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Abstract

   This informational memo describes Datacenter TCP (DCTCP), a TCP
   congestion control scheme for datacenter traffic.  DCTCP extends the
   Explicit Congestion Notification (ECN) processing to estimate the
   fraction of bytes that encounter congestion, rather than simply
   detecting that some congestion has occurred.  DCTCP then scales the
   TCP congestion window based on this estimate.  This method achieves
   high burst tolerance, low latency, and high throughput with shallow-
   buffered switches.  This memo also discusses deployment issues
   related to the coexistence of DCTCP and conventional TCP, the lack of
   a negotiating mechanism between sender and receiver, and presents
   some possible mitigations.  This memo documents existing DCTCP
   implementations ([WINDOWS], [LINUX], [FREEBSD]) and deployment
   experience ([MORGANSTANLEY]).  DCTCP as described in this draft is
   applicable to deployments in controlled environments like datacenters
   but it must not be deployed over the public Internet without
   additional measures, as detailed in Section 5.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on December 3, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Large datacenters necessarily need many network switches to
   interconnect their many servers.  Therefore, a datacenter can greatly
   reduce its capital expenditure by leveraging low-cost switches.
   However, such low-cost switches tend to have limited queue capacities
   and are thus more susceptible to packet loss due to congestion.
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   Network traffic in a datacenter is often a mix of short and long
   flows, where the short flows require low latencies and the long flows
   require high throughputs.  Datacenters also experience incast bursts,
   where many servers send traffic to a single server at the same time.
   For example, this traffic pattern is a natural consequence of
   MapReduce workload: The worker nodes complete at approximately the
   same time, and all reply to the master node concurrently.

   These factors place some conflicting demands on the queue occupancy
   of a switch:

   o  The queue must be short enough that it does not impose excessive
      latency on short flows.

   o  The queue must be long enough to buffer sufficient data for the
      long flows to saturate the path capacity.

   o  The queue must be long enough to absorb incast bursts without
      excessive packet loss.

   Standard TCP congestion control [RFC5681] relies on packet loss to
   detect congestion.  This does not meet the demands described above.
   First, short flows will start to experience unacceptable latencies
   before packet loss occurs.  Second, by the time TCP congestion
   control kicks in on the senders, most of the incast burst has already
   been dropped.

   [RFC3168] describes a mechanism for using Explicit Congestion
   Notification (ECN) from the switches for detection of congestion.
   However, this method only detects the presence of congestion, not its
   extent.  In the presence of mild congestion, the TCP congestion
   window is reduced too aggressively and this unnecessarily reduces the
   throughput of long flows.

   Datacenter TCP (DCTCP) improves traditional ECN processing by
   estimating the fraction of bytes that encounter congestion, rather
   than simply detecting that some congestion has occurred.  DCTCP then
   scales the TCP congestion window based on this estimate.  This method
   achieves high burst tolerance, low latency, and high throughput with
   shallow-buffered switches.  DCTCP is a modification to the processing
   of ECN by a conventional TCP and requires that standard TCP
   congestion control be used for handling packet loss.

   DCTCP should only be deployed in a datacenter environment where the
   endpoints and the switching fabric are under a single administrative
   domain.  DCTCP MUST NOT be deployed over the public Internet without
   additional measures, as detailed in Section 5.

https://datatracker.ietf.org/doc/html/rfc5681
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2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  Normative
   language is used to describe how necessary the various aspects of the
   Microsoft implementation are for interoperability, but even compliant
   implementations without the measures in sections 4-6 would still only
   be safe to deploy in controlled environments.

3.  DCTCP Algorithm

   There are three components involved in the DCTCP algorithm:

   o  The switches (or other intermediate devices in the network) detect
      congestion and set the Congestion Encountered (CE) codepoint in
      the IP header.

   o  The receiver echoes the congestion information back to the sender,
      using the ECN-Echo (ECE) flag in the TCP header.

   o  The sender computes a congestion estimate and reacts, by reducing
      the TCP congestion window accordingly (cwnd).

3.1.  Marking Congestion on the L3 Switches and Routers

   The L3 switches and routers in a datacenter fabric indicate
   congestion to the end nodes by setting the CE codepoint in the IP
   header as specified in Section 5 of [RFC3168].  For example, the
   switches may be configured with a congestion threshold.  When a
   packet arrives at a switch and its queue length is greater than the
   congestion threshold, the switch sets the CE codepoint in the packet.
   For example, Section 3.4 of [DCTCP10] suggests threshold marking with
   a threshold K > (RTT * C)/7, where C is the link rate in packets per
   second.  In typical deployments the marking threshold is set to be a
   small value to maintain a short average queueing delay.  However, the
   actual algorithm for marking congestion is an implementation detail
   of the switch and will generally not be known to the sender and
   receiver.  Therefore, sender and receiver should not assume that a
   particular marking algorithm is implemented by the switching fabric.

3.2.  Echoing Congestion Information on the Receiver

   According to Section 6.1.3 of [RFC3168], the receiver sets the ECE
   flag if any of the packets being acknowledged had the CE code point
   set.  The receiver then continues to set the ECE flag until it
   receives a packet with the Congestion Window Reduced (CWR) flag set.
   However, the DCTCP algorithm requires more detailed congestion

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168#section-5
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.3
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   information.  In particular, the sender must be able to determine the
   number of bytes sent that encountered congestion.  Thus, the scheme
   described in [RFC3168] does not suffice.

   One possible solution is to ACK every packet and set the ECE flag in
   the ACK if and only if the CE code point was set in the packet being
   acknowledged.  However, this prevents the use of delayed ACKs, which
   are an important performance optimization in datacenters.  If the
   delayed ACK frequency is m, then an ACK is generated every m packets.
   The typical value of m is 2 but it could be affected by ACK
   throttling or packet coalescing techniques designed to improve
   performance.

   Instead, DCTCP introduces a new Boolean TCP state variable, "DCTCP
   Congestion Encountered" (DCTCP.CE), which is initialized to false and
   stored in the Transmission Control Block (TCB).  When sending an ACK,
   the ECE flag MUST be set if and only if DCTCP.CE is true.  When
   receiving packets, the CE codepoint MUST be processed as follows:

   1.  If the CE codepoint is set and DCTCP.CE is false, set DCTCP.CE to
       true and send an immediate ACK.

   2.  If the CE codepoint is not set and DCTCP.CE is true, set DCTCP.CE
       to false and send an immediate ACK.

   3.  Otherwise, ignore the CE codepoint.

   Since the immediate ACK reflects the new DCTCP.CE state, it may
   acknowledge any previously unacknowledged packets in the old state.
   This can lead to an incorrect DCTCP.Alpha value computation at the
   sender per Section 3.3.  To avoid this, an implementation may choose
   to send two ACKs, one for previously unacknowledged packets and
   another acknowledging the most recently received packet.

   Receiver handling of the "Congestion Window Reduced" (CWR) bit is
   also per [RFC3168] including [RFC3168-ERRATA3639].  That is, on
   receipt of a segment with both the CE and CWR bits set, CWR is
   processed first and then CE is processed.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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                                  Send immediate
                                  ACK with ECE=0
                        .----.    .-------------.     .---.
           Send 1 ACK  /     v    v             |    |     \
            for every |     .------.           .------.     | Send 1 ACK
            m packets |     | CE=0 |           | CE=1 |     | for every
           with ECE=0 |     '------'           '------'     | m packets
                       \     |    |             ^    ^     /  with ECE=1
                        '---'      '------------'    '----'
                                   Send immediate
                                   ACK with ECE=1

   Figure 1: ACK generation state machine.  DCTCP.CE abbreviated as CE.

3.3.  Processing Echoed Congestion Indications on the Sender

   The sender estimates the fraction of bytes sent that encountered
   congestion.  The current estimate is stored in a new TCP state
   variable, DCTCP.Alpha, which is initialized to 1 and SHOULD be
   updated as follows:

      DCTCP.Alpha = DCTCP.Alpha * (1 - g) + g * M

   where

   o  g is the estimation gain, a real number between 0 and 1.  The
      selection of g is left to the implementation.  See Section 4 for
      further considerations.

   o  M is the fraction of bytes sent that encountered congestion during
      the previous observation window, where the observation window is
      chosen to be approximately the Round Trip Time (RTT).  In
      particular, an observation window ends when all bytes in flight at
      the beginning of the window have been acknowledged.

   In order to update DCTCP.Alpha, the TCP state variables defined in
   [RFC0793] are used, and three additional TCP state variables are
   introduced:

   o  DCTCP.WindowEnd: The TCP sequence number threshold for beginning a
      new observation window; initialized to SND.UNA.

   o  DCTCP.BytesAcked: The number of sent bytes acknowledged during the
      current observation window; initialized to zero.

   o  DCTCP.BytesMarked: The number of bytes sent during the current
      observation window that encountered congestion; initialized to
      zero.

https://datatracker.ietf.org/doc/html/rfc0793
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   The congestion estimator on the sender SHOULD process acceptable ACKs
   as follows:

   1.  Compute the bytes acknowledged (TCP SACK options [RFC2018] are
       ignored for this computation):

          BytesAcked = SEG.ACK - SND.UNA

   2.  Update the bytes sent:

          DCTCP.BytesAcked += BytesAcked

   3.  If the ECE flag is set, update the bytes marked:

          DCTCP.BytesMarked += BytesAcked

   4.  If the acknowledgment number is less than or equal to
       DCTCP.WindowEnd, stop processing.  Otherwise, the end of the
       observation window has been reached, so proceed to update the
       congestion estimate as follows:

   5.  Compute the congestion level for the current observation window:

          M = DCTCP.BytesMarked / DCTCP.BytesAcked

   6.  Update the congestion estimate:

          DCTCP.Alpha = DCTCP.Alpha * (1 - g) + g * M

   7.  Determine the end of the next observation window:

          DCTCP.WindowEnd = SND.NXT

   8.  Reset the byte counters:

          DCTCP.BytesAcked = DCTCP.BytesMarked = 0

   9.  Rather than always halving the congestion window as described in
       [RFC3168], the sender SHOULD update cwnd as follows:

          cwnd = cwnd * (1 - DCTCP.Alpha / 2)

   Thus, when no bytes sent experienced congestion, DCTCP.Alpha equals
   zero, and cwnd is left unchanged.  When all sent bytes experienced
   congestion, DCTCP.Alpha equals one, and cwnd is reduced by half.
   Lower levels of congestion will result in correspondingly smaller
   reductions to cwnd.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3168
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   Just as specified in [RFC3168], DCTCP does not react to congestion
   indications more than once for every window of data.  The setting of
   the "Congestion Window Reduced" (CWR) bit is also as per [RFC3168].
   This is required for interop with classic ECN receivers due to
   potential misconfigurations.

3.4.  Handling of packet loss

   A DCTCP sender MUST react to loss episodes in the same way as
   conventional TCP.  For cases where the packet loss is inferred and
   not explicitly signaled by ECN, the cwnd and other state variables
   like ssthresh must be changed in the same way that a conventional TCP
   would have changed them.  As with ECN, DCTCP sender will only reduce
   the cwnd once per window of data across all loss signals.  Just as
   specified in [RFC5681], upon a timeout, the cwnd MUST be set to no
   more than the loss window (1 full-sized segment), regardless of
   previous cwnd reductions in a given window of data.

3.5.  Handling of SYN, SYN-ACK, RST Packets

   If SYN , SYN-ACK and RST packets for DCTCP connections have ECT set
   in the IP header, they will receive the same treatment as other DCTCP
   packets when forwarded by a switching fabric under load.  Lack of ECT
   in these packets may result in a higher drop rate depending on the
   switching fabric configuration.  Hence for DCTCP connections, the
   sender SHOULD set ECT for SYN, SYN-ACK and RST packets.  A DCTCP
   receiver ignores CE codepoints set on any SYN, SYN-ACK, or RST
   packets.

4.  Implementation Issues

4.1.  Configuration of DCTCP

   An implementation should decide when to use DCTCP.  Datacenter
   servers may need to communicate with endpoints outside the
   datacenter, where DCTCP is unsuitable or unsupported.  Thus, a global
   configuration setting to enable DCTCP will generally not suffice.
   DCTCP provides no mechanism for negotiating its use.  Thus, there is
   additional management and configuration overhead required to ensure
   that DCTCP is not used with non-DCTCP endpoints.

   Potential solutions rely on either configuration or heuristics.
   Heuristics need to allow endpoints to individually enable DCTCP, to
   ensure a DCTCP sender is always paired with a DCTCP receiver.  One
   approach is to enable DCTCP based on the IP address of the remote
   endpoint.  Another approach is to detect connections that transmit
   within the bounds a datacenter.  For example, an implementation could
   support automatic selection of DCTCP if the estimated RTT is less

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
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   than a threshold (like 10 msec) and ECN is successfully negotiated,
   under the assumption that if the RTT is low, then the two endpoints
   are likely in the same datacenter network.

   [RFC3168] forbids the ECN-marking of pure ACK packets, because of the
   inability of TCP to mitigate ACK-path congestion.  RFC 3168 also
   forbids ECN-marking of retransmissions, window probes and RSTs.
   However, dropping all these control packets - rather than ECN marking
   them - has considerable performance disadvantages.  It is RECOMMENDED
   that an implementation provide a configuration knob that will cause
   ECT to be set on such control packets, which can be used in
   environments where such concerns do not apply.  See
   [ECN-EXPERIMENTATION] for details.

   It is useful to implement DCTCP as additional actions on top of an
   existing congestion control algorithm like NewReno.  The DCTCP
   implementation MAY also allow configuration of resetting the value of
   DCTCP.Alpha as part of processing any loss episodes.

4.2.  Computation of DCTCP.Alpha

   As noted in Section 3.3, the implementation will need to choose a
   suitable estimation gain.  [DCTCP10] provides a theoretical basis for
   selecting the gain.  However, it may be more practical to use
   experimentation to select a suitable gain for a particular network
   and workload.  A fixed estimation gain of 1/16 is used in some
   implementations.

   The DCTCP.Alpha computation as per the formula in Section 3.3
   involves fractions.  An efficient kernel implementation MAY scale the
   DCTCP.Alpha value for efficient computation using shift operations.
   For example, if the implementation chooses g as 1/16, multiplications
   of DCTCP.Alpha by g become right-shifts by 4.  A scaling
   implementation SHOULD ensure that DCTCP.Alpha is able to reach zero
   once it falls below the smallest shifted value (16 in the above
   example).  At the other extreme, a scaled update must ensure
   DCTCP.Alpha does not exceed the scaling factor, which would be
   equivalent to greater than 100% congestion.  So, DCTCP.Alpha MUST be
   clamped after an update.

   This results in the following computations replacing steps 5 and 6 in
Section 3.3, where SCF is the chosen scaling factor (65536 in the

   example) and SHF is the shift factor (4 in the example):

   1.  Compute the congestion level for the current observation window:

          ScaledM = SCF * DCTCP.BytesMarked / DCTCP.BytesAcked

https://datatracker.ietf.org/doc/html/rfc3168
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   2.  Update the congestion estimate:

          if (DCTCP.Alpha >> SHF) == 0 then DCTCP.Alpha = 0

          DCTCP.Alpha += (ScaledM >> SHF) - (DCTCP.Alpha >> SHF)

          if DCTCP.Alpha > SCF then DCTCP.Alpha = SCF

5.  Deployment Issues

   DCTCP and conventional TCP congestion control do not coexist well in
   the same network.  In typical DCTCP deployments, the marking
   threshold in the switching fabric is set to a very low value to
   reduce queueing delay, and a relatively small amount of congestion
   will exceed the marking threshold.  During such periods of
   congestion, conventional TCP will suffer packet loss and quickly and
   drastically reduce cwnd.  DCTCP, on the other hand, will use the
   fraction of marked packets to reduce cwnd more gradually.  Thus, the
   rate reduction in DCTCP will be much slower than that of conventional
   TCP, and DCTCP traffic will gain a larger share of the capacity
   compared to conventional TCP traffic traversing the same path.  If
   the traffic in the datacenter is a mix of conventional TCP and DCTCP,
   it is RECOMMENDED that DCTCP traffic be segregated from conventional
   TCP traffic.  [MORGANSTANLEY] describes a deployment that uses the IP
   DSCP bits to segregate the network such that AQM is applied to DCTCP
   traffic, whereas TCP traffic is managed via drop-tail queueing.

   Deployments should take into account segregation of non-TCP traffic
   as well.  Today's commodity switches allow configuration of different
   marking/drop profiles for non-TCP and non-IP packets.  Non-TCP and
   non-IP packets should be able to pass through such switches, unless
   they really run out of buffer space.

   Since DCTCP relies on congestion marking by the switches, DCTCP's
   potential can only be realized in datacenters where the entire
   network infrastructure supports ECN.  The switches may also support
   configuration of the congestion threshold used for marking.  The
   proposed parameterization can be configured with switches that
   implement RED.  [DCTCP10] provides a theoretical basis for selecting
   the congestion threshold, but as with the estimation gain, it may be
   more practical to rely on experimentation or simply to use the
   default configuration of the device.  DCTCP will revert to loss-based
   congestion control when packet loss is experienced (e.g. when
   transiting a congested drop-tail link, or a link with an AQM drop
   behavior).

   DCTCP requires changes on both the sender and the receiver, so both
   endpoints must support DCTCP.  Furthermore, DCTCP provides no
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   mechanism for negotiating its use, so both endpoints must be
   configured through some out-of-band mechanism to use DCTCP.  A
   variant of DCTCP that can be deployed unilaterally and only requires
   standard ECN behavior has been described in [ODCTCP][BSDCAN], but
   requires additional experimental evaluation.

6.  Known Issues

   DCTCP relies on the sender's ability to reconstruct the stream of CE
   codepoints received by the remote endpoint.  To accomplish this,
   DCTCP avoids using a single ACK packet to acknowledge segments
   received both with and without the CE codepoint set.  However, if one
   or more ACK packets are dropped, it is possible that a subsequent ACK
   will cumulatively acknowledge a mix of CE and non-CE segments.  This
   will, of course, result in a less accurate congestion estimate.
   There are some potential considerations:

   o  Even with an inaccurate congestion estimate, DCTCP may still
      perform better than [RFC3168].

   o  If the estimation gain is small relative to the packet loss rate,
      the estimate may not be too inaccurate.

   o  If ACK packet loss mostly occurs under heavy congestion, most
      drops will occur during an unbroken string of CE packets, and the
      estimate will be unaffected.

   However, the effect of packet drops on DCTCP under real world
   conditions has not been analyzed.

   DCTCP provides no mechanism for negotiating its use.  The effect of
   using DCTCP with a standard ECN endpoint has been analyzed in
   [ODCTCP][BSDCAN].  Furthermore, it is possible that other
   implementations may also modify [RFC3168] behavior without
   negotiation, causing further interoperability issues.

   Much like standard TCP, DCTCP is biased against flows with longer
   RTTs.  A method for improving the RTT fairness of DCTCP has been
   proposed in [ADCTCP], but requires additional experimental
   evaluation.

7.  Implementation Status

   This section documents the implementation status of the specification
   in this document, as recommended by [RFC7942].

   This document describes DCTCP as implemented in Microsoft Windows
   Server 2012.  Since publication of the first versions of this

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7942
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   document, the Linux [LINUX] and FreeBSD [FREEBSD] operating systems
   have also implemented support for DCTCP in a way that is believed to
   follow this document.

8.  Security Considerations

   DCTCP enhances ECN and thus inherits the security considerations
   discussed in [RFC3168].  The processing changes introduced by DCTCP
   do not exacerbate these considerations or introduce new ones.  In
   particular, with either algorithm, the network infrastructure or the
   remote endpoint can falsely report congestion and thus cause the
   sender to reduce cwnd.  However, this is no worse than what can be
   achieved by simply dropping packets.

   [RFC3168] requires that a compliant TCP must not set ECT on SYN or
   SYN-ACK packets.  [RFC5562] proposes setting ECT on SYN-ACK packets,
   but maintains the restriction of no ECT on SYN packets.  Both these
   RFCs prohibit ECT in SYN packets due to security concerns regarding
   malicious SYN packets with ECT set.  These RFCs, however, are
   intended for general Internet use, and do not directly apply to a
   controlled datacenter environment.  The security concerns addressed
   by both these RFCs might not apply in controlled environments like
   datacenters, and it might not be necessary to account for the
   presence of non-ECN servers.  Since most servers run virtualized in
   datacenters, additional security can be imposed in the physical
   servers to intercept and drop traffic resembling an attack.

9.  IANA Considerations

   This document has no actions for IANA.
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