
Network Working Group S. Bensley
Internet-Draft D. Thaler
Intended status: Informational P. Balasubramanian
Expires: December 3, 2017 Microsoft
 L. Eggert
 NetApp
 G. Judd
 Morgan Stanley
 June 1, 2017

Datacenter TCP (DCTCP): TCP Congestion Control for Datacenters
draft-ietf-tcpm-dctcp-07

Abstract

 This informational memo describes Datacenter TCP (DCTCP), a TCP
 congestion control scheme for datacenter traffic. DCTCP extends the
 Explicit Congestion Notification (ECN) processing to estimate the
 fraction of bytes that encounter congestion, rather than simply
 detecting that some congestion has occurred. DCTCP then scales the
 TCP congestion window based on this estimate. This method achieves
 high burst tolerance, low latency, and high throughput with shallow-
 buffered switches. This memo also discusses deployment issues
 related to the coexistence of DCTCP and conventional TCP, the lack of
 a negotiating mechanism between sender and receiver, and presents
 some possible mitigations. This memo documents existing DCTCP
 implementations ([WINDOWS], [LINUX], [FREEBSD]) and deployment
 experience ([MORGANSTANLEY]). DCTCP as described in this draft is
 applicable to deployments in controlled environments like datacenters
 but it must not be deployed over the public Internet without
 additional measures, as detailed in Section 5.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bensley, et al. Expires December 3, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DCTCP June 2017

 This Internet-Draft will expire on December 3, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. DCTCP Algorithm . 4
3.1. Marking Congestion on the L3 Switches and Routers 4
3.2. Echoing Congestion Information on the Receiver 4

 3.3. Processing Echoed Congestion Indications on the Sender . 6
3.4. Handling of packet loss 8
3.5. Handling of SYN, SYN-ACK, RST Packets 8

4. Implementation Issues . 8
4.1. Configuration of DCTCP 8
4.2. Computation of DCTCP.Alpha 9

5. Deployment Issues . 10
6. Known Issues . 11
7. Implementation Status . 11
8. Security Considerations 12
9. IANA Considerations . 12
10. Acknowledgements . 12
11. References . 13
11.1. Normative References 13
11.2. Informative References 13

 Authors' Addresses . 15

1. Introduction

 Large datacenters necessarily need many network switches to
 interconnect their many servers. Therefore, a datacenter can greatly
 reduce its capital expenditure by leveraging low-cost switches.
 However, such low-cost switches tend to have limited queue capacities
 and are thus more susceptible to packet loss due to congestion.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bensley, et al. Expires December 3, 2017 [Page 2]

Internet-Draft DCTCP June 2017

 Network traffic in a datacenter is often a mix of short and long
 flows, where the short flows require low latencies and the long flows
 require high throughputs. Datacenters also experience incast bursts,
 where many servers send traffic to a single server at the same time.
 For example, this traffic pattern is a natural consequence of
 MapReduce workload: The worker nodes complete at approximately the
 same time, and all reply to the master node concurrently.

 These factors place some conflicting demands on the queue occupancy
 of a switch:

 o The queue must be short enough that it does not impose excessive
 latency on short flows.

 o The queue must be long enough to buffer sufficient data for the
 long flows to saturate the path capacity.

 o The queue must be long enough to absorb incast bursts without
 excessive packet loss.

 Standard TCP congestion control [RFC5681] relies on packet loss to
 detect congestion. This does not meet the demands described above.
 First, short flows will start to experience unacceptable latencies
 before packet loss occurs. Second, by the time TCP congestion
 control kicks in on the senders, most of the incast burst has already
 been dropped.

 [RFC3168] describes a mechanism for using Explicit Congestion
 Notification (ECN) from the switches for detection of congestion.
 However, this method only detects the presence of congestion, not its
 extent. In the presence of mild congestion, the TCP congestion
 window is reduced too aggressively and this unnecessarily reduces the
 throughput of long flows.

 Datacenter TCP (DCTCP) improves traditional ECN processing by
 estimating the fraction of bytes that encounter congestion, rather
 than simply detecting that some congestion has occurred. DCTCP then
 scales the TCP congestion window based on this estimate. This method
 achieves high burst tolerance, low latency, and high throughput with
 shallow-buffered switches. DCTCP is a modification to the processing
 of ECN by a conventional TCP and requires that standard TCP
 congestion control be used for handling packet loss.

 DCTCP should only be deployed in a datacenter environment where the
 endpoints and the switching fabric are under a single administrative
 domain. DCTCP MUST NOT be deployed over the public Internet without
 additional measures, as detailed in Section 5.

https://datatracker.ietf.org/doc/html/rfc5681

Bensley, et al. Expires December 3, 2017 [Page 3]

Internet-Draft DCTCP June 2017

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Normative
 language is used to describe how necessary the various aspects of the
 Microsoft implementation are for interoperability, but even compliant
 implementations without the measures in sections 4-6 would still only
 be safe to deploy in controlled environments.

3. DCTCP Algorithm

 There are three components involved in the DCTCP algorithm:

 o The switches (or other intermediate devices in the network) detect
 congestion and set the Congestion Encountered (CE) codepoint in
 the IP header.

 o The receiver echoes the congestion information back to the sender,
 using the ECN-Echo (ECE) flag in the TCP header.

 o The sender computes a congestion estimate and reacts, by reducing
 the TCP congestion window accordingly (cwnd).

3.1. Marking Congestion on the L3 Switches and Routers

 The L3 switches and routers in a datacenter fabric indicate
 congestion to the end nodes by setting the CE codepoint in the IP
 header as specified in Section 5 of [RFC3168]. For example, the
 switches may be configured with a congestion threshold. When a
 packet arrives at a switch and its queue length is greater than the
 congestion threshold, the switch sets the CE codepoint in the packet.
 For example, Section 3.4 of [DCTCP10] suggests threshold marking with
 a threshold K > (RTT * C)/7, where C is the link rate in packets per
 second. In typical deployments the marking threshold is set to be a
 small value to maintain a short average queueing delay. However, the
 actual algorithm for marking congestion is an implementation detail
 of the switch and will generally not be known to the sender and
 receiver. Therefore, sender and receiver should not assume that a
 particular marking algorithm is implemented by the switching fabric.

3.2. Echoing Congestion Information on the Receiver

 According to Section 6.1.3 of [RFC3168], the receiver sets the ECE
 flag if any of the packets being acknowledged had the CE code point
 set. The receiver then continues to set the ECE flag until it
 receives a packet with the Congestion Window Reduced (CWR) flag set.
 However, the DCTCP algorithm requires more detailed congestion

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168#section-5
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.3

Bensley, et al. Expires December 3, 2017 [Page 4]

Internet-Draft DCTCP June 2017

 information. In particular, the sender must be able to determine the
 number of bytes sent that encountered congestion. Thus, the scheme
 described in [RFC3168] does not suffice.

 One possible solution is to ACK every packet and set the ECE flag in
 the ACK if and only if the CE code point was set in the packet being
 acknowledged. However, this prevents the use of delayed ACKs, which
 are an important performance optimization in datacenters. If the
 delayed ACK frequency is m, then an ACK is generated every m packets.
 The typical value of m is 2 but it could be affected by ACK
 throttling or packet coalescing techniques designed to improve
 performance.

 Instead, DCTCP introduces a new Boolean TCP state variable, "DCTCP
 Congestion Encountered" (DCTCP.CE), which is initialized to false and
 stored in the Transmission Control Block (TCB). When sending an ACK,
 the ECE flag MUST be set if and only if DCTCP.CE is true. When
 receiving packets, the CE codepoint MUST be processed as follows:

 1. If the CE codepoint is set and DCTCP.CE is false, set DCTCP.CE to
 true and send an immediate ACK.

 2. If the CE codepoint is not set and DCTCP.CE is true, set DCTCP.CE
 to false and send an immediate ACK.

 3. Otherwise, ignore the CE codepoint.

 Since the immediate ACK reflects the new DCTCP.CE state, it may
 acknowledge any previously unacknowledged packets in the old state.
 This can lead to an incorrect DCTCP.Alpha value computation at the
 sender per Section 3.3. To avoid this, an implementation may choose
 to send two ACKs, one for previously unacknowledged packets and
 another acknowledging the most recently received packet.

 Receiver handling of the "Congestion Window Reduced" (CWR) bit is
 also per [RFC3168] including [RFC3168-ERRATA3639]. That is, on
 receipt of a segment with both the CE and CWR bits set, CWR is
 processed first and then CE is processed.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Bensley, et al. Expires December 3, 2017 [Page 5]

Internet-Draft DCTCP June 2017

 Send immediate
 ACK with ECE=0
 .----. .-------------. .---.
 Send 1 ACK / v v | | \
 for every | .------. .------. | Send 1 ACK
 m packets | | CE=0 | | CE=1 | | for every
 with ECE=0 | '------' '------' | m packets
 \ | | ^ ^ / with ECE=1
 '---' '------------' '----'
 Send immediate
 ACK with ECE=1

 Figure 1: ACK generation state machine. DCTCP.CE abbreviated as CE.

3.3. Processing Echoed Congestion Indications on the Sender

 The sender estimates the fraction of bytes sent that encountered
 congestion. The current estimate is stored in a new TCP state
 variable, DCTCP.Alpha, which is initialized to 1 and SHOULD be
 updated as follows:

 DCTCP.Alpha = DCTCP.Alpha * (1 - g) + g * M

 where

 o g is the estimation gain, a real number between 0 and 1. The
 selection of g is left to the implementation. See Section 4 for
 further considerations.

 o M is the fraction of bytes sent that encountered congestion during
 the previous observation window, where the observation window is
 chosen to be approximately the Round Trip Time (RTT). In
 particular, an observation window ends when all bytes in flight at
 the beginning of the window have been acknowledged.

 In order to update DCTCP.Alpha, the TCP state variables defined in
 [RFC0793] are used, and three additional TCP state variables are
 introduced:

 o DCTCP.WindowEnd: The TCP sequence number threshold for beginning a
 new observation window; initialized to SND.UNA.

 o DCTCP.BytesAcked: The number of sent bytes acknowledged during the
 current observation window; initialized to zero.

 o DCTCP.BytesMarked: The number of bytes sent during the current
 observation window that encountered congestion; initialized to
 zero.

https://datatracker.ietf.org/doc/html/rfc0793

Bensley, et al. Expires December 3, 2017 [Page 6]

Internet-Draft DCTCP June 2017

 The congestion estimator on the sender SHOULD process acceptable ACKs
 as follows:

 1. Compute the bytes acknowledged (TCP SACK options [RFC2018] are
 ignored for this computation):

 BytesAcked = SEG.ACK - SND.UNA

 2. Update the bytes sent:

 DCTCP.BytesAcked += BytesAcked

 3. If the ECE flag is set, update the bytes marked:

 DCTCP.BytesMarked += BytesAcked

 4. If the acknowledgment number is less than or equal to
 DCTCP.WindowEnd, stop processing. Otherwise, the end of the
 observation window has been reached, so proceed to update the
 congestion estimate as follows:

 5. Compute the congestion level for the current observation window:

 M = DCTCP.BytesMarked / DCTCP.BytesAcked

 6. Update the congestion estimate:

 DCTCP.Alpha = DCTCP.Alpha * (1 - g) + g * M

 7. Determine the end of the next observation window:

 DCTCP.WindowEnd = SND.NXT

 8. Reset the byte counters:

 DCTCP.BytesAcked = DCTCP.BytesMarked = 0

 9. Rather than always halving the congestion window as described in
 [RFC3168], the sender SHOULD update cwnd as follows:

 cwnd = cwnd * (1 - DCTCP.Alpha / 2)

 Thus, when no bytes sent experienced congestion, DCTCP.Alpha equals
 zero, and cwnd is left unchanged. When all sent bytes experienced
 congestion, DCTCP.Alpha equals one, and cwnd is reduced by half.
 Lower levels of congestion will result in correspondingly smaller
 reductions to cwnd.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3168

Bensley, et al. Expires December 3, 2017 [Page 7]

Internet-Draft DCTCP June 2017

 Just as specified in [RFC3168], DCTCP does not react to congestion
 indications more than once for every window of data. The setting of
 the "Congestion Window Reduced" (CWR) bit is also as per [RFC3168].
 This is required for interop with classic ECN receivers due to
 potential misconfigurations.

3.4. Handling of packet loss

 A DCTCP sender MUST react to loss episodes in the same way as
 conventional TCP. For cases where the packet loss is inferred and
 not explicitly signaled by ECN, the cwnd and other state variables
 like ssthresh must be changed in the same way that a conventional TCP
 would have changed them. As with ECN, DCTCP sender will only reduce
 the cwnd once per window of data across all loss signals. Just as
 specified in [RFC5681], upon a timeout, the cwnd MUST be set to no
 more than the loss window (1 full-sized segment), regardless of
 previous cwnd reductions in a given window of data.

3.5. Handling of SYN, SYN-ACK, RST Packets

 If SYN , SYN-ACK and RST packets for DCTCP connections have ECT set
 in the IP header, they will receive the same treatment as other DCTCP
 packets when forwarded by a switching fabric under load. Lack of ECT
 in these packets may result in a higher drop rate depending on the
 switching fabric configuration. Hence for DCTCP connections, the
 sender SHOULD set ECT for SYN, SYN-ACK and RST packets. A DCTCP
 receiver ignores CE codepoints set on any SYN, SYN-ACK, or RST
 packets.

4. Implementation Issues

4.1. Configuration of DCTCP

 An implementation should decide when to use DCTCP. Datacenter
 servers may need to communicate with endpoints outside the
 datacenter, where DCTCP is unsuitable or unsupported. Thus, a global
 configuration setting to enable DCTCP will generally not suffice.
 DCTCP provides no mechanism for negotiating its use. Thus, there is
 additional management and configuration overhead required to ensure
 that DCTCP is not used with non-DCTCP endpoints.

 Potential solutions rely on either configuration or heuristics.
 Heuristics need to allow endpoints to individually enable DCTCP, to
 ensure a DCTCP sender is always paired with a DCTCP receiver. One
 approach is to enable DCTCP based on the IP address of the remote
 endpoint. Another approach is to detect connections that transmit
 within the bounds a datacenter. For example, an implementation could
 support automatic selection of DCTCP if the estimated RTT is less

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681

Bensley, et al. Expires December 3, 2017 [Page 8]

Internet-Draft DCTCP June 2017

 than a threshold (like 10 msec) and ECN is successfully negotiated,
 under the assumption that if the RTT is low, then the two endpoints
 are likely in the same datacenter network.

 [RFC3168] forbids the ECN-marking of pure ACK packets, because of the
 inability of TCP to mitigate ACK-path congestion. RFC 3168 also
 forbids ECN-marking of retransmissions, window probes and RSTs.
 However, dropping all these control packets - rather than ECN marking
 them - has considerable performance disadvantages. It is RECOMMENDED
 that an implementation provide a configuration knob that will cause
 ECT to be set on such control packets, which can be used in
 environments where such concerns do not apply. See
 [ECN-EXPERIMENTATION] for details.

 It is useful to implement DCTCP as additional actions on top of an
 existing congestion control algorithm like NewReno. The DCTCP
 implementation MAY also allow configuration of resetting the value of
 DCTCP.Alpha as part of processing any loss episodes.

4.2. Computation of DCTCP.Alpha

 As noted in Section 3.3, the implementation will need to choose a
 suitable estimation gain. [DCTCP10] provides a theoretical basis for
 selecting the gain. However, it may be more practical to use
 experimentation to select a suitable gain for a particular network
 and workload. A fixed estimation gain of 1/16 is used in some
 implementations.

 The DCTCP.Alpha computation as per the formula in Section 3.3
 involves fractions. An efficient kernel implementation MAY scale the
 DCTCP.Alpha value for efficient computation using shift operations.
 For example, if the implementation chooses g as 1/16, multiplications
 of DCTCP.Alpha by g become right-shifts by 4. A scaling
 implementation SHOULD ensure that DCTCP.Alpha is able to reach zero
 once it falls below the smallest shifted value (16 in the above
 example). At the other extreme, a scaled update must ensure
 DCTCP.Alpha does not exceed the scaling factor, which would be
 equivalent to greater than 100% congestion. So, DCTCP.Alpha MUST be
 clamped after an update.

 This results in the following computations replacing steps 5 and 6 in
Section 3.3, where SCF is the chosen scaling factor (65536 in the

 example) and SHF is the shift factor (4 in the example):

 1. Compute the congestion level for the current observation window:

 ScaledM = SCF * DCTCP.BytesMarked / DCTCP.BytesAcked

https://datatracker.ietf.org/doc/html/rfc3168

Bensley, et al. Expires December 3, 2017 [Page 9]

Internet-Draft DCTCP June 2017

 2. Update the congestion estimate:

 if (DCTCP.Alpha >> SHF) == 0 then DCTCP.Alpha = 0

 DCTCP.Alpha += (ScaledM >> SHF) - (DCTCP.Alpha >> SHF)

 if DCTCP.Alpha > SCF then DCTCP.Alpha = SCF

5. Deployment Issues

 DCTCP and conventional TCP congestion control do not coexist well in
 the same network. In typical DCTCP deployments, the marking
 threshold in the switching fabric is set to a very low value to
 reduce queueing delay, and a relatively small amount of congestion
 will exceed the marking threshold. During such periods of
 congestion, conventional TCP will suffer packet loss and quickly and
 drastically reduce cwnd. DCTCP, on the other hand, will use the
 fraction of marked packets to reduce cwnd more gradually. Thus, the
 rate reduction in DCTCP will be much slower than that of conventional
 TCP, and DCTCP traffic will gain a larger share of the capacity
 compared to conventional TCP traffic traversing the same path. If
 the traffic in the datacenter is a mix of conventional TCP and DCTCP,
 it is RECOMMENDED that DCTCP traffic be segregated from conventional
 TCP traffic. [MORGANSTANLEY] describes a deployment that uses the IP
 DSCP bits to segregate the network such that AQM is applied to DCTCP
 traffic, whereas TCP traffic is managed via drop-tail queueing.

 Deployments should take into account segregation of non-TCP traffic
 as well. Today's commodity switches allow configuration of different
 marking/drop profiles for non-TCP and non-IP packets. Non-TCP and
 non-IP packets should be able to pass through such switches, unless
 they really run out of buffer space.

 Since DCTCP relies on congestion marking by the switches, DCTCP's
 potential can only be realized in datacenters where the entire
 network infrastructure supports ECN. The switches may also support
 configuration of the congestion threshold used for marking. The
 proposed parameterization can be configured with switches that
 implement RED. [DCTCP10] provides a theoretical basis for selecting
 the congestion threshold, but as with the estimation gain, it may be
 more practical to rely on experimentation or simply to use the
 default configuration of the device. DCTCP will revert to loss-based
 congestion control when packet loss is experienced (e.g. when
 transiting a congested drop-tail link, or a link with an AQM drop
 behavior).

 DCTCP requires changes on both the sender and the receiver, so both
 endpoints must support DCTCP. Furthermore, DCTCP provides no

Bensley, et al. Expires December 3, 2017 [Page 10]

Internet-Draft DCTCP June 2017

 mechanism for negotiating its use, so both endpoints must be
 configured through some out-of-band mechanism to use DCTCP. A
 variant of DCTCP that can be deployed unilaterally and only requires
 standard ECN behavior has been described in [ODCTCP][BSDCAN], but
 requires additional experimental evaluation.

6. Known Issues

 DCTCP relies on the sender's ability to reconstruct the stream of CE
 codepoints received by the remote endpoint. To accomplish this,
 DCTCP avoids using a single ACK packet to acknowledge segments
 received both with and without the CE codepoint set. However, if one
 or more ACK packets are dropped, it is possible that a subsequent ACK
 will cumulatively acknowledge a mix of CE and non-CE segments. This
 will, of course, result in a less accurate congestion estimate.
 There are some potential considerations:

 o Even with an inaccurate congestion estimate, DCTCP may still
 perform better than [RFC3168].

 o If the estimation gain is small relative to the packet loss rate,
 the estimate may not be too inaccurate.

 o If ACK packet loss mostly occurs under heavy congestion, most
 drops will occur during an unbroken string of CE packets, and the
 estimate will be unaffected.

 However, the effect of packet drops on DCTCP under real world
 conditions has not been analyzed.

 DCTCP provides no mechanism for negotiating its use. The effect of
 using DCTCP with a standard ECN endpoint has been analyzed in
 [ODCTCP][BSDCAN]. Furthermore, it is possible that other
 implementations may also modify [RFC3168] behavior without
 negotiation, causing further interoperability issues.

 Much like standard TCP, DCTCP is biased against flows with longer
 RTTs. A method for improving the RTT fairness of DCTCP has been
 proposed in [ADCTCP], but requires additional experimental
 evaluation.

7. Implementation Status

 This section documents the implementation status of the specification
 in this document, as recommended by [RFC7942].

 This document describes DCTCP as implemented in Microsoft Windows
 Server 2012. Since publication of the first versions of this

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7942

Bensley, et al. Expires December 3, 2017 [Page 11]

Internet-Draft DCTCP June 2017

 document, the Linux [LINUX] and FreeBSD [FREEBSD] operating systems
 have also implemented support for DCTCP in a way that is believed to
 follow this document.

8. Security Considerations

 DCTCP enhances ECN and thus inherits the security considerations
 discussed in [RFC3168]. The processing changes introduced by DCTCP
 do not exacerbate these considerations or introduce new ones. In
 particular, with either algorithm, the network infrastructure or the
 remote endpoint can falsely report congestion and thus cause the
 sender to reduce cwnd. However, this is no worse than what can be
 achieved by simply dropping packets.

 [RFC3168] requires that a compliant TCP must not set ECT on SYN or
 SYN-ACK packets. [RFC5562] proposes setting ECT on SYN-ACK packets,
 but maintains the restriction of no ECT on SYN packets. Both these
 RFCs prohibit ECT in SYN packets due to security concerns regarding
 malicious SYN packets with ECT set. These RFCs, however, are
 intended for general Internet use, and do not directly apply to a
 controlled datacenter environment. The security concerns addressed
 by both these RFCs might not apply in controlled environments like
 datacenters, and it might not be necessary to account for the
 presence of non-ECN servers. Since most servers run virtualized in
 datacenters, additional security can be imposed in the physical
 servers to intercept and drop traffic resembling an attack.

9. IANA Considerations

 This document has no actions for IANA.

10. Acknowledgements

 The DCTCP algorithm was originally proposed and analyzed in [DCTCP10]
 by Mohammad Alizadeh, Albert Greenberg, Dave Maltz, Jitu Padhye,
 Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
 Sridharan.

 We would like to thank Andrew Shewmaker for identifying the problem
 of clamping DCTCP.Alpha and proposing a solution for it.

 Lars Eggert has received funding from the European Union's Horizon
 2020 research and innovation program 2014-2018 under grant agreement
 No. 644866 ("SSICLOPS"). This document reflects only the authors'
 views and the European Commission is not responsible for any use that
 may be made of the information it contains.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562

Bensley, et al. Expires December 3, 2017 [Page 12]

Internet-Draft DCTCP June 2017

11. References

11.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <http://www.rfc-editor.org/info/rfc2018>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC5562] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
 Ramakrishnan, "Adding Explicit Congestion Notification
 (ECN) Capability to TCP's SYN/ACK Packets", RFC 5562,
 DOI 10.17487/RFC5562, June 2009,
 <http://www.rfc-editor.org/info/rfc5562>.

11.2. Informative References

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <http://www.rfc-editor.org/info/rfc7942>.

 [DCTCP10] Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel,
 P., Prabhakar, B., Sengupta, S., and M. Sridharan, "Data
 Center TCP (DCTCP)", DOI 10.1145/1851182.1851192, Proc.
 ACM SIGCOMM 2010 Conference (SIGCOMM 10), August 2010,
 <http://dl.acm.org/citation.cfm?doid=1851182.1851192>.

https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
http://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
http://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5562
http://www.rfc-editor.org/info/rfc5562
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
http://www.rfc-editor.org/info/rfc7942
http://dl.acm.org/citation.cfm?doid=1851182.1851192

Bensley, et al. Expires December 3, 2017 [Page 13]

Internet-Draft DCTCP June 2017

 [ODCTCP] Kato, M., "Improving Transmission Performance with One-
 Sided Datacenter TCP", M.S. Thesis, Keio University,
 2014, <http://eggert.org/students/kato-thesis.pdf>.

 [BSDCAN] Kato, M., Eggert, L., Zimmermann, A., van Meter, R., and
 H. Tokuda, "Extensions to FreeBSD Datacenter TCP for
 Incremental Deployment Support", BSDCan 2015, June 2015,
 <https://www.bsdcan.org/2015/schedule/events/559.en.html>.

 [ADCTCP] Alizadeh, M., Javanmard, A., and B. Prabhakar, "Analysis
 of DCTCP: Stability, Convergence, and Fairness",
 DOI 10.1145/1993744.1993753, Proc. ACM SIGMETRICS Joint
 International Conference on Measurement and Modeling of
 Computer Systems (SIGMETRICS 11), June 2011,
 <https://dl.acm.org/citation.cfm?id=1993753>.

 [WINDOWS] Microsoft, "Windows DCTCP reference", 2012,
 <https://technet.microsoft.com/en-us/library/
 hh997028(v=ws.11).aspx>.

 [LINUX] Borkmann, D. and F. Westphal, "Linux DCTCP patch", 2014,
 <https://git.kernel.org/cgit/linux/kernel/git/davem/net-

next.git/
commit/?id=e3118e8359bb7c59555aca60c725106e6d78c5ce>.

 [FREEBSD] Kato, M. and H. Panchasara, "DCTCP (Data Center TCP)
 implementation", 2015,
 <https://github.com/freebsd/freebsd/

commit/8ad879445281027858a7fa706d13e458095b595f>.

 [MORGANSTANLEY]
 Judd, G., "Attaining the Promise and Avoiding the Pitfalls
 of TCP in the Datacenter", Proc. 12th USENIX Symposium on
 Networked Systems Design and Implementation (NSDI 15), May
 2015, <https://www.usenix.org/conference/nsdi15/technical-

sessions/presentation/judd>.

 [RFC3168-ERRATA3639]
 Scheffenegger, R., "RFC3168 Errata ID 3639", 2013,
 <http://www.rfc-editor.org/

errata_search.php/doc/html/rfc3168&eid=3639>.

 [ECN-EXPERIMENTATION]
 Black, D., "Explicit Congestion Notification (ECN)
 Experimentation", 2017, <https://datatracker.ietf.org/doc/

draft-ietf-tsvwg-ecn-experimentation/>.

http://eggert.org/students/kato-thesis.pdf
https://www.bsdcan.org/2015/schedule/events/559.en.html
https://dl.acm.org/citation.cfm?id=1993753
https://technet.microsoft.com/en-us/library/
https://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=e3118e8359bb7c59555aca60c725106e6d78c5ce
https://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=e3118e8359bb7c59555aca60c725106e6d78c5ce
https://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=e3118e8359bb7c59555aca60c725106e6d78c5ce
https://github.com/freebsd/freebsd/commit/8ad879445281027858a7fa706d13e458095b595f
https://github.com/freebsd/freebsd/commit/8ad879445281027858a7fa706d13e458095b595f
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/judd
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/judd
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/errata_search.php/doc/html/rfc3168&eid=3639
http://www.rfc-editor.org/errata_search.php/doc/html/rfc3168&eid=3639
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-ecn-experimentation/
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-ecn-experimentation/

Bensley, et al. Expires December 3, 2017 [Page 14]

Internet-Draft DCTCP June 2017

Authors' Addresses

 Stephen Bensley
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 703 5570
 Email: sbens@microsoft.com

 Dave Thaler
 Microsoft

 Phone: +1 425 703 8835
 Email: dthaler@microsoft.com

 Praveen Balasubramanian
 Microsoft

 Phone: +1 425 538 2782
 Email: pravb@microsoft.com

 Lars Eggert
 NetApp
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 151 120 55791
 Email: lars@netapp.com
 URI: http://eggert.org/

 Glenn Judd
 Morgan Stanley

 Phone: +1 973 979 6481
 Email: glenn.judd@morganstanley.com

http://eggert.org/

Bensley, et al. Expires December 3, 2017 [Page 15]

