
Internet Engineering Task Force P. Sarolahti
INTERNET DRAFT Nokia Research Center
File: draft-ietf-tcpm-frto-00.txt M. Kojo
 University of Helsinki
 May, 2004
 Expires: November, 2004

F-RTO: An Algorithm for Detecting
Spurious Retransmission Timeouts with TCP and SCTP

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 Spurious retransmission timeouts cause suboptimal TCP performance,
 because they often result in unnecessary retransmission of the last
 window of data. This document describes the F-RTO detection algorithm

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 for detecting spurious TCP retransmission timeouts. F-RTO is a TCP
 sender only algorithm that does not require any TCP options to
 operate. After retransmitting the first unacknowledged segment
 triggered by a timeout, the F-RTO algorithm at a TCP sender monitors
 the incoming acknowledgments to determine whether the timeout was
 spurious and to decide whether to send new segments or retransmit

Expires: November 2004 [Page 1]

draft-ietf-tcpm-frto-00.txt May 2004

 unacknowledged segments. The algorithm effectively helps to avoid
 additional unnecessary retransmissions and thereby improves TCP
 performance in case of a spurious timeout. The F-RTO algorithm can
 also be applied to SCTP.

Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

1. Introduction

 The Transmission Control Protocol (TCP) [Pos81] has two methods for
 triggering retransmissions. First, the TCP sender relies on incoming
 duplicate ACKs, which indicate that the receiver is missing some of
 the data. After a required number of successive duplicate ACKs have
 arrived at the sender, it retransmits the first unacknowledged
 segment [APS99] and continues with a loss recovery algorithm such as
 NewReno [FHG04] or SACK-based loss recovery [BAFW03]. Second, the TCP
 sender maintains a retransmission timer which triggers retransmission
 of segments, if they have not been acknowledged before the
 retransmission timeout (RTO) expires. When the retransmission timeout
 occurs, the TCP sender enters the RTO recovery where congestion
 window is initialized to one segment and unacknowledged segments are
 retransmitted using the slow-start algorithm. The retransmission
 timer is adjusted dynamically based on the measured round-trip times
 [PA00].

 It has been pointed out that the retransmission timer can expire
 spuriously and cause unnecessary retransmissions when no segments
 have been lost [LK00, GL02, LM03]. After a spurious retransmission
 timeout the late acknowledgments of the original segments arrive at
 the sender, usually triggering unnecessary retransmissions of whole
 window of segments during the RTO recovery. Furthermore, after a
 spurious retransmission timeout a conventional TCP sender increases
 the congestion window on each late acknowledgment in slow start,
 injecting a large number of data segments to the network within one
 round-trip time, thus violating the packet conservation principle
 [Jac88].

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
https://datatracker.ietf.org/doc/html/rfc2119

 There are a number of potential reasons for spurious retransmission
 timeouts. First, some mobile networking technologies involve sudden
 delay spikes on transmission because of actions taken during a hand-
 off. Second, arrival of competing traffic, possibly with higher

Expires: November 2004 [Page 2]

draft-ietf-tcpm-frto-00.txt May 2004

 priority, on a low-bandwidth link or some other change in available
 bandwidth involves a sudden increase of round-trip time which may
 trigger a spurious retransmission timeout. A persistently reliable
 link layer can also cause a sudden delay when a data frame and
 several retransmissions of it are lost for some reason. This document
 does not distinguish the different causes of such a delay spike, but
 discusses the spurious retransmission timeouts caused by a delay
 spike in general.

 This document describes the F-RTO detection algorithm. It is based on
 the detection mechanism of the "Forward RTO-Recovery" (F-RTO)
 algorithm [SKR03] that is used for detecting spurious retransmission
 timeouts and thus avoiding unnecessary retransmissions following the
 retransmission timeout. When the timeout is not spurious, the F-RTO
 algorithm reverts back to the conventional RTO recovery algorithm and
 therefore has similar behavior and performance. F-RTO does not
 require any TCP options in its operation, and it can be implemented
 by modifying only the TCP sender. This is different from alternative
 algorithms (Eifel [LK00], [LM03] and DSACK-based algorithms [BA04])
 that have been suggested for detecting unnecessary retransmissions.
 The Eifel algorithm uses TCP timestamps [BBJ92] for detecting a
 spurious timeout upon arrival of the first acknowledgment after the
 retransmission. The DSACK-based algorithms require that the TCP
 Selective Acknowledgment Option [MMFR96] with the DSACK extension
 [FMMP00] is in use. With DSACK, the TCP receiver can report if it has
 received a duplicate segment, making it possible for the sender to
 detect afterwards whether it has retransmitted segments
 unnecessarily. The F-RTO algorithm only attempts to detect and avoid
 unnecessary retransmissions after an RTO. Eifel and DSACK can also be
 used for detecting unnecessary retransmissions caused by other
 events, for example packet reordering.

 When an RTO expires, the F-RTO sender retransmits the first
 unacknowledged segment as usual [APS99]. Deviating from the normal
 operation after a timeout, it then tries to transmit new, previously
 unsent data, for the first acknowledgment that arrives after the
 timeout given that the acknowledgment advances the window. If the
 second acknowledgment that arrives after the timeout also advances
 the window, i.e., acknowledges data that was not retransmitted, the
 F-RTO sender declares the timeout spurious and exits the RTO
 recovery. However, if either of these two acknowledgments is a
 duplicate ACK, there is no sufficient evidence of a spurious timeout;
 therefore the F-RTO sender retransmits the unacknowledged segments in
 slow start similarly to the traditional algorithm. With a SACK-
 enhanced version of the F-RTO algorithm, spurious timeouts may be

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 detected even if duplicate ACKs arrive after an RTO retransmission.

 The F-RTO algorithm can also be applied with the Stream Control

Expires: November 2004 [Page 3]

draft-ietf-tcpm-frto-00.txt May 2004

 Transmission Protocol (SCTP) [Ste00], because SCTP has similar
 acknowledgment and packet retransmission concepts as TCP. For
 convenience, this document mostly refers to TCP, but the algorithms
 and other discussion are valid also with SCTP.

 This document is organized as follows. Section 2 describes the basic
 F-RTO algorithm. Section 3 outlines an optional enhancement to the F-
 RTO algorithm that takes leverage on the TCP SACK option. Section 4
 discusses the possible actions to be taken after detecting a spurious
 RTO. Section 5 gives considerations on applying F-RTO with SCTP, and

Section 6 discusses the security considerations.

2. F-RTO Algorithm

 A spurious timeout is a timeout that would not have had to occur if
 the sender had waited longer for an acknowledgment to arrive [LM03].
 F-RTO affects the TCP sender behavior only after a retransmission
 timeout, otherwise the TCP behavior remains unmodified. When the RTO
 expires the F-RTO algorithm monitors incoming acknowledgments and
 declares a timeout spurious, if the TCP sender gets an acknowledgment
 for a segment that was not retransmitted due to timeout. The actions
 taken in response to a spurious timeout are not specified in this
 document, but we discuss the different alternatives in Section 4.
 This section first describes the algorithm and then discusses the
 different steps of the algorithm in more detail.

 Following the practice used with the Eifel Detection algorithm
 [LM03], we use the "SpuriousRecovery" variable to indicate whether
 the retransmission is declared spurious by the sender. This variable
 can be used as an input for a corresponding response algorithm. With
 F-RTO, the value of SpuriousRecovery can either be SPUR_TO,
 indicating a spurious retransmission timeout; or FALSE, when the
 timeout is not declared spurious, and the TCP sender should follow
 the conventional RTO recovery algorithm.

2.1. The Algorithm

 A TCP sender MAY implement the basic F-RTO algorithm, and if it
 chooses to apply the algorithm, the following steps MUST be taken
 after the retransmission timer expires. If the sender implements some

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 other loss recovery algorithm than Reno or NewReno [FHG04], F-RTO
 algorithm SHOULD NOT be entered when earlier fast recovery is
 underway.

 1) When RTO expires, the TCP sender SHOULD retransmit the first
 unacknowledged segment and set SpuriousRecovery to FALSE. Also,

Expires: November 2004 [Page 4]

draft-ietf-tcpm-frto-00.txt May 2004

 the TCP SHOULD store the highest sequence number transmitted so
 far in variable "recover".

 2) When the first acknowledgment after the RTO retransmission arrives
 at the sender, the sender chooses the following actions depending
 on whether the ACK advances the window or whether it is a
 duplicate ACK.

 a) If the acknowledgment is a duplicate ACK OR it acknowledges a
 sequence number equal to the value of "recover" OR it does not
 acknowledge all of the data that was retransmitted in step 1,
 the TCP sender MUST revert to the conventional RTO recovery and
 continue by retransmitting unacknowledged data in slow start.
 The TCP sender MUST NOT enter step 3 of this algorithm, and the
 SpuriousRecovery variable remains as FALSE.

 b) Else, if the acknowledgment advances the window AND it is below
 the value of "recover", the TCP sender SHOULD transmit up to
 two new (previously unsent) segments and enter step 3 of this
 algorithm. If the TCP sender does not have enough unsent data,
 it SHOULD send only one segment. In addition, the TCP sender
 MAY override the Nagle algorithm [Nag84] and immediately send a
 segment if needed. Note that sending two segments in this step
 is allowed by TCP congestion control requirements [APS99], but
 F-RTO changes which segments are transmitted.

 If the TCP sender does not have any new data to send, or the
 advertised window limits the transmission, the recommended
 action is to not enter step 3 of this algorithm but continue
 with slow start retransmissions following the conventional RTO
 recovery algorithm. However, alternative ways of handling the
 window limited cases that could result in better performance
 are discussed in Appendix C.

 3) When the second acknowledgment after the RTO retransmission
 arrives at the sender, the TCP sender either declares the timeout
 spurious, or starts retransmitting the unacknowledged segments.

 a) If the acknowledgment is a duplicate ACK, the TCP sender MUST
 set congestion window to no more than 3 * MSS, and continue
 with the slow start algorithm retransmitting unacknowledged
 segments. Congestion window can be set to 3 * MSS, because two

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 round-trip times have elapsed since the RTO, and a conventional
 TCP sender would have increased cwnd to 3 during the same time.
 The sender leaves SpuriousRecovery set to FALSE.

 b) If the acknowledgment advances the window, i.e. it acknowledges
 data that was not retransmitted after the timeout, the TCP

Expires: November 2004 [Page 5]

draft-ietf-tcpm-frto-00.txt May 2004

 sender SHOULD declare the timeout spurious, set
 SpuriousRecovery to SPUR_TO and set the value of "recover"
 variable to SND.UNA, the oldest unacknowledged sequence number
 [Pos81].

2.2. Discussion

 The F-RTO sender takes cautious actions when it receives duplicate
 acknowledgments after a retransmission timeout. Since duplicate ACKs
 may indicate that segments have been lost, reliably detecting a
 spurious timeout is difficult in the lack of additional information.
 Therefore the safest alternative is to follow the conventional TCP
 recovery in those cases.

 If the first acknowledgment after the RTO retransmission covers the
 "recover" point at algorithm step (2a), there is not enough evidence
 that a non-retransmitted segment has arrived at the receiver after
 the timeout. This is a common case when a fast retransmission is
 lost and it has been retransmitted again after an RTO, while the rest
 of the unacknowledged segments have successfully been delivered to
 the TCP receiver before the retransmission timeout. Therefore the
 timeout cannot be declared spurious in this case.

 If the first acknowledgment after the RTO retransmission does not
 acknowledge all of the data that was retransmitted in step 1, the TCP
 sender reverts to the conventional RTO recovery. Otherwise, a
 malicious receiver acknowledging partial segments could cause the
 sender to declare the timeout spurious in a case where data was lost.

 The TCP sender is allowed to send two new segments in algorithm
 branch (2b), because the conventional TCP sender would transmit two
 segments when the first new ACK arrives after the RTO retransmission.
 If sending new data is not possible in algorithm branch (2b), or the
 receiver window limits the transmission, the TCP sender has to send
 something in order to prevent the TCP transfer from stalling. If no
 segments were sent, the pipe between sender and receiver may run out
 of segments, and no further acknowledgments would arrive. In this
 case the recommendation is to revert to the conventional RTO recovery
 with slow start retransmissions, but Appendix C discusses some
 alternative solutions for window limited situations.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 If the RTO is declared spurious, the TCP sender sets the value of the
 "recover" variable to SND.UNA in order to allow fast retransmit
 [FHG04]. The "recover" variable was proposed for avoiding unnecessary
 multiple fast retransmits when RTO expires during fast recovery with
 NewReno TCP. As the sender does not retransmit other segments but the
 one that triggered timeout, the problem addressed by the RFC cannot

Expires: November 2004 [Page 6]

draft-ietf-tcpm-frto-00.txt May 2004

 occur. Therefore, if there are three duplicate ACKs arriving at the
 sender after the timeout, they are likely to indicate a packet loss,
 hence fast retransmit should be used to allow efficient recovery. If
 there are not enough duplicate ACKs arriving at the sender after a
 packet loss, the retransmission timer expires another time and the
 sender enters step 1 of this algorithm.

 When the timeout is declared spurious, the TCP sender cannot detect
 whether the unnecessary RTO retransmission was lost. In principle the
 loss of the RTO retransmission should be taken as a congestion
 signal, and thus there is a small possibility that the F-RTO sender
 violates the congestion control rules, if it chooses to fully revert
 congestion control parameters after detecting a spurious timeout. The
 Eifel detection algorithm has a similar property, while the DSACK
 option can be used to detect whether the retransmitted segment was
 successfully delivered to the receiver.

 The F-RTO algorithm has a side-effect on the TCP round-trip time
 measurement. Because the TCP sender can avoid most of the unnecessary
 retransmissions after detecting a spurious timeout, the sender is
 able to take round-trip time samples on the delayed segments. If the
 regular RTO recovery was used without TCP timestamps, this would not
 be possible due to the retransmission ambiguity. As a result, the RTO
 is likely to have more accurate and larger values with F-RTO than
 with the regular TCP after a spurious timeout that was triggered due
 to delayed segments. We believe this is an advantage in the networks
 that are prone to delay spikes.

 It is possible that the F-RTO algorithm does not always avoid
 unnecessary retransmissions after a spurious timeout. If packet
 reordering or packet duplication occurs on the segment that triggered
 the spurious timeout, the F-RTO algorithm may not detect the spurious
 timeout due to incoming duplicate ACKs. Additionally, if a spurious
 timeout occurs during fast recovery, the F-RTO algorithm often cannot
 detect the spurious timeout, because the segments transmitted before
 the fast recovery trigger duplicate ACKs. However, we consider these
 cases relatively rare, and note that in cases where F-RTO fails to
 detect the spurious timeout, it performs similarly to the regular RTO
 recovery.

3. A SACK-enhanced version of the F-RTO algorithm

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 This section describes an alternative version of the F-RTO algorithm,
 that makes use of TCP Selective Acknowledgment Option [MMFR96]. By
 using the SACK option the TCP sender can detect spurious timeouts in
 most of the cases when packet reordering or packet duplication is
 present. The difference to the basic F-RTO algorithm is that the

Expires: November 2004 [Page 7]

draft-ietf-tcpm-frto-00.txt May 2004

 sender may declare timeout spurious even when duplicate ACKs follow
 the RTO, if the SACK blocks acknowledge new data that was not
 transmitted after the RTO retransmission.

 Given that the TCP Selective Acknowledgment Option [MMFR96] is
 enabled for a TCP connection, a TCP sender MAY implement the SACK-
 enhanced F-RTO algorithm. If the sender applies the SACK-enhanced F-
 RTO algorithm, it MUST follow the steps below. This algorithm SHOULD
 NOT be applied, if the TCP sender is already in loss recovery when
 retransmission timeout occurs. However, it should be possible to
 apply the principle of F-RTO within certain limitations also when
 retransmission timeout occurs during existing loss recovery. While
 this is a topic of further research, Appendix B briefly discusses the
 related issues.

 1) When the RTO expires, the TCP sender SHOULD retransmit the first
 unacknowledged segment and set SpuriousRecovery to FALSE. Variable
 "recover" is set to indicate the highest segment transmitted so
 far. Following the recommendation in SACK specification [MMFR96],
 the SACK scoreboard SHOULD be reset.

 2) Wait until the acknowledgment for the data retransmitted due to
 the timeout arrives at the sender. If duplicate ACKs arrive before
 the cumulative acknowledgment for retransmitted data, adjust the
 scoreboard according to the incoming SACK information but stay in
 step 2 waiting for the next new acknowledgment. If RTO expires
 again, restart the algorithm.

 a) if a cumulative ACK acknowledges a sequence number equal to
 "recover", the TCP sender SHOULD revert to the conventional RTO
 recovery and it MUST set congestion window to no more than 2 *
 MSS. The sender MUST NOT enter step 3 of this algorithm.

 b) else, if a cumulative ACK acknowledges a sequence number
 smaller than "recover" but larger than SND.UNA, the TCP sender
 SHOULD transmit up to two new (previously unsent) segments and
 proceed to step 3. If the TCP sender is not able to transmit
 any previously unsent data due to receiver window limitation or
 because it does not have any new data to send, the recommended
 action is to not enter step 3 of this algorithm but continue
 with slow start retransmissions following the conventional RTO
 recovery algorithm.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 It is also possible to apply some of the alternatives for
 handling window limited cases discussed in Appendix C. In this
 case, the TCP sender should also follow the recommendations
 concerning acknowledgments of retransmitted segments given in

Appendix B.

Expires: November 2004 [Page 8]

draft-ietf-tcpm-frto-00.txt May 2004

 3) The next acknowledgment arrives at the sender. Either duplicate
 ACK or a new cumulative ACK advancing the window applies in this
 step.

 a) if the ACK acknowledges sequence number above "recover", either
 in SACK blocks or as a cumulative ACK, the sender MUST set
 congestion window to no more than 3 * MSS and proceed with the
 conventional RTO recovery, retransmitting unacknowledged
 segments. The sender SHOULD take this branch also when the
 acknowledgment is a duplicate ACK and it does not acknowledge
 any new previously unacknowledged data below "recover" in the
 SACK blocks. The sender leaves SpuriousRecovery set to FALSE.

 b) if the ACK does not acknowledge sequence numbers above
 "recover" AND it acknowledges data that was not acknowledged
 earlier either with cumulative acknowledgment or using SACK
 blocks, the TCP sender SHOULD declare the timeout spurious and
 set SpuriousRecovery to SPUR_TO. The retransmission timeout can
 be declared spurious, because the segment acknowledged with
 this ACK was transmitted before the timeout.

 If there are unacknowledged holes between the received SACK blocks,
 those segments SHOULD be retransmitted similarly to the conventional
 SACK recovery algorithm [BAFW03]. If the algorithm exits with
 SpuriousRecovery set to SPUR_TO, "recover" SHOULD be set to SND.UNA,
 thus allowing fast recovery on incoming duplicate acknowledgments.

4. Taking Actions after Detecting Spurious RTO

 Upon retransmission timeout, a conventional TCP sender assumes that
 outstanding segments are lost and starts retransmitting the
 unacknowledged segments. When the retransmission timeout is detected
 to be spurious, the TCP sender should not continue retransmitting
 based on the timeout. For example, if the sender was in congestion
 avoidance phase transmitting new previously unsent segments, it
 should continue transmitting previously unsent segments after
 detecting spurious RTO. This document does not describe the response
 to spurious timeout, but a response algorithm is described in another
 IETF document [LG04].

 Additionally, different response variants to spurious retransmission

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 timeout have been discussed in various research papers [SKR03, GL03,
 Sar03] and Internet-Drafts [SL03]. The different response
 alternatives vary in whether the spurious retransmission timeout
 should be taken as a congestion signal, thus causing the congestion
 window or slow start threshold to be reduced at the sender, or
 whether the congestion control state should be fully reverted to the

Expires: November 2004 [Page 9]

draft-ietf-tcpm-frto-00.txt May 2004

 state valid prior to the retransmission timeout.

5. SCTP Considerations

 SCTP has similar retransmission algorithms and congestion control to
 TCP. The SCTP T3-rtx timer for one destination address is maintained
 in the same way than the TCP retransmission timer, and after a T3-rtx
 expires, an SCTP sender retransmits unacknowledged data chunks in
 slow start like TCP does. Therefore, SCTP is vulnerable to the nega-
 tive effects of the spurious retransmission timeouts similarly to
 TCP. Due to similar RTO recovery algorithms, F-RTO algorithm logic
 can be applied also to SCTP. Since SCTP uses selective acknowledg-
 ments, the SACK-based variant of the algorithm is recommended,
 although the basic version can also be applied to SCTP. However, SCTP
 contains features that are not present with TCP that need to be dis-
 cussed when applying the F-RTO algorithm.

 SCTP association can be multi-homed. The current retransmission pol-
 icy states that retransmissions should go to alternative addresses.
 If the retransmission was due to spurious timeout caused by a delay
 spike, it is possible that the acknowledgment for the retransmission
 arrives back at the sender before the acknowledgments of the original
 transmissions arrive. If this happens, a possible loss of the origi-
 nal transmission of the data chunk that was retransmitted due to the
 spurious timeout may remain undetected when applying the F-RTO algo-
 rithm. Because the timeout was caused by a delay spike, and it was
 spurious in that respect, a suitable response is to continue by send-
 ing new data. However, if the original transmission was lost, fully
 reverting the congestion control parameters is too aggressive. There-
 fore, taking conservative actions on congestion control is recom-
 mended, if the SCTP association is multi-homed and retransmissions go
 to alternative address. The information in duplicate TSNs can be then
 used for reverting congestion control, if desired [BA04].

 Note that the forward transmissions made in F-RTO algorithm step (2b)
 should be destined to the primary address, since they are not
 retransmissions.

 When making a retransmission, a SCTP sender can bundle a number of
 unacknowledged data chunks and include them in the same packet. This
 needs to be considered when implementing F-RTO for SCTP. The basic
 principle of F-RTO still holds: in order to declare the timeout spu-

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 rious, the sender must get an acknowledgment for a data chunk that
 was not retransmitted after the retransmission timeout. In other
 words, acknowledgments of data chunks that were bundled in RTO
 retransmission must not be used for declaring the timeout spurious.

Expires: November 2004 [Page 10]

draft-ietf-tcpm-frto-00.txt May 2004

6. Security Considerations

 The main security threat regarding F-RTO is the possibility of a
 receiver misleading the sender to set too large a congestion window
 after an RTO. There are two possible ways a malicious receiver could
 trigger a wrong output from the F-RTO algorithm. First, the receiver
 can acknowledge data that it has not received. Second, it can delay
 acknowledgment of a segment it has received earlier, and acknowledge
 the segment after the TCP sender has been deluded to enter algorithm
 step 3.

 If the receiver acknowledges a segment it has not really received,
 the sender can be lead to declare spurious timeout in F-RTO algorithm
 step 3. However, since this causes the sender to have incorrect
 state, it cannot retransmit the segment that has never reached the
 receiver. Therefore, this attack is unlikely to be useful for the
 receiver to maliciously gain a larger congestion window.

 A common case for a retransmission timeout is that a fast retransmis-
 sion of a segment is lost. If all other segments have been received,
 the RTO retransmission causes the whole window to be acknowledged at
 once. This case is recognized in F-RTO algorithm branch (2a). How-
 ever, if the receiver only acknowledges one segment after receiving
 the RTO retransmission, and then the rest of the segments, it could
 cause the timeout to be declared spurious when it is not. Therefore,
 it is suggested that when an RTO expires during fast recovery phase,
 the sender would not fully revert the congestion window even if the
 timeout was declared spurious, but reduce the congestion window to 1.
 However, the sender can take actions to avoid unnecessary retransmis-
 sions normally. If a TCP sender implements a burst avoidance algo-
 rithm that limits the sending rate to be no higher than in slow
 start, this precaution is not needed, and the sender may apply F-RTO
 normally.

 If there are more than one segments missing at the time when a
 retransmission timeout occurs, the receiver does not benefit from
 misleading the sender to declare a spurious timeout, because the
 sender would then have to go through another recovery period to
 retransmit the missing segments, usually after an RTO has elapsed.

Acknowledgments

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 We are grateful to Reiner Ludwig, Andrei Gurtov, Josh Blanton, Mark
 Allman, Sally Floyd, Yogesh Swami, Mika Liljeberg, Ivan Arias
 Rodriguez, Sourabh Ladha, Martin Duke, Motoharu Miyake, Ted Faber,
 and Samu Kontinen for the discussion and feedback contributed to this
 text.

Expires: November 2004 [Page 11]

draft-ietf-tcpm-frto-00.txt May 2004

Normative References

 [APS99] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Con-
 trol. RFC 2581, April 1999.

 [BAFW03] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative
 Selective Acknowledgment (SACK)-based Loss Recovery Algo-
 rithm for TCP. RFC 3517, April 2003.

 [FHG04] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modifi-
 cation to TCP's Fast Recovery Algorithm. RFC 3782, April
 2004.

 [MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selec-
 tive Acknowledgment Options. RFC 2018, October 1996.

 [PA00] V. Paxson and M. Allman. Computing TCP's Retransmission
 Timer. RFC 2988, November 2000.

 [Pos81] J. Postel. Transmission Control Protocol. RFC 793, Septem-
 ber 1981.

 [Ste00] R. Stewart, et. al. Stream Control Transmission Protocol.
RFC 2960, October 2000.

Informative References

 [ABF01] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP's
 Loss Recovery Using Limited Transmit. RFC 3042, January
 2001.

 [BA04] E. Blanton and M. Allman. Using TCP Duplicate Selective
 Acknowledgment (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions. RFC 3708, Febru-
 ary 2004.

 [BBJ92] D. Borman, R. Braden, and V. Jacobson. TCP Extensions for

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3708

 High Performance. RFC 1323, May 1992.

 [FMMP00] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Exten-
 sion to the Selective Acknowledgment (SACK) Option to TCP.

RFC 2883, July 2000.

 [GL02] A. Gurtov and R. Ludwig. Evaluating the Eifel Algorithm for
 TCP in a GPRS Network. In Proc. of European Wireless, Flo-
 rence, Italy, February 2002

Expires: November 2004 [Page 12]

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2883

draft-ietf-tcpm-frto-00.txt May 2004

 [GL03] A. Gurtov and R. Ludwig, Responding to Spurious Timeouts in
 TCP. In Proceedings of IEEE INFOCOM 03, San Francisco, CA,
 USA, March 2003.

 [Jac88] V. Jacobson. Congestion Avoidance and Control. In Proceed-
 ings of ACM SIGCOMM 88.

 [LG04] R. Ludwig and A. Gurtov. The Eifel Response Algorithm for
 TCP. Internet draft "draft-ietf-tsvwg-tcp-eifel-

response-05.txt". March 2004. Work in progress.

 [LK00] R. Ludwig and R.H. Katz. The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions. ACM SIGCOMM Com-
 puter Communication Review, 30(1), January 2000.

 [LM03] R. Ludwig and M. Meyer. The Eifel Detection Algorithm for
 TCP. RFC 3522, April 2003.

 [Nag84] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC
896, January 1984.

 [SKR03] P. Sarolahti, M. Kojo, and K. Raatikainen. F-RTO: An
 Enhanced Recovery Algorithm for TCP Retransmission Time-
 outs. ACM SIGCOMM Computer Communication Review, 33(2),
 April 2003.

 [Sar03] P. Sarolahti. Congestion Control on Spurious TCP Retrans-
 mission Timeouts. In Proceedings of IEEE Globecom 2003, San
 Francisco, CA, USA. December 2003.

 [SL03] Y. Swami and K. Le. DCLOR: De-correlated Loss Recovery
 using SACK option for spurious timeouts. Internet draft
 "draft-swami-tsvwg-tcp-dclor-02.txt". September 2003. Work
 in progress.

Appendix A: Scenarios

 This section discusses different scenarios where RTOs occur and how

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-response-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-eifel-response-05.txt
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/draft-swami-tsvwg-tcp-dclor-02.txt

 the basic F-RTO algorithm performs in those scenarios. The
 interesting scenarios are a sudden delay triggering retransmission
 timeout, loss of a retransmitted packet during fast recovery, link
 outage causing the loss of several packets, and packet reordering. A
 performance evaluation with a more thorough analysis on a real
 implementation of F-RTO is given in [SKR03].

A.1. Sudden delay

Expires: November 2004 [Page 13]

draft-ietf-tcpm-frto-00.txt May 2004

 The main motivation of F-RTO algorithm is to improve TCP performance
 when a delay spike triggers a spurious retransmission timeout. The
 example below illustrates the segments and acknowledgments
 transmitted by the TCP end hosts when a spurious timeout occurs, but
 no packets are lost. For simplicity, delayed acknowledgments are not
 used in the example. The example below applies the Eifel Response
 Algorithm [LG04] after detecting a spurious timeout.

 ...
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 1. <---------------------------- ACK 5
 2. SEND 10 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 3. <---------------------------- ACK 6
 4. SEND 11 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 5. |
 [delay]
 |
 [RTO]
 [F-RTO step (1)]
 6. SEND 6 ---------------------------->
 (cwnd = 6, ssthresh = 3, FlightSize = 6)
 <earlier xmitted SEG 6> --->
 7. <---------------------------- ACK 7
 [F-RTO step (2b)]
 8. SEND 12 ---------------------------->
 9. SEND 13 ---------------------------->
 (cwnd = 7, ssthresh = 3, FlightSize = 7)
 <earlier xmitted SEG 7> --->
 10. <---------------------------- ACK 8
 [F-RTO step (3b)]
 [SpuriousRecovery <- SPUR_TO]
 (cwnd = 7, ssthresh = 6, FlightSize = 6)
 11. SEND 14 ---------------------------->
 (cwnd = 7, ssthresh = 6, FlightSize = 7)
 12. <---------------------------- ACK 9
 13. SEND 15 ---------------------------->
 (cwnd = 7, ssthresh = 6, FlightSize = 7)
 14. <---------------------------- ACK 10
 15. SEND 16 ---------------------------->
 (cwnd = 7, ssthresh = 6, FlightSize = 7)
 ...

 When a sudden delay long enough to trigger timeout occurs at step 5,

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 the TCP sender retransmits the first unacknowledged segment (step 6).
 The next ACK covers the RTO retransmission because originally
 transmitted segment 6 arrives at the receiver, and the TCP sender

Expires: November 2004 [Page 14]

draft-ietf-tcpm-frto-00.txt May 2004

 continues by sending two new data segments (steps 8, 9). Note that on
 F-RTO steps (1) and (2b) congestion window and FlightSize are not yet
 reset, because in case of possible spurious timeout the segments sent
 before the timeout are still in the network. However, the sender
 should still be equally aggressive to conventional TCP. Because the
 second acknowledgment arriving after the RTO retransmission
 acknowledges data that was not retransmitted due to timeout (step
 10), the TCP sender declares the timeout as spurious and continues by
 sending new data on next acknowledgments. Also the congestion control
 state is reversed, as required by the Eifel Response Algorithm.

A.2. Loss of a retransmission

 If a retransmitted segment is lost, the only way to retransmit it
 again is to wait for the timeout to trigger the retransmission. Once
 the segment is successfully received, the receiver usually
 acknowledges several segments at once, because other segments in the
 same window have been successfully delivered before the
 retransmission arrives at the receiver. The example below shows a
 scenario where retransmission (of segment 6) is lost, as well as a
 later segment (segment 9) in the same window. The limited transmit
 [ABF01] or SACK TCP [MMFR96] enhancements are not in use in this
 example.

 ...
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 <segment 6 lost>
 <segment 9 lost>
 1. <---------------------------- ACK 5
 2. SEND 10 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 3. <---------------------------- ACK 6
 4. SEND 11 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 5. <---------------------------- ACK 6
 6. <---------------------------- ACK 6
 7. <---------------------------- ACK 6
 8. SEND 6 --------------X
 (cwnd = 6, ssthresh = 3, FlightSize = 6)
 <segment 6 lost>
 9. <---------------------------- ACK 6
 10. SEND 12 ---------------------------->
 (cwnd = 7, ssthresh = 3, FlightSize = 7)
 11. <---------------------------- ACK 6

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 12. SEND 13 ---------------------------->
 (cwnd = 8, ssthresh = 3, FlightSize = 8)
 [RTO]
 13. SEND 6 ---------------------------->

Expires: November 2004 [Page 15]

draft-ietf-tcpm-frto-00.txt May 2004

 (cwnd = 8, ssthresh = 2, FlightSize = 8)
 14. <---------------------------- ACK 9
 [F-RTO step (2b)]
 15. SEND 14 ---------------------------->
 16. SEND 15 ---------------------------->
 (cwnd = 7, ssthresh = 2, FlightSize = 7)
 17. <---------------------------- ACK 9
 [F-RTO step (3a)]
 [SpuriousRecovery <- FALSE]
 (cwnd = 3, ssthresh = 2, FlightSize = 7)
 18. SEND 9 ---------------------------->
 19. SEND 10 ---------------------------->
 20. SEND 11 ---------------------------->
 ...

 In the example above, segment 6 is lost and the sender retransmits it
 after three duplicate ACKs in step 8. However, the retransmission is
 also lost, and the sender has to wait for the RTO to expire before
 retransmitting it again. Because the first ACK following the RTO
 retransmission acknowledges the RTO retransmission (step 14), the
 sender transmits two new segments. The second ACK in step 17 does not
 acknowledge any previously unacknowledged data. Therefore the F-RTO
 sender enters the slow start and sets cwnd to 3 * MSS. Congestion
 window can be set to three segments, because two round-trips have
 elapsed after the retransmission timeout. After this the receiver
 acknowledges all segments transmitted prior to entering recovery and
 the sender can continue transmitting new data in congestion
 avoidance.

A.3. Link outage

 The example below illustrates the F-RTO behavior when 4 consecutive
 packets are lost in the network causing the TCP sender to fall back
 to RTO recovery. Limited transmit and SACK are not used in this
 example.

 ...
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 <segments 6-9 lost>
 1. <---------------------------- ACK 5
 2. SEND 10 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 3. <---------------------------- ACK 6

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 4. SEND 11 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 5. <---------------------------- ACK 6
 |

Expires: November 2004 [Page 16]

draft-ietf-tcpm-frto-00.txt May 2004

 |
 [RTO]
 6. SEND 6 ---------------------------->
 (cwnd = 6, ssthresh = 3, FlightSize = 6)
 7. <---------------------------- ACK 7
 [F-RTO step (2b)]
 8. SEND 12 ---------------------------->
 9. SEND 13 ---------------------------->
 (cwnd = 7, ssthresh = 3, FlightSize = 7)
 10. <---------------------------- ACK 7
 [F-RTO step (3a)]
 [SpuriousRecovery <- FALSE]
 (cwnd = 3, ssthresh = 3, FlightSize = 7)
 11. SEND 7 ---------------------------->
 12. SEND 8 ---------------------------->
 13. SEND 9 ---------------------------->

 Again, F-RTO sender transmits two new segments (steps 8 and 9) after
 the RTO retransmission is acknowledged. Because the next ACK does not
 acknowledge any data that was not retransmitted after the
 retransmission timeout (step 10), the F-RTO sender proceeds with
 conventional recovery and slow start retransmissions.

A.4. Packet reordering

 Since F-RTO modifies the TCP sender behavior only after a
 retransmission timeout and it is intended to avoid unnecessary
 retransmits only after spurious timeout, we limit the discussion on
 the effects of packet reordering in F-RTO behavior to the cases where
 packet reordering occurs immediately after the retransmission
 timeout. When the TCP receiver gets an out-of-order segment, it
 generates a duplicate ACK. If the TCP sender implements the basic F-
 RTO algorithm, this may prevent the sender from detecting a spurious
 timeout.

 However, if the TCP sender applies the SACK-enhanced F-RTO, it is
 possible to detect a spurious timeout also when packet reordering
 occurs. We illustrate the behavior of SACK-enhanced F-RTO below when
 segment 8 arrives before segments 6 and 7, and segments starting from
 segment 6 are delayed in the network. In this example the TCP sender
 reduces the congestion window and slow start threshold in response to
 spurious timeout.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 ...
 (cwnd = 6, ssthresh < 6, FlightSize = 6)
 1. <---------------------------- ACK 5
 2. SEND 10 ---------------------------->
 (cwnd = 6, ssthresh < 6, FlightSize = 6)

Expires: November 2004 [Page 17]

draft-ietf-tcpm-frto-00.txt May 2004

 3. <---------------------------- ACK 6
 4. SEND 11 ---------------------------->
 5. |
 [delay]
 |
 [RTO]
 6. SEND 6 ---------------------------->
 (cwnd = 6, ssthresh = 3, FlightSize = 6)
 <earlier xmitted SEG 8> --->
 7. <---------------------------- ACK 6
 [SACK 8]
 [SACK F-RTO stays in step 2]
 8. <earlier xmitted SEG 6> --->
 9. <---------------------------- ACK 7
 [SACK 8]
 [SACK F-RTO step (2b)]
 10. SEND 12 ---------------------------->
 11. SEND 13 ---------------------------->
 (cwnd = 7, ssthresh = 3, FlightSize = 7)
 12. <earlier xmitted SEG 7> --->
 13. <---------------------------- ACK 9
 [SACK F-RTO step (3b)]
 [SpuriousRecovery <- SPUR_TO]
 (cwnd = 7, ssthresh = 6, FlightSize = 6)
 14. SEND 14 ---------------------------->
 (cwnd = 7, ssthresh = 6, FlightSize = 7)
 15. <---------------------------- ACK 10
 16. SEND 15 ---------------------------->
 ...

 After RTO expires and the sender retransmits segment 6 (step 6), the
 receiver gets segment 8 and generates duplicate ACK with SACK for
 segment 8. In response to the acknowledgment the TCP sender does not
 send anything but stays in F-RTO step 2. Because the next
 acknowledgment advances the cumulative ACK point (step 9), the sender
 can transmit two new segments according to SACK-enhanced F-RTO. The
 next segment acknowledges new data between 7 and 11 that was not
 acknowledged earlier (segment 7), so the F-RTO sender declares the
 timeout spurious.

Appendix B: Applying SACK-enhanced F-RTO when RTO occurs during loss
recovery

 We believe that slightly modified SACK-enhanced F-RTO algorithm can

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 be used to detect spurious timeouts also when RTO expires while an
 earlier loss recovery is underway. However, there are issues that
 need to be considered if F-RTO is applied in this case.

Expires: November 2004 [Page 18]

draft-ietf-tcpm-frto-00.txt May 2004

 The original SACK-based F-RTO requires in algorithm step 3 that an
 ACK acknowledges previously unacknowledged non-retransmitted data
 between SND.UNA and send_high. If RTO expires during earlier (SACK-
 based) loss recovery, the F-RTO sender must only use acknowledgments
 for non-retransmitted segments transmitted before the SACK-based loss
 recovery started. This means that in order to declare timeout
 spurious the TCP sender must receive an acknowledgment for non-
 retransmitted segment between SND.UNA and RecoveryPoint in algorithm
 step 3. RecoveryPoint is defined in conservative SACK-recovery
 algorithm [BAFW03], and it is set to indicate the highest segment
 transmitted so far when SACK-based loss recovery begins. In other
 words, if the TCP sender receives acknowledgment for segment that was
 transmitted more than one RTO ago, it can declare the timeout
 spurious. Defining an efficient algorithm for checking these
 conditions remains as a future work item.

 When spurious timeout is detected according to the rules given above,
 it may be possible that the response algorithm needs to consider this
 case separately, for example in terms of what segments to retransmit
 after RTO expires, and whether it is safe to revert the congestion
 control parameters in this case. This is considered as a topic of
 future research.

Appendix C: Discussion on Window Limited Cases

 When the advertised window limits the transmission of two new
 previously unsent segments, or there are no new data to sent, it was
 recommended in F-RTO algorithm step (2b) that the TCP sender would
 continue with conventional RTO recovery algorithm. The disadvantage
 of doing this is that the sender may continue unnecessary
 retransmissions due to possible spurious timeout. This section
 briefly discusses the options that can potentially result in better
 performance when transmitting previously unsent data is not possible.

 - The TCP sender could reserve an unused space of a size of one or
 two segments in the advertised window to ensure the use of
 algorithms such as F-RTO or Limited Transmit [ABF01] in window
 limited situations. On the other hand, while doing this, the TCP
 sender should ensure that the window of outstanding segments is
 large enough to have a proper utilization of the available pipe.

 - Use additional information if available, e.g. TCP timestamps with
 the Eifel Detection algorithm, for detecting a spurious timeout.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

 However, Eifel detection may yield different results from F-RTO
 when ACK losses and a RTO occur within the same round-trip time
 [SKR03].

 - Retransmit data from the tail of the retransmission queue and

Expires: November 2004 [Page 19]

draft-ietf-tcpm-frto-00.txt May 2004

 continue with step 3 of the F-RTO algorithm. It is possible that
 the retransmission is unnecessarily made, hence this option is not
 encouraged, except for hosts that are known to operate in an
 environment that is highly likely to have spurious timeouts. On the
 other hand, with this method it is possible to avoid several
 unnecessary retransmissions due to spurious timeout by doing only
 one retransmission that may be unnecessary.

 - Send a zero-sized segment below SND.UNA similar to TCP Keep-Alive
 probe and continue with step 3 of the F-RTO algorithm. Since the
 receiver replies with a duplicate ACK, the sender is able to detect
 from the incoming acknowledgment whether the timeout was spurious.
 While this method does not send data unnecessarily, it delays the
 recovery by one round-trip time in cases where the timeout was not
 spurious, and therefore is not encouraged.

 - In receiver-limited cases, send one octet of new data regardless of
 the advertised window limit, and continue with step 3 of the F-RTO
 algorithm. It is possible that the receiver has free buffer space
 to receive the data by the time the segment has propagated through
 the network, in which case no harm is done. If the receiver is not
 capable of receiving the segment, it rejects the segment and sends
 a duplicate ACK.

Authors' Addresses

 Pasi Sarolahti
 Nokia Research Center
 P.O. Box 407
 FIN-00045 NOKIA GROUP
 Finland

 Phone: +358 50 4876607
 EMail: pasi.sarolahti@nokia.com

http://www.cs.helsinki.fi/u/sarolaht/

 Markku Kojo
 University of Helsinki
 Department of Computer Science
 P.O. Box 26
 FIN-00014 UNIVERSITY OF HELSINKI

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
http://www.cs.helsinki.fi/u/sarolaht/

 Finland

 Phone: +358 9 1914 4179
 EMail: markku.kojo@cs.helsinki.fi

Expires: November 2004 [Page 20]

draft-ietf-tcpm-frto-00.txt May 2004

IPR Disclosure Agreement

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt
https://datatracker.ietf.org/doc/html/rfc3668
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

Expires: November 2004 [Page 21]

draft-ietf-tcpm-frto-00.txt May 2004

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-frto-00.txt

Expires: November 2004 [Page 22]

