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F-RTO: An Algorithm for Detecting
Spurious Retransmission Timeouts with TCP and SCTP

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of [RFC2026].

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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http://www.ietf.org/ietf/1id-abstracts.txt
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http://www.ietf.org/shadow.html.

Copyright Notice

   Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

   Spurious retransmission timeouts cause suboptimal TCP performance,
   because they often result in unnecessary retransmission of the last
   window of data. This document describes the F-RTO detection algorithm
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   for detecting spurious TCP retransmission timeouts. F-RTO is a TCP
   sender only algorithm that does not require any TCP options to
   operate. After retransmitting the first unacknowledged segment
   triggered by a timeout, the F-RTO algorithm at a TCP sender monitors
   the incoming acknowledgments to determine whether the timeout was
   spurious and to decide whether to send new segments or retransmit

Expires: November 2004                                          [Page 1]



draft-ietf-tcpm-frto-00.txt                                     May 2004

   unacknowledged segments. The algorithm effectively helps to avoid
   additional unnecessary retransmissions and thereby improves TCP
   performance in case of a spurious timeout. The F-RTO algorithm can
   also be applied to SCTP.

Terminology

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [RFC2119].

1.  Introduction

   The Transmission Control Protocol (TCP) [Pos81] has two methods for
   triggering retransmissions.  First, the TCP sender relies on incoming
   duplicate ACKs, which indicate that the receiver is missing some of
   the data. After a required number of successive duplicate ACKs have
   arrived at the sender, it retransmits the first unacknowledged
   segment [APS99] and continues with a loss recovery algorithm such as
   NewReno [FHG04] or SACK-based loss recovery [BAFW03]. Second, the TCP
   sender maintains a retransmission timer which triggers retransmission
   of segments, if they have not been acknowledged before the
   retransmission timeout (RTO) expires. When the retransmission timeout
   occurs, the TCP sender enters the RTO recovery where congestion
   window is initialized to one segment and unacknowledged segments are
   retransmitted using the slow-start algorithm. The retransmission
   timer is adjusted dynamically based on the measured round-trip times
   [PA00].

   It has been pointed out that the retransmission timer can expire
   spuriously and cause unnecessary retransmissions when no segments
   have been lost [LK00, GL02, LM03]. After a spurious retransmission
   timeout the late acknowledgments of the original segments arrive at
   the sender, usually triggering unnecessary retransmissions of whole
   window of segments during the RTO recovery.  Furthermore, after a
   spurious retransmission timeout a conventional TCP sender increases
   the congestion window on each late acknowledgment in slow start,
   injecting a large number of data segments to the network within one
   round-trip time, thus violating the packet conservation principle
   [Jac88].

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
https://datatracker.ietf.org/doc/html/rfc2119


   There are a number of potential reasons for spurious retransmission
   timeouts. First, some mobile networking technologies involve sudden
   delay spikes on transmission because of actions taken during a hand-
   off.  Second, arrival of competing traffic, possibly with higher
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   priority, on a low-bandwidth link or some other change in available
   bandwidth involves a sudden increase of round-trip time which may
   trigger a spurious retransmission timeout. A persistently reliable
   link layer can also cause a sudden delay when a data frame and
   several retransmissions of it are lost for some reason. This document
   does not distinguish the different causes of such a delay spike, but
   discusses the spurious retransmission timeouts caused by a delay
   spike in general.

   This document describes the F-RTO detection algorithm. It is based on
   the detection mechanism of the "Forward RTO-Recovery" (F-RTO)
   algorithm [SKR03] that is used for detecting spurious retransmission
   timeouts and thus avoiding unnecessary retransmissions following the
   retransmission timeout. When the timeout is not spurious, the F-RTO
   algorithm reverts back to the conventional RTO recovery algorithm and
   therefore has similar behavior and performance. F-RTO does not
   require any TCP options in its operation, and it can be implemented
   by modifying only the TCP sender. This is different from alternative
   algorithms (Eifel [LK00], [LM03] and DSACK-based algorithms [BA04])
   that have been suggested for detecting unnecessary retransmissions.
   The Eifel algorithm uses TCP timestamps [BBJ92] for detecting a
   spurious timeout upon arrival of the first acknowledgment after the
   retransmission. The DSACK-based algorithms require that the TCP
   Selective Acknowledgment Option [MMFR96] with the DSACK extension
   [FMMP00] is in use. With DSACK, the TCP receiver can report if it has
   received a duplicate segment, making it possible for the sender to
   detect afterwards whether it has retransmitted segments
   unnecessarily. The F-RTO algorithm only attempts to detect and avoid
   unnecessary retransmissions after an RTO. Eifel and DSACK can also be
   used for detecting unnecessary retransmissions caused by other
   events, for example packet reordering.

   When an RTO expires, the F-RTO sender retransmits the first
   unacknowledged segment as usual [APS99]. Deviating from the normal
   operation after a timeout, it then tries to transmit new, previously
   unsent data, for the first acknowledgment that arrives after the
   timeout given that the acknowledgment advances the window. If the
   second acknowledgment that arrives after the timeout also advances
   the window, i.e., acknowledges data that was not retransmitted, the
   F-RTO sender declares the timeout spurious and exits the RTO
   recovery. However, if either of these two acknowledgments is a
   duplicate ACK, there is no sufficient evidence of a spurious timeout;
   therefore the F-RTO sender retransmits the unacknowledged segments in
   slow start similarly to the traditional algorithm. With a SACK-
   enhanced version of the F-RTO algorithm, spurious timeouts may be
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   detected even if duplicate ACKs arrive after an RTO retransmission.

   The F-RTO algorithm can also be applied with the Stream Control
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   Transmission Protocol (SCTP) [Ste00], because SCTP has similar
   acknowledgment and packet retransmission concepts as TCP. For
   convenience, this document mostly refers to TCP, but the algorithms
   and other discussion are valid also with SCTP.

   This document is organized as follows. Section 2 describes the basic
   F-RTO algorithm. Section 3 outlines an optional enhancement to the F-
   RTO algorithm that takes leverage on the TCP SACK option.  Section 4
   discusses the possible actions to be taken after detecting a spurious
   RTO. Section 5 gives considerations on applying F-RTO with SCTP, and

Section 6 discusses the security considerations.

2.  F-RTO Algorithm

   A spurious timeout is a timeout that would not have had to occur if
   the sender had waited longer for an acknowledgment to arrive [LM03].
   F-RTO affects the TCP sender behavior only after a retransmission
   timeout, otherwise the TCP behavior remains unmodified.  When the RTO
   expires the F-RTO algorithm monitors incoming acknowledgments and
   declares a timeout spurious, if the TCP sender gets an acknowledgment
   for a segment that was not retransmitted due to timeout. The actions
   taken in response to a spurious timeout are not specified in this
   document, but we discuss the different alternatives in Section 4.
   This section first describes the algorithm and then discusses the
   different steps of the algorithm in more detail.

   Following the practice used with the Eifel Detection algorithm
   [LM03], we use the "SpuriousRecovery" variable to indicate whether
   the retransmission is declared spurious by the sender. This variable
   can be used as an input for a corresponding response algorithm. With
   F-RTO, the value of SpuriousRecovery can either be SPUR_TO,
   indicating a spurious retransmission timeout; or FALSE, when the
   timeout is not declared spurious, and the TCP sender should follow
   the conventional RTO recovery algorithm.

2.1.  The Algorithm

   A TCP sender MAY implement the basic F-RTO algorithm, and if it
   chooses to apply the algorithm, the following steps MUST be taken
   after the retransmission timer expires. If the sender implements some
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   other loss recovery algorithm than Reno or NewReno [FHG04], F-RTO
   algorithm SHOULD NOT be entered when earlier fast recovery is
   underway.

   1) When RTO expires, the TCP sender SHOULD retransmit the first
      unacknowledged segment and set SpuriousRecovery to FALSE.  Also,
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      the TCP SHOULD store the highest sequence number transmitted so
      far in variable "recover".

   2) When the first acknowledgment after the RTO retransmission arrives
      at the sender, the sender chooses the following actions depending
      on whether the ACK advances the window or whether it is a
      duplicate ACK.

      a) If the acknowledgment is a duplicate ACK OR it acknowledges a
         sequence number equal to the value of "recover" OR it does not
         acknowledge all of the data that was retransmitted in step 1,
         the TCP sender MUST revert to the conventional RTO recovery and
         continue by retransmitting unacknowledged data in slow start.
         The TCP sender MUST NOT enter step 3 of this algorithm, and the
         SpuriousRecovery variable remains as FALSE.

      b) Else, if the acknowledgment advances the window AND it is below
         the value of "recover", the TCP sender SHOULD transmit up to
         two new (previously unsent) segments and enter step 3 of this
         algorithm. If the TCP sender does not have enough unsent data,
         it SHOULD send only one segment. In addition, the TCP sender
         MAY override the Nagle algorithm [Nag84] and immediately send a
         segment if needed.  Note that sending two segments in this step
         is allowed by TCP congestion control requirements [APS99], but
         F-RTO changes which segments are transmitted.

         If the TCP sender does not have any new data to send, or the
         advertised window limits the transmission, the recommended
         action is to not enter step 3 of this algorithm but continue
         with slow start retransmissions following the conventional RTO
         recovery algorithm. However, alternative ways of handling the
         window limited cases that could result in better performance
         are discussed in Appendix C.

   3) When the second acknowledgment after the RTO retransmission
      arrives at the sender, the TCP sender either declares the timeout
      spurious, or starts retransmitting the unacknowledged segments.

      a) If the acknowledgment is a duplicate ACK, the TCP sender MUST
         set congestion window to no more than 3 * MSS, and continue
         with the slow start algorithm retransmitting unacknowledged
         segments. Congestion window can be set to 3 * MSS, because two
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         round-trip times have elapsed since the RTO, and a conventional
         TCP sender would have increased cwnd to 3 during the same time.
         The sender leaves SpuriousRecovery set to FALSE.

      b) If the acknowledgment advances the window, i.e. it acknowledges
         data that was not retransmitted after the timeout, the TCP
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         sender SHOULD declare the timeout spurious, set
         SpuriousRecovery to SPUR_TO and set the value of "recover"
         variable to SND.UNA, the oldest unacknowledged sequence number
         [Pos81].

2.2.  Discussion

   The F-RTO sender takes cautious actions when it receives duplicate
   acknowledgments after a retransmission timeout. Since duplicate ACKs
   may indicate that segments have been lost, reliably detecting a
   spurious timeout is difficult in the lack of additional information.
   Therefore the safest alternative is to follow the conventional TCP
   recovery in those cases.

   If the first acknowledgment after the RTO retransmission covers the
   "recover" point at algorithm step (2a), there is not enough evidence
   that a non-retransmitted segment has arrived at the receiver after
   the timeout.  This is a common case when a fast retransmission is
   lost and it has been retransmitted again after an RTO, while the rest
   of the unacknowledged segments have successfully been delivered to
   the TCP receiver before the retransmission timeout. Therefore the
   timeout cannot be declared spurious in this case.

   If the first acknowledgment after the RTO retransmission does not
   acknowledge all of the data that was retransmitted in step 1, the TCP
   sender reverts to the conventional RTO recovery. Otherwise, a
   malicious receiver acknowledging partial segments could cause the
   sender to declare the timeout spurious in a case where data was lost.

   The TCP sender is allowed to send two new segments in algorithm
   branch (2b), because the conventional TCP sender would transmit two
   segments when the first new ACK arrives after the RTO retransmission.
   If sending new data is not possible in algorithm branch (2b), or the
   receiver window limits the transmission, the TCP sender has to send
   something in order to prevent the TCP transfer from stalling. If no
   segments were sent, the pipe between sender and receiver may run out
   of segments, and no further acknowledgments would arrive. In this
   case the recommendation is to revert to the conventional RTO recovery
   with slow start retransmissions, but Appendix C discusses some
   alternative solutions for window limited situations.
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   If the RTO is declared spurious, the TCP sender sets the value of the
   "recover" variable to SND.UNA in order to allow fast retransmit
   [FHG04]. The "recover" variable was proposed for avoiding unnecessary
   multiple fast retransmits when RTO expires during fast recovery with
   NewReno TCP. As the sender does not retransmit other segments but the
   one that triggered timeout, the problem addressed by the RFC cannot
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   occur. Therefore, if there are three duplicate ACKs arriving at the
   sender after the timeout, they are likely to indicate a packet loss,
   hence fast retransmit should be used to allow efficient recovery. If
   there are not enough duplicate ACKs arriving at the sender after a
   packet loss, the retransmission timer expires another time and the
   sender enters step 1 of this algorithm.

   When the timeout is declared spurious, the TCP sender cannot detect
   whether the unnecessary RTO retransmission was lost. In principle the
   loss of the RTO retransmission should be taken as a congestion
   signal, and thus there is a small possibility that the F-RTO sender
   violates the congestion control rules, if it chooses to fully revert
   congestion control parameters after detecting a spurious timeout. The
   Eifel detection algorithm has a similar property, while the DSACK
   option can be used to detect whether the retransmitted segment was
   successfully delivered to the receiver.

   The F-RTO algorithm has a side-effect on the TCP round-trip time
   measurement. Because the TCP sender can avoid most of the unnecessary
   retransmissions after detecting a spurious timeout, the sender is
   able to take round-trip time samples on the delayed segments. If the
   regular RTO recovery was used without TCP timestamps, this would not
   be possible due to the retransmission ambiguity. As a result, the RTO
   is likely to have more accurate and larger values with F-RTO than
   with the regular TCP after a spurious timeout that was triggered due
   to delayed segments. We believe this is an advantage in the networks
   that are prone to delay spikes.

   It is possible that the F-RTO algorithm does not always avoid
   unnecessary retransmissions after a spurious timeout. If packet
   reordering or packet duplication occurs on the segment that triggered
   the spurious timeout, the F-RTO algorithm may not detect the spurious
   timeout due to incoming duplicate ACKs. Additionally, if a spurious
   timeout occurs during fast recovery, the F-RTO algorithm often cannot
   detect the spurious timeout, because the segments transmitted before
   the fast recovery trigger duplicate ACKs.  However, we consider these
   cases relatively rare, and note that in cases where F-RTO fails to
   detect the spurious timeout, it performs similarly to the regular RTO
   recovery.

3.  A SACK-enhanced version of the F-RTO algorithm
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   This section describes an alternative version of the F-RTO algorithm,
   that makes use of TCP Selective Acknowledgment Option [MMFR96].  By
   using the SACK option the TCP sender can detect spurious timeouts in
   most of the cases when packet reordering or packet duplication is
   present. The difference to the basic F-RTO algorithm is that the
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   sender may declare timeout spurious even when duplicate ACKs follow
   the RTO, if the SACK blocks acknowledge new data that was not
   transmitted after the RTO retransmission.

   Given that the TCP Selective Acknowledgment Option [MMFR96] is
   enabled for a TCP connection, a TCP sender MAY implement the SACK-
   enhanced F-RTO algorithm. If the sender applies the SACK-enhanced F-
   RTO algorithm, it MUST follow the steps below.  This algorithm SHOULD
   NOT be applied, if the TCP sender is already in loss recovery when
   retransmission timeout occurs.  However, it should be possible to
   apply the principle of F-RTO within certain limitations also when
   retransmission timeout occurs during existing loss recovery. While
   this is a topic of further research, Appendix B briefly discusses the
   related issues.

   1) When the RTO expires, the TCP sender SHOULD retransmit the first
      unacknowledged segment and set SpuriousRecovery to FALSE. Variable
      "recover" is set to indicate the highest segment transmitted so
      far. Following the recommendation in SACK specification [MMFR96],
      the SACK scoreboard SHOULD be reset.

   2) Wait until the acknowledgment for the data retransmitted due to
      the timeout arrives at the sender. If duplicate ACKs arrive before
      the cumulative acknowledgment for retransmitted data, adjust the
      scoreboard according to the incoming SACK information but stay in
      step 2 waiting for the next new acknowledgment. If RTO expires
      again, restart the algorithm.

      a) if a cumulative ACK acknowledges a sequence number equal to
         "recover", the TCP sender SHOULD revert to the conventional RTO
         recovery and it MUST set congestion window to no more than 2 *
         MSS. The sender MUST NOT enter step 3 of this algorithm.

      b) else, if a cumulative ACK acknowledges a sequence number
         smaller than "recover" but larger than SND.UNA, the TCP sender
         SHOULD transmit up to two new (previously unsent) segments and
         proceed to step 3. If the TCP sender is not able to transmit
         any previously unsent data due to receiver window limitation or
         because it does not have any new data to send, the recommended
         action is to not enter step 3 of this algorithm but continue
         with slow start retransmissions following the conventional RTO
         recovery algorithm.
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         It is also possible to apply some of the alternatives for
         handling window limited cases discussed in Appendix C. In this
         case, the TCP sender should also follow the recommendations
         concerning acknowledgments of retransmitted segments given in

Appendix B.
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   3) The next acknowledgment arrives at the sender. Either duplicate
      ACK or a new cumulative ACK advancing the window applies in this
      step.

      a) if the ACK acknowledges sequence number above "recover", either
         in SACK blocks or as a cumulative ACK, the sender MUST set
         congestion window to no more than 3 * MSS and proceed with the
         conventional RTO recovery, retransmitting unacknowledged
         segments. The sender SHOULD take this branch also when the
         acknowledgment is a duplicate ACK and it does not acknowledge
         any new previously unacknowledged data below "recover" in the
         SACK blocks. The sender leaves SpuriousRecovery set to FALSE.

      b) if the ACK does not acknowledge sequence numbers above
         "recover" AND it acknowledges data that was not acknowledged
         earlier either with cumulative acknowledgment or using SACK
         blocks, the TCP sender SHOULD declare the timeout spurious and
         set SpuriousRecovery to SPUR_TO. The retransmission timeout can
         be declared spurious, because the segment acknowledged with
         this ACK was transmitted before the timeout.

   If there are unacknowledged holes between the received SACK blocks,
   those segments SHOULD be retransmitted similarly to the conventional
   SACK recovery algorithm [BAFW03].  If the algorithm exits with
   SpuriousRecovery set to SPUR_TO, "recover" SHOULD be set to SND.UNA,
   thus allowing fast recovery on incoming duplicate acknowledgments.

4.  Taking Actions after Detecting Spurious RTO

   Upon retransmission timeout, a conventional TCP sender assumes that
   outstanding segments are lost and starts retransmitting the
   unacknowledged segments. When the retransmission timeout is detected
   to be spurious, the TCP sender should not continue retransmitting
   based on the timeout. For example, if the sender was in congestion
   avoidance phase transmitting new previously unsent segments, it
   should continue transmitting previously unsent segments after
   detecting spurious RTO. This document does not describe the response
   to spurious timeout, but a response algorithm is described in another
   IETF document [LG04].

   Additionally, different response variants to spurious retransmission
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   timeout have been discussed in various research papers [SKR03, GL03,
   Sar03] and Internet-Drafts [SL03]. The different response
   alternatives vary in whether the spurious retransmission timeout
   should be taken as a congestion signal, thus causing the congestion
   window or slow start threshold to be reduced at the sender, or
   whether the congestion control state should be fully reverted to the
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   state valid prior to the retransmission timeout.

5.  SCTP Considerations

   SCTP has similar retransmission algorithms and congestion control to
   TCP. The SCTP T3-rtx timer for one destination address is maintained
   in the same way than the TCP retransmission timer, and after a T3-rtx
   expires, an SCTP sender retransmits unacknowledged data chunks in
   slow start like TCP does.  Therefore, SCTP is vulnerable to the nega-
   tive effects of the spurious retransmission timeouts similarly to
   TCP. Due to similar RTO recovery algorithms, F-RTO algorithm logic
   can be applied also to SCTP. Since SCTP uses selective acknowledg-
   ments, the SACK-based variant of the algorithm is recommended,
   although the basic version can also be applied to SCTP. However, SCTP
   contains features that are not present with TCP that need to be dis-
   cussed when applying the F-RTO algorithm.

   SCTP association can be multi-homed. The current retransmission pol-
   icy states that retransmissions should go to alternative addresses.
   If the retransmission was due to spurious timeout caused by a delay
   spike, it is possible that the acknowledgment for the retransmission
   arrives back at the sender before the acknowledgments of the original
   transmissions arrive. If this happens, a possible loss of the origi-
   nal transmission of the data chunk that was retransmitted due to the
   spurious timeout may remain undetected when applying the F-RTO algo-
   rithm.  Because the timeout was caused by a delay spike, and it was
   spurious in that respect, a suitable response is to continue by send-
   ing new data. However, if the original transmission was lost, fully
   reverting the congestion control parameters is too aggressive. There-
   fore, taking conservative actions on congestion control is recom-
   mended, if the SCTP association is multi-homed and retransmissions go
   to alternative address. The information in duplicate TSNs can be then
   used for reverting congestion control, if desired [BA04].

   Note that the forward transmissions made in F-RTO algorithm step (2b)
   should be destined to the primary address, since they are not
   retransmissions.

   When making a retransmission, a SCTP sender can bundle a number of
   unacknowledged data chunks and include them in the same packet. This
   needs to be considered when implementing F-RTO for SCTP. The basic
   principle of F-RTO still holds: in order to declare the timeout spu-
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   rious, the sender must get an acknowledgment for a data chunk that
   was not retransmitted after the retransmission timeout. In other
   words, acknowledgments of data chunks that were bundled in RTO
   retransmission must not be used for declaring the timeout spurious.
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6.  Security Considerations

   The main security threat regarding F-RTO is the possibility of a
   receiver misleading the sender to set too large a congestion window
   after an RTO.  There are two possible ways a malicious receiver could
   trigger a wrong output from the F-RTO algorithm. First, the receiver
   can acknowledge data that it has not received. Second, it can delay
   acknowledgment of a segment it has received earlier, and acknowledge
   the segment after the TCP sender has been deluded to enter algorithm
   step 3.

   If the receiver acknowledges a segment it has not really received,
   the sender can be lead to declare spurious timeout in F-RTO algorithm
   step 3. However, since this causes the sender to have incorrect
   state, it cannot retransmit the segment that has never reached the
   receiver. Therefore, this attack is unlikely to be useful for the
   receiver to maliciously gain a larger congestion window.

   A common case for a retransmission timeout is that a fast retransmis-
   sion of a segment is lost. If all other segments have been received,
   the RTO retransmission causes the whole window to be acknowledged at
   once. This case is recognized in F-RTO algorithm branch (2a). How-
   ever, if the receiver only acknowledges one segment after receiving
   the RTO retransmission, and then the rest of the segments, it could
   cause the timeout to be declared spurious when it is not. Therefore,
   it is suggested that when an RTO expires during fast recovery phase,
   the sender would not fully revert the congestion window even if the
   timeout was declared spurious, but reduce the congestion window to 1.
   However, the sender can take actions to avoid unnecessary retransmis-
   sions normally. If a TCP sender implements a burst avoidance algo-
   rithm that limits the sending rate to be no higher than in slow
   start, this precaution is not needed, and the sender may apply F-RTO
   normally.

   If there are more than one segments missing at the time when a
   retransmission timeout occurs, the receiver does not benefit from
   misleading the sender to declare a spurious timeout, because the
   sender would then have to go through another recovery period to
   retransmit the missing segments, usually after an RTO has elapsed.
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   the basic F-RTO algorithm performs in those scenarios. The
   interesting scenarios are a sudden delay triggering retransmission
   timeout, loss of a retransmitted packet during fast recovery, link
   outage causing the loss of several packets, and packet reordering. A
   performance evaluation with a more thorough analysis on a real
   implementation of F-RTO is given in [SKR03].

A.1.  Sudden delay
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   The main motivation of F-RTO algorithm is to improve TCP performance
   when a delay spike triggers a spurious retransmission timeout.  The
   example below illustrates the segments and acknowledgments
   transmitted by the TCP end hosts when a spurious timeout occurs, but
   no packets are lost. For simplicity, delayed acknowledgments are not
   used in the example. The example below applies the Eifel Response
   Algorithm [LG04] after detecting a spurious timeout.

         ...
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         1.          <---------------------------- ACK 5
         2.  SEND 10 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         3.          <---------------------------- ACK 6
         4.  SEND 11 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         5.                       |
                               [delay]
                                  |
             [RTO]
             [F-RTO step (1)]
         6.  SEND 6  ---------------------------->
          (cwnd = 6, ssthresh = 3, FlightSize = 6)
                     <earlier xmitted SEG 6>  --->
         7.          <---------------------------- ACK 7
             [F-RTO step (2b)]
         8.  SEND 12 ---------------------------->
         9.  SEND 13 ---------------------------->
          (cwnd = 7, ssthresh = 3, FlightSize = 7)
                     <earlier xmitted SEG 7>  --->
         10.         <---------------------------- ACK 8
             [F-RTO step (3b)]
             [SpuriousRecovery <- SPUR_TO]
           (cwnd = 7, ssthresh = 6, FlightSize = 6)
         11. SEND 14 ---------------------------->
           (cwnd = 7, ssthresh = 6, FlightSize = 7)
         12.         <---------------------------- ACK 9
         13. SEND 15 ---------------------------->
           (cwnd = 7, ssthresh = 6, FlightSize = 7)
         14.         <---------------------------- ACK 10
         15. SEND 16 ---------------------------->
           (cwnd = 7, ssthresh = 6, FlightSize = 7)
         ...

   When a sudden delay long enough to trigger timeout occurs at step 5,
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   the TCP sender retransmits the first unacknowledged segment (step 6).
   The next ACK covers the RTO retransmission because originally
   transmitted segment 6 arrives at the receiver, and the TCP sender
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   continues by sending two new data segments (steps 8, 9). Note that on
   F-RTO steps (1) and (2b) congestion window and FlightSize are not yet
   reset, because in case of possible spurious timeout the segments sent
   before the timeout are still in the network. However, the sender
   should still be equally aggressive to conventional TCP. Because the
   second acknowledgment arriving after the RTO retransmission
   acknowledges data that was not retransmitted due to timeout (step
   10), the TCP sender declares the timeout as spurious and continues by
   sending new data on next acknowledgments. Also the congestion control
   state is reversed, as required by the Eifel Response Algorithm.

A.2.  Loss of a retransmission

   If a retransmitted segment is lost, the only way to retransmit it
   again is to wait for the timeout to trigger the retransmission. Once
   the segment is successfully received, the receiver usually
   acknowledges several segments at once, because other segments in the
   same window have been successfully delivered before the
   retransmission arrives at the receiver. The example below shows a
   scenario where retransmission (of segment 6) is lost, as well as a
   later segment (segment 9) in the same window. The limited transmit
   [ABF01] or SACK TCP [MMFR96] enhancements are not in use in this
   example.

         ...
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
             <segment 6 lost>
             <segment 9 lost>
         1.          <---------------------------- ACK 5
         2.  SEND 10 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         3.          <---------------------------- ACK 6
         4.  SEND 11 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         5.          <---------------------------- ACK 6
         6.          <---------------------------- ACK 6
         7.          <---------------------------- ACK 6
         8.  SEND 6  --------------X
          (cwnd = 6, ssthresh = 3, FlightSize = 6)
             <segment 6 lost>
         9.          <---------------------------- ACK 6
         10. SEND 12 ---------------------------->
          (cwnd = 7, ssthresh = 3, FlightSize = 7)
         11.         <---------------------------- ACK 6
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         12. SEND 13 ---------------------------->
          (cwnd = 8, ssthresh = 3, FlightSize = 8)
             [RTO]
         13. SEND 6  ---------------------------->
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          (cwnd = 8, ssthresh = 2, FlightSize = 8)
         14.         <---------------------------- ACK 9
             [F-RTO step (2b)]
         15. SEND 14 ---------------------------->
         16. SEND 15 ---------------------------->
          (cwnd = 7, ssthresh = 2, FlightSize = 7)
         17.         <---------------------------- ACK 9
             [F-RTO step (3a)]
             [SpuriousRecovery <- FALSE]
          (cwnd = 3, ssthresh = 2, FlightSize = 7)
         18. SEND 9  ---------------------------->
         19. SEND 10 ---------------------------->
         20. SEND 11 ---------------------------->
         ...

   In the example above, segment 6 is lost and the sender retransmits it
   after three duplicate ACKs in step 8. However, the retransmission is
   also lost, and the sender has to wait for the RTO to expire before
   retransmitting it again. Because the first ACK following the RTO
   retransmission acknowledges the RTO retransmission (step 14), the
   sender transmits two new segments. The second ACK in step 17 does not
   acknowledge any previously unacknowledged data. Therefore the F-RTO
   sender enters the slow start and sets cwnd to 3 * MSS. Congestion
   window can be set to three segments, because two round-trips have
   elapsed after the retransmission timeout. After this the receiver
   acknowledges all segments transmitted prior to entering recovery and
   the sender can continue transmitting new data in congestion
   avoidance.

A.3.  Link outage

   The example below illustrates the F-RTO behavior when 4 consecutive
   packets are lost in the network causing the TCP sender to fall back
   to RTO recovery. Limited transmit and SACK are not used in this
   example.

         ...
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
             <segments 6-9 lost>
         1.          <---------------------------- ACK 5
         2.  SEND 10 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         3.          <---------------------------- ACK 6
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         4.  SEND 11 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         5.          <---------------------------- ACK 6
                                  |
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                                  |
             [RTO]
         6.  SEND 6  ---------------------------->
          (cwnd = 6, ssthresh = 3, FlightSize = 6)
         7.          <---------------------------- ACK 7
             [F-RTO step (2b)]
         8.  SEND 12 ---------------------------->
         9.  SEND 13 ---------------------------->
          (cwnd = 7, ssthresh = 3, FlightSize = 7)
         10.         <---------------------------- ACK 7
             [F-RTO step (3a)]
             [SpuriousRecovery <- FALSE]
          (cwnd = 3, ssthresh = 3, FlightSize = 7)
         11. SEND 7  ---------------------------->
         12. SEND 8  ---------------------------->
         13. SEND 9  ---------------------------->

   Again, F-RTO sender transmits two new segments (steps 8 and 9) after
   the RTO retransmission is acknowledged. Because the next ACK does not
   acknowledge any data that was not retransmitted after the
   retransmission timeout (step 10), the F-RTO sender proceeds with
   conventional recovery and slow start retransmissions.

A.4.  Packet reordering

   Since F-RTO modifies the TCP sender behavior only after a
   retransmission timeout and it is intended to avoid unnecessary
   retransmits only after spurious timeout, we limit the discussion on
   the effects of packet reordering in F-RTO behavior to the cases where
   packet reordering occurs immediately after the retransmission
   timeout.  When the TCP receiver gets an out-of-order segment, it
   generates a duplicate ACK. If the TCP sender implements the basic F-
   RTO algorithm, this may prevent the sender from detecting a spurious
   timeout.

   However, if the TCP sender applies the SACK-enhanced F-RTO, it is
   possible to detect a spurious timeout also when packet reordering
   occurs. We illustrate the behavior of SACK-enhanced F-RTO below when
   segment 8 arrives before segments 6 and 7, and segments starting from
   segment 6 are delayed in the network. In this example the TCP sender
   reduces the congestion window and slow start threshold in response to
   spurious timeout.
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         ...
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
         1.          <---------------------------- ACK 5
         2.  SEND 10 ---------------------------->
          (cwnd = 6, ssthresh < 6, FlightSize = 6)
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         3.          <---------------------------- ACK 6
         4.  SEND 11 ---------------------------->
         5.                       |
                               [delay]
                                  |
             [RTO]
         6.  SEND 6  ---------------------------->
          (cwnd = 6, ssthresh = 3, FlightSize = 6)
                     <earlier xmitted SEG 8>  --->
         7.          <---------------------------- ACK 6
                                                   [SACK 8]
             [SACK F-RTO stays in step 2]
         8.          <earlier xmitted SEG 6>  --->
         9.          <---------------------------- ACK 7
                                                   [SACK 8]
             [SACK F-RTO step (2b)]
         10. SEND 12 ---------------------------->
         11. SEND 13 ---------------------------->
           (cwnd = 7, ssthresh = 3, FlightSize = 7)
         12.         <earlier xmitted SEG 7>  --->
         13.         <---------------------------- ACK 9
             [SACK F-RTO step (3b)]
             [SpuriousRecovery <- SPUR_TO]
           (cwnd = 7, ssthresh = 6, FlightSize = 6)
         14. SEND 14 ---------------------------->
           (cwnd = 7, ssthresh = 6, FlightSize = 7)
         15.         <---------------------------- ACK 10
         16. SEND 15 ---------------------------->
         ...

   After RTO expires and the sender retransmits segment 6 (step 6), the
   receiver gets segment 8 and generates duplicate ACK with SACK for
   segment 8. In response to the acknowledgment the TCP sender does not
   send anything but stays in F-RTO step 2. Because the next
   acknowledgment advances the cumulative ACK point (step 9), the sender
   can transmit two new segments according to SACK-enhanced F-RTO. The
   next segment acknowledges new data between 7 and 11 that was not
   acknowledged earlier (segment 7), so the F-RTO sender declares the
   timeout spurious.

Appendix B: Applying SACK-enhanced F-RTO when RTO occurs during loss
recovery

   We believe that slightly modified SACK-enhanced F-RTO algorithm can
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   be used to detect spurious timeouts also when RTO expires while an
   earlier loss recovery is underway. However, there are issues that
   need to be considered if F-RTO is applied in this case.
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   The original SACK-based F-RTO requires in algorithm step 3 that an
   ACK acknowledges previously unacknowledged non-retransmitted data
   between SND.UNA and send_high. If RTO expires during earlier (SACK-
   based) loss recovery, the F-RTO sender must only use acknowledgments
   for non-retransmitted segments transmitted before the SACK-based loss
   recovery started. This means that in order to declare timeout
   spurious the TCP sender must receive an acknowledgment for non-
   retransmitted segment between SND.UNA and RecoveryPoint in algorithm
   step 3. RecoveryPoint is defined in conservative SACK-recovery
   algorithm [BAFW03], and it is set to indicate the highest segment
   transmitted so far when SACK-based loss recovery begins. In other
   words, if the TCP sender receives acknowledgment for segment that was
   transmitted more than one RTO ago, it can declare the timeout
   spurious. Defining an efficient algorithm for checking these
   conditions remains as a future work item.

   When spurious timeout is detected according to the rules given above,
   it may be possible that the response algorithm needs to consider this
   case separately, for example in terms of what segments to retransmit
   after RTO expires, and whether it is safe to revert the congestion
   control parameters in this case. This is considered as a topic of
   future research.

Appendix C: Discussion on Window Limited Cases

   When the advertised window limits the transmission of two new
   previously unsent segments, or there are no new data to sent, it was
   recommended in F-RTO algorithm step (2b) that the TCP sender would
   continue with conventional RTO recovery algorithm. The disadvantage
   of doing this is that the sender may continue unnecessary
   retransmissions due to possible spurious timeout. This section
   briefly discusses the options that can potentially result in better
   performance when transmitting previously unsent data is not possible.

   - The TCP sender could reserve an unused space of a size of one or
     two segments in the advertised window to ensure the use of
     algorithms such as F-RTO or Limited Transmit [ABF01] in window
     limited situations. On the other hand, while doing this, the TCP
     sender should ensure that the window of outstanding segments is
     large enough to have a proper utilization of the available pipe.

   - Use additional information if available, e.g. TCP timestamps with
     the Eifel Detection algorithm, for detecting a spurious timeout.
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     However, Eifel detection may yield different results from F-RTO
     when ACK losses and a RTO occur within the same round-trip time
     [SKR03].

   - Retransmit data from the tail of the retransmission queue and

Expires: November 2004                                         [Page 19]



draft-ietf-tcpm-frto-00.txt                                     May 2004

     continue with step 3 of the F-RTO algorithm. It is possible that
     the retransmission is unnecessarily made, hence this option is not
     encouraged, except for hosts that are known to operate in an
     environment that is highly likely to have spurious timeouts. On the
     other hand, with this method it is possible to avoid several
     unnecessary retransmissions due to spurious timeout by doing only
     one retransmission that may be unnecessary.

   - Send a zero-sized segment below SND.UNA similar to TCP Keep-Alive
     probe and continue with step 3 of the F-RTO algorithm. Since the
     receiver replies with a duplicate ACK, the sender is able to detect
     from the incoming acknowledgment whether the timeout was spurious.
     While this method does not send data unnecessarily, it delays the
     recovery by one round-trip time in cases where the timeout was not
     spurious, and therefore is not encouraged.

   - In receiver-limited cases, send one octet of new data regardless of
     the advertised window limit, and continue with step 3 of the F-RTO
     algorithm. It is possible that the receiver has free buffer space
     to receive the data by the time the segment has propagated through
     the network, in which case no harm is done. If the receiver is not
     capable of receiving the segment, it rejects the segment and sends
     a duplicate ACK.
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