---------------+---------------+-------------------------------+

 Figure 13: The Convert Fixed Header

 The Version is encoded as an 8 bits unsigned integer value. This
 document specifies version 1. Version 0 is reserved by this document
 and MUST NOT be used.

 Note: Early versions of this specification don't use a dedicated
 port number but only rely upon the IP address of the Converter.
 Having a bit set in the version field together with the length
 field allows to avoid mis-interpreting a data in a SYN as Convert
 TLVs. Since the design was updated to use a specific service
 port, that constraint was relaxed. Version 0 would work but given

https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires September 22, 2020 [Page 22]

Internet-Draft Convert Protocol March 2020

 existing implementations already use Version 1, the use of Version
 0 is maintained as reserved.

 The Total Length is the number of 32 bits word, including the header,
 of the bytestream that are consumed by the Convert messages. Since
 Total Length is also an 8 bits unsigned integer, those messages
 cannot consume more than 1020 bytes of data. This limits the number
 of bytes that a Transport Converter needs to process. A Total Length
 of zero is invalid and the connection MUST be reset upon reception of
 a header with such total length.

 The Magic Number field MUST be set to the RFC number to be assigned
 to this document. This field is meant to further strengthen the
 protocol to unambiguously distinguish any data supplied by an
 application from Convert TLVs.

 o Note to the RFC Editor: Please replace "the RFC number to be
 assigned to this document" with the hex representation of the RFC
 number assigned to this document.

 The Total Length field unambiguously marks the number of 32 bits
 words that carry Convert TLVs in the beginning of the bytestream.

6.2. Convert TLVs

6.2.1. Generic Convert TLV Format

 The Convert Protocol uses variable length messages that are encoded
 using the generic TLV format depicted in Figure 14.

 The length of all TLVs used by the Convert Protocol is always a
 multiple of four bytes. All TLVs are aligned on 32 bits boundaries.
 All TLV fields are encoded using the network byte order.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type | Length | Value ... |
 +---------------+---------------+-------------------------------+
 // ... (optional) Value //
 +---+

 Figure 14: Convert Generic TLV Format

 The Length field covers Type, Length, and Value fields. It is
 expressed in units of 32 bits words. If necessary, Value MUST be
 padded with zeroes so that the length of the TLV is a multiple of 32
 bits.

Bonaventure, et al. Expires September 22, 2020 [Page 23]

Internet-Draft Convert Protocol March 2020

 A given TLV MUST only appear once on a connection. If a Client
 receives two or more instances of the same TLV over a Convert
 connection, it MUST reset the associated TCP connection. If a
 Converter receives two or more instances of the same TLV over a
 Convert connection, it MUST return a Malformed Message Error TLV and
 close the associated TCP connection.

6.2.2. Summary of Supported Convert TLVs

 This document specifies the following Convert TLVs:

 +------+-----+----------+--+
 | Type | Hex | Length | Description |
 +------+-----+----------+--+
1	0x1	1	Info TLV
10	0xA	Variable	Connect TLV
20	0x14	Variable	Extended TCP Header TLV
21	0x15	Variable	Supported TCP Extensions TLV
22	0x16	Variable	Cookie TLV
30	0x1E	Variable	Error TLV
 +------+-----+----------+--+

 Figure 15: The TLVs used by the Convert Protocol

 Type 0x0 is a reserved value. If a Client receives a TLV of type
 0x0, it MUST reset the associated TCP connection. If a Converter
 receives a TLV of type 0x0, it MUST return an Unsupported Message
 Error TLV and close the associated TCP connection.

 The Client typically sends in the first connection it established
 with a Transport Converter the Info TLV (Section 6.2.3) to learn its
 capabilities. Assuming the Client is authorized to invoke the
 Transport Converter, the latter replies with the Supported TCP
 Extensions TLV (Section 6.2.4).

 The Client can request the establishment of connections to servers by
 using the Connect TLV (Section 6.2.5). If the connection can be
 established with the final server, the Transport Converter replies
 with the Extended TCP Header TLV (Section 6.2.6). If not, the
 Transport Converter MUST return an Error TLV (Section 6.2.8) and then
 closes the connection. The Transport Converter MUST NOT send an RST
 immediately after the detection of an error to let the Error TLV
 reach the Client. As explained later, the Client will anyway send an
 RST upon reception of the Error TLV.

Bonaventure, et al. Expires September 22, 2020 [Page 24]

Internet-Draft Convert Protocol March 2020

6.2.3. The Info TLV

 The Info TLV (Figure 16) is an optional TLV which can be sent by a
 Client to request the TCP extensions that are supported by a
 Transport Converter. It is typically sent on the first connection
 that a Client establishes with a Transport Converter to learn its
 capabilities. Assuming a Client is entitled to invoke the Transport
 Converter, the latter replies with the Supported TCP Extensions TLV
 described in Section 6.2.4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x1 | Length | Zero |
 +---------------+---------------+-------------------------------+

 Figure 16: The Info TLV

6.2.4. Supported TCP Extensions TLV

 The Supported TCP Extensions TLV (Figure 17) is used by a Transport
 Converter to announce the TCP options for which it provides a
 conversion service. A Transport Converter SHOULD include in this
 list the TCP options that it supports in outgoing SYNs.

 Each supported TCP option is encoded with its TCP option Kind listed
 in the "TCP Parameters" registry maintained by IANA. The Unassigned
 field MUST be set to zero by the Transport Converter and ignored by
 the Client.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x15 | Length | Unassigned |
 +---------------+---------------+-------------------------------+
 | Kind #1 | Kind #2 | ... |
 +---------------+---------------+-------------------------------+
 / ... /
 / /
 +---+

 Figure 17: The Supported TCP Extensions TLV

 TCP option Kinds 1 and 2 defined in [RFC0793] are supported by all
 TCP implementations and thus MUST NOT appear in this list.

https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires September 22, 2020 [Page 25]

Internet-Draft Convert Protocol March 2020

 The list of Supported TCP Extensions is padded with 0 to end on a 32
 bits boundary.

 For example, if the Transport Converter supports Multipath TCP,
 Kind=30 will be present in the Supported TCP Extensions TLV that it
 returns in response to Info TLV.

6.2.5. Connect TLV

 The Connect TLV (Figure 18) is used to request the establishment of a
 connection via a Transport Converter. This connection can be from or
 to a Client.

 The 'Remote Peer Port' and 'Remote Peer IP Address' fields contain
 the destination port number and IP address of the Server, for
 outgoing connections. For incoming connections destined to a Client
 serviced via a Transport Converter, these fields convey the source
 port number and IP address of the SYN packet received by the
 Transport Converter from the server.

 The Remote Peer IP Address MUST be encoded as an IPv6 address. IPv4
 addresses MUST be encoded using the IPv4-Mapped IPv6 Address format
 defined in [RFC4291]. Further, Remote Peer IP address field MUST NOT
 include multicast, broadcast, and host loopback addresses [RFC6890].
 If a Converter receives a Connect TLVs with such invalid addresses,
 it MUST reply with a Malformed Message Error TLV and close the
 associated TCP connection.

 We distinguish two types of Connect TLV based on their length: (1)
 the Base Connect TLV has a length set to 5 (i.e., 20 bytes) and
 contains a remote address and a remote port (Figure 18), (2) the
 Extended Connect TLV spans more than 20 bytes and also includes the
 optional 'TCP Options' field (Figure 19). This field is used to
 request the advertisement of specific TCP options to the server.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0xA | Length | Remote Peer Port |
 +---------------+---------------+-------------------------------+
 | |
 | Remote Peer IP Address (128 bits) |
 | |
 | |
 +---+

 Figure 18: The Base Connect TLV

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6890

Bonaventure, et al. Expires September 22, 2020 [Page 26]

Internet-Draft Convert Protocol March 2020

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0xA | Length | Remote Peer Port |
 +---------------+---------------+-------------------------------+
 | |
 | Remote Peer IP Address (128 bits) |
 | |
 | |
 +---+
 / TCP Options (Variable) /
 / ... /
 +---+

 Figure 19: The Extended Connect TLV

 The 'TCP Options' field is a variable length field that carries a
 list of TCP option fields (Figure 20). Each TCP option field is
 encoded as a block of 2+n bytes where the first byte is the TCP
 option Kind and the second byte is the length of the TCP option as
 specified in [RFC0793]. The minimum value for the TCP option Length
 is 2. The TCP options that do not include a length sub-field, i.e.,
 option types 0 (EOL) and 1 (NOP) defined in [RFC0793] MUST NOT be
 placed inside the TCP options field of the Connect TLV. The optional
 Value field contains the variable-length part of the TCP option. A
 length of two indicates the absence of the Value field. The TCP
 options field always ends on a 32 bits boundary after being padded
 with zeros.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | TCPOpt kind | TCPOpt Length | Value (opt) | |
 +---------------+---------------+---------------+---------------+
 | |
 +---+
 | ... |
 +---+

 Figure 20: The TCP Options Field

 Upon reception of a Base Connect TLV, and absent any policy (e.g.,
 rate-limit) or resource exhaustion conditions, a Transport Converter
 attempts to establish a connection to the address and port that it
 contains. The Transport Converter MUST use by default the TCP
 options that correspond to its local policy to establish this
 connection.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires September 22, 2020 [Page 27]

Internet-Draft Convert Protocol March 2020

 Upon reception of an Extended Connect TLV, a Transport Converter
 first checks whether it supports the TCP Options listed in the 'TCP
 Options' field. If not, it returns an error TLV set to "Unsupported
 TCP Option" (Section 6.2.8). If the above check succeeded and absent
 any rate limit policy or resource exhaustion conditions, a Transport
 Converter MUST attempt to establish a connection to the address and
 port that it contains. It MUST include in the SYN that it sends to
 the Server the options listed in the 'TCP Options' sub-field and the
 TCP options that it would have used according to its local policies.
 For the TCP options that are included in the TCP Options field
 without an optional value, the Transport Converter MUST generate its
 own value. For the TCP options that are included in the 'TCP
 Options' field with an optional value, it MUST copy the entire option
 in the SYN sent to the remote server. This procedure is designed
 with TFO in mind. Particularly, this procedure allows to
 successfully exchange a TFO Cookie between the client and the server.
 See Section 7 for a detailed discussion of the different types of TCP
 options.

 The Transport Converter may refuse a Connect TLV request for various
 reasons (e.g., authorization failed, out of resources, invalid
 address type, unsupported TCP option). An error message indicating
 the encountered error is returned to the requesting Client
 (Section 6.2.8). In order to prevent denial-of-service attacks,
 error messages sent to a Client SHOULD be rate-limited.

6.2.6. Extended TCP Header TLV

 The Extended TCP Header TLV (Figure 21) is used by the Transport
 Converter to return to the Client the TCP options that were returned
 by the Server in the SYN+ACK packet. A Transport Converter MUST
 return this TLV if the Client sent an Extended Connect TLV and the
 connection was accepted by the server.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x14 | Length | Unassigned |
 +---------------+---------------+-------------------------------+
 / Returned Extended TCP header /
 / ... /
 +---+

 Figure 21: The Extended TCP Header TLV

 The Returned Extended TCP header field is a copy of the TCP Options
 that were included in the SYN+ACK received by the Transport
 Converter.

Bonaventure, et al. Expires September 22, 2020 [Page 28]

Internet-Draft Convert Protocol March 2020

 The Unassigned field MUST be set to zero by the sender and ignored by
 the receiver.

6.2.7. The Cookie TLV

 The Cookie TLV (Figure 22) is an optional TLV which is similar to the
 TCP Fast Open Cookie [RFC7413]. A Transport Converter may want to
 verify that a Client can receive the packets that it sends to prevent
 attacks from spoofed addresses. This verification can be done by
 using a Cookie that is bound to, for example, the IP address(es) of
 the Client. This Cookie can be configured on the Client by means
 that are outside of this document or provided by the Transport
 Converter.

 A Transport Converter that has been configured to use the optional
 Cookie TLV MUST verify the presence of this TLV in the payload of the
 received SYN. If this TLV is present, the Transport Converter MUST
 validate the Cookie by means similar to those in Section 4.1.2 of
 [RFC7413] (i.e., IsCookieValid). If the Cookie is valid, the
 connection establishment procedure can continue. Otherwise, the
 Transport Converter MUST return an Error TLV set to "Not Authorized"
 and close the connection.

 If the received SYN did not contain a Cookie TLV, and cookie
 validation is required, the Transport Converter MAY compute a Cookie
 bound to this Client address. In such case, the Transport Converter
 MUST return an Error TLV set to "Missing Cookie" and the computed
 Cookie and close the connection. The Client will react to this error
 by first issuing a reset to terminate the connection. It also stores
 the received Cookie in its cache and attempts to reestablish a new
 connection to the Transport Converter that includes the Cookie TLV.

 The format of the Cookie TLV is shown in Figure 22.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Type=0x16 | Length | Zero |
 +---------------+---------------+-------------------------------+
 / Opaque Cookie /
 / ... /
 +---+

 Figure 22: The Cookie TLV

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc7413#section-4.1.2

Bonaventure, et al. Expires September 22, 2020 [Page 29]

Internet-Draft Convert Protocol March 2020

6.2.8. Error TLV

 The Error TLV (Figure 23) is meant to provide information about some
 errors that occurred during the processing of a Convert message.
 This TLV has a variable length. Upon reception of an Error TLV, a
 Client MUST reset the associated connection.

 An Error TLV can be included in the SYN+ACK or an ACK.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+----------------+--------------+
 | Type=0x1E | Length | Error Code | Value |
 +---------------+---------------+----------------+--------------+
 // ... (optional) Value //
 +---+

 Figure 23: The Error TLV

 Different types of errors can occur while processing Convert
 messages. Each error is identified by an Error Code represented as
 an unsigned integer. Four classes of error codes are defined:

 o Message validation and processing errors (0-31 range): returned
 upon reception of an invalid message (including valid messages but
 with invalid or unknown TLVs).

 o Client-side errors (32-63 range): the Client sent a request that
 could not be accepted by the Transport Converter (e.g.,
 unsupported operation).

 o Converter-side errors (64-95 range): problems encountered on the
 Transport Converter (e.g., lack of resources) which prevent it
 from fulfilling the Client's request.

 o Errors caused by the destination server (96-127 range): the final
 destination could not be reached or it replied with a reset.

 The following error codes are defined in this document:

 o Unsupported Version (0): The version number indicated in the fixed
 header of a message received from a peer is not supported.

 This error code MUST be generated by a peer (e.g. Transport
 Converter) when it receives a request having a version number that
 it does not support.

Bonaventure, et al. Expires September 22, 2020 [Page 30]

Internet-Draft Convert Protocol March 2020

 The value field MUST be set to the version supported by the peer.
 When multiple versions are supported by the peer, it includes the
 list of supported version in the value field; each version is
 encoded in 8 bits. The list of supported versions MUST be padded
 with zeros to end on a 32 bits boundary.

 Upon receipt of this error code, the remote peer (e.g., Client)
 checks whether it supports one of the versions returned by the
 peer. The highest common supported version MUST be used by the
 remote peer in subsequent exchanges with the peer.

 o Malformed Message (1): This error code is sent to indicate that a
 message received from a peer cannot be successfully parsed and
 validated.

 Typically, this error code is sent by the Transport Converter if
 it receives a Connect TLV enclosing a multicast, broadcast, or
 loopback IP address.

 To ease troubleshooting, the value field MUST echo the received
 message using the format depicted in Figure 24. This format
 allows to keep the original alignment of the message that
 triggered the error.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+----------------+--------------+
 | Type=0x1E | Length | Error Code | Zeros |
 +---------------+---------------+----------------+--------------+
 // Echo the message which triggered the error //
 +---+

 Figure 24: Error TLV to ease Message Correlation

 o Unsupported Message (2): This error code is sent to indicate that
 a message type received from a Client is not supported.

 To ease troubleshooting, the value field MUST echo the received
 message using the format shown in Figure 24.

 o Missing Cookie (3): If a Transport Converter requires the
 utilization of Cookies to prevent spoofing attacks and a Cookie
 TLV was not included in the Convert message, the Transport
 Converter MUST return this error to the requesting client only if
 it computes a cookie for this client. The first byte of the value
 field MUST be set to zero and the remaining bytes of the Error TLV
 contain the Cookie computed by the Transport Converter for this
 Client.

Bonaventure, et al. Expires September 22, 2020 [Page 31]

Internet-Draft Convert Protocol March 2020

 A Client which receives this error code SHOULD cache the received
 Cookie and include it in subsequent Convert messages sent to that
 Transport Converter.

 o Not Authorized (32): This error code indicates that the Transport
 Converter refused to create a connection because of a lack of
 authorization (e.g., administratively prohibited, authorization
 failure, invalid Cookie TLV). The Value field MUST be set to
 zero.

 This error code MUST be sent by the Transport Converter when a
 request cannot be successfully processed because the authorization
 failed.

 o Unsupported TCP Option (33): A TCP option that the Client
 requested to advertise to the final Server cannot be safely used.

 The Value field is set to the type of the unsupported TCP option.
 If several unsupported TCP options were specified in the Connect
 TLV, then the list of unsupported TCP options is returned. The
 list of unsupported TCP options MUST be padded with zeros to end
 on a 32 bits boundary.

 o Resource Exceeded (64): This error indicates that the Transport
 Converter does not have enough resources to perform the request.

 This error MUST be sent by the Transport Converter when it does
 not have sufficient resources to handle a new connection. The
 Transport Converter may indicate in the Value field the suggested
 delay (in seconds) that the Client SHOULD wait before soliciting
 the Transport Converter for a new proxied connection. A Value of
 zero corresponds to a default delay of at least 30 seconds.

 o Network Failure (65): This error indicates that the Transport
 Converter is experiencing a network failure to proxy the request.

 The Transport Converter MUST send this error code when it
 experiences forwarding issues to proxy a connection. The
 Transport Converter may indicate in the Value field the suggested
 delay (in seconds) that the Client SHOULD wait before soliciting
 the Transport Converter for a new proxied connection. A Value of
 zero corresponds to a default delay of at least 30 seconds.

 o Connection Reset (96): This error indicates that the final
 destination responded with an RST segment. The Value field MUST
 be set to zero.

Bonaventure, et al. Expires September 22, 2020 [Page 32]

Internet-Draft Convert Protocol March 2020

 o Destination Unreachable (97): This error indicates that an ICMP
 message indicating a hard error (e.g., destination unreachable,
 port unreachable, or network unreachable) was received by the
 Transport Converter. The Value field MUST echo the Code field of
 the received ICMP message.

 As a reminder, TCP implementations are supposed to act on an ICMP
 error message passed up from the IP layer, directing it to the
 connection that triggered the error using the demultiplexing
 information included in the payload of that ICMP message. Such
 demultiplexing issue does not apply for handling the "Destination
 Unreachable" Error TLV because the error is sent in-band. For
 this reason, the payload of the ICMP message is not echoed in the
 Destination Unreachable Error TLV.

 Figure 25 summarizes the different error codes.

 +-------+------+---+
 | Error | Hex | Description |
 +-------+------+---+
 | 0 | 0x00 | Unsupported Version |
 | 1 | 0x01 | Malformed Message |
 | 2 | 0x02 | Unsupported Message |
 | 3 | 0x03 | Missing Cookie |
 | 32 | 0x20 | Not Authorized |
 | 33 | 0x21 | Unsupported TCP Option |
 | 64 | 0x40 | Resource Exceeded |
 | 65 | 0x41 | Network Failure |
 | 96 | 0x60 | Connection Reset |
 | 97 | 0x61 | Destination Unreachable |
 +-------+------+---+

 Figure 25: Convert Error Values

7. Compatibility of Specific TCP Options with the Conversion Service

 In this section, we discuss how several deployed standard track TCP
 options can be supported through the Convert Protocol. The other TCP
 options will be discussed in other documents.

7.1. Base TCP Options

 Three TCP options were initially defined in [RFC0793]: End-of-Option
 List (Kind=0), No-Operation (Kind=1) and Maximum Segment Size
 (Kind=2). The first two options are mainly used to pad the TCP
 header. There is no reason for a client to request a Transport
 Converter to specifically send these options towards the final
 destination.

https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure, et al. Expires September 22, 2020 [Page 33]

Internet-Draft Convert Protocol March 2020

 The Maximum Segment Size option (Kind=2) is used by a host to
 indicate the largest segment that it can receive over each
 connection. This value is function of the stack that terminates the
 TCP connection. There is no reason for a Client to request a
 Transport Converter to advertise a specific MSS value to a remote
 server.

 A Transport Converter MUST ignore options with Kind=0, 1 or 2 if they
 appear in a Connect TLV. It MUST NOT announce them in a Supported
 TCP Extensions TLV.

7.2. Window Scale (WS)

 The Window Scale (WS) option (Kind=3) is defined in [RFC7323]. As
 for the MSS option, the window scale factor that is used for a
 connection strongly depends on the TCP stack that handles the
 connection. When a Transport Converter opens a TCP connection
 towards a remote server on behalf of a Client, it SHOULD use a WS
 option with a scaling factor that corresponds to the configuration of
 its stack. A local configuration MAY allow for WS option in the
 proxied message to be function of the scaling factor of the incoming
 connection.

 There is no benefit from a deployment viewpoint in enabling a Client
 of a Transport Converter to specifically request the utilization of
 the WS option (Kind=3) with a specific scaling factor towards a
 remote Server. For this reason, a Transport Converter MUST ignore
 option Kind=3 if it appears in a Connect TLV. It MUST NOT announce
 it in a Supported TCP Extensions TLV.

7.3. Selective Acknowledgments

 Two distinct TCP options were defined to support selective
 acknowledgments in [RFC2018]. This first one, SACK Permitted
 (Kind=4), is used to negotiate the utilization of selective
 acknowledgments during the three-way handshake. The second one, SACK
 (Kind=5), carries the selective acknowledgments inside regular
 segments.

 The SACK Permitted option (Kind=4) MAY be advertised by a Transport
 Converter in the Supported TCP Extensions TLV. Clients connected to
 this Transport Converter MAY include the SACK Permitted option in the
 Connect TLV.

 The SACK option (Kind=5) cannot be used during the three-way
 handshake. For this reason, a Transport Converter MUST ignore option
 Kind=5 if it appears in a Connect TLV. It MUST NOT announce it in a
 TCP Supported Extensions TLV.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018

Bonaventure, et al. Expires September 22, 2020 [Page 34]

Internet-Draft Convert Protocol March 2020

7.4. Timestamp

 The Timestamp option [RFC7323] can be used during the three-way
 handshake to negotiate the utilization of timestamps during the TCP
 connection. It is notably used to improve round-trip-time
 estimations and to provide protection against wrapped sequence
 numbers (PAWS). As for the WS option, the timestamps are a property
 of a connection and there is limited benefit in enabling a client to
 request a Transport Converter to use the timestamp option when
 establishing a connection to a remote server. Furthermore, the
 timestamps that are used by TCP stacks are specific to each stack and
 there is no benefit in enabling a client to specify the timestamp
 value that a Transport Converter could use to establish a connection
 to a remote server.

 A Transport Converter MAY advertise the Timestamp option (Kind=8) in
 the TCP Supported Extensions TLV. The clients connected to this
 Transport Converter MAY include the Timestamp option in the Connect
 TLV but without any timestamp.

7.5. Multipath TCP

 The Multipath TCP options are defined in [RFC6824]. [RFC6824]
 defines one variable length TCP option (Kind=30) that includes a sub-
 type field to support several Multipath TCP options. There are
 several operational use cases where clients would like to use
 Multipath TCP through a Transport Converter [IETFJ16]. However, none
 of these use cases require the Client to specify the content of the
 Multipath TCP option that the Transport Converter should send to a
 remote server.

 A Transport Converter which supports Multipath TCP conversion service
 MUST advertise the Multipath TCP option (Kind=30) in the Supported
 TCP Extensions TLV. Clients serviced by this Transport Converter may
 include the Multipath TCP option in the Connect TLV but without any
 content.

7.6. TCP Fast Open

 The TCP Fast Open cookie option (Kind=34) is defined in [RFC7413].
 There are two different usages of this option that need to be
 supported by Transport Converters. The first utilization of the TCP
 Fast Open cookie option is to request a cookie from the server. In
 this case, the option is sent with an empty cookie by the client and
 the server returns the cookie. The second utilization of the TCP
 Fast Open cookie option is to send a cookie to the server. In this
 case, the option contains a cookie.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7413

Bonaventure, et al. Expires September 22, 2020 [Page 35]

Internet-Draft Convert Protocol March 2020

 A Transport Converter MAY advertise the TCP Fast Open cookie option
 (Kind=34) in the Supported TCP Extensions TLV. If a Transport
 Converter has advertised the support for TCP Fast Open in its
 Supported TCP Extensions TLV, it needs to be able to process two
 types of Connect TLV.

 If such a Transport Converter receives a Connect TLV with the TCP
 Fast Open cookie option that does not contain a cookie, it MUST add
 an empty TCP Fast Open cookie option in the SYN sent to the remote
 server. If the remote server supports TFO, it responds with a SYN-
 ACK according to the procedure in Section 4.1.2 of [RFC7413]. This
 SYN-ACK may contain a Fast Open option with a cookie. Upon receipt
 of the SYN-ACK by the Converter, it relays Fast Open option with the
 cookie to the Client.

 If such a Transport Converter receives a Connect TLV with the TCP
 Fast Open cookie option that contains a cookie, it MUST copy the TCP
 Fast Open cookie option in the SYN sent to the remote server.

7.7. TCP-AO

 TCP-AO [RFC5925] provides a technique to authenticate all the packets
 exchanged over a TCP connection. Given the nature of this extension,
 it is unlikely that the applications that require their packets to be
 authenticated end-to-end would want their connections to pass through
 a converter. For this reason, we do not recommend the support of the
 TCP-AO option by Transport Converters. The only use cases where it
 could make sense to combine TCP-AO and the solution in this document
 are those where the TCP-AO-NAT extension [RFC6978] is in use.

 A Transport Converter MUST NOT advertise the TCP-AO option (Kind=29)
 in the Supported TCP Extensions TLV. If a Transport Converter
 receives a Connect TLV that contains the TCP-AO option, it MUST
 reject the establishment of the connection with error code set to
 "Unsupported TCP Option", except if the TCP-AO-NAT option is used.
 Nevertheless, given that TCP-AO-NAT is Experimental, its usage is not
 currently defined and must be specified by some other document before
 it can be used.

8. Interactions with Middleboxes

 The Convert Protocol is designed to be used in networks that do not
 contain middleboxes that interfere with TCP. Under such conditions,
 it is assumed that the network provider ensures that all involved on-
 path nodes are not breaking TCP signals (e.g., strip TCP options,
 discard some SYNs, etc.).

https://datatracker.ietf.org/doc/html/rfc7413#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6978

Bonaventure, et al. Expires September 22, 2020 [Page 36]

Internet-Draft Convert Protocol March 2020

 Nevertheless, and in order to allow for a robust service, this
 section describes how a Client can detect middlebox interference and
 stop using the Transport Converter affected by this interference.

 Internet measurements [IMC11] have shown that middleboxes can affect
 the deployment of TCP extensions. In this section, we focus the
 middleboxes that modify the payload since the Convert Protocol places
 its messages at the beginning of the bytestream.

 Consider a middlebox that removes the SYN payload. The Client can
 detect this problem by looking at the acknowledgment number field of
 the SYN+ACK if returned by the Transport Converter. The Client MUST
 stop to use this Transport Converter given the middlebox
 interference.

 Consider now a middlebox that drops SYN/ACKs with a payload. The
 Client won't be able to establish a connection via the Transport
 Converter. The case of a middlebox that removes the payload of
 SYN+ACKs or from the packet that follows the SYN+ACK (but not the
 payload of SYN) can be detected by a Client. This is hinted by the
 absence of a valid Convert message in the response.

 As explained in [RFC7413], some CGNs (Carrier Grade NATs) can affect
 the operation of TFO if they assign different IP addresses to the
 same end host. Such CGNs could affect the operation of the cookie
 validation used by the Convert Protocol. As a reminder CGNs, enabled
 on the path between a Client and a Transport Converter, must adhere
 to the address preservation defined in [RFC6888]. See also the
 discussion in Section 7.1 of [RFC7413].

9. Security Considerations

 An implementation MUST check that the Convert TLVs are properly
 framed within the boundary indicated by the Total Length in the fixed
 header (Section 6.1).

 Additional security considerations are discussed in the following
 sub-sections.

9.1. Privacy & Ingress Filtering

 The Transport Converter may have access to privacy-related
 information (e.g., subscriber credentials). The Transport Converter
 is designed to not leak such sensitive information outside a local
 domain.

 Given its function and location in the network, a Transport Converter
 is in a position to observe all packets that it processes, to include

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6888
https://datatracker.ietf.org/doc/html/rfc7413#section-7.1

Bonaventure, et al. Expires September 22, 2020 [Page 37]

Internet-Draft Convert Protocol March 2020

 payloads and meta-data; and has the ability to profile and conduct
 some traffic analysis of user behavior. The Transport Converter MUST
 be as protected as a core IP router (e.g., Section 10 of [RFC1812]).

 Furthermore, ingress filtering policies MUST be enforced at the
 network boundaries [RFC2827].

 This document assumes that all network attachments are managed by the
 same administrative entity. Therefore, enforcing anti-spoofing
 filters at these network is a guard that hosts are not sending
 traffic with spoofed source IP addresses.

9.2. Authentication and Authorization Considerations

 The Convert Protocol is RECOMMENDED to be used in a managed network
 where end hosts can be securely identified by their IP address. If
 such control is not exerted and there is a more open network
 environment, a strong mutual authentication scheme MUST be defined to
 use the Convert Protocol.

 One possibility for mutual authentication is to use TLS to perform
 mutual authentication between the client and the Converter. That is,
 use TLS when a Client retrieves a Cookie from the Converter and rely
 on certificate-based client authentication, pre-shared key based
 [RFC4279] or raw public key based client authentication [RFC7250] to
 secure this connection. If the authentication succeeds, the
 Converter returns a cookie to the Client. Subsequent Connect
 messages will be authorized as a function of the content of the
 Cookie TLV. An attacker from within the network between a Client and
 a Transport Converter may intercept the Cookie and use it to be
 granted access to the conversion service. Such attack is only
 possible if the attacker spoofs the IP address of the Client and the
 network does not filter packets with source spoofed IP addresses.

 The operator that manages the various network attachments (including
 the Transport Converters) has various options for enforcing
 authentication and authorization policies. For example, a non-
 exhaustive list of methods to achieve authorization is provided
 hereafter:

 o The network provider may enforce a policy based on the
 International Mobile Subscriber Identity (IMSI) to verify that a
 user is allowed to benefit from the TCP converter service. If
 that authorization fails, the Packet Data Protocol (PDP) context/
 bearer will not be mounted. This method does not require any
 interaction with the Transport Converter for authorization
 matters.

https://datatracker.ietf.org/doc/html/rfc1812#section-10
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc7250

Bonaventure, et al. Expires September 22, 2020 [Page 38]

Internet-Draft Convert Protocol March 2020

 o The network provider may enforce a policy based upon Access
 Control Lists (ACLs), e.g., at a Broadband Network Gateway (BNG)
 to control the hosts that are authorized to communicate with a
 Transport Converter. These ACLs may be installed as a result of
 RADIUS exchanges, e.g., [I-D.boucadair-radext-tcpm-converter].
 This method does not require any interaction with the Transport
 Converter for authorization matters.

 o A device that embeds a Transport Converter may also host a RADIUS
 client that will solicit an AAA server to check whether
 connections received from a given source IP address are authorized
 or not [I-D.boucadair-radext-tcpm-converter].

 A first safeguard against the misuse of Transport Converter resources
 by illegitimate users (e.g., users with access networks that are not
 managed by the same provider that operates the Transport Converter)
 is the Transport Converter to reject Convert connections received in
 the external realm. Only Convert connections received in the
 internal realm of a Transport Converter will be accepted.

 In deployments where network-assisted connections are not allowed
 between hosts of a domain (i.e., hairpinning), the Converter may be
 instructed to discard such connections. Hairpinned connections are
 thus rejected by the Transport Converter by returning an Error TLV
 set to "Not Authorized". Absent explicit configuration otherwise,
 hairpinning is enabled by the Converter (see Figure 26.

 <===Network Provider===>

 +----+ from X1:x1 to X2':x2' +-----+ X1':x1'
 | C1 |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>--+---
 +----+ | v |
 | v |
 | v |
 | v |
 +----+ from X1':x1' to X2:x2 | v | X2':x2'
 | C2 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<<--+---
 +----+ +-----+
 Converter

 Note: X2':x2' may be equal to
 X2:x2

 Figure 26: Hairpinning Example

Bonaventure, et al. Expires September 22, 2020 [Page 39]

Internet-Draft Convert Protocol March 2020

9.3. Denial of Service

 Another possible risk is the amplification attacks since a Transport
 Converter sends a SYN towards a remote Server upon reception of a SYN
 from a Client. This could lead to amplification attacks if the SYN
 sent by the Transport Converter were larger than the SYN received
 from the Client or if the Transport Converter retransmits the SYN.
 To mitigate such attacks, the Transport Converter SHOULD rate limit
 the number of pending requests for a given Client. It SHOULD also
 avoid sending to remote Servers SYNs that are significantly longer
 than the SYN received from the Client. Finally, the Transport
 Converter SHOULD only retransmit a SYN to a Server after having
 received a retransmitted SYN from the corresponding Client. Means to
 protect against SYN flooding attacks should also be enabled (e.g.,

Section 3 of [RFC4987]).

 Attacks from within the network between a Client and a Transport
 Converter (including attacks that change the protocol version) are
 yet another threat. Means to ensure that illegitimate nodes cannot
 connect to a network should be implemented.

9.4. Traffic Theft

 Traffic theft is a risk if an illegitimate Converter is inserted in
 the path. Indeed, inserting an illegitimate Converter in the
 forwarding path allows traffic interception and can therefore provide
 access to sensitive data issued by or destined to a host. Converter
 discovery and configuration are out of scope of this document.

9.5. Logging

 If the Converter is configured to behave in the address sharing mode
 (Section 4.4.2), the logging recommendations discussed in Section 4
 of [RFC6888] need to be considered. Security-related issues
 encountered in address sharing environments are documented in

Section 13 of [RFC6269].

10. IANA Considerations

 Note to the RFC Editor: Please replace "THISRFC" in the following
 sub-sections with the RFC number to be assigned to this document.

10.1. Convert Service Name

 IANA is requested to assign a service name for the Convert Protocol
 from the "Service Name and Transport Protocol Port Number Registry"
 available at https://www.iana.org/assignments/service-names-port-

numbers/service-names-port-numbers.xhtml.

https://datatracker.ietf.org/doc/html/rfc4987#section-3
https://datatracker.ietf.org/doc/html/rfc6888#section-4
https://datatracker.ietf.org/doc/html/rfc6888#section-4
https://datatracker.ietf.org/doc/html/rfc6269#section-13
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Bonaventure, et al. Expires September 22, 2020 [Page 40]

Internet-Draft Convert Protocol March 2020

 Service Name: convert
 Port Number: N/A
 Transport Protocol(s): TCP
 Description: 0-RTT TCP Convert Protocol
 Assignee: IESG <iesg@ietf.org>
 Contact: IETF Chair <chair@ietf.org>
 Reference: THISRFC

 Clients may use this service name to fed the procedure defined in
 [RFC2782] to discover the IP address(es) and the port number used by
 the Transport Converters of a domain.

10.2. The Convert Protocol (Convert) Parameters

 IANA is requested to create a new "The TCP Convert Protocol (Convert)
 Parameters" registry.

 The following subsections detail new registries within "The Convert
 Protocol (Convert) Parameters" registry.

 The Designated Expert is expected to ascertain the existence of
 suitable documentation as described in Section 4.6 of [RFC8126] and
 to verify that the document is permanently and publicly available.
 The Designated Expert is also expected to check the clarity of
 purpose and use of the requested code points.

 Also, criteria that should be applied by the Designated Experts
 includes determining whether the proposed registration duplicates
 existing functionality, whether it is likely to be of general
 applicability or whether it is useful only for a private use, and
 whether the registration description is clear. IANA must only accept
 registry updates to the 128-191 range (for both "Convert TLVs" and
 "Convert Error Messages" sub-registries) from the Designated Experts
 and should direct all requests for registration to the review mailing
 list. It is suggested that multiple Designated Experts be appointed.
 In cases where a registration decision could be perceived as creating
 a conflict of interest for a particular Expert, that Expert should
 defer to the judgment of the other Experts.

10.2.1. Convert Versions

 IANA is requested to create the "Convert versions" sub-registry. New
 values are assigned via IETF Review (Section 4.8 of [RFC8126]).

 The initial values to be assigned at the creation of the registry are
 as follows:

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc8126#section-4.6
https://datatracker.ietf.org/doc/html/rfc8126#section-4.8

Bonaventure, et al. Expires September 22, 2020 [Page 41]

Internet-Draft Convert Protocol March 2020

 +---------+--------------------------------------+-------------+
 | Version | Description | Reference |
 +---------+--------------------------------------+-------------+
 | 0 | Reserved | THISRFC |
 | 1 | Assigned | THISRFC |
 +---------+--------------------------------------+-------------+

 Figure 27: Current Convert Versions

10.2.2. Convert TLVs

 IANA is requested to create the "Convert TLVs" sub-registry. The
 procedure for assigning values from this registry is as follows:

 o The values in the range 1-127 can be assigned via IETF Review.

 o The values in the range 128-191 can be assigned via Specification
 Required.

 o The values in the range 192-255 are reserved for Private Use.

 The initial values to be assigned at the creation of the registry are
 as follows:

 +---------+--------------------------------------+-------------+
 | Code | Name | Reference |
 +---------+--------------------------------------+-------------+
 | 0 | Reserved | THISRFC |
 | 1 | Info TLV | THISRFC |
 | 10 | Connect TLV | THISRFC |
 | 20 | Extended TCP Header TLV | THISRFC |
 | 21 | Supported TCP Extension TLV | THISRFC |
 | 22 | Cookie TLV | THISRFC |
 | 30 | Error TLV | THISRFC |
 +---------+--------------------------------------+-------------+

 Figure 28: Initial Convert TLVs

10.2.3. Convert Error Messages

 IANA is requested to create the "Convert Errors" sub-registry. Codes
 in this registry are assigned as a function of the error type. Four
 types are defined; the following ranges are reserved for each of
 these types:

 o Message validation and processing errors: 0-31

 o Client-side errors: 32-63

Bonaventure, et al. Expires September 22, 2020 [Page 42]

Internet-Draft Convert Protocol March 2020

 o Transport Converter-side errors: 64-95

 o Errors caused by destination server: 96-127

 The procedure for assigning values from this sub-registry is as
 follows:

 o 0-127: Values in this range are assigned via IETF Review.

 o 128-191: Values in this range are assigned via Specification
 Required.

 o 192-255: Values in this range are reserved for Private Use.

 The initial values to be assigned at the creation of the registry are
 as follows:

 +-------+-----------------------------------+-----------+
 | Error | Description | Reference |
 +-------+-----------------------------------+-----------+
 | 0 | Unsupported Version | THISRFC |
 | 1 | Malformed Message | THISRFC |
 | 2 | Unsupported Message | THISRFC |
 | 3 | Missing Cookie | THISRFC |
 | 32 | Not Authorized | THISRFC |
 | 33 | Unsupported TCP Option | THISRFC |
 | 64 | Resource Exceeded | THISRFC |
 | 65 | Network Failure | THISRFC |
 | 96 | Connection Reset | THISRFC |
 | 97 | Destination Unreachable | THISRFC |
 +-------+-----------------------------------+-----------+

 Figure 29: Initial Convert Error Codes

11. References

11.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018

Bonaventure, et al. Expires September 22, 2020 [Page 43]

Internet-Draft Convert Protocol March 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
 May 2000, <https://www.rfc-editor.org/info/rfc2827>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC6888] Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
 A., and H. Ashida, "Common Requirements for Carrier-Grade
 NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
 April 2013, <https://www.rfc-editor.org/info/rfc6888>.

 [RFC6890] Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
 "Special-Purpose IP Address Registries", BCP 153,

RFC 6890, DOI 10.17487/RFC6890, April 2013,
 <https://www.rfc-editor.org/info/rfc6890>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://www.rfc-editor.org/info/rfc2827
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc6888
https://www.rfc-editor.org/info/rfc6888
https://datatracker.ietf.org/doc/html/bcp153
https://datatracker.ietf.org/doc/html/rfc6890
https://www.rfc-editor.org/info/rfc6890
https://datatracker.ietf.org/doc/html/rfc7323
https://www.rfc-editor.org/info/rfc7323

Bonaventure, et al. Expires September 22, 2020 [Page 44]

Internet-Draft Convert Protocol March 2020

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [ANRW17] Trammell, B., Kuehlewind, M., De Vaere, P., Learmonth, I.,
 and G. Fairhurst, "Tracking transport-layer evolution with
 PATHspider", Applied Networking Research Workshop 2017
 (ANRW17) , July 2017.

 [Fukuda2011]
 Fukuda, K., "An Analysis of Longitudinal TCP Passive
 Measurements (Short Paper)", Traffic Monitoring and
 Analysis. TMA 2011. Lecture Notes in Computer Science, vol
 6613. , 2011.

 [HotMiddlebox13b]
 Detal, G., Paasch, C., and O. Bonaventure, "Multipath in
 the Middle(Box)", HotMiddlebox'13 , December 2013,
 <http://inl.info.ucl.ac.be/publications/multipath-

middlebox>.

 [I-D.arkko-arch-low-latency]
 Arkko, J. and J. Tantsura, "Low Latency Applications and
 the Internet Architecture", draft-arkko-arch-low-

latency-02 (work in progress), October 2017.

 [I-D.boucadair-mptcp-plain-mode]
 Boucadair, M., Jacquenet, C., Bonaventure, O., Behaghel,
 D., stefano.secci@lip6.fr, s., Henderickx, W., Skog, R.,
 Vinapamula, S., Seo, S., Cloetens, W., Meyer, U.,
 Contreras, L., and B. Peirens, "Extensions for Network-
 Assisted MPTCP Deployment Models", draft-boucadair-mptcp-

plain-mode-10 (work in progress), March 2017.

https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://inl.info.ucl.ac.be/publications/multipath-middlebox
http://inl.info.ucl.ac.be/publications/multipath-middlebox
https://datatracker.ietf.org/doc/html/draft-arkko-arch-low-latency-02
https://datatracker.ietf.org/doc/html/draft-arkko-arch-low-latency-02
https://datatracker.ietf.org/doc/html/draft-boucadair-mptcp-plain-mode-10
https://datatracker.ietf.org/doc/html/draft-boucadair-mptcp-plain-mode-10

Bonaventure, et al. Expires September 22, 2020 [Page 45]

Internet-Draft Convert Protocol March 2020

 [I-D.boucadair-radext-tcpm-converter]
 Boucadair, M. and C. Jacquenet, "RADIUS Extensions for
 0-RTT TCP Converters", draft-boucadair-radext-tcpm-

converter-02 (work in progress), April 2019.

 [I-D.boucadair-tcpm-dhc-converter]
 Boucadair, M., Jacquenet, C., and T. Reddy.K, "DHCP
 Options for 0-RTT TCP Converters", draft-boucadair-tcpm-

dhc-converter-03 (work in progress), October 2019.

 [I-D.olteanu-intarea-socks-6]
 Olteanu, V. and D. Niculescu, "SOCKS Protocol Version 6",

draft-olteanu-intarea-socks-6-08 (work in progress),
 November 2019.

 [I-D.peirens-mptcp-transparent]
 Peirens, B., Detal, G., Barre, S., and O. Bonaventure,
 "Link bonding with transparent Multipath TCP", draft-

peirens-mptcp-transparent-00 (work in progress), July
 2016.

 [IETFJ16] Bonaventure, O. and S. Seo, "Multipath TCP Deployment",
 IETF Journal, Fall 2016 , n.d..

 [IMC11] Honda, K., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and T. Hideyuki, "Is it still possible to
 extend TCP?", Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference , 2011.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC1919] Chatel, M., "Classical versus Transparent IP Proxies",
RFC 1919, DOI 10.17487/RFC1919, March 1996,

 <https://www.rfc-editor.org/info/rfc1919>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <https://www.rfc-editor.org/info/rfc1928>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

https://datatracker.ietf.org/doc/html/draft-boucadair-radext-tcpm-converter-02
https://datatracker.ietf.org/doc/html/draft-boucadair-radext-tcpm-converter-02
https://datatracker.ietf.org/doc/html/draft-boucadair-tcpm-dhc-converter-03
https://datatracker.ietf.org/doc/html/draft-boucadair-tcpm-dhc-converter-03
https://datatracker.ietf.org/doc/html/draft-olteanu-intarea-socks-6-08
https://datatracker.ietf.org/doc/html/draft-peirens-mptcp-transparent-00
https://datatracker.ietf.org/doc/html/draft-peirens-mptcp-transparent-00
https://datatracker.ietf.org/doc/html/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/rfc1919
https://www.rfc-editor.org/info/rfc1919
https://datatracker.ietf.org/doc/html/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://datatracker.ietf.org/doc/html/rfc2782
https://www.rfc-editor.org/info/rfc2782

Bonaventure, et al. Expires September 22, 2020 [Page 46]

Internet-Draft Convert Protocol March 2020

 [RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
 Shelby, "Performance Enhancing Proxies Intended to
 Mitigate Link-Related Degradations", RFC 3135,
 DOI 10.17487/RFC3135, June 2001,
 <https://www.rfc-editor.org/info/rfc3135>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",

RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC5461] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461,
 DOI 10.17487/RFC5461, February 2009,
 <https://www.rfc-editor.org/info/rfc5461>.

 [RFC6269] Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
 P. Roberts, "Issues with IP Address Sharing", RFC 6269,
 DOI 10.17487/RFC6269, June 2011,
 <https://www.rfc-editor.org/info/rfc6269>.

 [RFC6296] Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix
 Translation", RFC 6296, DOI 10.17487/RFC6296, June 2011,
 <https://www.rfc-editor.org/info/rfc6296>.

 [RFC6731] Savolainen, T., Kato, J., and T. Lemon, "Improved
 Recursive DNS Server Selection for Multi-Interfaced
 Nodes", RFC 6731, DOI 10.17487/RFC6731, December 2012,
 <https://www.rfc-editor.org/info/rfc6731>.

 [RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <https://www.rfc-editor.org/info/rfc6887>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC6978] Touch, J., "A TCP Authentication Option Extension for NAT
 Traversal", RFC 6978, DOI 10.17487/RFC6978, July 2013,
 <https://www.rfc-editor.org/info/rfc6978>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

https://datatracker.ietf.org/doc/html/rfc3135
https://www.rfc-editor.org/info/rfc3135
https://datatracker.ietf.org/doc/html/rfc4279
https://www.rfc-editor.org/info/rfc4279
https://datatracker.ietf.org/doc/html/rfc5461
https://www.rfc-editor.org/info/rfc5461
https://datatracker.ietf.org/doc/html/rfc6269
https://www.rfc-editor.org/info/rfc6269
https://datatracker.ietf.org/doc/html/rfc6296
https://www.rfc-editor.org/info/rfc6296
https://datatracker.ietf.org/doc/html/rfc6731
https://www.rfc-editor.org/info/rfc6731
https://datatracker.ietf.org/doc/html/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc6978
https://www.rfc-editor.org/info/rfc6978
https://datatracker.ietf.org/doc/html/rfc7250
https://www.rfc-editor.org/info/rfc7250

Bonaventure, et al. Expires September 22, 2020 [Page 47]

Internet-Draft Convert Protocol March 2020

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <https://www.rfc-editor.org/info/rfc7414>.

 [RFC8041] Bonaventure, O., Paasch, C., and G. Detal, "Use Cases and
 Operational Experience with Multipath TCP", RFC 8041,
 DOI 10.17487/RFC8041, January 2017,
 <https://www.rfc-editor.org/info/rfc8041>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8548] Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,
 Q., and E. Smith, "Cryptographic Protection of TCP Streams
 (tcpcrypt)", RFC 8548, DOI 10.17487/RFC8548, May 2019,
 <https://www.rfc-editor.org/info/rfc8548>.

 [TS23501] 3GPP (3rd Generation Partnership Project), ., "Technical
 Specification Group Services and System Aspects; System
 Architecture for the 5G System; Stage 2 (Release 16)",
 2019, <https://www.3gpp.org/ftp/Specs/

archive/23_series/23.501/>.

Appendix A. Example Socket API Changes to Support the 0-RTT Convert
 Protocol

A.1. Active Open (Client Side)

 On the client side, the support of the 0-RTT Converter protocol does
 not require any other changes than those identified in Appendix A of
 [RFC7413]. Those modifications are already supported by multiple TCP
 stacks.

 As an example, on Linux, a client can send the 0-RTT Convert message
 inside a SYN by using sendto with the MSG_FASTOPEN flag as shown in
 the example below:

https://datatracker.ietf.org/doc/html/rfc7414
https://www.rfc-editor.org/info/rfc7414
https://datatracker.ietf.org/doc/html/rfc8041
https://www.rfc-editor.org/info/rfc8041
https://datatracker.ietf.org/doc/html/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8548
https://www.rfc-editor.org/info/rfc8548
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/
https://datatracker.ietf.org/doc/html/rfc7413#appendix-A
https://datatracker.ietf.org/doc/html/rfc7413#appendix-A

Bonaventure, et al. Expires September 22, 2020 [Page 48]

Internet-Draft Convert Protocol March 2020

 s = socket(AF_INET, SOCK_STREAM, 0);

 sendto(s, buffer, buffer_len, MSG_FASTOPEN,
 (struct sockaddr *) &server_addr, addr_len);

 The client side of the Linux TCP TFO can be used in two different
 modes depending on the host configuration (sysctl tcp_fastopen
 variable):

 o 0x1: (client) enables sending data in the opening SYN on the
 client.

 o 0x4: (client) send data in the opening SYN regardless of cookie
 availability and without a cookie option.

 By setting this configuration variable to 0x5, a Linux client using
 the above code would send data inside the SYN without using a TFO
 option.

A.2. Passive Open (Converter Side)

 The Converter needs to enable the reception of data inside the SYN
 independently of the utilization of the TFO option. This implies
 that the Transport Converter application cannot rely on the TFO
 cookies to validate the reachability of the IP address that sent the
 SYN. It must rely on other techniques, such as the Cookie TLV
 described in this document, to verify this reachability.

 [RFC7413] suggested the utilization of a TCP_FASTOPEN socket option
 the enable the reception of SYNs containing data. Later, Appendix A
 of [RFC7413], mentioned:

 Traditionally, accept() returns only after a socket is connected.
 But, for a Fast Open connection, accept() returns upon receiving
 SYN with a valid Fast Open cookie and data, and the data is available
 to be read through, e.g., recvmsg(), read().

 To support the 0-RTT Convert Protocol, this behavior should be
 modified as follows:

 Traditionally, accept() returns only after a socket is connected.
 But, for a Fast Open connection, accept() returns upon receiving a
 SYN with data, and the data is available to be read through, e.g.,
 recvmsg(), read(). The application that receives such SYNs with data
 must be able to validate the reachability of the source of the SYN
 and also deal with replayed SYNs.

 The Linux server side can be configured with the following sysctls:

https://datatracker.ietf.org/doc/html/rfc7413#appendix-A
https://datatracker.ietf.org/doc/html/rfc7413#appendix-A

Bonaventure, et al. Expires September 22, 2020 [Page 49]

Internet-Draft Convert Protocol March 2020

 o 0x2: (server) enables the server support, i.e., allowing data in a
 SYN packet to be accepted and passed to the application before
 3-way handshake finishes.

 o 0x200: (server) accept data-in-SYN w/o any cookie option present.

 However, this configuration is system-wide. This is convenient for
 typical Transport Converter deployments where no other applications
 relying on TFO are collocated on the same device.

 Recently, the TCP_FASTOPEN_NO_COOKIE socket option has been added to
 provide the same behavior on a per socket basis. This enables a
 single host to support both servers that require the TFO cookie and
 servers that do not use it.

Acknowledgments

 Although they could disagree with the contents of the document, we
 would like to thank Joe Touch and Juliusz Chroboczek whose comments
 on the MPTCP mailing list have forced us to reconsider the design of
 the solution several times.

 We would like to thank Raphael Bauduin, Stefano Secci, Anandatirtha
 Nandugudi and Gregory Vander Schueren for their help in preparing
 this document. Nandini Ganesh provided valuable feedback about the
 handling of TFO and the error codes. Yuchung Cheng and Praveen
 Balasubramanian helped to clarify the discussion on supplying data in
 SYNs. Phil Eardley and Michael Scharf's helped to clarify different
 parts of the text. Thanks to Eric Vyncke, Roman Danyliw, Benjamin
 Kaduk, and Alexey Melnikov for the IESG review, and Christian Huitema
 for the security directorate review.

 Many thanks to Mirja Kuehlewind for the detailed AD review.

 This document builds upon earlier documents that proposed various
 forms of Multipath TCP proxies [I-D.boucadair-mptcp-plain-mode],
 [I-D.peirens-mptcp-transparent] and [HotMiddlebox13b].

 From [I-D.boucadair-mptcp-plain-mode]:

 Many thanks to Chi Dung Phung, Mingui Zhang, Rao Shoaib, Yoshifumi
 Nishida, and Christoph Paasch for their valuable comments.

 Thanks to Ian Farrer, Mikael Abrahamsson, Alan Ford, Dan Wing, and
 Sri Gundavelli for the fruitful discussions in IETF#95 (Buenos
 Aires).

Bonaventure, et al. Expires September 22, 2020 [Page 50]

Internet-Draft Convert Protocol March 2020

 Special thanks to Pierrick Seite, Yannick Le Goff, Fred Klamm, and
 Xavier Grall for their inputs.

 Thanks also to Olaf Schleusing, Martin Gysi, Thomas Zasowski, Andreas
 Burkhard, Silka Simmen, Sandro Berger, Michael Melloul, Jean-Yves
 Flahaut, Adrien Desportes, Gregory Detal, Benjamin David, Arun
 Srinivasan, and Raghavendra Mallya for the discussion.

Contributors

 Bart Peirens contributed to an early version of the document.

 As noted above, this document builds on two previous documents.

 The authors of [I-D.boucadair-mptcp-plain-mode] were:

 o Mohamed Boucadair

 o Christian Jacquenet

 o Olivier Bonaventure

 o Denis Behaghel

 o Stefano Secci

 o Wim Henderickx

 o Robert Skog

 o Suresh Vinapamula

 o SungHoon Seo

 o Wouter Cloetens

 o Ullrich Meyer

 o Luis M. Contreras

 o Bart Peirens

 The authors of [I-D.peirens-mptcp-transparent] were:

 o Bart Peirens

 o Gregory Detal

Bonaventure, et al. Expires September 22, 2020 [Page 51]

Internet-Draft Convert Protocol March 2020

 o Sebastien Barre

 o Olivier Bonaventure

Authors' Addresses

 Olivier Bonaventure (editor)
 Tessares

 Email: Olivier.Bonaventure@tessares.net

 Mohamed Boucadair (editor)
 Orange
 Clos Courtel
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Sri Gundavelli
 Cisco

 Email: sgundave@cisco.com

 SungHoon Seo
 Korea Telecom

 Email: sh.seo@kt.com

 Benjamin Hesmans
 Tessares

 Email: Benjamin.Hesmans@tessares.net

Bonaventure, et al. Expires September 22, 2020 [Page 52]

