
Internet Engineering Task Force Mark Allman
INTERNET DRAFT ICSI
File: draft-ietf-tcpm-early-rexmt-00.txt Konstantin Avrachenkov
 INRIA
 Urtzi Ayesta
 LAAS-CNRS
 Josh Blanton
 Ohio University
 Per Hurtig
 Karlstad University
 August 2008
 Expires: February 2009

Early Retransmit for TCP and SCTP

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This document proposes a new mechanism for TCP and SCTP that can be
 used to recover lost segments when a connection's congestion window
 is small. The "Early Retransmit" mechanism allows the transport to
 reduce, in certain special circumstances, the number of duplicate
 acknowledgments required to trigger a fast retransmission. This
 allows the transport to use fast retransmit to recover packet losses
 that would otherwise require a lengthy retransmission timeout.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Terminology

Expires: February 2009 [Page 1]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1 Introduction

 Many researchers have studied problems with TCP [RFC793,RFC2581]
 when the congestion window is small and have outlined possible
 mechanisms to mitigate these problems
 [Mor97,BPS+98,Bal98,LK98,RFC3150,AA02]. SCTP's [RFC4960] loss
 recovery and congestion control mechanisms are based on TCP and
 therefore the same problems impact the performance of SCTP
 connections. When the transport detects a missing segment, the
 connection enters a loss recovery phase. There are several variants
 of the loss recovery phase depending on the TCP implemention. TCP
 can use slow start based recovery or Fast Recovery [RFC2581],
 NewReno [RFC2582], and loss recovery based on selective
 acknowledgments (SACKs) [RFC2018,FF96,RFC3517]. SCTP's loss
 recovery is not as varied due to the built-in selective
 acknowledgments.

 All the above variants have two methods for invoking loss recovery.
 First, if an acknowledgment (ACK) for a given segment is not
 received in a certain amount of time a retransmission timer fires
 and the segment is resent [RFC2988,RFC4960]. Second, the ``Fast
 Retransmit'' algorithm resends a segment when three duplicate ACKs
 arrive at the sender [Jac88,RFC2581]. Duplicate ACKs are triggered
 by out-of-order arrivals at the receiver. However, because
 duplicate ACKs from the receiver are triggered by both packet loss
 and packet reordering in the network path, the sender waits for
 three duplicate ACKs in an attempt to disambiguate packet loss from
 packet reordering. When using small congestion windows it may not
 be possible to generate the required number of duplicate ACKs to
 trigger Fast Retransmit when a loss does happen.

 Small windows can occur in a number of situations, such as:

 (1) The connection is constrained by end-to-end congestion control
 when the connection's share of the path is small, the path has a
 small bandwidth-delay product or the transport is ascertaining
 the available bandwidth in the first few round-trip times of
 slow start.

 (2) The connection is "application limited" and has only a limited
 amount of data to send. This can happen any time the
 application does not produce enough data to fill the congestion
 window. A particular case when all connections become
 application limited is as the connection ends.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3150
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2581

 (3) The connection is limited by the receiver's advertised window.

 The transport's retransmission timeout (RTO) is based on measured
 round-trip times (RTT) between the sender and receiver, as specified
 in [RFC2988] (for TCP) and [RFC4960] (for SCTP). To prevent

Expires: February 2009 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc4960

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 spurious retransmissions of segments that are only delayed and not
 lost, the minimum RTO is conservatively chosen to be 1 second.
 Therefore, it behooves TCP senders to detect and recover from as
 many losses as possible without incurring a lengthy timeout during
 which the connection remains idle. However, if not enough duplicate
 ACKs arrive from the receiver, the Fast Retransmit algorithm is
 never triggered---this situation occurs when the congestion window
 is small, if a large number of segments in a window are lost or at
 the end of a transfer as data drains from the network. For
 instance, consider a congestion window (cwnd) of three segments. If
 one segment is dropped by the network, then at most two duplicate
 ACKs will arrive at the sender, assuming no ACK loss. Since three
 duplicate ACKs are required to trigger Fast Retransmit, a timeout
 will be required to resend the dropped packet.

 [BPS+98] shows that roughly 56% of retransmissions sent by a busy
 web server are sent after the RTO timer expires, while only 44% are
 handled by Fast Retransmit. In addition, only 4% of the RTO
 timer-based retransmissions could have been avoided with SACK, which
 has to continue to disambiguate reordering from genuine loss.
 Furthermore, [All00] shows that for one particular web server the
 median transfer size is less than four segments, indicating that
 more than half of the connections will be forced to rely on the RTO
 timer to recover from any losses that occur. Thus, loss recovery
 that does not rely on the conservative RTO is likely to be
 beneficial for short TCP transfers.

 The Limited Transmit mechanism introduced in [RFC3042] allows a TCP
 sender to transmit previously unsent data upon the reception of each
 of the two duplicate ACKs that precede a Fast Retransmit. SCTP
 [RFC4960] uses SACK information to calculate the number of
 outstanding segments in the network. Hence, when the first two
 duplicate ACKs arrive at the sender they will indicate that data has
 left the network and allow the sender to transmit new data (if
 available) similar to TCP's Limited Transmit algorithm. In the
 remainder of this document we use "Limited Transmit" to include both
 TCP and SCTP mechanisms for sending in response to the first two
 duplicate ACKs. By sending these two new segments the sender is
 attempting to induce additional duplicate ACKs (if appropriate) so
 that Fast Retransmit will be triggered before the retransmission
 timeout expires. The "Early Retransmit" mechanism outlined in this
 document covers the case when previously unsent data is not
 available for transmission or cannot be transmitted due to an
 advertised window limitation.

2 Early Retransmit Algorithm

 The Early Retransmit algorithm calls for lowering the threshold for
 triggering Fast Retransmit when the amount of outstanding data is

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc4960

 small and when no previously unsent data can be transmitted (such
 that Limited Transmit could be used). Duplicate ACKs are triggered
 by each arriving out-of-order segment. Therefore, Fast Retransmit
 will not be invoked when there are less than four outstanding
 segments (assuming only one segment loss in the window). However,

Expires: February 2009 [Page 3]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 TCP and SCTP are not required to track the number of outstanding
 segments, but rather the number of outstanding bytes or messages.
 Therefore, applying the intuitive notion of a transport with less
 than four segments outstanding is more complicated than it first
 appears. In section 2.1 we describe a "byte-based" variant of Early
 Retransmit that attempts to roughly map the number of outstanding
 bytes to a number of outstanding packets that is then used when
 deciding whether to trigger Early Retransmit. In section 2.2 we
 describe a "packet-based" variant that represents a more precise
 algorithm for triggering Early Retransmit. The precision comes at
 the cost of requiring additional state to be kept by the TCP sender.
 In both cases we described SACK-based and non-SACK-based versions of
 the scheme (of course, the non-SACK version will not apply to SCTP).

2.1 Byte-based Early Retransmit

 A TCP or SCTP sender MAY use byte-based Early Retransmit.

 A sender employing byte-based Early Retransmit MUST use the
 following two conditions to determine when an Early Retransmit is
 sent:

 (2.a) The amount of outstanding data (ownd)---data sent but not yet
 acknowledged---is less than 4*SMSS bytes.

 (2.b) There is either no unsent data ready for transmission at the
 sender or the advertised window does not permit new segments
 to be transmitted.

 When the above two conditions hold and the connection does not
 support SACK the duplicate ACK threshold used to trigger a
 retransmission MUST be reduced to:

 ER_thresh = ceiling (ownd/SMSS) - 1 (1)

 duplicate ACKs, where ownd is in terms of bytes.

 When conditions (2.a) and (2.b) hold and the connection does support
 SACK, Early Retransmit MUST be used only when "ownd - SMSS" bytes
 have been SACKed.

 When conditions (2.a) and (2.b) do not hold, the transport MUST NOT
 use Early Retransmit, but rather prefer the standard mechanisms,
 including Limited Transmit.

 As noted above, the drawback of this byte-based variant is precision
 [HB08]. We illustrate this with two examples:

 + Consider a non-SACK TCP sender that uses an SMSS of 1460 bytes
 and transmits three segments each with 400 bytes of payload.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt

 This is a case where Early Retransmit could aid loss recovery if
 one segment is lost. However, in this case ER_thresh will
 become zero, per equation (1), because the number of outstanding
 bytes is a poor estimate of the number of outstanding packets.

Expires: February 2009 [Page 4]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 A similar problem occurs for senders that employ SACK as the
 expression "ownd - SMSS" will become negative.

 + Next, consider a non-SACK TCP sender that uses an SMSS of 1460
 bytes and transmits 10 segments each with 400 bytes of payload.
 In this case ER_thresh will be two, per equation (1). Thus,
 even though there are enough segments outstanding to trigger
 Fast Retransmit with the standard duplicate ACK threshold Early
 Retransmit will be triggered. This could cause or exacerbate
 performance problems caused by packet reordering in the network.

2.2 Packet-based Early Retransmit

 A TCP or SCTP sender MAY use packet-based Early Retransmit.

 A sender employing packet-based Early Retransmit MUST use the
 following two conditions to determine when an Early Retransmit is
 sent:

 (3.a) The number of outstanding segments (oseg)---segments sent but
 not yet acknowledged---is less than four.

 (3.b) There is either no unsent data ready for transmission at the
 sender or the advertised window does not permit new segments
 to be transmitted.

 When the above two conditions hold and the connection does not
 support SACK the duplicate ACK threshold used to trigger a
 retransmission MUST be reduced to:

 ER_thresh = oseg - 1 (2)

 duplicate ACKs, where oseg represents the number of outstanding
 segments. (We discuss tracking the number of outstanding segments
 below.)

 When conditions (3.a) and (3.b) hold and the connection does support
 SACK, Early Retransmit MUST be used only when "oseg - 1" segments
 have been SACKed.

 When conditions (3.a) and (3.b) do not hold, the transport MUST NOT
 use Early Retransmit, but rather prefer the standard mechanisms,
 including Limited Transmit.

 This version of Early Retransmit solves the precision issues
 discussed in the previous section. As noted previously, the cost is
 that the implementation will have to track packet boundaries to form
 an understanding as to how many actual segments have been
 transmitted, but not acknowledged. This can be done by tracking the
 boundaries of the three segments on the right side of the current

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt

 window (which involves tracking four sequence numbers in TCP). This
 could be done by keeping a circular list of the packet boundaries,
 for instance. Cumulative ACKs that do not fall within this region
 indicate that at least four segments are outstanding and therefore

Expires: February 2009 [Page 5]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 Early Retransmit MUST NOT be used. When the outstanding window
 becomes small enough that Early Retransmit can be invoked, a full
 understanding of the number of outstanding packets will be
 available from the four sequence numbers retained.

3 Discussion

 The SACK variant of the Early Retransmit algorithm is preferred to
 the non-SACK variant due to its robustness in the face of ACK loss
 (since SACKs are sent redundantly) and due to interactions with the
 delayed ACK timer. Consider a flight of three segments, S1...S3,
 with S2 being dropped by the network. When S1 arrives it is
 in-order and so the receiver may or may not delay the ACK, leading
 to two scenarios:

 (A) The ACK for S1 is delayed: In this case the arrival of S3 will
 trigger an ACK to be transmitted covering segment S1 (which was
 previously unacknowledged). In this case Early Retransmit
 without SACK will not prevent an RTO because no duplicate ACKs
 will arrive. However, with SACK the ACK for S1 will also
 include SACK information indicating that S3 has arrived at the
 receiver. The sender can then invoke Early Retransmit on this
 ACK because only one packet remains outstanding.

 (B) The ACK for S1 is not delayed: In this case the arrival of S1
 triggers an ACK of previously unacknowledged data. The arrival
 of S3 triggers a duplicate ACK (because it is out-of-order).
 Both ACKs will cover the same segment (S1). Therefore,
 regardless of whether SACK is used Early Retransmit can be
 performed by the sender (assuming no ACK loss).

 Early Retransmit is less robust in the face of reordered segments
 than when using the standard Fast Retransmit threshold. Research
 shows that a general reduction in the number of duplicate ACKs
 required to trigger Fast Retransmit to two (rather than three) leads
 to a reduction in the ratio of good to bad retransmits by a factor
 of three [Pax97]. However, this analysis did not include the
 additional conditioning on the event that the ownd was smaller than
 4 segments and that no new data was available for transmission.

 A number of studies have shown that network reordering is not a rare
 event across some network paths. Various measurement studies have
 shown that reordering along most paths is negligible, but along
 certain paths can be quite prevalent [Pax97,BPS99,BS02,Pir05].
 Evaluating Early Retransmit in the face of real packet reordering is
 part of the experiment we hope to instigate with this document.

 Next, we note two "worst case" scenarios for Early Retransmit:

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt

 (1) Persistent reordering of segments coupled with an application
 that does not constantly send data can result in large numbers
 of needless retransmissions when using Early Retransmit. For
 instance, consider an application that sends data two segments
 at a time, followed by an idle period when no data is queued for

Expires: February 2009 [Page 6]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 delivery. If the network consistently reorders the two
 segments, the sender will needlessly retransmit one out of every
 two unique segments transmitted when using the above algorithm
 (meaning that one-third of all segments sent are needless
 retransmissions). However, this would only be a problem for
 long-lived connections from applications that transmit in
 spurts.

 (2) Similar to the above, consider the case of 2 segment transfers
 that always experience reordering. Just as in (1) above, one
 out of every two unique data segments will be retransmitted
 needlessly, therefore one-third of the traffic will be spurious.

 Currently this document offers no suggestion on how to mitigate the
 above problems. However, the worst cases are likely pathological
 and part of the experiments that this document hopes to trigger
 would involve better understanding of whether such theoretical worst
 case scenarios are prevalent in the network and in general to
 explore the tradeoff between spurious fast retransmits and the delay
 imposed by the RTO. Appendix A does offer a survey of possible
 mitigations that call for curtailing the use of Early Retransmit
 when it is making poor retransmission decisions.

4 Related Work

 Deployment of Explicit Congestion Notification (ECN) [Flo94,RFC3168]
 may benefit connections with small congestion window sizes
 [RFC2884]. ECN provides a method for indicating congestion to the
 end-host without dropping segments. While some segment drops may
 still occur, ECN may allow a transport to perform better with small
 cwnd sizes because the sender will be required to detect less
 segment loss [RFC2884].

 [Bal98] outlines another solution to the problem of having no new
 segments to transmit into the network when the first two duplicate
 ACKs arrive. In response to these duplicate ACKs, a TCP sender
 transmits zero-byte segments to induce additional duplicate ACKs.
 This method preserves the robustness of the standard Fast Retransmit
 algorithm at the cost of injecting segments into the network that do
 not deliver any data (and, therefore are potentially wasting network
 resources).

5 Security Considerations

 The security considerations found in [RFC2581] apply to this
 document. No additional security problems have been identified with
 Early Retransmit at this time.

Acknowledgments

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2581

 We thank Sally Floyd for her feedback in discussions about Early
 Retransmit. The notion of Early Transmit was originally sketched in
 an Internet-Draft co-authored by Sally Floyd and Hari Balakrishnan.
 Armando Caro and many members of the TSVWG and TCPM working groups

Expires: February 2009 [Page 7]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 provided good discussions that helped shape this document. Our
 thanks to all!

Normative References

 [RFC793] Jon Postel. Transmission Control Protocol. Std 7, RFC
793. September 1981.

 [RFC2018] Matt Mathis, Jamshid Mahdavi, Sally Floyd, Allyn Romanow.
 TCP Selective Acknowledgement Options. RFC 2018, October 1996.

 [RFC2581] Mark Allman, Vern Paxson, W. Richard Stevens. TCP
 Congestion Control. RFC 2581, April 1999.

 [RFC2883] Sally Floyd, Jamshid Mahdavi, Matt Mathis, Matt Podolsky.
 An Extension to the Selective Acknowledgement (SACK) Option for
 TCP. RFC 2883, July 2000.

 [RFC2988] Vern Paxson, Mark Allman. Computing TCP's Retransmission
 Timer. RFC 2988, April 2000.

 [RFC3042] Mark Allman, Hari Balakrishnan, Sally Floyd. Enhancing
 TCP's Loss Recovery Using Limited Transmit. RFC 3042, January
 2001.

 [RFC3522] Reiner Ludwig, Michael Meyer. The Eifel Detection
 Algorithm for TCP. RFC 3522, April 2003.

 [RFC4960] R. Stewart. Stream Control Transmission Protocol. RFC
4960, September 2007.

Informative References

 [AA02] Urtzi Ayesta, Konstantin Avrachenkov, "The Effect of the
 Initial Window Size and Limited Transmit Algorithm on the
 Transient Behavior of TCP Transfers", In Proc. of the 15th ITC
 Internet Specialist Seminar, Wurzburg, July 2002.

 [All00] Mark Allman. A Web Server's View of the Transport Layer.
 ACM Computer Communications Review, October 2000.

 [Bal98] Hari Balakrishnan. Challenges to Reliable Data Transport
 over Heterogeneous Wireless Networks. Ph.D. Thesis, University
 of California at Berkeley, August 1998.

 [BPS+98] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan,
 Mark Stemm, and Randy Katz. TCP Behavior of a Busy Web Server:
 Analysis and Improvements. Proc. IEEE INFOCOM Conf., San
 Francisco, CA, March 1998.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960

 [BS02] John Bellardo, Stefan Savage. Measuring Packet Reordering,
 ACM/USENIX Internet Measurement Workshop, November 2002.

 [FF96] Kevin Fall, Sally Floyd. Simulation-based Comparisons of

Expires: February 2009 [Page 8]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 Tahoe, Reno, and SACK TCP. ACM Computer Communication Review,
 July 1996.

 [Flo94] Sally Floyd. TCP and Explicit Congestion Notification. ACM
 Computer Communication Review, October 1994.

 [HB08] Per Hurtig, Anna Brunstrom. Enhancing SCTP Loss Recovery: An
 Experimental Evaluation of Early Retransmit. Elsevier Computer
 Communication, 2008, to appear.

 [Jac88] Van Jacobson. Congestion Avoidance and Control. ACM
 SIGCOMM 1988.

 [LK98] Dong Lin, H.T. Kung. TCP Fast Recovery Strategies: Analysis
 and Improvements. Proceedings of InfoCom, San Francisco, CA,
 March 1998.

 [Mor97] Robert Morris. TCP Behavior with Many Flows. Proceedings
 of the Fifth IEEE International Conference on Network Protocols.
 October 1997.

 [Pax97] Vern Paxson. End-to-End Internet Packet Dynamics. ACM
 SIGCOMM, September 1997.

 [Pir05] N. M. Piratla, "A Theoretical Foundation, Metrics and
 Modeling of Packet Reordering and Methodology of Delay Modeling
 using Inter-packet Gaps," Ph.D. Dissertation, Department of
 Electrical and Computer Engineering, Colorado State University,
 Fort Collins, CO, Fall 2005.

 [RFC2582] Sally Floyd, Tom Henderson. The NewReno Modification to
 TCP's Fast Recovery Algorithm. RFC 2582, April 1999.

 [RFC2884] Jamal Hadi Salim and Uvaiz Ahmed. Performance Evaluation
 of Explicit Congestion Notification (ECN) in IP Networks. RFC

2884, July 2000.

 [RFC3150] Spencer Dawkins, Gabriel Montenegro, Markku Kojo, Vincent
 Magret. End-to-end Performance Implications of Slow Links. RFC

3150, July 2001.

 [RFC3168] K. K. Ramakrishnan, Sally Floyd, David Black. The
 Addition of Explicit Congestion Notification (ECN) to IP. RFC

3168, September 2001.

 [RFC3517] Ethan Blanton, Mark Allman, Kevin Fall, Lili Wang. A
 Conservative Selective Acknowledgment (SACK)-based Loss Recovery
 Algorithm for TCP. RFC 3517, April 2003.

Author's Addresses:

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc3150
https://datatracker.ietf.org/doc/html/rfc3150
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3517

 Mark Allman
 International Computer Science Institute
 1947 Center Street, Suite 600

Expires: February 2009 [Page 9]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 Berkeley, CA 94704-1198
 Phone: 440-235-1792
 mallman@icir.org

http://www.icir.org/mallman/

 Konstantin Avrachenkov
 INRIA
 2004 route des Lucioles, B.P.93
 06902, Sophia Antipolis
 France
 Phone: 00 33 492 38 7751
 k.avrachenkov@sophia.inria.fr

http://www.inria.fr/mistral/personnel/K.Avrachenkov/moi.html

 Urtzi Ayesta
 LAAS-CNRS
 7 Avenue Colonel Roche
 31077 Toulouse
 France
 urtzi@laas.fr

http://www.laas.fr/~urtzi

 Josh Blanton
 Ohio University
 301 Stocker Center
 Athens, OH 45701
 jblanton@irg.cs.ohiou.edu

 Per Hurtig
 Karlstad University
 Department of Computer Science
 Universitetsgatan 2 651 88
 Karlstad Sweden
 per.hurtig@kau.se

Appendix A: Research Issues in Adjusting the Duplicate ACK Threshold

 Decreasing the number of duplicate ACKs required to trigger Fast
 Retransmit, as suggested in section 2, has the drawback of making
 Fast Retransmit less robust in the face of minor network reordering.
 Two egregious examples of problems caused by reordering are given in

section 3. This appendix outlines several schemes that have been
 suggested to mitigate the problems caused by Early Retransmit in the
 face of packet reordering. These methods need further research
 before they are suggested for general use (and, current consensus is
 that the cases that make Early Retransmit unnecessarily retransmit a
 large amount of data are pathological and therefore these
 mitigations are not generally required).

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
http://www.icir.org/mallman/
http://www.inria.fr/mistral/personnel/K.Avrachenkov/moi.html
http://www.laas.fr/~urtzi

 MITIGATION A.1: Allow a connection to use Early Retransmit as long
 as the algorithm is not injecting "too much" spurious data into
 the network. For instance, using the information provided by
 TCP's DSACK option [RFC2883] or SCTP's Duplicate-TSN
 notification, a sender can determine when segments sent via

Expires: February 2009 [Page 10]

https://datatracker.ietf.org/doc/html/rfc2883

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 Early Retransmit are needless. Likewise, using Eifel [RFC3522]
 the sender can detect spurious Early Retransmits. Once spurious
 Early Retransmits are detected the sender can either eliminate
 the use of Early Retransmit or limit the use of the algorithm to
 ensure that an acceptably small fraction of the connection's
 transmissions are not spurious. For example, a connection could
 stop using Early Retransmit after the first spurious retransmit
 is detected.

 MITIGATION A.2: If a sender cannot reliably determine if an Early
 Retransmitted segment is spurious or not the sender could simply
 limit Early Retransmits either to some fixed number per
 connection (e.g., Early Retransmit is allowed only once per
 connection) or to some small percentage of the total traffic
 being transmitted.

 MITIGATION A.3: Allow a connection to trigger Early Retransmit using
 the criteria given in section 2, in addition to a "small"
 timeout [Pax97]. For instance, a sender may have to wait for 2
 duplicate ACKs and then T msec before Early Retransmit is
 invoked. The added time gives reordered acknowledgments time to
 arrive at the sender and avoid a needless retransmit. Designing
 a method for choosing an appropriate timeout is part of the
 research that would need to be involved in this scheme.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Disclaimer of Validity

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE

Expires: February 2009 [Page 11]

draft-ietf-tcpm-early-rexmt-00.txt August 2008

 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The IETF Trust (2008). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/bcp78

Expires: February 2009 [Page 12]

