
Internet Draft Y. Cheng
draft-ietf-tcpm-fastopen-04.txt J. Chu
Intended status: Experimental S. Radhakrishnan
Expiration date: February, 2014 A. Jain
 Google, Inc.
 July 15, 2013

TCP Fast Open

Status of this Memo

 Distribution of this memo is unlimited.

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

Cheng, et. al. Expires January 16, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-04.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet Draft TCP Fast Open July 15, 2013

 TCP Fast Open (TFO) allows data to be carried in the SYN and SYN-ACK
 packets and consumed by the receiving end during the initial
 connection handshake, thus saving up to one full round trip time
 (RTT) compared to the standard TCP, which requires a three-way
 handshake (3WHS) to complete before data can be exchanged. However
 TFO deviates from the standard TCP semantics in that the data in the
 SYN could be replayed to an application in some rare circumstances.
 Applications should not use TFO unless they can tolerate this issue,
 which is detailed in the Applicability section.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].
 TFO refers to TCP Fast Open. Client refers to the TCP's active open
 side and server refers to the TCP's passive open side.

Table of Contents

1. Introduction . 3
2. Data In SYN . 3
2.1 Relaxing TCP Semantics on Duplicated SYNs 4
2.2. SYNs with Spoofed IP Addresses 4

3. Protocol Overview . 5
4. Protocol Details . 7
4.1. Fast Open Cookie . 7
4.1.1. TCP Options . 7
4.1.2. Server Cookie Handling 8
4.1.3. Client Cookie Handling 9

4.2. Fast Open Protocol . 9
4.2.1. Fast Open Cookie Request 10
4.2.2. TCP Fast Open . 11

5. Security Considerations . 13
 5.1. Resource Exhaustion Attack by SYN Flood with Valid
 Cookies . 13

5.1.1 Attacks from behind Sharing Public IPs (NATs) 14
5.2. Amplified Reflection Attack to Random Host 15

6. TFO's Applicability . 16
6.1 Duplicate Data in SYNs 16
6.2 Potential Performance Improvement 16
6.3. Example: Web Clients and Servers 16
6.3.1. HTTP Request Replay 16
6.3.2. Comparison with HTTP Persistent Connections 17

7. Open Areas for Experimentation 17
7.1. Performance impact due to middle-boxes and NAT 18
7.2. Cookie-less Fast Open 18

8. Related Work . 18

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Cheng, et. al. Expires January 16, 2014 [Page 2]

Internet Draft TCP Fast Open July 15, 2013

8.1. T/TCP . 19
8.2. Common Defenses Against SYN Flood Attacks 19
8.3. TCP Cookie Transaction (TCPCT) 19
8.4. Speculative Connections by the Applications 19

9. IANA Considerations . 19
10. Acknowledgement . 20
11. References . 20
11.1. Normative References 20
11.2. Informative References 20

Appendix A. Example Socket API Changes to support TFO 22
 Authors' Addresses . 22

1. Introduction

 TCP Fast Open (TFO) enables data to be exchanged safely during TCP's
 connection handshake. This document describes a design that enables
 applications to save a round trip while avoiding severe security
 ramifications. At the core of TFO is a security cookie used by the
 server side to authenticate a client initiating a TFO connection.
 This document covers the details of exchanging data during TCP's
 initial handshake, the protocol for TFO cookies, potential new
 security vulnerabilities and their mitigation, and the new socket
 API.

 TFO is motivated by the performance needs of today's Web
 applications. Current TCP only permits data exchange after 3WHS
 [RFC793], which adds one RTT to network latency. For short Web
 transfers this additional RTT is a significant portion of overall
 network latency [THK98], even when HTTP persistent connection is
 widely used. For example, the Chrome browser keeps TCP connections
 idle for up to 5 minutes but 35% of Chrome HTTP requests are made on
 new TCP connections [RCCJR11]. For such Web and Web-like applications
 placing data in the SYN can yield significant latency improvements.
 Next we describe how we resolve the challenges that arise upon doing
 so.

2. Data In SYN

 Standard TCP already allows data to be carried in SYN packets
 ([RFC793], section 3.4) but forbids the receiver from delivering it
 to the application until 3WHS is completed. This is because TCP's
 initial handshake serves to capture old or duplicate SYNs.

 Allowing data in SYN packets to be delivered raises two issues
 discussed in the following subsections. These issues make TFO
 unsuitable for certain applications. Therefore TCP implementations

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793#section-3.4

Cheng, et. al. Expires January 16, 2014 [Page 3]

Internet Draft TCP Fast Open July 15, 2013

 MUST NOT use TFO by default, but only use TFO if requested explicitly
 by the application on a per service port basis. Applications need to
 evaluate TFO applicability described in Section 6 before using TFO.

2.1 Relaxing TCP Semantics on Duplicated SYNs

 TFO allows data to be delivered to the application before 3WHS is
 completed, thus opening itself to a data integrity issue in either of
 the two cases below:

 a) the receiver host receives data in a duplicate SYN after it has
 forgotten it received the original SYN (e.g. due to a reboot);

 b) the duplicate is received after the connection created by the
 original SYN has been closed and the close was initiated by the
 sender (so the receiver will not be protected by the 2MSL TIMEWAIT
 state).

 The now obsoleted T/TCP [RFC1644] attempted to address these issues.
 It is not successful and not deployed due to various vulnerabilities
 [PHRACK98]. Rather than trying to capture all dubious SYN packets to
 make TFO 100% compatible with TCP semantics, we made a design
 decision early on to accept old SYN packets with data, i.e., to
 restrict TFO use to a class of applications (Section 6) that are
 tolerant of duplicate SYN packets with data. We believe this is the
 right design trade-off balancing complexity with usefulness.

2.2. SYNs with Spoofed IP Addresses

 Standard TCP suffers from the SYN flood attack [RFC4987] because
 bogus SYN packets, i.e., SYN packets with spoofed source IP addresses
 can easily fill up a listener's small queue, causing a service port
 to be blocked completely until timeouts. Secondary damage comes from
 these SYN requests taking up memory space. Though this is less of an
 issue today as servers typically have plenty of memory.

 TFO goes one step further to allow server-side TCP to send up data to
 the application layer before 3WHS is completed. This opens up serious
 new vulnerabilities. Applications serving ports that have TFO enabled
 may waste lots of CPU and memory resources processing the requests
 and producing the responses. If the response is much larger than the
 request, the attacker can further mount an amplified reflection
 attack against victims of choice beyond the TFO server itself.

 Numerous mitigation techniques against regular SYN flood attacks
 exist and have been well documented [RFC4987]. Unfortunately none are
 applicable to TFO. We propose a server-supplied cookie to mitigate
 these new vulnerabilities in Section 3 and evaluate the effectiveness

https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc4987

Cheng, et. al. Expires January 16, 2014 [Page 4]

Internet Draft TCP Fast Open July 15, 2013

 of the defense in Section 7.

3. Protocol Overview

 The key component of TFO is the Fast Open Cookie (cookie), a message
 authentication code (MAC) tag generated by the server. The client
 requests a cookie in one regular TCP connection, then uses it for
 future TCP connections to exchange data during 3WHS:

 Requesting a Fast Open Cookie:

 1. The client sends a SYN with a Fast Open Cookie Request option.

 2. The server generates a cookie and sends it through the Fast Open
 Cookie option of a SYN-ACK packet.

 3. The client caches the cookie for future TCP Fast Open connections
 (see below).

 Performing TCP Fast Open:

 1. The client sends a SYN with Fast Open Cookie option and data.

 2. The server validates the cookie:
 a. If the cookie is valid, the server sends a SYN-ACK
 acknowledging both the SYN and the data. The server then
 delivers the data to the application.

 b. Otherwise, the server drops the data and sends a SYN-ACK
 acknowledging only the SYN sequence number.

 3. If the server accepts the data in the SYN packet, it may send the
 response data before the handshake finishes. The max amount is
 governed by the TCP's congestion control [RFC5681].

 4. The client sends an ACK acknowledging the SYN and the server data.
 If the client's data is not acknowledged, the client retransmits
 the data in the ACK packet.

 5. The rest of the connection proceeds like a normal TCP connection.
 The client can repeat many Fast Open operations once it acquires a
 cookie (until the cookie is expired by the server). Thus TFO is
 useful for applications that have temporal locality on client and
 server connections.

 Requesting Fast Open Cookie in connection 1:

https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et. al. Expires January 16, 2014 [Page 5]

Internet Draft TCP Fast Open July 15, 2013

 TCP A (Client) TCP B(Server)
 ______________ _____________
 CLOSED LISTEN

 #1 SYN-SENT ----- <SYN,CookieOpt=NIL> ----------> SYN-RCVD

 #2 ESTABLISHED <---- <SYN,ACK,CookieOpt=C> ---------- SYN-RCVD
 (caches cookie C)

 Performing TCP Fast Open in connection 2:

 TCP A (Client) TCP B(Server)
 ______________ _____________
 CLOSED LISTEN

 #1 SYN-SENT ----- <SYN=x,CookieOpt=C,DATA_A> ----> SYN-RCVD

 #2 ESTABLISHED <---- <SYN=y,ACK=x+len(DATA_A)+1> ---- SYN-RCVD

 #3 ESTABLISHED <---- <ACK=x+len(DATA_A)+1,DATA_B>---- SYN-RCVD

 #4 ESTABLISHED ----- <ACK=y+1>--------------------> ESTABLISHED

 #5 ESTABLISHED --- <ACK=y+len(DATA_B)+1>----------> ESTABLISHED

Cheng, et. al. Expires January 16, 2014 [Page 6]

Internet Draft TCP Fast Open July 15, 2013

4. Protocol Details

4.1. Fast Open Cookie

 The Fast Open Cookie is designed to mitigate new security
 vulnerabilities in order to enable data exchange during handshake.
 The cookie is a message authentication code tag generated by the
 server and is opaque to the client; the client simply caches the
 cookie and passes it back on subsequent SYN packets to open new
 connections. The server can expire the cookie at any time to enhance
 security.

4.1.1. TCP Options

 Fast Open Cookie Option

 The server uses this option to grant a cookie to the client in the
 SYN-ACK packet; the client uses it to pass the cookie back to the
 server in subsequent SYN packets.

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind | Length |
 +-+
 | |
 ~ Cookie ~
 | |
 +-+

 Kind 1 byte: constant TBD (assigned by IANA)
 Length 1 byte: range 6 to 18 (bytes); limited by
 remaining space in the options field.
 The number MUST be even.
 Cookie 4 to 16 bytes (Length - 2)
 Options with invalid Length values or without SYN flag set MUST be
 ignored. The minimum Cookie size is 4 bytes. Although the diagram
 shows a cookie aligned on 32-bit boundaries, alignment is not
 required.

 Fast Open Cookie Request Option

 The client uses this option in the SYN packet to request a cookie
 from a TFO-enabled server
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind | Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Kind 1 byte: same as the Fast Open Cookie option
 Length 1 byte: constant 2. This distinguishes the option

Cheng, et. al. Expires January 16, 2014 [Page 7]

Internet Draft TCP Fast Open July 15, 2013

 from the Fast Open cookie option.
 Options with invalid Length values, without SYN flag set, or with ACK
 flag set MUST be ignored.

4.1.2. Server Cookie Handling

 The server is in charge of cookie generation and authentication. The
 cookie SHOULD be a message authentication code tag with the following
 properties:
 1. The cookie authenticates the client's (source) IP address of the
 SYN packet. The IP address may be an IPv4 or IPv6 address.

 2. The cookie can only be generated by the server and can not be
 fabricated by any other parties including the client.

 3. The generation and verification are fast relative to the rest of
 SYN and SYN-ACK processing.

 4. A server may encode other information in the cookie, and accept
 more than one valid cookie per client at any given time. But this
 is all server implementation dependent and transparent to the
 client.

 5. The cookie expires after a certain amount of time. The reason for
 cookie expiration is detailed in the "Security Consideration"
 section. This can be done by either periodically changing the
 server key used to generate cookies or including a timestamp when
 generating the cookie.

 To gradually invalidate cookies over time, the server can
 implement key rotation to generate and verify cookies using
 multiple keys. This approach is useful for large-scale servers to
 retain Fast Open rolling key updates. We do not specify a
 particular mechanism because the implementation is server
 specific.

 The server supports the cookie generation and verification
 operations:

 - GetCookie(IP_Address): returns a (new) cookie

 - IsCookieValid(IP_Address, Cookie): checks if the cookie is valid,
 i.e., it has not expired and it authenticates the client IP address.

 Example Implementation: a simple implementation is to use AES_128 to
 encrypt the IPv4 (with padding) or IPv6 address and truncate to 64
 bits. The server can periodically update the key to expire the
 cookies. AES encryption on recent processors is fast and takes only a

Cheng, et. al. Expires January 16, 2014 [Page 8]

Internet Draft TCP Fast Open July 15, 2013

 few hundred nanoseconds [RCCJR11].

 If only one valid cookie is allowed per-IP and the server can
 regenerate the cookie independently, the best validation process is
 to simply regenerate a valid cookie and compare it against the
 incoming cookie. In that case if the incoming cookie fails the check,
 a valid cookie is readily available to be sent to the client.

4.1.3. Client Cookie Handling

 The client MUST cache cookies from servers for later Fast Open
 connections. For a multi-homed client, the cookies are both client
 and server IP dependent. Beside the cookie, we RECOMMEND that the
 client caches the MSS and RTT to the server to enhance performance.

 The MSS advertised by the server is stored in the cache to determine
 the maximum amount of data that can be supported in the SYN packet.
 This information is needed because data is sent before the server
 announces its MSS in the SYN-ACK packet. Without this information,
 the data size in the SYN packet is limited to the default MSS of 536
 bytes [RFC1122]. The client SHOULD update the cache MSS value
 whenever it discovers new MSS value, e.g., through path MTU
 discovery.

 Caching RTT allows seeding a more accurate SYN timeout than the
 default value [RFC6298]. This lowers the performance penalty if the
 network or the server drops the SYN packets with data or the cookie
 options.

 The cache replacement algorithm is not specified and is left to the
 implementations.

 Note that before TFO sees wide deployment, clients SHOULD cache
 negative responses from servers in order to reduce the amount of
 futile TFO attempts. Since TFO is enabled on a per-service port basis
 but cookies are independent of service ports, clients' cache should
 include remote port numbers too.

4.2. Fast Open Protocol

 One predominant requirement of TFO is to be fully compatible with
 existing TCP implementations, both on the client and the server
 sides.

 The server keeps two variables per listening port:

 FastOpenEnabled: default is off. It MUST be turned on explicitly by
 the application. When this flag is off, the server does not perform

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6298

Cheng, et. al. Expires January 16, 2014 [Page 9]

Internet Draft TCP Fast Open July 15, 2013

 any TFO related operations and MUST ignore all cookie options.

 PendingFastOpenRequests: tracks number of TFO connections in SYN-RCVD
 state. If this variable goes over a preset system limit, the server
 SHOULD disable TFO for all new connection requests until
 PendingFastOpenRequests drops below the system limit. This variable
 is used for defending some vulnerabilities discussed in the "Security
 Considerations" section.

 The server keeps a FastOpened flag per TCB to mark if a connection
 has successfully performed a TFO.

4.2.1. Fast Open Cookie Request

 Any client attempting TFO MUST first request a cookie from the server
 with the following steps:

 1. The client sends a SYN packet with a Fast Open Cookie Request
 option.

 2. The server SHOULD respond with a SYN-ACK based on the procedures
 in the "Server Cookie Handling" section. This SYN-ACK SHOULD
 contain a Fast Open Cookie option if the server currently supports
 TFO for this listener port.

 3. If the SYN-ACK contains a Fast Open Cookie option, the client
 replaces the cookie and other information as described in the
 "Client Cookie Handling" section. Otherwise, if the SYN-ACK is
 first seen, i.e.,not a (spurious) retransmission, the client MAY
 remove the server information from the cookie cache. If the SYN-
 ACK is a spurious retransmission without valid Fast Open Cookie
 Option, the client does nothing to the cookie cache for the
 reasons below.

 The network or servers may drop the SYN or SYN-ACK packets with the
 new cookie options, which will causes SYN or SYN-ACK timeouts. We
 RECOMMEND both the client and the server to retransmit SYN and SYN-
 ACK without the cookie options on timeouts. This ensures the
 connections of cookie requests will go through and lowers the latency
 penalty (of dropped SYN/SYN-ACK packets). The obvious downside for
 maximum compatibility is that any regular SYN drop will fail the
 cookie (although one can argue the delay in the data transmission
 till after 3WHS is justified if the SYN drop is due to network
 congestion). Next section describes a heuristic to detect such drops
 when the client receives the SYN-ACK.

 We also RECOMMEND the client to record servers that failed to respond
 to cookie requests and only attempt another cookie request after

Cheng, et. al. Expires January 16, 2014 [Page 10]

Internet Draft TCP Fast Open July 15, 2013

 certain period. An alternate proposal is to request cookie in FIN
 instead since FIN-drop by incompatible middle-box does not affect
 latency. However such paths are likely to drop SYN packet with data
 later, and many applications close the connections with RST instead,
 so the actual benefit of this approach is not clear.

4.2.2. TCP Fast Open

 Once the client obtains the cookie from the target server, it can
 perform subsequent TFO connections until the cookie is expired by the
 server.

 Client: Sending SYN

 To open a TFO connection, the client MUST have obtained a cookie from
 the server:

 1. Send a SYN packet.

 a. If the SYN packet does not have enough option space for the
 Fast Open Cookie option, abort TFO and fall back to regular 3WHS.

 b. Otherwise, include the Fast Open Cookie option with the cookie
 of the server. Include any data up to the cached server MSS or
 default 536 bytes.

 2. Advance to SYN-SENT state and update SND.NXT to include the data
 accordingly.

 3. If RTT is available from the cache, seed SYN timer according to
 [RFC6298].

 To deal with network or servers dropping SYN packets with payload or
 unknown options, when the SYN timer fires, the client SHOULD
 retransmit a SYN packet without data and Fast Open Cookie options.

 Server: Receiving SYN and responding with SYN-ACK

 Upon receiving the SYN packet with Fast Open Cookie option:

 1. Initialize and reset a local FastOpened flag. If FastOpenEnabled
 is false, go to step 5.

 2. If PendingFastOpenRequests is over the system limit, go to step 5.

 3. If IsCookieValid() in section 4.1.2 returns false, go to step 5.

 4. Buffer the data and notify the application. Set FastOpened flag

https://datatracker.ietf.org/doc/html/rfc6298

Cheng, et. al. Expires January 16, 2014 [Page 11]

Internet Draft TCP Fast Open July 15, 2013

 and increment PendingFastOpenRequests.

 5. Send the SYN-ACK packet. The packet MAY include a Fast Open
 Option. If FastOpened flag is set, the packet acknowledges the SYN
 and data sequence. Otherwise it acknowledges only the SYN
 sequence. The server MAY include data in the SYN-ACK packet if the
 response data is readily available. Some application may favor
 delaying the SYN-ACK, allowing the application to process the
 request in order to produce a response, but this is left up to the
 implementation.

 6. Advance to the SYN-RCVD state. If the FastOpened flag is set, the
 server MUST follow the congestion control [RFC5681], in particular
 the initial congestion window [RFC3390], to send more data
 packets.

 Note that if SYN-ACK is lost, regular TCP reduces the initial
 congestion window before sending any data. In this case TFO is
 slightly more aggressive in the first data round trip even though
 it does not change the congestion control.

 If the SYN-ACK timer fires, the server SHOULD retransmit a SYN-ACK
 segment with neither data nor Fast Open Cookie options for
 compatibility reasons.

 A special case is simultaneous open where the SYN receiver is a
 client in SYN-SENT state. The protocol remains the same because
 [RFC793] already supports both data in SYN and simultaneous open. But
 the client's socket may have data available to read before it's
 connected. This document does not cover the corresponding API change.

 Client: Receiving SYN-ACK

 The client SHOULD perform the following steps upon receiving the SYN-
 ACK:

 1. Update the cookie cache if the SYN-ACK has a Fast Open Cookie
 Option or MSS option or both.

 2. Send an ACK packet. Set acknowledgment number to RCV.NXT and
 include the data after SND.UNA if data is available.

 3. Advance to the ESTABLISHED state.

 Note there is no latency penalty if the server does not acknowledge
 the data in the original SYN packet. The client SHOULD retransmit any
 unacknowledged data in the first ACK packet in step 2. The data
 exchange will start after the handshake like a regular TCP

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc793

Cheng, et. al. Expires January 16, 2014 [Page 12]

Internet Draft TCP Fast Open July 15, 2013

 connection.

 If the client has timed out and retransmitted only regular SYN
 packets, it can heuristically detect paths that intentionally drop
 SYN with Fast Open option or data. If the SYN-ACK acknowledges only
 the initial sequence and does not carry a Fast Open cookie option,
 presumably it is triggered by a retransmitted (regular) SYN and the
 original SYN or the corresponding SYN-ACK was lost.

 Server: Receiving ACK

 Upon receiving an ACK acknowledging the SYN sequence, the server
 decrements PendingFastOpenRequests and advances to the ESTABLISHED
 state. No special handling is required further.

5. Security Considerations

 The Fast Open cookie stops an attacker from trivially flooding
 spoofed SYN packets with data to burn server resources or to mount an
 amplified reflection attack on random hosts. The server can defend
 against spoofed SYN floods with invalid cookies using existing
 techniques [RFC4987]. We note that although generating bogus cookies
 is cost-free, the cost of validating the cookies, inherent to any
 authentication scheme, may not be substantial compared to processing
 a regular SYN packet.

5.1. Resource Exhaustion Attack by SYN Flood with Valid Cookies

 However, the attacker may still obtain cookies from some compromised
 hosts, then flood spoofed SYN with data and "valid" cookies (from
 these hosts or other vantage points). With DHCP, it's possible to
 obtain cookies of past IP addresses without compromising any host.
 Below we identify new vulnerabilities of TFO and describe the
 countermeasures.

 Like regular TCP handshakes, TFO is vulnerable to such an attack. But
 the potential damage can be much more severe. Besides causing
 temporary disruption to service ports under attack, it may exhaust
 server CPU and memory resources. Such an attack will show up on
 application server logs as a application level DoS from Bot-nets,
 triggering other defenses and alerts.

 For this reason it is crucial for the TFO server to limit the maximum
 number of total pending TFO connection requests, i.e.,
 PendingFastOpenRequests. When the limit is exceeded, the server
 temporarily disables TFO entirely as described in "Server Cookie
 Handling". Then subsequent TFO requests will be downgraded to regular
 connection requests, i.e., with the data dropped and only SYN

https://datatracker.ietf.org/doc/html/rfc4987

Cheng, et. al. Expires January 16, 2014 [Page 13]

Internet Draft TCP Fast Open July 15, 2013

 acknowledged. This allows regular SYN flood defense techniques
 [RFC4987] like SYN-cookies to kick in and prevent further service
 disruption.

 The main impact of SYN floods against the standard TCP stack is not
 directly from the floods themselves costing TCP processing overhead
 or host memory, but rather from the spoofed SYN packets filling up
 the often small listener's queue.

 On the other hand, TFO SYN floods can cause damage directly if
 admitted without limit into the stack. The RST packets from the
 spoofed host will fuel rather than defeat the SYN floods as compared
 to the non-TFO case, because the attacker can flood more SYNs with
 data to cost more data processing resources. For this reason, a TFO
 server needs to monitor the connections in SYN-RCVD being reset in
 addition to imposing a reasonable max queue length. Implementations
 may combine the two, e.g., by continuing to account for those
 connection requests that have just been reset against the listener's
 PendingFastOpenRequests until a timeout period has passed.

 Limiting the maximum number of pending TFO connection requests does
 make it easy for an attacker to overflow the queue, causing TFO to be
 disabled. We argue that causing TFO to be disabled is unlikely to be
 of interest to attackers because the service will remain intact
 without TFO hence there is hardly any real damage.

5.1.1 Attacks from behind Sharing Public IPs (NATs)

 An attacker behind NAT can easily obtain valid cookies to launch the
 above attack to hurt other clients that share the path. [BRISCOE12]
 suggested that the server can extend cookie generation to include the
 TCP timestamp---GetCookie(IP_Address, Timestamp)---and implement it
 by encrypting the concatenation of the two values to generate the
 cookie. The client stores both the cookie and its corresponding
 timestamp, and echoes both in the SYN. The server then implements
 IsCookieValid(IP_Address, Timestamp, Cookie) by encrypting the IP and
 timestamp data and comparing it with the cookie value.

 This enables the server to issue different cookies to clients that
 share the same IP address, hence can selectively discard those
 misused cookies from the attacker. However the attacker can simply
 repeat the attack with new cookies. The server would eventually need
 to throttle all requests from the IP address just like the current
 approach. Moreover this approach requires modifying [RFC 1323] to
 send non-zero Timestamp Echo Reply in SYN, potentially cause firewall
 issues. Therefore we believe the benefit does not outweigh the
 drawbacks.

https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc1323

Cheng, et. al. Expires January 16, 2014 [Page 14]

Internet Draft TCP Fast Open July 15, 2013

5.2. Amplified Reflection Attack to Random Host

 Limiting PendingFastOpenRequests with a system limit can be done
 without Fast Open Cookies and would protect the server from resource
 exhaustion. It would also limit how much damage an attacker can cause
 through an amplified reflection attack from that server. However, it
 would still be vulnerable to an amplified reflection attack from a
 large number of servers. An attacker can easily cause damage by
 tricking many servers to respond with data packets at once to any
 spoofed victim IP address of choice.

 With the use of Fast Open Cookies, the attacker would first have to
 steal a valid cookie from its target victim. This likely requires the
 attacker to compromise the victim host or network first.

 The attacker here has little interest in mounting an attack on the
 victim host that has already been compromised. But it may be
 motivated to disrupt the victim's network. Since a stolen cookie is
 only valid for a single server, it has to steal valid cookies from a
 large number of servers and use them before they expire to cause
 sufficient damage without triggering the defense.

 One can argue that if the attacker has compromised the target network
 or hosts, it could perform a similar but simpler attack by injecting
 bits directly. The degree of damage will be identical, but TFO-
 specific attack allows the attacker to remain anonymous and disguises
 the attack as from other servers.

 The best defense is for the server not to respond with data until
 handshake finishes. In this case the risk of amplification reflection
 attack is completely eliminated. But the potential latency saving
 from TFO may diminish if the server application produces responses
 earlier before the handshake completes.

Cheng, et. al. Expires January 16, 2014 [Page 15]

Internet Draft TCP Fast Open July 15, 2013

6. TFO's Applicability

 This section is to help applications considering TFO to evaluate
 TFO's benefits and drawbacks using the Web client and server
 applications as an example throughout. A proposed socket API change
 is in the Appendix.

6.1 Duplicate Data in SYNs

 It is possible, though uncommon, that using TFO results in the first
 data written to a socket to be delivered more than once to the
 application on the remote host(Section 2.1). This replay potential
 only applies to data in the SYN but not subsequent data exchanges.
 The client MUST NOT use TFO to send data in the SYN, and the server
 MUST NOT accept data in the SYN if it cannot handle receiving the
 same SYN data more than once, due to reasons described before.

6.2 Potential Performance Improvement

 TFO is designed for latency-conscious applications that are sensitive
 to TCP's initial connection setup delay. To benefit from TFO, the
 first application data unit (e.g., an HTTP request) needs to be no
 more than TCP's maximum segment size (minus options used in SYN).
 Otherwise the remote server can only process the client's application
 data unit once the rest of it is delivered after the initial
 handshake, diminishing TFO's benefit.

 To the extent possible, applications SHOULD reuse the connection to
 take advantage of TCP's built-in congestion control and reduce
 connection setup overhead. An application employs too many short-
 lived connections will negatively impact network stability, as these
 connections often exit before TCP's congestion control algorithm
 takes effect.

6.3. Example: Web Clients and Servers

6.3.1. HTTP Request Replay

 While TFO is motivated by Web applications, the browser should not
 use TFO to send requests in SYNs if those requests cannot tolerate
 replays. One example is POST requests without application-layer
 transaction protection (e.g., a unique identifier in the request
 header).

 TFO is particularly useful for GET requests. Even though not all GET
 requests are idempotent, GETs are frequently replayed today across
 striped TCP connections. After a server receives an HTTP request but
 before the ACKs of the requests reach the browser, the browser may

Cheng, et. al. Expires January 16, 2014 [Page 16]

Internet Draft TCP Fast Open July 15, 2013

 timeout and retry the same request on another (possibly new) TCP
 connection. This differs from a TFO replay only in that the replay is
 initiated by the browser, not by the TCP stack.

 Finally, TFO is safe and useful for HTTPS requests because it saves
 the first SSL handshake RTT and the HTTP request is sent after the
 connection establishes.

6.3.2. Comparison with HTTP Persistent Connections

 Is TFO useful given the wide deployment of HTTP persistent
 connections? The short answer is yes. Studies [RCCJR11][AERG11] show
 that the average number of transactions per connection is between 2
 and 4, based on large-scale measurements from both servers and
 clients. In these studies, the servers and clients both kept idle
 connections up to several minutes, well into "human think" time.

 Keeping connections open and idle even longer risks a greater
 performance penalty. [HNESSK10][MQXMZ11] show that the majority of
 home routers and ISPs fail to meet the the 124-minute idle timeout
 mandated in [RFC5382]. In [MQXMZ11], 35% of mobile ISPs silently
 timeout idle connections within 30 minutes. End hosts, unaware of
 silent middle-box timeouts, suffer multi-minute TCP timeouts upon
 using those long-idle connections.

 To circumvent this problem, some applications send frequent TCP keep-
 alive probes. However, this technique drains power on mobile devices
 [MQXMZ11]. In fact, power has become such a prominent issue in modern
 LTE devices that mobile browsers close HTTP connections within
 seconds or even immediately [SOUDERS11].

 [RCCJR11] studied Chrome browser performance based on 28 days of
 global statistics. The Chrome browser keeps idle HTTP persistent
 connections for 5 to 10 minutes. However the average number of the
 transactions per connection is only 3.3 and TCP 3WHS accounts for up
 to 25% of the HTTP transaction network latency. The authors tested a
 Linux TFO implementation with TFO enabled Chrome browser on popular
 web sites in emulated environments such as residential broadband and
 mobile networks. They showed that TFO improves page load time by 10%
 to 40%.

7. Open Areas for Experimentation

 We now outline some areas that need experimentation in the Internet
 and under different network scenarios. These experiments should help
 the community evaluate Fast Open benefits and risks towards further
 standardization and implementation of Fast Open and its related
 protocols.

https://datatracker.ietf.org/doc/html/rfc5382

Cheng, et. al. Expires January 16, 2014 [Page 17]

Internet Draft TCP Fast Open July 15, 2013

7.1. Performance impact due to middle-boxes and NAT

 [MAF04] found that some middle-boxes and end-hosts may drop packets
 with unknown TCP options. Studies [LANGLEY06, HNRGHT11] both found
 that 6% of the probed paths on the Internet drop SYN packets with
 data or with unknown TCP options. The TFO protocol deals with this
 problem by falling back to regular TCP handshake and re-transmitting
 SYN without data or cookie options after the initial SYN timeout.
 Moreover the implementation is recommended to negatively cache such
 incidents to avoid recurring timeouts. Further study is required to
 evaluate the performance impact of these malicious drop behaviors.

 Another interesting study is the (loss of) TFO performance benefit
 behind certain carrier-grade NAT. Typically hosts behind a NAT
 sharing the same IP address will get the same cookie for the same
 server. This will not prevent TFO from working. But on some carrier-
 grade NAT configurations where every new TCP connection from the same
 physical host uses a different public IP address, TFO does not
 provide latency benefits. However, there is no performance penalty
 either, as described in Section "Client: Receiving SYN-ACK".

7.2. Cookie-less Fast Open

 The cookie mechanism mitigates resource exhaustion and amplification
 attacks. However cookies are not necessary if the server has
 application-level protection or is immune to these attacks. For
 example a Web server that only replies with a simple HTTP redirect
 response that fits in the SYN-ACK packet may not care about resource
 exhaustion. Such an application can safely disable TFO cookie checks.

 Disabling cookies simplifies both the client and the server, as the
 client no longer needs to request a cookie and the server no longer
 needs to check or generate cookies. Disabling cookies also
 potentially simplifies configuration, as the server no longer needs a
 key. It may be preferable to enable SYN cookies and disable TFO
 [RFC4987] when a server is overloaded by a large-scale Bot-net
 attack.

 Careful experimentation is necessary to evaluate if cookie-less TFO
 is practical. The implementation can provide an experimental feature
 to allow zero length, or null, cookies as opposed to the minimum 4
 bytes cookies. Thus the server may return a null cookie and the
 client will send data in SYN with it subsequently. If the server
 believes it's under a DoS attack through other defense mechanisms, it
 can switch to regular Fast Open for listener sockets.

8. Related Work

https://datatracker.ietf.org/doc/html/rfc4987

Cheng, et. al. Expires January 16, 2014 [Page 18]

Internet Draft TCP Fast Open July 15, 2013

8.1. T/TCP

 TCP Extensions for Transactions [RFC1644] attempted to bypass the
 three-way handshake, among other things, hence shared the same goal
 but also the same set of issues as TFO. It focused most of its effort
 battling old or duplicate SYNs, but paid no attention to security
 vulnerabilities it introduced when bypassing 3WHS [PHRACK98].

 As stated earlier, we take a practical approach to focus TFO on the
 security aspect, while allowing old, duplicate SYN packets with data
 after recognizing that 100% TCP semantics is likely infeasible. We
 believe this approach strikes the right tradeoff, and makes TFO much
 simpler and more appealing to TCP implementers and users.

8.2. Common Defenses Against SYN Flood Attacks

 [RFC4987] studies on mitigating attacks from regular SYN flood, i.e.,
 SYN without data . But from the stateless SYN-cookies to the stateful
 SYN Cache, none can preserve data sent with SYN safely while still
 providing an effective defense.

 The best defense may be to simply disable TFO when a host is
 suspected to be under a SYN flood attack, e.g., the SYN backlog is
 filled. Once TFO is disabled, normal SYN flood defenses can be
 applied. The "Security Consideration" section contains a thorough
 discussion on this topic.

8.3. TCP Cookie Transaction (TCPCT)

 TCPCT [RFC6013] eliminates server state during initial handshake and
 defends spoofing DoS attacks. Like TFO, TCPCT allows SYN and SYN-ACK
 packets to carry data. But the server can only send up to MSS bytes
 of data during the handshake instead of the initial congestion window
 unlike TFO. Therefore applications like Web may not receive the
 latency benefit as TFO.

8.4. Speculative Connections by the Applications

 Some Web browsers maintain a history of the domains for frequently
 visited web pages. The browsers then speculatively pre-open TCP
 connections to these domains before the user initiates any requests
 for them [BELSHE11]. The downside of this approach is that it wastes
 server and network resources by initiating and maintaining idle
 connections; It is also subject to the NAT timeout issues described
 in Section 6.3.2. TFO offers similar performance improvement without
 the added overhead.

9. IANA Considerations

https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc6013

Cheng, et. al. Expires January 16, 2014 [Page 19]

Internet Draft TCP Fast Open July 15, 2013

 The Fast Open Cookie Option and Fast Open Cookie Request Option
 define no new namespace. The options require IANA to allocate one
 value from the TCP option Kind namespace. Early implementation before
 the IANA allocation SHOULD follow [EXPOPT] and use experimental
 option 254 and magic number 0xF989 (16 bits), then migrate to the new
 option after the allocation accordingly.

10. Acknowledgement

 We thank Rick Jones, Bob Briscoe, Adam Langley, Matt Mathis, Neal
 Cardwell, Roberto Peon, William Chan, Eric Dumazet, and Tom Herbert
 for their feedbacks. We especially thank Barath Raghavan for his
 contribution on the security design of Fast Open and proofreading
 this draft numerous times.

11. References

11.1. Normative References
 [RFC793] Postel, J. "Transmission Control Protocol", RFC 793,
 September 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC5382] S. Guha, Ed., Biswas, K., Ford B., Sivakumar S., Srisuresh,
 P., "NAT Behavioral Requirements for TCP", RFC 5382

 [RFC5681] Allman, M., Paxson, V. and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6298] Paxson, V., Allman, M., Chu, J. and M. Sargent, "Computing
 TCP's Retransmission Timer", RFC 6298, June 2011.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y. and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928, April 2013.

11.2. Informative References

 [AERG11] M. Al-Fares, K. Elmeleegy, B. Reed, and I. Gashinsky,
 "Overclocking the Yahoo! CDN for Faster Web Page Loads". In
 Proceedings of Internet Measurement Conference, November
 2011.

 [EXPOPT] Touch, Joe, "Shared Use of Experimental TCP Options",
 Internet-Draft draft-ietf-tcpm-experimental-options (work
 in progress), June 2013.

 [HNESSK10] S. Haetoenen, A. Nyrhinen, L. Eggert, S. Strowes, P.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-experimental-options

Cheng, et. al. Expires January 16, 2014 [Page 20]

Internet Draft TCP Fast Open July 15, 2013

 Sarolahti, M. Kojo., "An Experimental Study of Home Gateway
 Characteristics". In Proceedings of Internet Measurement
 Conference. Octobor 2010

 [HNRGHT11] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M.
 Handley, H. Tokuda, "Is it Still Possible to Extend TCP?".
 In Proceedings of Internet Measurement Conference. November
 2011.

 [LANGLEY06] Langley, A, "Probing the viability of TCP extensions",
 URL http://www.imperialviolet.org/binary/ecntest.pdf

 [MAF04] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and Middleboxes",
 In Proceedings of Internet Measurement Conference, October
 2004.

 [MQXMZ11] Z. Mao, Z. Qian, Q. Xu, Z. Mao, M. Zhang. "An Untold Story
 of Middleboxes in Cellular Networks", In Proceedings of
 SIGCOMM. August 2011.

 [PHRACK98] "T/TCP vulnerabilities", Phrack Magazine, Volume 8, Issue
 53 artical 6. July 8, 1998. URL

http://www.phrack.com/issues.html?issue=53&id=6

 [QWGMSS11] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, O.
 Spatscheck. "Profiling Resource Usage for Mobile
 Applications: A Cross-layer Approach", In Proceedings of
 International Conference on Mobile Systems. April 2011.

 [RCCJR11] Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A. and
 Raghavan, B., "TCP Fast Open". In Proceedings of 7th ACM
 CoNEXT Conference, December 2011.

 [RFC1644] Braden, R., "T/TCP -- TCP Extensions for Transactions
 Functional Specification", RFC 1644, July 1994.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC6013] Simpson, W., "TCP Cookie Transactions (TCPCT)", RFC6013,
 January 2011.

 [SOUDERS11] S. Souders. "Making A Mobile Connection".
http://www.stevesouders.com/blog/2011/09/21/making-a-
mobile-connection/

 [THK98] Touch, J., Heidemann, J., Obraczka, K., "Analysis of HTTP

http://www.imperialviolet.org/binary/ecntest.pdf
http://www.phrack.com/issues
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc6013
http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/
http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/

Cheng, et. al. Expires January 16, 2014 [Page 21]

Internet Draft TCP Fast Open July 15, 2013

 Performance", USC/ISI Research Report 98-463. December
 1998.

 [BRISCOE12] Briscoe, B., "Some ideas building on draft-ietf-tcpm-
fastopen-01", tcpm list,
http://www.ietf.org/mail-archive/web/tcpm/current/
January 16, 2014msg07192.html

 [BELSHE12] Belshe, M., "The era of browser preconnect.",
http://www.belshe.com/2011/02/10/
the-era-of-browser-preconnect/

Appendix A. Example Socket API Changes to support TFO

 The design rationale is to minimize changes to the socket API and
 hence applications, in order to reduce the deployment hurdle. The
 following changes have been implemented in Linux 3.7 or later
 kernels.

 A.1 MSG_FASTOPEN flag for sendto() or sendmsg()

 MSG_FASTOPEN marks the attempt to send data in SYN like a combination
 of connect() and sendto(), by performing an implicit connect()
 operation. It blocks until the handshake has completed and the data
 is buffered.

 For non-blocking socket it returns the number of bytes buffered and
 sent in the SYN packet. If the cookie is not available locally, it
 returns -1 with errno EINPROGRESS, and sends a SYN with TFO cookie
 request automatically. The caller needs to write the data again when
 the socket is connected.

 It returns the same errno as connect() if the handshake fails.

 A.2 TCP_FASTOPEN setsockopt() Socket Option

 The option enables Fast Open on the listener socket. The option value
 specifies the PendingFastOpenRequests threshold, i.e., the maximum
 length of pending SYNs with data payload. Once enabled, the TCP
 implementation will respond with TFO cookies per request.

 Previously accept() returns only after a socket is connected. But for
 a Fast Open connection, accept() returns upon receiving a SYN with a
 valid Fast Open cookie and data, and the data is available to be read
 through, e.g., recvmsg(), read().

Authors' Addresses

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-01
http://www.ietf.org/mail-archive/web/tcpm/current/January
http://www.ietf.org/mail-archive/web/tcpm/current/January
http://www.belshe.com/2011/02/10/the-era-of-browser-preconnect/
http://www.belshe.com/2011/02/10/the-era-of-browser-preconnect/

Cheng, et. al. Expires January 16, 2014 [Page 22]

Internet Draft TCP Fast Open July 15, 2013

 Yuchung Cheng Google, Inc. 1600 Amphitheatre Parkway Mountain View,
 CA 94043, USA EMail: ycheng@google.com

 Jerry Chu Google, Inc. 1600 Amphitheatre Parkway Mountain View, CA
 94043, USA EMail: hkchu@google.com

 Sivasankar Radhakrishnan Department of Computer Science and
 Engineering University of California, San Diego 9500 Gilman Dr La
 Jolla, CA 92093-0404 EMail: sivasankar@cs.ucsd.edu

 Arvind Jain Google, Inc. 1600 Amphitheatre Parkway Mountain View, CA
 94043, USA EMail: arvind@google.com

Cheng, et. al. Expires January 16, 2014 [Page 23]

