
Network Working Group M. Bagnulo
Internet-Draft UC3M
Obsoletes: 5562 (if approved) B. Briscoe
Intended status: Experimental CableLabs
Expires: January 9, 2020 July 8, 2019

ECN++: Adding Explicit Congestion Notification (ECN) to TCP Control
Packets

draft-ietf-tcpm-generalized-ecn-04

Abstract

 This document describes an experimental modification to ECN when used
 with TCP. It allows the use of ECN on the following TCP packets:
 SYNs, pure ACKs, Window probes, FINs, RSTs and retransmissions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bagnulo & Briscoe Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft ECN++ July 2019

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
1.1. Motivation . 4
1.2. Experiment Goals . 5
1.3. Document Structure 6

2. Terminology . 6
3. Specification . 7
3.1. Network (e.g. Firewall) Behaviour 7
3.2. Sender Behaviour . 8
3.2.1. SYN (Send) . 9
3.2.2. SYN-ACK (Send) 12
3.2.3. Pure ACK (Send) 13
3.2.4. Window Probe (Send) 14
3.2.5. FIN (Send) . 15
3.2.6. RST (Send) . 15
3.2.7. Retransmissions (Send) 16

 3.2.8. General Fall-back for any Control Packet or
 Retransmission 16

3.3. Receiver Behaviour 16
 3.3.1. Receiver Behaviour for Any TCP Control Packet or
 Retransmission 17

3.3.2. SYN (Receive) . 17
3.3.3. Pure ACK (Receive) 18
3.3.4. FIN (Receive) . 18
3.3.5. RST (Receive) . 18
3.3.6. Retransmissions (Receive) 19

4. Rationale . 19
4.1. The Reliability Argument 19
4.2. SYNs . 20
4.2.1. Argument 1a: Unrecognized CE on the SYN 20
4.2.2. Argument 1b: ECT Considered Invalid on the SYN . . . 21
4.2.3. Caching Strategies for ECT on SYNs 23
4.2.4. Argument 2: DoS Attacks 25

4.3. SYN-ACKs . 26
4.3.1. Possibility of Unrecognized CE on the SYN-ACK 26

Bagnulo & Briscoe Expires January 9, 2020 [Page 2]

Internet-Draft ECN++ July 2019

4.3.2. Response to Congestion on a SYN-ACK 26
4.3.3. Fall-Back if ECT SYN-ACK Fails 28

4.4. Pure ACKs . 28
4.4.1. Mechanisms to Respond to CE-Marked Pure ACKs 29
4.4.2. Summary: Enabling ECN on Pure ACKs 32

4.5. Window Probes . 33
4.6. FINs . 34
4.7. RSTs . 34

 4.8. Retransmitted Packets. 35
4.9. General Fall-back for any Control Packet 36

5. Interaction with popular variants or derivatives of TCP . . . 37
5.1. IW10 . 37
5.2. TFO . 38
5.3. TCP Derivatives . 39

6. Security Considerations 39
7. IANA Considerations . 39
8. Acknowledgments . 39
9. References . 40
9.1. Normative References 40
9.2. Informative References 40

 Authors' Addresses . 43

1. Introduction

RFC 3168 [RFC3168] specifies support of Explicit Congestion
 Notification (ECN) in IP (v4 and v6). By using the ECN capability,
 network elements (e.g. routers, switches) performing Active Queue
 Management (AQM) can use ECN marks instead of packet drops to signal
 congestion to the endpoints of a communication. This results in
 lower packet loss and increased performance. RFC 3168 also specifies
 support for ECN in TCP, but solely on data packets. For various
 reasons it precludes the use of ECN on TCP control packets (TCP SYN,
 TCP SYN-ACK, pure ACKs, Window probes) and on retransmitted packets.

RFC 3168 is silent about the use of ECN on RST and FIN packets. RFC
5562 [RFC5562] is an experimental modification to ECN that enables

 ECN support for TCP SYN-ACK packets.

 This document defines an experimental modification to ECN [RFC3168]
 that shall be called ECN++. It enables ECN support on all the
 aforementioned types of TCP packet.

 ECN++ uses a sender-only deployment model. It works whether the two
 ends of the TCP connection use classic ECN feedback [RFC3168] or
 experimental Accurate ECN feedback (AccECN
 [I-D.ietf-tcpm-accurate-ecn]). Nonetheless, if the client does not
 implement AccECN, it cannot use ECN++ on the one packet that offers
 most benefit from it - the initial SYN. Therefore, implementers of
 ECN++ are RECOMMENDED to also implement AccECN.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 3]

Internet-Draft ECN++ July 2019

 ECN++ is designed for compatibility with a number of latency
 improvements to TCP such as TCP Fast Open (TFO [RFC7413]), initial
 window of 10 SMSS (IW10 [RFC6928]) and Low latency Low Loss Scalable
 Transport (L4S [I-D.ietf-tsvwg-l4s-arch]), but they can all be
 implemented and deployed independently. [RFC8311] is a standards
 track procedural device that relaxes requirements in RFC 3168 and
 other standards track RFCs that would otherwise preclude the
 experimental modifications needed for ECN++ and other ECN
 experiments.

1.1. Motivation

 The absence of ECN support on TCP control packets and retransmissions
 has a potential harmful effect. In any ECN deployment, non-ECN-
 capable packets suffer a penalty when they traverse a congested
 bottleneck. For instance, with a drop probability of 1%, 1% of
 connection attempts suffer a timeout of about 1 second before the SYN
 is retransmitted, which is highly detrimental to the performance of
 short flows. TCP control packets, particularly TCP SYNs and SYN-
 ACKs, are important for performance, so dropping them is best
 avoided.

 Non-ECN control packets particularly harm performance in environments
 where the ECN marking level is high. For example, [judd-nsdi] shows
 that in a controlled private data centre (DC) environment where ECN
 is used (in conjunction with DCTCP [RFC8257]), the probability of
 being able to establish a new connection using a non-ECN SYN packet
 drops to close to zero even when there are only 16 ongoing TCP flows
 transmitting at full speed. The issue is that DCTCP exhibits a much
 more aggressive response to packet marking (which is why it is only
 applicable in controlled environments). This leads to a high marking
 probability for ECN-capable packets, and in turn a high drop
 probability for non-ECN packets. Therefore non-ECN SYNs are dropped
 aggressively, rendering it nearly impossible to establish a new
 connection in the presence of even mild traffic load.

 Finally, there are ongoing experimental efforts to promote the
 adoption of a slightly modified variant of DCTCP (and similar
 congestion controls) over the Internet to achieve low latency, low
 loss and scalable throughput (L4S) for all communications
 [I-D.ietf-tsvwg-l4s-arch]. In such an approach, L4S packets identify
 themselves using an ECN codepoint [I-D.ietf-tsvwg-ecn-l4s-id]. With
 L4S, preventing TCP control packets from obtaining the benefits of
 ECN would not only expose them to the prevailing level of congestion
 loss, but it would also classify them into a different queue. Then
 only L4S data packets would enjoy ultra-low latency forwarding, while
 the packets controlling and retransmitting these data packets would

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8257

Bagnulo & Briscoe Expires January 9, 2020 [Page 4]

Internet-Draft ECN++ July 2019

 still get stuck behind the queue induced by legacy ('Classic') TCP
 traffic.

1.2. Experiment Goals

 The goal of the experimental modifications defined in this document
 is to allow the use of ECN on all TCP packets. Experiments are
 expected in the public Internet as well as in controlled environments
 to understand the following issues:

 o How SYNs, Window probes, pure ACKs, FINs, RSTs and retransmissions
 that carry the ECT(0), ECT(1) or CE codepoints are processed by
 the TCP endpoints and the network (including routers, firewalls
 and other middleboxes). In particular we would like to learn if
 these packets are frequently blocked or if these packets are
 usually forwarded and processed.

 o The scale of deployment of the different flavours of ECN,
 including [RFC3168], [RFC5562], [RFC3540] and
 [I-D.ietf-tcpm-accurate-ecn].

 o How much the performance of TCP communications is improved by
 allowing ECN marking of each packet type.

 o To identify any issues (including security issues) raised by
 enabling ECN marking of these packets.

 The data gathered through the experiments described in this document,
 particularly under the first 2 bullets above, will help in the
 redesign of the final mechanism (if needed) for adding ECN support to
 the different packet types considered in this document. Whenever
 data input is needed to assist in a design choice, it is spelled out
 throughout the document.

 Success criteria: The experiment will be a success if we obtain
 enough data to have a clearer view of the deployability and benefits
 of enabling ECN on all TCP packets, as well as any issues. If the
 results of the experiment show that it is feasible to deploy such
 changes; that there are gains to be achieved through the changes
 described in this specification; and that no other major issues may
 interfere with the deployment of the proposed changes; then it would
 be reasonable to adopt the proposed changes in a standards track
 specification that would update RFC 3168.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 5]

Internet-Draft ECN++ July 2019

1.3. Document Structure

 The remainder of this document is structured as follows. In
Section 2, we present the terminology used in the rest of the

 document. In Section 3, we specify the modifications to provide ECN
 support to TCP SYNs, pure ACKs, Window probes, FINs, RSTs and
 retransmissions. We describe both the network behaviour and the
 endpoint behaviour. Section 5 discusses variations of the
 specification that will be necessary to interwork with a number of
 popular variants or derivatives of TCP. RFC 3168 provides a number
 of specific reasons why ECN support is not appropriate for each
 packet type. In Section 4, we revisit each of these arguments for
 each packet type to justify why it is reasonable to conduct this
 experiment.

2. Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL in this
 document, are to be interpreted as described in BCP 14 [RFC2119] when
 and only when they appear in all capitals.

 Pure ACK: A TCP segment with the ACK flag set and no data payload.

 SYN: A TCP segment with the SYN (synchronize) flag set.

 Window probe: Defined in [RFC0793], a window probe is a TCP segment
 with only one byte of data sent to learn if the receive window is
 still zero.

 FIN: A TCP segment with the FIN (finish) flag set.

 RST: A TCP segment with the RST (reset) flag set.

 Retransmission: A TCP segment that has been retransmitted by the TCP
 sender.

 TCP client: The initiating end of a TCP connection. Also called the
 initiator.

 TCP server: The responding end of a TCP connection. Also called the
 responder.

 ECT: ECN-Capable Transport. One of the two codepoints ECT(0) or
 ECT(1) in the ECN field [RFC3168] of the IP header (v4 or v6). An
 ECN-capable sender sets one of these to indicate that both transport
 end-points support ECN. When this specification says the sender sets
 an ECT codepoint, by default it means ECT(0). Optionally, it could

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 6]

Internet-Draft ECN++ July 2019

 mean ECT(1), which is in the process of being redefined for use by
 L4S experiments [RFC8311] [I-D.ietf-tsvwg-ecn-l4s-id].

 Not-ECT: The ECN codepoint set by senders that indicates that the
 transport is not ECN-capable.

 CE: Congestion Experienced. The ECN codepoint that an intermediate
 node sets to indicate congestion [RFC3168]. A node sets an
 increasing proportion of ECT packets to CE as the level of congestion
 increases.

3. Specification

 The experimental ECN++ changes to the specification of TCP over ECN
 [RFC3168] defined here primarily alter the behaviour of the sending
 host for each half-connection. However, there are subsections for
 forwarding elements and receivers below, which recommend that they
 accept the new packets - they should do already, but might not. This
 will allow implementers to check the receive side code while they are
 altering the send-side code. All changes can be deployed at each
 end-point independently of others and independent of any network
 behaviour.

 The feedback behaviour at the receiver depends on whether classic ECN
 TCP feedback [RFC3168] or Accurate ECN (AccECN) TCP feedback
 [I-D.ietf-tcpm-accurate-ecn] has been negotiated. Nonetheless,
 neither receiver feedback behaviour is altered by the present
 specification.

3.1. Network (e.g. Firewall) Behaviour

 Previously the specification of ECN for TCP [RFC3168] required the
 sender to set not-ECT on TCP control packets and retransmissions.
 Some readers of RFC 3168 might have erroneously interpreted this as a
 requirement for firewalls, intrusion detection systems, etc. to check
 and enforce this behaviour. Section 4.3 of [RFC8311] updates RFC

3168 to remove this ambiguity. It requires firewalls or any
 intermediate nodes not to treat certain types of ECN-capable TCP
 segment differently (except potentially in one attack scenario).
 This is likely to only involve a firewall rule change in a fraction
 of cases (at most 0.4% of paths according to the tests reported in

Section 4.2.2).

 In case a TCP sender encounters a middlebox blocking ECT on certain
 TCP segments, the specification below includes behaviour to fall back
 to non-ECN. However, this loses the benefit of ECN on control
 packets. So operators are RECOMMENDED to alter their firewall rules

https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 7]

Internet-Draft ECN++ July 2019

 to comply with the requirement referred to above (section 4.3 of
 [RFC8311]).

3.2. Sender Behaviour

 For each type of control packet or retransmission, the following
 sections detail changes to the sender's behaviour in two respects: i)
 whether it sets ECT; and ii) its response to congestion feedback.
 Table 1 summarises these two behaviours for each type of packet, but
 the relevant subsection below should be referred to for the detailed
 behaviour. The subsection on the SYN is more complex than the
 others, because it has to include fall-back behaviour if the ECT
 packet appears not to have got through, and caching of the outcome to
 detect persistent failures.

 +---------+----------------+-----------------+----------------------+
TCP	ECN field if	ECN field if	Congestion Response
packet	AccECN f/b	RFC3168 f/b	
type	negotiated*	negotiated*	
+---------+----------------+-----------------+----------------------+			
SYN	ECT	not-ECT	If AccECN, reduce IW
SYN-ACK	ECT	ECT	Reduce IW
Pure	ECT	not-ECT	If AccECN, usual
ACK			cwnd response and
			optionally [RFC5690]
W Probe	ECT	ECT	Usual cwnd response
FIN	ECT	ECT	None or optionally
			[RFC5690]
RST	ECT	ECT	N/A
Re-XMT	ECT	ECT	Usual cwnd response
 +---------+----------------+-----------------+----------------------+

 Window probe and retransmission are abbreviated to W Probe an Re-XMT.
 * For a SYN, "negotiated" means "requested".

 Table 1: Summary of sender behaviour. In each case the relevant
 section below should be referred to for the detailed behaviour

 It can be seen that the sender cannot set ECT on the SYN if it is not
 requesting AccECN feedback. Therefore it is RECOMMENDED that the
 experimental AccECN specification [I-D.ietf-tcpm-accurate-ecn] is
 implemented (as well as the present specification), because it is

https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5690
https://datatracker.ietf.org/doc/html/rfc5690

Bagnulo & Briscoe Expires January 9, 2020 [Page 8]

Internet-Draft ECN++ July 2019

 expected that ECT on the SYN will give the most significant
 performance gain, particularly for short flows.

 Nonetheless, this specification also caters for the case where an
 ECN++ TCP sender is not using AccECN. This could be because it does
 not support AccECN or because the other end of the TCP connection
 does not (AccECN can only be used for a connection if both ends
 support it).

3.2.1. SYN (Send)

3.2.1.1. Setting ECT on the SYN

 With classic [RFC3168] ECN feedback, the SYN was not expected to be
 ECN-capable, so the flag provided to feed back congestion was put to
 another use (it is used in combination with other flags to indicate
 that the responder supports ECN). In contrast, Accurate ECN (AccECN)
 feedback [I-D.ietf-tcpm-accurate-ecn] provides a codepoint in the
 SYN-ACK for the responder to feed back whether the SYN arrived marked
 CE. Therefore the setting of the IP/ECN field on the SYN is
 specified separately for each case in the following two subsections.

3.2.1.1.1. ECN++ TCP Client also Supports AccECN

 For the ECN++ experiment, if the SYN is requesting AccECN feedback,
 the TCP sender will also set ECT on the SYN. It can ignore the
 prohibition in section 6.1.1 of RFC 3168 against setting ECT on such
 a SYN, as per Section 4.3 of [RFC8311].

3.2.1.1.2. ECN++ TCP Client does not Support AccECN

 A TCP initiator MUST NOT set ECT on a SYN if it does not also attempt
 to negotiate Accurate ECN feedback in the same SYN.

 If the TCP initiator does not support AccECN, the rest of
Section 3.2.1 does not apply. It solely applies to the case where

 the TCP initiator supports AccECN as well as ECN++.

3.2.1.2. Caching where to use ECT on SYNs

 As explained above, this subsection only applies if the ECN++ TCP
 client also supports AccECN.

 Until AccECN servers become widely deployed, a TCP initiator that
 sets ECT on a SYN (which implies the same SYN also requests AccECN,
 as required above) SHOULD also maintain a cache entry per server to
 record servers that it is not worth sending an ECT SYN to, e.g.
 because they do not support AccECN and therefore have no logic for

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.1
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3

Bagnulo & Briscoe Expires January 9, 2020 [Page 9]

Internet-Draft ECN++ July 2019

 congestion markings on the SYN. Mobile hosts MAY maintain a cache
 entry per access network to record 'non-ECT SYN' entries against
 proxies (see Section 4.2.1).

 Subsequently the initiator will not set ECT on a SYN to such a server
 or proxy, but it can still always request AccECN support (because the
 response will state any earlier stage of ECN evolution that the
 server supports with no performance penalty). The initiator will
 discover a server that has upgraded to support AccECN as soon as it
 next connects, then it can remove the server from its cache and
 subsequently always set ECT for that server.

 The client can limit the size of its cache of 'non-ECT SYN' servers.
 Then, while AccECN is not widely deployed, it will only cache the
 'non-ECT SYN' servers that are most used and most recently used by
 the client. As the client accesses servers that have been expelled
 from its cache, it will simply use ECT on the SYN by default.

 Servers that do not support ECN as a whole do not need to be recorded
 separately from non-support of AccECN because the response to a
 request for AccECN immediately states which stage in the evolution of
 ECN the server supports (AccECN [I-D.ietf-tcpm-accurate-ecn], classic
 ECN [RFC3168] or no ECN).

 The above strategy is named "optimistic ECT and cache failures". It
 is believed to be sufficient based on three measurement studies and
 assumptions detailed in Section 4.2.1. However, Section 4.2.1 gives
 two other strategies and the choice between them depends on the
 implementer's goals and the deployment prevalence of ECN variants in
 the network and on servers, not to mention the prevalence of some
 significant bugs.

 If the initiator times out without seeing a SYN-ACK, it will
 separately cache this fact (see fall-back in Section 3.2.1.4 for
 details).

3.2.1.3. SYN Congestion Response

 As explained above, this subsection only applies if the ECN++ TCP
 client also supports AccECN.

 If the SYN-ACK returned to the TCP initiator confirms that the server
 supports AccECN, it will also indicate whether or not the SYN was CE-
 marked. If the SYN was CE-marked, the initiator MUST reduce its
 Initial Window (IW) and SHOULD reduce it to 1 SMSS (sender maximum
 segment size).

https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 10]

Internet-Draft ECN++ July 2019

 If the initiator has set ECT on the SYN and if the SYN-ACK shows that
 the server does not support AccECN, the TCP initiator MUST
 conservatively reduce its Initial Window and SHOULD reduce it to 1
 SMSS. A reduction to greater than 1 SMSS MAY be appropriate (see

Section 4.2.1). Conservatism is necessary because a non-AccECN SYN-
 ACK cannot show whether the SYN was CE-marked.

 If the TCP initiator (host A) receives a SYN from the remote end
 (host B) after it has sent a SYN to B, it indicates the (unusual)
 case of a simultaneous open. Host A will respond with a SYN-ACK.
 Host A will probably then receive a SYN-ACK in response to its own
 SYN, after which it can follow the appropriate one of the two
 paragraphs above.

 In all the above cases, the initiator does not have to back off its
 retransmission timer as it would in response to a timeout following
 no response to its SYN [RFC6298], because both the SYN and the SYN-
 ACK have been successfully delivered through the network. Also, the
 initiator does not need to exit slow start or reduce ssthresh, which
 is not even required when a SYN is lost [RFC5681].

 If an initial window of 10 (IW10 [RFC6928]) is implemented, Section 5
 gives additional recommendations.

3.2.1.4. Fall-Back Following No Response to an ECT SYN

 As explained above, this subsection only applies if the ECN++ TCP
 client also supports AccECN.

 An ECT SYN might be lost due to an over-zealous path element (or
 server) blocking ECT packets that do not conform to RFC 3168. Some
 evidence of this was found in a 2014 study [ecn-pam], but in a more
 recent study using 2017 data [Mandalari18] extensive measurements
 found no case where ECT on TCP control packets was treated any
 differently from ECT on TCP data packets. Loss is commonplace for
 numerous other reasons, e.g. congestion loss at a non-ECN queue on
 the forward or reverse path, transmission errors, etc.
 Alternatively, the cause of the loss might be the attempt to
 negotiate AccECN, or possibly other unrelated options on the SYN.

 Therefore, if the timer expires after the TCP initiator has sent the
 first ECT SYN, it SHOULD make one more attempt to retransmit the SYN
 with ECT set (backing off the timer as usual). If the retransmission
 timer expires again, it SHOULD retransmit the SYN with the not-ECT
 codepoint in the IP header, to expedite connection set-up. If other
 experimental fields or options were on the SYN, it will also be
 necessary to follow their specifications for fall-back too. It would

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 11]

Internet-Draft ECN++ July 2019

 make sense to coordinate all the strategies for fall-back in order to
 isolate the specific cause of the problem.

 If the TCP initiator is caching failed connection attempts, it SHOULD
 NOT give up using ECT on the first SYN of subsequent connection
 attempts until it is clear that a blockage persistently and
 specifically affects ECT on SYNs. This is because loss is so
 commonplace for other reasons. Even if it does eventually decide to
 give up setting ECT on the SYN, it will probably not need to give up
 on AccECN on the SYN. In any case, if a cache is used, it SHOULD be
 arranged to expire so that the initiator will infrequently attempt to
 check whether the problem has been resolved.

 Other fall-back strategies MAY be adopted where applicable (see
Section 4.2.2 for suggestions, and the conditions under which they

 would apply).

3.2.2. SYN-ACK (Send)

3.2.2.1. Setting ECT on the SYN-ACK

 For the ECN++ experiment, the TCP implementation will set ECT on SYN-
 ACKs. It can ignore the requirement in section 6.1.1 of RFC 3168 to
 set not-ECT on a SYN-ACK, as per Section 4.3 of [RFC8311].

3.2.2.2. SYN-ACK Congestion Response

 A host that sets ECT on SYN-ACKs MUST reduce its initial window in
 response to any congestion feedback, whether using classic ECN or
 AccECN (see Section 4.3.1). It SHOULD reduce it to 1 SMSS. This is
 different to the behaviour specified in an earlier experiment that
 set ECT on the SYN-ACK [RFC5562]. This is justified in Section 4.3.

 The responder does not have to back off its retransmission timer
 because the ECN feedback proves that the network is delivering
 packets successfully and is not severely overloaded. Also the
 responder does not have to leave slow start or reduce ssthresh, which
 is not even required when a SYN-ACK has been lost.

 The congestion response to CE-marking on a SYN-ACK for a server that
 implements either the TCP Fast Open experiment (TFO [RFC7413]) or the
 initial window of 10 experiment (IW10 [RFC6928]) is discussed in

Section 5.

https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.1
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6928

Bagnulo & Briscoe Expires January 9, 2020 [Page 12]

Internet-Draft ECN++ July 2019

3.2.2.3. Fall-Back Following No Response to an ECT SYN-ACK

 After the responder sends a SYN-ACK with ECT set, if its
 retransmission timer expires it SHOULD retransmit one more SYN-ACK
 with ECT set (and back-off its timer as usual). If the timer expires
 again, it SHOULD retransmit the SYN-ACK with not-ECT in the IP
 header. If other experimental fields or options were on the initial
 SYN-ACK, it will also be necessary to follow their specifications for
 fall-back. It would make sense to co-ordinate all the strategies for
 fall-back in order to isolate the specific cause of the problem.

 This fall-back strategy attempts to use ECT one more time than the
 strategy for ECT SYN-ACKs in [RFC5562] (which is made obsolete, being
 superseded by the present specification). Other fall-back strategies
 MAY be adopted if found to be more effective, e.g. fall-back to not-
 ECT on the first retransmission attempt.

 The server MAY cache failed connection attempts, e.g. per client
 access network. A client-based alternative to caching at the server
 is given in Section 4.3.3. If the TCP server is caching failed
 connection attempts, it SHOULD NOT give up using ECT on the first
 SYN-ACK of subsequent connection attempts until it is clear that the
 blockage persistently and specifically affects ECT on SYN-ACKs. This
 is because loss is so commonplace for other reasons (see

Section 3.2.1.4). If a cache is used, it SHOULD be arranged to
 expire so that the server will infrequently attempt to check whether
 the problem has been resolved.

3.2.3. Pure ACK (Send)

 A Pure ACK is an ACK packet that does not carry data, which includes
 the Pure ACK at the end of TCP's 3-way handshake.

 For the ECN++ experiment, whether a TCP implementation sets ECT on a
 Pure ACK depends on whether or not Accurate ECN TCP feedback
 [I-D.ietf-tcpm-accurate-ecn] has been successfully negotiated for a
 particular TCP connection, as specified in the following two
 subsections.

3.2.3.1. Pure ACK without AccECN Feedback

 If AccECN has not been successfully negotiated for a connection, ECT
 MUST NOT be set on Pure ACKs by either end.

https://datatracker.ietf.org/doc/html/rfc5562

Bagnulo & Briscoe Expires January 9, 2020 [Page 13]

Internet-Draft ECN++ July 2019

3.2.3.2. Pure ACK with AccECN Feedback

 For the ECN++ experiment, if AccECN has been successfully negotiated,
 either end of the connection will set ECT on Pure ACKs. They can
 ignore the requirement in section 6.1.4 of RFC 3168 to set not-ECT on
 a pure ACK, as per Section 4.3 of [RFC8311].

 MEASUREMENTS NEEDED: Measurements are needed to learn how the
 deployed base of network elements and RFC 3168 servers react to
 pure ACKs marked with the ECT(0)/ECT(1)/CE codepoints, i.e.
 whether they are dropped, codepoint cleared or processed and the
 congestion indication fed back on a subsequent packet.

 See Section 3.3.3 for the implications if a host receives a CE-marked
 Pure ACK.

3.2.3.2.1. Pure ACK Congestion Response

 As explained above, this subsection only applies if AccECN has been
 successfully negotiated for the TCP connection.

 A host that sets ECT on pure ACKs SHOULD respond to the congestion
 signal resulting from pure ACKs being marked with the CE codepoint.
 The specific response will need to be defined as an update to each
 congestion control specification. Possible responses to congestion
 feedback include reducing the congestion window (CWND) and/or
 regulating the pure ACK rate (see Section 4.4.1.1).

 Note that, in comparison, TCP Congestion Control [RFC5681] does not
 require a TCP to detect or respond to loss of pure ACKs at all; it
 requires no reduction in congestion window or ACK rate.

3.2.4. Window Probe (Send)

 For the ECN++ experiment, the TCP sender will set ECT on window
 probes. It can ignore the prohibition in section 6.1.6 of RFC 3168
 against setting ECT on a window probe, as per Section 4.3 of
 [RFC8311].

 A window probe contains a single octet, so it is no different from a
 regular TCP data segment. Therefore a TCP receiver will feed back
 any CE marking on a window probe as normal (either using classic ECN
 feedback or AccECN feedback). The sender of the probe will then
 reduce its congestion window as normal.

 A receive window of zero indicates that the application is not
 consuming data fast enough and does not imply anything about network
 congestion. Once the receive window opens, the congestion window

https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.4
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.6
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3

Bagnulo & Briscoe Expires January 9, 2020 [Page 14]

Internet-Draft ECN++ July 2019

 might become the limiting factor, so it is correct that CE-marked
 probes reduce the congestion window. This complements cwnd
 validation [RFC7661], which reduces cwnd as more time elapses without
 having used available capacity. However, CE-marking on window probes
 does not reduce the rate of the probes themselves. This is unlikely
 to present a problem, given the duration between window probes
 doubles [RFC1122] as long as the receiver is advertising a zero
 window (currently minimum 1 second, maximum at least 1 minute
 [RFC6298]).

 MEASUREMENTS NEEDED: Measurements are needed to learn how the
 deployed base of network elements and servers react to Window
 probes marked with the ECT(0)/ECT(1)/CE codepoints, i.e. whether
 they are dropped, codepoint cleared or processed.

3.2.5. FIN (Send)

 A TCP implementation can set ECT on a FIN.

 See Section 3.3.4 for the implications if a host receives a CE-marked
 FIN.

 A congestion response to a CE-marking on a FIN is not required.

 After sending a FIN, the endpoint will not send any more data in the
 connection. Therefore, even if the FIN-ACK indicates that the FIN
 was CE-marked (whether using classic or AccECN feedback), reducing
 the congestion window will not affect anything.

 After sending a FIN, a host might send one or more pure ACKs. If it
 is using one of the techniques in Section 3.2.3 to regulate the
 delayed ACK ratio for pure ACKs, it could equally be applied after a
 FIN. But this is not required.

 MEASUREMENTS NEEDED: Measurements are needed to learn how the
 deployed base of network elements and servers react to FIN packets
 marked with the ECT(0)/ECT(1)/CE codepoints, i.e. whether they
 are dropped, codepoint cleared or processed.

3.2.6. RST (Send)

 A TCP implementation can set ECT on a RST.

 See Section 3.3.5 for the implications if a host receives a CE-marked
 RST.

 A congestion response to a CE-marking on a RST is not required (and
 actually not possible).

https://datatracker.ietf.org/doc/html/rfc7661
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6298

Bagnulo & Briscoe Expires January 9, 2020 [Page 15]

Internet-Draft ECN++ July 2019

 MEASUREMENTS NEEDED: Measurements are needed to learn how the
 deployed base of network elements and servers react to RST packets
 marked with the ECT(0)/ECT(1)/CE codepoints, i.e. whether they
 are dropped, codepoint cleared or processed.

3.2.7. Retransmissions (Send)

 For the ECN++ experiment, the TCP sender will set ECT on
 retransmitted segments. It can ignore the prohibition in section

6.1.5 of RFC 3168 against setting ECT on retransmissions, as per
Section 4.3 of [RFC8311].

 See Section 3.3.6 for the implications if a host receives a CE-marked
 retransmission.

 If the TCP sender receives feedback that a retransmitted packet was
 CE-marked, it will react as it would to any feedback of CE-marking on
 a data packet.

 MEASUREMENTS NEEDED: Measurements are needed to learn how the
 deployed base of network elements and servers react to
 retransmissions marked with the ECT(0)/ECT(1)/CE codepoints, i.e.
 whether they are dropped, codepoint cleared or processed.

3.2.8. General Fall-back for any Control Packet or Retransmission

 Extensive measurements in fixed and mobile networks [Mandalari18]
 have found no evidence of blockages due to ECT being set on any type
 of TCP control packet.

 In case traversal problems arise in future, fall-back measures have
 been specified above, but only for the cases where ECT on the initial
 packet of a half-connection (SYN or SYN-ACK) is persistently failing
 to get through.

 Fall-back measures for blockage of ECT on other TCP control packets
 MAY be implemented. However they are not specified here given the
 lack of any evidence they will be needed. Section 4.9 justifies this
 advice in more detail.

3.3. Receiver Behaviour

 The present ECN++ specification primarily concerns the behaviour for
 sending TCP control packets or retransmissions. Below are a few
 changes to the receive side of an implementation that are recommended
 while updating its send side. Nonetheless, where deployment is
 concerned, ECN++ is still a sender-only deployment, because it does
 not depend on receivers complying with any of these recommendations.

https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.5
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.5
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3

Bagnulo & Briscoe Expires January 9, 2020 [Page 16]

Internet-Draft ECN++ July 2019

3.3.1. Receiver Behaviour for Any TCP Control Packet or Retransmission

RFC8311 is a standards track update to RFC 3168 in order to (amongst
 other things) "...allow the use of ECT codepoints on SYN packets,
 pure acknowledgement packets, window probe packets, and
 retransmissions of packets..., provided that the changes from RFC

3168 are documented in an Experimental RFC in the IETF document
 stream."

Section 4.3 of RFC 8311 amends every statement in RFC 3168 that
 precludes the use of ECT on control packets and retransmissions to
 add "unless otherwise specified by an Experimental RFC in the IETF
 document stream". The present specification is such an Experimental
 RFC. Therefore, In order for this experiment to be useful, the
 following requirements follow from RFC8311:

 o Any TCP implementation SHOULD accept receipt of any valid TCP
 control packet or retransmission irrespective of its IP/ECN field.
 If any existing implementation does not, it SHOULD be updated to
 do so.

 o A TCP implementation taking part in the experiments proposed here
 MUST accept receipt of any valid TCP control packet or
 retransmission irrespective of its IP/ECN field.

 These measures are derived from the robustness principle of "... be
 liberal in what you accept from others", in order to ensure
 compatibility with any future protocol changes that allow ECT on any
 TCP packet.

3.3.2. SYN (Receive)

RFC 3168 negotiates the use of ECN for the connection end-to-end
 using the ECN flags in the TCP header. When RFC3168 says that "A
 host MUST NOT set ECT on SYN ... packets." it is silent as to what a
 TCP server ought to do if it receives a SYN packet with a non-zero
 IP/ECN field.

 Some implementations of TCP servers (e.g. current Linux) assume that,
 if a host receives a SYN with a non-zero IP/ECN field, it must be due
 to network mangling, and they disable ECN for the rest of the
 connection. Section 4.2.2.2 finds that this type of network mangling
 seems to be virtually non-existent so it would be preferable to
 report any such mangling so it can be fixed.

 For the avoidance of doubt, the normative statements for all TCP
 control packets in Section 3.3.1 are interpreted for the case when a
 SYN is received as follows:

https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311#section-4.3
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 17]

Internet-Draft ECN++ July 2019

 o Any TCP server implementation SHOULD accept receipt of a valid SYN
 that requests ECN support for the connection, irrespective of the
 IP/ECN field of the SYN. If any existing implementation does not,
 it SHOULD be updated to do so.

 o A TCP implementation taking part in the ECN++ experiment MUST
 accept receipt of a valid SYN, irrespective of its IP/ECN field.

 o If the SYN is CE-marked and the server has no logic to feed back a
 CE mark on a SYN-ACK (e.g. it does not support AccECN), it has to
 ignore the CE-mark (the client detects this case and behaves
 conservatively in mitigation - see Section 3.2.1.3).

3.3.3. Pure ACK (Receive)

 For the avoidance of doubt, the normative statements for all TCP
 control packets in Section 3.3.1 are interpreted for the case when a
 Pure ACK is received as follows:

 o Any TCP implementation SHOULD accept receipt of a pure ACK with a
 non-zero ECN field, despite current RFCs precluding the sending of
 such packets.

 o A TCP implementation taking part in the ECN++ experiment MUST
 accept receipt of a pure ACK with a non-zero ECN field.

 The question of whether and how the receiver of pure ACKs is required
 to feed back any CE marks on them is outside the scope of the present
 specification because it is a matter for the relevant feedback
 specification ([RFC3168] or [I-D.ietf-tcpm-accurate-ecn]). Currently
 AccECN feedback is required to count CE marking of any control packet
 including pure ACKs. Whereas RFC 3168 is silent on this point, so
 feedback of CE-markings might be implementation specific (see

Section 4.4.1.1).

3.3.4. FIN (Receive)

 The TCP data receiver MUST ignore the CE codepoint on incoming FINs
 that fail any validity check. The validity check in section 5.2 of
 [RFC5961] is RECOMMENDED.

3.3.5. RST (Receive)

 The "challenge ACK" approach to checking the validity of RSTs
 (section 3.2 of [RFC5961] is RECOMMENDED at the data receiver.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5961#section-5.2
https://datatracker.ietf.org/doc/html/rfc5961#section-5.2
https://datatracker.ietf.org/doc/html/rfc5961#section-3.2

Bagnulo & Briscoe Expires January 9, 2020 [Page 18]

Internet-Draft ECN++ July 2019

3.3.6. Retransmissions (Receive)

 The TCP data receiver MUST ignore the CE codepoint on incoming
 segments that fail any validity check. The validity check in section

5.2 of [RFC5961] is RECOMMENDED. This will effectively mitigate an
 attack that uses spoofed data packets to fool the receiver into
 feeding back spoofed congestion indications to the sender, which in
 turn would be fooled into continually reducing its congestion window.

4. Rationale

 This section is informative, not normative. It presents counter-
 arguments against the justifications in the RFC series for disabling
 ECN on TCP control segments and retransmissions. It also gives
 rationale for why ECT is safe on control segments that have not, so
 far, been mentioned in the RFC series. First it addresses over-
 arching arguments used for most packet types, then it addresses the
 specific arguments for each packet type in turn.

4.1. The Reliability Argument

Section 5.2 of RFC 3168 states:

 "To ensure the reliable delivery of the congestion indication of
 the CE codepoint, an ECT codepoint MUST NOT be set in a packet
 unless the loss of that packet [at a subsequent node] in the
 network would be detected by the end nodes and interpreted as an
 indication of congestion."

 We believe this argument is misplaced. TCP does not deliver most
 control packets reliably. So it is more important to allow control
 packets to be ECN-capable, which greatly improves reliable delivery
 of the control packets themselves (see motivation in Section 1.1).
 ECN also improves the reliability and latency of delivery of any
 congestion notification on control packets, particularly because TCP
 does not detect the loss of most types of control packet anyway.
 Both these points outweigh by far the concern that a CE marking
 applied to a control packet by one node might subsequently be dropped
 by another node.

 The principle to determine whether a packet can be ECN-capable ought
 to be "do no extra harm", meaning that the reliability of a
 congestion signal's delivery ought to be no worse with ECN than
 without. In particular, setting the CE codepoint on the very same
 packet that would otherwise have been dropped fulfills this
 criterion, since either the packet is delivered and the CE signal is
 delivered to the endpoint, or the packet is dropped and the original
 congestion signal (packet loss) is delivered to the endpoint.

https://datatracker.ietf.org/doc/html/rfc5961#section-5.2
https://datatracker.ietf.org/doc/html/rfc5961#section-5.2
https://datatracker.ietf.org/doc/html/rfc3168#section-5.2

Bagnulo & Briscoe Expires January 9, 2020 [Page 19]

Internet-Draft ECN++ July 2019

 The concern about a CE marking being dropped at a subsequent node
 might be motivated by the idea that ECN-marking a packet at the first
 node does not remove the packet, so it could go on to worsen
 congestion at a subsequent node. However, it is not useful to reason
 about congestion by considering single packets. The departure rate
 from the first node will generally be the same (fully utilized) with
 or without ECN, so this argument does not apply.

4.2. SYNs

RFC 5562 presents two arguments against ECT marking of SYN packets
 (quoted verbatim):

 "First, when the TCP SYN packet is sent, there are no guarantees
 that the other TCP endpoint (node B in Figure 2) is ECN-Capable,
 or that it would be able to understand and react if the ECN CE
 codepoint was set by a congested router.

 Second, the ECN-Capable codepoint in TCP SYN packets could be
 misused by malicious clients to "improve" the well-known TCP SYN
 attack. By setting an ECN-Capable codepoint in TCP SYN packets, a
 malicious host might be able to inject a large number of TCP SYN
 packets through a potentially congested ECN-enabled router,
 congesting it even further."

 The first point actually describes two subtly different issues. So
 below three arguments are countered in turn.

4.2.1. Argument 1a: Unrecognized CE on the SYN

 This argument certainly applied at the time RFC 5562 was written,
 when no ECN responder mechanism had any logic to recognize a CE
 marking on a SYN and, even if logic were added, there was no field in
 the SYN-ACK to feed it back. The problem was that, during the 3WHS,
 the flag in the TCP header for ECN feedback (called Echo Congestion
 Experienced) had been overloaded to negotiate the use of ECN itself.

 The accurate ECN (AccECN) protocol [I-D.ietf-tcpm-accurate-ecn] has
 since been designed to solve this problem. Two features are
 important here:

 1. An AccECN server uses the 3 'ECN' bits in the TCP header of the
 SYN-ACK to respond to the client. 4 of the possible 8 codepoints
 provide enough space for the server to feed back which of the 4
 IP/ECN codepoints was on the incoming SYN (including CE of
 course).

https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5562

Bagnulo & Briscoe Expires January 9, 2020 [Page 20]

Internet-Draft ECN++ July 2019

 2. If any of these 4 codepoints are in the SYN-ACK, it confirms that
 the server supports AccECN and, if another codepoint is returned,
 it confirms that the server doesn't support AccECN.

 This still does not seem to allow a client set ECT on a SYN, it only
 finds out whether the server would have supported it afterwards. The
 trick the client uses for ECN++ is to set ECT on the SYN
 optimistically then, if the SYN-ACK reveals that the server wouldn't
 have understood CE on the SYN, the client responds conservatively as
 if the SYN was marked with CE.

 Happily, the appropriate conservative congestion response is to
 reduce the initial window, and it is extremely rare for a TCP client
 to send more than one packet as its initial request anyway. Any
 clients that do frequently use a larger initial window for their
 first message to the server can cache which servers will not
 understand ECT on a SYN (see Section 4.2.3 below).

4.2.2. Argument 1b: ECT Considered Invalid on the SYN

 Given, until now, ECT-marked SYN packets have been prohibited, it
 cannot be assumed they will be accepted, by TCP middleboxes or
 servers.

4.2.2.1. ECT on SYN Considered Invalid by Middleboxes

 According to a study using 2014 data [ecn-pam] from a limited range
 of fixed vantage points, for the top 1M Alexa web sites, adding the
 ECN capability to SYNs was increasing connection establishment
 failures by about 0.4%.

 From a wider range of fixed and mobile vantage points, a more recent
 study in Jan-May 2017 [Mandalari18] found no occurrences of blocking
 of ECT on SYNs. However, in more than half the mobile networks
 tested it found wiping of the ECN codepoint at the first hop.

 MEASUREMENTS NEEDED: As wiping at the first hop is remedied,
 measurements will be needed to check whether SYNs with ECT are
 sometimes blocked deeper into the path.

 Silent failures introduce a retransmission timeout delay (default 1
 second) at the initiator before it attempts any fall back strategy
 (whereas explicit RSTs can be dealt with immediately). Ironically,
 making SYNs ECN-capable is intended to avoid the timeout when a SYN
 is lost due to congestion. Fortunately, if there is any discard of
 ECN-capable SYNs due to policy, it will occur predictably, not
 randomly like congestion. So the initiator should be able to avoid

Bagnulo & Briscoe Expires January 9, 2020 [Page 21]

Internet-Draft ECN++ July 2019

 it by caching those sites that do not support ECN-capable SYNs (see
 the last paragraph of Section 3.2.1.2).

4.2.2.2. ECT on SYN Considered Invalid by Servers

 A study conducted in Nov 2017 [Kuehlewind18] found that, of the 82%
 of the Alexa top 50k web servers that supported ECN, 84% disabled ECN
 if the IP/ECN field on the SYN was ECT0, CE or either. Given most
 web servers use Linux, this behaviour can most likely be traced to a
 patch contributed in May 2012 that was first distributed in v3.5 of
 the Linux kernel [strict-ecn]. The comment says "RFC3168 : 6.1.1 SYN
 packets must not have ECT/ECN bits set. If we receive a SYN packet
 with these bits set, it means a network is playing bad games with TOS
 bits. In order to avoid possible false congestion notifications, we
 disable TCP ECN negociation." Of course, some of the 84% might be
 due to similar code in other OSs.

 For brevity we shall call this the "over-strict" ECN test, because it
 is over-conservative with what it accepts, contrary to Postel's
 robustness principle. A robust protocol will not usually assume
 network mangling without comparing with the value originally sent,
 and one packet is not sufficient to make an assumption with such
 irreversible consequences anyway.

 Ironically, networks rarely seem to alter the IP/ECN field on a SYN
 from zero to non-zero anyway. In a study conducted in Jan-May 2017
 over millions of paths from vantage points in a few dozen mobile and
 fixed networks [Mandalari18], no such transition was observed. With
 such a small or non-existent incidence of this sort of network
 mangling, it would be preferable to report any residual problem paths
 so that they can be fixed.

 Whatever, the widespread presence of this 'over-strict' test proves
 that RFC 5562 was correct to expect that ECT would be considered
 invalid on SYNs. Nonetheless, it is not an insurmountable problem -
 the over-strict test in Linux was patched in Apr 2019
 [relax-strict-ecn] and caching can work round it where previous
 versions of Linux are running. The prevalence of these "over-strict"
 ECN servers makes it challenging to cache them all. However,

Section 4.2.3 below explains how a cache of limited size can
 alleviate this problem for a client's most popular sites.

 For the future, [RFC8311] updates RFC 3168 to clarify that the IP/ECN
 field does not have to be zero on a SYN if documented in an
 experimental RFC such as the present ECN++ specification.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 22]

Internet-Draft ECN++ July 2019

4.2.3. Caching Strategies for ECT on SYNs

 Given the server handling of ECN on SYNs outlined in Section 4.2.2.2
 above, an initiator might combine AccECN with three candidate caching
 strategies for setting ECT on a SYN:

 (S1): Pessimistic ECT and cache successes: The initiator always
 requests AccECN, but by default without ECT on the SYN. Then
 it caches those servers that confirm that they support AccECN
 as 'ECT SYN OK'. On a subsequent connection to any server
 that supports AccECN, the initiator can then set ECT on the
 SYN. When connecting to other servers (non-ECN or classic
 ECN) it will not set ECT on the SYN, so it will not fail the
 'over-strict' ECN test.

 Longer term, as servers upgrade to AccECN, the initiator is
 still requesting AccECN, so it will add them to the cache and
 use ECT on subsequent SYNs to those servers. However,
 assuming it has to cap the size of the cache, the client will
 not have the benefit of ECT SYNs to those less frequently used
 AccECN servers expelled from its cache.

 (S2): Optimistic ECT: The initiator always requests AccECN and by
 default sets ECT on the SYN. Then, if the server response
 shows it has no AccECN logic (so it cannot feed back a CE
 mark), the initiator conservatively behaves as if the SYN was
 CE-marked, by reducing its initial window.

 A. No cache.

 B. Cache failures: The optimistic ECT strategy can be
 improved by caching solely those servers that do not
 support AccECN as 'ECT SYN NOK'. This would include non-
 ECN servers and all Classic ECN servers whether 'over-
 strict' or not. On subsequent connections to these non-
 AccECN servers, the initiator will still request AccECN
 but not set ECT on the SYN. Then, the connection can
 still fall back to Classic ECN, if the server supports it,
 and the initiator can use its full initial window (if it
 has enough request data to need it).

 Longer term, as servers upgrade to AccECN, the initiator
 will remove them from the cache and use ECT on subsequent
 SYNs to that server.

 Where an access network operator mediates Internet access
 via a proxy that does not support AccECN, the optimistic
 ECT strategy will always fail. This scenario is more

Bagnulo & Briscoe Expires January 9, 2020 [Page 23]

Internet-Draft ECN++ July 2019

 likely in mobile networks. Therefore, a mobile host could
 cache lack of AccECN support per attached access network
 operator. Whenever it attached to a new operator, it
 could check a well-known AccECN test server and, if it
 found no AccECN support, it would add a cache entry for
 the attached operator. It would only use ECT when neither
 network nor server were cached. It would only populate
 its per server cache when not attached to a non-AccECN
 proxy.

 (S3): ECT by configuration: In a controlled environment, the
 administrator can make sure that servers support ECN-capable
 SYN packets. Examples of controlled environments are single-
 tenant DCs, and possibly multi-tenant DCs if it is assumed
 that each tenant mostly communicates with its own VMs.

 For unmanaged environments like the public Internet, pragmatically
 the choice is between strategies (S1), (S2A) and (S2B). The
 normative specification for ECT on a SYN in Section 3.2.1 recommends
 the "optimistic ECT and cache failures" strategy (S2B) but the choice
 depends on the implementer's motivation for using ECN++, and the
 deployment prevalence of different technologies and bug-fixes. For
 instance, if a user's Internet access bottleneck supported L4S ECN
 but not Classic ECN, strategy (S2A) would make most sense and there
 would be no point trying to avoid the 'over-strict' test and
 negotiate Classic ECN.

 o The "pessimistic ECT and cache successes" strategy (S1) suffers
 from exposing the initial SYN to the prevailing loss level, even
 if the server supports ECT on SYNs, but only on the first
 connection to each AccECN server. If AccECN becomes widely
 deployed on servers, SYNs to those AccECN servers that are less
 frequently used by the client and therefore don't fit in the cache
 will not benefit from ECN protection at all.

 o The "optimistic ECT without a cache" strategy (S2A) is the
 simplest. It would satisfy the goal of an implementer who is
 solely interested in ultra-low latency using AccECN and ECN++
 (e.g. accessing L4S servers) and is not concerned about fall-back
 to Classic ECN (e.g. when accessing other servers).

 o The "optimistic ECT and cache failures" strategy (S2B) exploits
 ECT on SYNs from the very first attempt. But if the server turns
 out to be 'over-strict' it will disable ECN for the connection,
 but only for the first connection if it's one of the client's more
 popular servers that fits in the cache. If the server turns out
 not to support AccECN, the initiator has to conservatively limit
 its initial window, but again only for the first connection if

Bagnulo & Briscoe Expires January 9, 2020 [Page 24]

Internet-Draft ECN++ July 2019

 it's one of the client's more popular servers (and anyway this
 rarely makes any difference when most client requests fit in a
 single packet).

 Note that, if AccECN deployment grows, caching successes (S1) starts
 off small then grows, while caching failures (S2B) becomes large at
 first, then shrinks. At half-way, the size of the cache has to be
 capped with either approach, so the default behaviour for all the
 servers that do not fit in the cache is as important as the behaviour
 for the popular servers that do fit.

 MEASUREMENTS NEEDED: Measurements are needed to determine which
 strategy would be sufficient for any particular client, whether a
 particular client would need different strategies in different
 circumstances and how many occurrences of problems would be masked
 by how few cache entries.

 Another strategy would be to send a not-ECT SYN a short delay (below
 the typical lowest RTT) after an ECT SYN and only accept the non-ECT
 connection if it returned first. This would reduce the performance
 penalty for those deploying ECT SYN support. However, this 'happy
 eyeballs' approach becomes complex when multiple optional features
 are all tried on the first SYN (or on multiple SYNs), so it is not
 recommended.

4.2.4. Argument 2: DoS Attacks

 [RFC5562] says that ECT SYN packets could be misused by malicious
 clients to augment "the well-known TCP SYN attack". It goes on to
 say "a malicious host might be able to inject a large number of TCP
 SYN packets through a potentially congested ECN-enabled router,
 congesting it even further."

 We assume this is a reference to the TCP SYN flood attack (see
https://en.wikipedia.org/wiki/SYN_flood), which is an attack against

 a responder end point. We assume the idea of this attack is to use
 ECT to get more packets through an ECN-enabled router in preference
 to other non-ECN traffic so that they can go on to use the SYN
 flooding attack to inflict more damage on the responder end point.
 This argument could apply to flooding with any type of packet, but we
 assume SYNs are singled out because their source address is easier to
 spoof, whereas floods of other types of packets are easier to block.

 Mandating Not-ECT in an RFC does not stop attackers using ECT for
 flooding. Nonetheless, if a standard says SYNs are not meant to be
 ECT it would make it legitimate for firewalls to discard them.
 However this would negate the considerable benefit of ECT SYNs for
 compliant transports and seems unnecessary because RFC 3168 already

https://en.wikipedia.org/wiki/SYN_flood
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 25]

Internet-Draft ECN++ July 2019

 provides the means to address this concern. In section 7, RFC 3168
 says "During periods where ... the potential packet marking rate
 would be high, our recommendation is that routers drop packets rather
 then set the CE codepoint..." and this advice is repeated in
 [RFC7567] (section 4.2.1). This makes it harder for flooding packets
 to gain from ECT.

 [ecn-overload] showed that ECT can only slightly augment flooding
 attacks relative to a non-ECT attack. It was hard to overload the
 link without causing the queue to grow, which in turn caused the AQM
 to disable ECN and switch to drop, thus negating any advantage of
 using ECT. This was true even with the switch-over point set to 25%
 drop probability (i.e. the arrival rate was 133% of the link rate).

4.3. SYN-ACKs

 The proposed approach in Section 3.2.2 for experimenting with ECN-
 capable SYN-ACKs is effectively identical to the scheme called ECN+
 [ECN-PLUS]. In 2005, the ECN+ paper demonstrated that it could
 reduce the average Web response time by an order of magnitude. It
 also argued that adding ECT to SYN-ACKs did not raise any new
 security vulnerabilities.

4.3.1. Possibility of Unrecognized CE on the SYN-ACK

 The feedback behaviour by the initiator in response to a CE-marked
 SYN-ACK from the responder depends on whether classic ECN feedback
 [RFC3168] or AccECN feedback [I-D.ietf-tcpm-accurate-ecn] has been
 negotiated. In either case no change is required to RFC 3168 or the
 AccECN specification.

 Some classic ECN client implementations might ignore a CE-mark on a
 SYN-ACK, or even ignore a SYN-ACK packet entirely if it is set to ECT
 or CE. This is a possibility because an RFC 3168 implementation
 would not necessarily expect a SYN-ACK to be ECN-capable. This issue
 already came up when the IETF first decided to experiment with ECN on
 SYN-ACKs [RFC5562] and it was decided to go ahead without any extra
 precautionary measures. This was because the probability of
 encountering the problem was believed to be low and the harm if the
 problem arose was also low (see Appendix B of RFC 5562).

4.3.2. Response to Congestion on a SYN-ACK

 The IETF has already specified an experiment with ECN-capable SYN-ACK
 packets [RFC5562]. It was inspired by the ECN+ paper, but it
 specified a much more conservative congestion response to a CE-marked
 SYN-ACK, called ECN+/TryOnce. This required the server to reduce its
 initial window to 1 segment (like ECN+), but then the server had to

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7567
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5562#appendix-B
https://datatracker.ietf.org/doc/html/rfc5562

Bagnulo & Briscoe Expires January 9, 2020 [Page 26]

Internet-Draft ECN++ July 2019

 send a second SYN-ACK and wait for its ACK before it could continue
 with its initial window of 1 SMSS. The second SYN-ACK of this 5-way
 handshake had to carry no data, and had to disable ECN, but no
 justification was given for these last two aspects.

 The present ECN++ experimental specification obsoletes RFC 5562
 because it uses the ECN+ congestion response, not ECN+/TryOnce.
 First we argue against the rationale for ECN+/TryOnce given in
 sections 4.4 and 6.2 of [RFC5562]. It starts with a rather too
 literal interpretation of the requirement in RFC 3168 that says TCP's
 response to a single CE mark has to be "essentially the same as the
 congestion control response to a *single* dropped packet." TCP's
 response to a dropped initial (SYN or SYN-ACK) packet is to wait for
 the retransmission timer to expire (currently 1s). However, this
 long delay assumes the worst case between two possible causes of the
 loss: a) heavy overload; or b) the normal capacity-seeking behaviour
 of other TCP flows. When the network is still delivering CE-marked
 packets, it implies that there is an AQM at the bottleneck and that
 it is not overloaded. This is because an AQM under overload will
 disable ECN (as recommended in section 7 of RFC 3168 and repeated in

section 4.2.1 of RFC 7567). So scenario (a) can be ruled out.
 Therefore, TCP's response to a CE-marked SYN-ACK can be similar to
 its response to the loss of _any_ packet, rather than backing off as
 if the special _initial_ packet of a flow has been lost.

 How TCP responds to the loss of any single packet depends what it has
 just been doing. But there is not really a precedent for TCP's
 response when it experiences a CE mark having sent only one (small)
 packet. If TCP had been adding one segment per RTT, it would have
 halved its congestion window, but it hasn't established a congestion
 window yet. If it had been exponentially increasing it would have
 exited slow start, but it hasn't started exponentially increasing yet
 so it hasn't established a slow-start threshold.

 Therefore, we have to work out a reasoned argument for what to do.
 If an AQM is CE-marking packets, it implies there is already a queue
 and it is probably already somewhere around the AQM's operating point
 - it is unlikely to be well below and it might be well above. So, it
 does not seem sensible to add a number of packets at once. On the
 other hand, it is highly unlikely that the SYN-ACK itself pushed the
 AQM into congestion, so it will be safe to introduce another single
 segment immediately (1 RTT after the SYN-ACK). Therefore, starting
 to probe for capacity with a slow start from an initial window of 1
 segment seems appropriate to the circumstances. This is the approach
 adopted in Section 3.2.2.

https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168#section-7
https://datatracker.ietf.org/doc/html/rfc7567#section-4.2.1

Bagnulo & Briscoe Expires January 9, 2020 [Page 27]

Internet-Draft ECN++ July 2019

4.3.3. Fall-Back if ECT SYN-ACK Fails

 An alternative to the server caching failed connection attempts would
 be for the server to rely on the client caching failed attempts (on
 the basis that the client would cache a failure whether ECT was
 blocked on the SYN or the SYN-ACK). This strategy cannot be used if
 the SYN does not request AccECN support. It works as follows: if the
 server receives a SYN that requests AccECN support but is set to not-
 ECT, it replies with a SYN-ACK also set to not-ECT. If a middlebox
 only blocks ECT on SYNs, not SYN-ACKs, this strategy might disable
 ECN on a SYN-ACK when it did not need to, but at least it saves the
 server from maintaining a cache.

4.4. Pure ACKs

Section 5.2 of RFC 3168 gives the following arguments for not
 allowing the ECT marking of pure ACKs (ACKs not piggy-backed on
 data):

 "To ensure the reliable delivery of the congestion indication of
 the CE codepoint, an ECT codepoint MUST NOT be set in a packet
 unless the loss of that packet in the network would be detected by
 the end nodes and interpreted as an indication of congestion.

 Transport protocols such as TCP do not necessarily detect all
 packet drops, such as the drop of a "pure" ACK packet; for
 example, TCP does not reduce the arrival rate of subsequent ACK
 packets in response to an earlier dropped ACK packet. Any
 proposal for extending ECN-Capability to such packets would have
 to address issues such as the case of an ACK packet that was
 marked with the CE codepoint but was later dropped in the network.
 We believe that this aspect is still the subject of research, so
 this document specifies that at this time, "pure" ACK packets MUST
 NOT indicate ECN-Capability."

 Later on, in section 6.1.4 it reads:

 "For the current generation of TCP congestion control algorithms,
 pure acknowledgement packets (e.g., packets that do not contain
 any accompanying data) MUST be sent with the not-ECT codepoint.
 Current TCP receivers have no mechanisms for reducing traffic on
 the ACK-path in response to congestion notification. Mechanisms
 for responding to congestion on the ACK-path are areas for current
 and future research. (One simple possibility would be for the
 sender to reduce its congestion window when it receives a pure ACK
 packet with the CE codepoint set). For current TCP
 implementations, a single dropped ACK generally has only a very
 small effect on the TCP's sending rate."

https://datatracker.ietf.org/doc/html/rfc3168#section-5.2

Bagnulo & Briscoe Expires January 9, 2020 [Page 28]

Internet-Draft ECN++ July 2019

 We next address each of the arguments presented above.

 The first argument is a specific instance of the reliability argument
 for the case of pure ACKs. This has already been addressed by
 countering the general reliability argument in Section 4.1.

 The second argument says that ECN ought not to be enabled unless
 there is a mechanism to respond to it. This argument actually
 comprises three sub-arguments:

 Mechanism feasibility: If ECN is enabled on Pure ACKs, are there, or
 could there be, suitable mechanisms to detect, feed back and
 respond to ECN-marked Pure ACKs?

 Do no extra harm: There has never been a mechanism to respond to
 loss of non-ECN Pure ACKs. So it seems that adding ECN without a
 response mechanism will do no extra harm to others, while
 improving a connection's own performance (because loss of an ACK
 holds back new data). However, if the end systems have no
 response mechanism, ECN Pure ACKS do slightly more harm than non-
 ECN, because the AQM doesn't immediately clear ECT packets from
 the queue until it reaches overload and disables ECN.

 Standards policy: Even if there were no harm to others, does it set
 an undesirable precedent to allow a flow to use ECN to protect its
 Pure ACKs from loss, when there is no mechanism to respond to ECN-
 marking?

 The last two arguments involve value judgements, but they both depend
 on the concrete technical question of mechanism feasibility, which
 will therefore be addressed first in Section 4.4.1 below. Then

Section 4.4.2 draws conclusions by addressing the value judgements in
 the other two questions.

4.4.1. Mechanisms to Respond to CE-Marked Pure ACKs

 The question of whether the receiver of pure ACKs is required to
 detect and feed back any CE-marking is outside the scope of the
 present specification - it is a matter for the relevant feedback
 specification (classic ECN [RFC3168] and AccECN
 [I-D.ietf-tcpm-accurate-ecn]). The response to congestion feedback
 is also out of scope, because it would be defined in the base TCP
 congestion control specification [RFC5681] or its variants.

 Nonetheless, in order to decide whether the present ECN++
 experimental specification should require a host to set ECT on pure
 ACKs, we only need to know whether a response mechanism would be
 feasible - we do not have to standardize it. So the bullets below

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681

Bagnulo & Briscoe Expires January 9, 2020 [Page 29]

Internet-Draft ECN++ July 2019

 assess, for each type of feedback, whether the three stages of the
 congestion response mechanism could all work.

 Detection: Can the receiver of a pure ACK detect a CE marking on
 it?:

 * Classic feedback: RFC 3168 is silent on this point. The
 implementer of the receiver would not expect CE marks on pure
 ACKs, but the implementation might happen to check for CE marks
 before it looks for the data. So detection will be
 implementation-dependent.

 * AccECN feedback: the AccECN specification requires the receiver
 of any TCP packets to count any CE marks on them (whether or
 not it sends ECN-capable control packets itself).

 Feedback: TCP never ACKs a pure ACK, but the receiver of a CE-mark
 on a pure ACK could feed it back when it sends a subsequent data
 segment (if it ever does):

 * Classic feedback: RFC 3168 is silent on this point, so feedback
 of CE-markings might be implementation specific. If the
 receiver (of the pure ACKs) did generate feedback, it would set
 the echo congestion experienced (ECE) flag in the TCP header of
 subsequent packets in the round, as it would to feed back CE on
 data packets.

 * AccECN feedback: the receiver continually feeds back a count of
 the number of CE-marked packets that it has received and,
 optionally, a count of CE-marked bytes. For either metric,
 AccECN includes pure ACKs and indeed all types of packets.

 Congestion response: In either case (classic or AccECN feedback), if
 the TCP sender does receive feedback about CE-markings on pure
 ACKs, it will be able to reduce the congestion window (cwnd) and/
 or the ACK rate.

 Therefore a congestion response mechanism is clearly feasible if
 AccECN has been negotiated, but the position is unknown for the
 installed base of classic ECN feedback.

4.4.1.1. Congestion Window Response to CE-Marked Pure ACKs

 This subsection explores issues that congestion control designers
 will need to consider when defining a cwnd response to CE-marked Pure
 ACKs.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 30]

Internet-Draft ECN++ July 2019

 A CE-mark on a Pure ACK does not mean that only Pure ACKs are causing
 congestion. It only means that the marked Pure ACK is part of an
 aggregate that is collectively causing a bottleneck queue to randomly
 CE-mark a fraction of the packets. A CE-mark on a Pure ACK might be
 due to data packets in other flows through the same bottleneck, due
 to data packets interspersed between Pure ACKs in the same half-
 connection, or just due to the rate of Pure ACKs alone. (RFC 3168
 only considered the last possibility, which led to the argument that
 ECN-enabled Pure ACKs had to be deferred, because ACK congestion
 control was a research issue.)

 If a host has been sending a mix of Pure ACKs and data, it doesn't
 need to work out whether a particular CE mark was on a Pure ACK or
 not; it just needs to respond to congestion feedback as a whole by
 reducing its congestion window (cwnd), which limits the data it can
 launch into flight through the congested bottleneck. If it is purely
 receiving data and sending only Pure ACKs, reducing cwnd will have
 caused it no harm, having no effect on its ACK rate (the next
 subsection addresses that).

 However, when a host is sending data as well as Pure ACKs, it would
 not be right for CE-marks on Pure ACKs and on data packets to induce
 the same reduction in cwnd. A possible way to address this issue
 would be to weight the response by the size of the marked packets
 (assuming the congestion control supports a weighted response, e.g.
 [RFC8257]). For instance, one could calculate the fraction of CE-
 marked bytes (headers and data) over each round trip (say) as
 follows:

 (CE-marked header bytes + CE-marked data bytes) / (all header
 bytes + all data bytes)

 Header bytes can be calculated by multiplying a packet count by a
 nominal header size, which is possible with AccECN feedback, because
 it gives a count of CE-marked packets (as well as CE-marked bytes).
 The above simple aggregate calculation caters for the full range of
 scenarios; from all Pure ACKs to just a few interspersed with data
 packets.

 Note that any mechanism that reduces cwnd due to CE-marked Pure ACKs
 would need to be integrated with the congestion window validation
 mechanism [RFC7661], which already conservatively reduces cwnd over
 time because cwnd becomes stale if it is not used to fill the pipe.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc7661

Bagnulo & Briscoe Expires January 9, 2020 [Page 31]

Internet-Draft ECN++ July 2019

4.4.1.2. ACK Rate Response to CE-Marked Pure ACKs

 Reducing the congestion window will have no effect on the rate of
 pure ACKs. The worst case here is if the bottleneck is congested
 solely with pure ACKs, but it could also be problematic if a large
 fraction of the load was from unresponsive ACKs, leaving little or no
 capacity for the load from responsive data.

 Since RFC 3168 was published, experimental Acknowledgement Congestion
 Control (AckCC) techniques have been documented in [RFC5690]
 (informational). So any pair of TCP end-points can choose to agree
 to regulate the delayed ACK ratio in response to lost or CE-marked
 pure ACKs. However, the protocol has a number of open issues
 concerning deployment (e.g. it requires support from both ends, it
 relies on two new TCP options, one of which is required on the SYN
 where option space is at a premium and, if either option is blocked
 by a middlebox, no fall-back behaviour is specified).

 The new TCP options address two problems, namely that TCP had: i) no
 mechanism to allow ECT to be set on pure ACKs; and ii) no mechanism
 to feed back loss or CE-marking of pure ACKs. A combination of the
 present specification and AccECN addresses both these problems, at
 least for CE-marking. So it might now be possible to design an ECN-
 specific ACK congestion control scheme without the extra TCP options
 proposed in RFC 5690. However, such a mechanism is out of scope of
 the present document.

 Setting aside the practicality of RFC 5690, the need for AckCC has
 not been conclusively demonstrated. It has been argued that the
 Internet has survived so far with no mechanism to even detect loss of
 pure ACKs. However, it has also been argued that ECN is not the same
 as loss. Packet discard can naturally thin the ACK load to whatever
 the bottleneck can support, whereas ECN marking does not (it queues
 the ACKs instead). Nonetheless, RFC 3168 (section 7) recommends that
 an AQM switches over from ECN marking to discard when the marking
 probability becomes high. Therefore discard can still be relied on
 to thin out ECN-enabled pure ACKs as a last resort.

4.4.2. Summary: Enabling ECN on Pure ACKs

 In the case when AccECN has been negotiated, it provides a feasible
 congestion response mechanism, so the arguments for ECT on pure ACKs
 heavily outweigh those against. ECN is always more and never less
 reliable for delivery of congestion notification. A cwnd reduction
 needs to be considered by congestion control designers as a response
 to congestion on pure ACKs. Separately, AckCC (or an improved
 variant exploiting AccECN) could optionally be used to regulate the
 spacing between pure ACKs. However, it is not clear whether AckCC is

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5690
https://datatracker.ietf.org/doc/html/rfc5690
https://datatracker.ietf.org/doc/html/rfc5690
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 32]

Internet-Draft ECN++ July 2019

 justified. If it is not, packet discard will still act as the
 "congestion response of last resort" by thinning out the traffic. In
 contrast, not setting ECT on pure ACKs is certainly detrimental to
 performance, because when a pure ACK is lost it can prevent the
 release of new data.

 In the case when Classic ECN has been negotiated, the argument for
 ECT on pure ACKs is less clear-cut. Some of the installed base of

RFC 3168 implementations might happen to (unintentionally) provide a
 feedback mechanism to support a cwnd response. For those that did
 not, setting ECT on pure ACKs would be better for the flow's own
 performance than not setting it. However, where there was no
 feedback mechanism, setting ECT could do slightly more harm than not
 setting it. AckCC could provide a complementary response mechanism,
 because it is designed to work with RFC 3168 ECN, but it has
 deployment challenges. In summary, a congestion response mechanism
 is unlikely to be feasible with the installed base of classic ECN.

 During review of this specification, it was decided that allowing
 hosts to set ECT on Pure ACKs without a feasible response mechanism
 would set an undesirable precedent. It would certainly improve the
 flow's own performance, but it would slightly increase potential harm
 to others. Therefore, Section 3.2.3 allows ECT on Pure ACKs if
 AccECN feedback has been negotiated, but not with classic RFC 3168
 ECN feedback.

4.5. Window Probes

Section 6.1.6 of RFC 3168 presents only the reliability argument for
 prohibiting ECT on Window probes:

 "If a window probe packet is dropped in the network, this loss is
 not detected by the receiver. Therefore, the TCP data sender MUST
 NOT set either an ECT codepoint or the CWR bit on window probe
 packets.

 However, because window probes use exact sequence numbers, they
 cannot be easily spoofed in denial-of-service attacks. Therefore,
 if a window probe arrives with the CE codepoint set, then the
 receiver SHOULD respond to the ECN indications."

 The reliability argument has already been addressed in Section 4.1.

 Allowing ECT on window probes could considerably improve performance
 because, once the receive window has reopened, if a window probe is
 lost the sender will stall until the next window probe reaches the
 receiver, which might be after the maximum retransmission timeout (at
 least 1 minute [RFC6928]).

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.6
https://datatracker.ietf.org/doc/html/rfc6928

Bagnulo & Briscoe Expires January 9, 2020 [Page 33]

Internet-Draft ECN++ July 2019

 On the bright side, RFC 3168 at least specifies the receiver
 behaviour if a CE-marked window probe arrives, so changing the
 behaviour ought to be less painful than for other packet types.

4.6. FINs

RFC 3168 is silent on whether a TCP sender can set ECT on a FIN. A
 FIN is considered as part of the sequence of data, and the rate of
 pure ACKs sent after a FIN could be controlled by a CE marking on the
 FIN. Therefore there is no reason not to set ECT on a FIN.

4.7. RSTs

RFC 3168 is silent on whether a TCP sender can set ECT on a RST. The
 host generating the RST message does not have an open connection
 after sending it (either because there was no such connection when
 the packet that triggered the RST message was received or because the
 packet that triggered the RST message also triggered the closure of
 the connection).

 Moreover, the receiver of a CE-marked RST message can either: i)
 accept the RST message and close the connection; ii) emit a so-called
 challenge ACK in response (with suitable throttling) [RFC5961] and
 otherwise ignore the RST (e.g. because the sequence number is in-
 window but not the precise number expected next); or iii) discard the
 RST message (e.g. because the sequence number is out-of-window). In
 the first two cases there is no point in echoing any CE mark received
 because the sender closed its connection when it sent the RST. In
 the third case it makes sense to discard the CE signal as well as the
 RST.

 Although a congestion response following a CE-marking on a RST does
 not appear to make sense, the following factors have been considered
 before deciding whether the sender ought to set ECT on a RST message:

 o As explained above, a congestion response by the sender of a CE-
 marked RST message is not possible;

 o So the only reason for the sender setting ECT on a RST would be to
 improve the reliability of the message's delivery;

 o RST messages are used to both mount and mitigate attacks:

 * Spoofed RST messages are used by attackers to terminate ongoing
 connections, although the mitigations in RFC 5961 have
 considerably raised the bar against off-path RST attacks;

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961

Bagnulo & Briscoe Expires January 9, 2020 [Page 34]

Internet-Draft ECN++ July 2019

 * Legitimate RST messages allow endpoints to inform their peers
 to eliminate existing state that correspond to non existing
 connections, liberating resources e.g. in DoS attacks
 scenarios;

 o AQMs are advised to disable ECN marking during persistent
 overload, so:

 * it is harder for an attacker to exploit ECN to intensify an
 attack;

 * it is harder for a legitimate user to exploit ECN to more
 reliably mitigate an attack

 o Prohibiting ECT on a RST would deny the benefit of ECN to
 legitimate RST messages, but not to attackers who can disregard
 RFCs;

 o If ECT were prohibited on RSTs

 * it would be easy for security middleboxes to discard all ECN-
 capable RSTs;

 * However, unlike a SYN flood, it is already easy for a security
 middlebox (or host) to distinguish a RST flood from legitimate
 traffic [RFC5961], and even if a some legitimate RSTs are
 accidentally removed as well, legitimate connections still
 function.

 So, on balance, it has been decided that it is worth experimenting
 with ECT on RSTs. During experiments, if the ECN capability on RSTs
 is found to open a vulnerability that is hard to close, this decision
 can be reversed, before it is specified for the standards track.

4.8. Retransmitted Packets.

RFC 3168 says the sender "MUST NOT" set ECT on retransmitted packets.
 The rationale for this consumes nearly 2 pages of RFC 3168, so the
 reader is referred to section 6.1.5 of RFC 3168, rather than quoting
 it all here. There are essentially three arguments, namely:
 reliability; DoS attacks; and over-reaction to congestion. We
 address them in order below.

 The reliability argument has already been addressed in Section 4.1.

 Protection against DoS attacks is not afforded by prohibiting ECT on
 retransmitted packets. An attacker can set CE on spoofed
 retransmissions whether or not it is prohibited by an RFC.

https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168#section-6.1.5

Bagnulo & Briscoe Expires January 9, 2020 [Page 35]

Internet-Draft ECN++ July 2019

 Protection against the DoS attack described in section 6.1.5 of RFC
3168 is solely afforded by the requirement that "the TCP data

 receiver SHOULD ignore the CE codepoint on out-of-window packets".
 Therefore in Section 3.2.7 the sender is allowed to set ECT on
 retransmitted packets, in order to reduce the chance of them being
 dropped. We also strengthen the receiver's requirement from "SHOULD
 ignore" to "MUST ignore". And we generalize the receiver's
 requirement to include failure of any validity check, not just out-
 of-window checks, in order to include the more stringent validity
 checks in RFC 5961 that have been developed since RFC 3168.

 A consequence is that, for those retransmitted packets that arrive at
 the receiver after the original packet has been properly received
 (so-called spurious retransmissions), any CE marking will be ignored.
 There is no problem with that because the fact that the original
 packet has been delivered implies that the sender's original
 congestion response (when it deemed the packet lost and retransmitted
 it) was unnecessary.

 Finally, the third argument is about over-reacting to congestion.
 The argument goes that, if a retransmitted packet is dropped, the
 sender will not detect it, so it will not react again to congestion
 (it would have reduced its congestion window already when it
 retransmitted the packet). Whereas, if retransmitted packets can be
 CE tagged instead of dropped, senders could potentially react more
 than once to congestion. However, we argue that it is legitimate to
 respond again to congestion if it still persists in subsequent round
 trip(s).

 Therefore, in all three cases, it is not incorrect to set ECT on
 retransmissions.

4.9. General Fall-back for any Control Packet

 Extensive experiments have found no evidence of any traversal
 problems with ECT on any TCP control packet [Mandalari18].
 Nonetheless, Sections 3.2.1.4 and 3.2.2.3 specify fall-back measures
 if ECT on the first packet of each half-connection (SYN or SYN-ACK)
 appears to be blocking progress. Here, the question of fall-back
 measures for ECT on other control packets is explored. It supports
 the advice given in Section 3.2.8; until there's evidence that
 something's broken, don't fix it.

 If an implementation has had to disable ECT to ensure the first
 packet of a flow (SYN or SYN-ACK) gets through, the question arises
 whether it ought to disable ECT on all subsequent control packets
 within the same TCP connection. Without evidence of any such
 problems, this seems unnecessarily cautious. Particularly given it

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 36]

Internet-Draft ECN++ July 2019

 would be hard to detect loss of most other types of TCP control
 packets that are not ACK'd. And particularly given that
 unnecessarily removing ECT from other control packets could lead to
 performance problems, e.g. by directing them into an inferior queue
 [I-D.ietf-tsvwg-ecn-l4s-id] or over a different path, because some
 broken multipath equipment (erroneously) routes based on all 8 bits
 of the Diffserv field.

 In the case where a connection starts without ECT on the SYN (perhaps
 because problems with previous connections had been cached), there
 will have been no test for ECT traversal in the client-server
 direction until the pure ACK that completes the handshake. It is
 possible that some middlebox might block ECT on this pure ACK or on
 later retransmissions of lost packets. Similarly, after a route
 change, the new path might include some middlebox that blocks ECT on
 some or all TCP control packets. However, without evidence of such
 problems, the complexity of a fix does not seem worthwhile.

 MORE MEASUREMENTS NEEDED (?): If further two-ended measurements do
 find evidence for these traversal problems, measurements would be
 needed to check for correlation of ECT traversal problems between
 different control packets. It might then be necessary to
 introduce a catch-all fall-back rule that disables ECT on certain
 subsequent TCP control packets based on some criteria developed
 from these measurements.

5. Interaction with popular variants or derivatives of TCP

 The following subsections discuss any interactions between setting
 ECT on all packets and using the following popular variants of TCP:
 IW10 and TFO. It also briefly notes the possibility that the
 principles applied here should translate to protocols derived from
 TCP. This section is informative not normative, because no
 interactions have been identified that require any change to
 specifications. The subsection on IW10 discusses potential changes
 to specifications but recommends that no changes are needed.

 The designs of the following TCP variants have also been assessed and
 found not to interact adversely with ECT on TCP control packets: SYN
 cookies (see Appendix A of [RFC4987] and section 3.1 of [RFC5562]),
 TCP Fast Open (TFO [RFC7413]) and L4S [I-D.ietf-tsvwg-l4s-arch].

5.1. IW10

 IW10 is an experiment to determine whether it is safe for TCP to use
 an initial window of 10 SMSS [RFC6928].

https://datatracker.ietf.org/doc/html/rfc4987#appendix-A
https://datatracker.ietf.org/doc/html/rfc5562#section-3.1
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc6928

Bagnulo & Briscoe Expires January 9, 2020 [Page 37]

Internet-Draft ECN++ July 2019

 This subsection does not recommend any additions to the present
 specification in order to interwork with IW10. The specifications as
 they stand are safe, and there is only a corner-case with ECT on the
 SYN where performance could be occasionally improved, as explained
 below.

 As specified in Section 3.2.1.1, a TCP initiator can only set ECT on
 the SYN if it requests AccECN support. If, however, the SYN-ACK
 tells the initiator that the responder does not support AccECN,

Section 3.2.1.1 advises the initiator to conservatively reduce its
 initial window to 1 SMSS because, if the SYN was CE-marked, the SYN-
 ACK has no way to feed that back.

 If the initiator implements IW10, it seems rather over-conservative
 to reduce IW from 10 to 1 just in case a congestion marking was
 missed. Nonetheless, the reduction to 1 SMSS will rarely harm
 performance, because:

 o as long as the initiator is caching failures to negotiate AccECN,
 subsequent attempts to access the same server will not use ECT on
 the SYN anyway, so there will no longer be any need to
 conservatively reduce IW;

 o currently, at least for web sessions, it is extremely rare for a
 TCP initiator (client) to have more than one data segment to send
 at the start of a TCP connection [28; Fig 3] - IW10 is primarily
 exploited by TCP servers.

 If a responder receives feedback that the SYN-ACK was CE-marked,
Section 3.2.2.2 mandates that it reduces its initial window to 1

 SMSS. When the responder also implements IW10, it is particularly
 important to adhere to this requirement in order to avoid overflowing
 a queue that is clearly already congested.

5.2. TFO

 TCP Fast Open (TFO [RFC7413]) is an experiment to remove the round
 trip delay of TCP's 3-way hand-shake (3WHS). A TFO initiator caches
 a cookie from a previous connection with a TFO-enabled server. Then,
 for subsequent connections to the same server, any data included on
 the SYN can be passed directly to the server application, which can
 then return up to an initial window of response data on the SYN-ACK
 and on data segments straight after it, without waiting for the ACK
 that completes the 3WHS.

 The TFO experiment and the present experiment to add ECN-support for
 TCP control packets can be combined without altering either
 specification, which is justified as follows:

https://datatracker.ietf.org/doc/html/rfc7413

Bagnulo & Briscoe Expires January 9, 2020 [Page 38]

Internet-Draft ECN++ July 2019

 o The handling of ECN marking on a SYN is no different whether or
 not it carries data.

 o In response to any CE-marking on the SYN-ACK, the responder adopts
 the normal response to congestion, as discussed in Section 7.2 of
 [RFC7413].

5.3. TCP Derivatives

 Experience from experiments on adding ECN support to all TCP packets
 ought to be directly transferable between TCP and derivatives of TCP,
 like SCTP or QUIC.

 Stream Control Transmission Protocol (SCTP [RFC4960]) is a standards
 track transport protocol derived from TCP. SCTP currently does not
 include ECN support, but Appendix A of RFC 4960 broadly describes how
 it would be supported and a (long-expired) draft on the addition of
 ECN to SCTP has been produced [I-D.stewart-tsvwg-sctpecn]. This
 draft avoided setting ECT on control packets and retransmissions,
 closely following the arguments in RFC 3168.

 QUIC [I-D.ietf-quic-transport] is another standards track transport
 protocol offering similar services to TCP but intended to exploit
 some of the benefits of running over UDP. Building on the arguments
 in the current draft, a QUIC sender sets ECT(0) on all packets.

6. Security Considerations

Section 3.2.6 considers the question of whether ECT on RSTs will
 allow RST attacks to be intensified. There are several security
 arguments presented in RFC 3168 for preventing the ECN marking of TCP
 control packets and retransmitted segments. We believe all of them
 have been properly addressed in Section 4, particularly Section 4.2.4
 and Section 4.8 on DoS attacks using spoofed ECT-marked SYNs and
 spoofed CE-marked retransmissions.

7. IANA Considerations

 There are no IANA considerations in this memo.

8. Acknowledgments

 Thanks to Mirja Kuehlewind, David Black, Padma Bhooma, Gorry
 Fairhurst, Michael Scharf, Yuchung Cheng and Christophe Paasch for
 their useful reviews.

 The work of Marcelo Bagnulo has been performed in the framework of
 the H2020-ICT-2014-2 project 5G NORMA. His contribution reflects the

https://datatracker.ietf.org/doc/html/rfc7413#section-7.2
https://datatracker.ietf.org/doc/html/rfc7413#section-7.2
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#appendix-A
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Bagnulo & Briscoe Expires January 9, 2020 [Page 39]

Internet-Draft ECN++ July 2019

 consortium's view, but the consortium is not liable for any use that
 may be made of any of the information contained therein.

 Bob Briscoe's contribution was partly funded by the Research Council
 of Norway through the TimeIn project. The views expressed here are
 solely those of the authors.

9. References

9.1. Normative References

 [I-D.ietf-tcpm-accurate-ecn]
 Briscoe, B., Kuehlewind, M., and R. Scheffenegger, "More
 Accurate ECN Feedback in TCP", draft-ietf-tcpm-accurate-

ecn-08 (work in progress), March 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
 Robustness to Blind In-Window Attacks", RFC 5961,
 DOI 10.17487/RFC5961, August 2010,
 <https://www.rfc-editor.org/info/rfc5961>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

9.2. Informative References

 [ecn-overload]
 Steen, H., "Destruction Testing: Ultra-Low Delay using
 Dual Queue Coupled Active Queue Management", Masters
 Thesis, Uni Oslo , May 2017,
 <https://www.duo.uio.no/bitstream/handle/10852/57424/

thesis-henrste.pdf?sequence=1>.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-08
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc5961
https://www.rfc-editor.org/info/rfc5961
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://www.duo.uio.no/bitstream/handle/10852/57424/thesis-henrste.pdf?sequence=1
https://www.duo.uio.no/bitstream/handle/10852/57424/thesis-henrste.pdf?sequence=1

Bagnulo & Briscoe Expires January 9, 2020 [Page 40]

Internet-Draft ECN++ July 2019

 [ecn-pam] Trammell, B., Kuehlewind, M., Boppart, D., Learmonth, I.,
 Fairhurst, G., and R. Scheffenegger, "Enabling Internet-
 Wide Deployment of Explicit Congestion Notification",
 Int'l Conf. on Passive and Active Network Measurement
 (PAM'15) pp193-205, 2015, <https://link.springer.com/

chapter/10.1007/978-3-319-15509-8_15>.

 [ECN-PLUS]
 Kuzmanovic, A., "The Power of Explicit Congestion
 Notification", ACM SIGCOMM 35(4):61--72, 2005,
 <http://dl.acm.org/citation.cfm?id=1080100>.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-20 (work
 in progress), April 2019.

 [I-D.ietf-tsvwg-ecn-l4s-id]
 Schepper, K. and B. Briscoe, "Identifying Modified
 Explicit Congestion Notification (ECN) Semantics for
 Ultra-Low Queuing Delay (L4S)", draft-ietf-tsvwg-ecn-l4s-

id-06 (work in progress), March 2019.

 [I-D.ietf-tsvwg-l4s-arch]
 Briscoe, B., Schepper, K., and M. Bagnulo, "Low Latency,
 Low Loss, Scalable Throughput (L4S) Internet Service:
 Architecture", draft-ietf-tsvwg-l4s-arch-03 (work in
 progress), October 2018.

 [I-D.stewart-tsvwg-sctpecn]
 Stewart, R., Tuexen, M., and X. Dong, "ECN for Stream
 Control Transmission Protocol (SCTP)", draft-stewart-

tsvwg-sctpecn-05 (work in progress), January 2014.

 [judd-nsdi]
 Judd, G., "Attaining the promise and avoiding the pitfalls
 of TCP in the Datacenter", USENIX Symposium on Networked
 Systems Design and Implementation (NSDI'15) pp.145-157,
 May 2015, <https://www.usenix.org/node/188966>.

 [Kuehlewind18]
 Kuehlewind, M., Walter, M., Learmonth, I., and B.
 Trammell, "Tracing Internet Path Transparency", In Proc:
 Network Traffic Measurement and Analysis Conference (TMA)
 2018 , June 2018, <http://tma.ifip.org/2018/wp-

content/uploads/sites/3/2018/06/tma2018_paper12.pdf>.

https://link.springer.com/chapter/10.1007/978-3-319-15509-8_15
https://link.springer.com/chapter/10.1007/978-3-319-15509-8_15
http://dl.acm.org/citation.cfm?id=1080100
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-06
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-06
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch-03
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://www.usenix.org/node/188966
http://tma.ifip.org/2018/wp-content/uploads/sites/3/2018/06/tma2018_paper12.pdf
http://tma.ifip.org/2018/wp-content/uploads/sites/3/2018/06/tma2018_paper12.pdf

Bagnulo & Briscoe Expires January 9, 2020 [Page 41]

Internet-Draft ECN++ July 2019

 [Mandalari18]
 Mandalari, A., Lutu, A., Briscoe, B., Bagnulo, M., and Oe.
 Alay, "Measuring ECN++: Good News for ++, Bad News for ECN
 over Mobile", IEEE Communications Magazine , March 2018,
 <https://ieeexplore.ieee.org/document/8316790>.

 [Manzoor17]
 Manzoor, J., Drago, I., and R. Sadre, "How HTTP/2 is
 changing Web traffic and how to detect it", In Proc:
 Network Traffic Measurement and Analysis Conference (TMA)
 2017 pp.1-9, June 2017,
 <https://ieeexplore.ieee.org/document/8002899>.

 [relax-strict-ecn]
 Tilmans, O., "tcp: Accept ECT on SYN in the presence of

RFC8311", Linux netdev patch list , April 2019,
 <https://lore.kernel.org/patchwork/patch/1057812/>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces",

RFC 3540, DOI 10.17487/RFC3540, June 2003,
 <https://www.rfc-editor.org/info/rfc3540>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5562] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
 Ramakrishnan, "Adding Explicit Congestion Notification
 (ECN) Capability to TCP's SYN/ACK Packets", RFC 5562,
 DOI 10.17487/RFC5562, June 2009,
 <https://www.rfc-editor.org/info/rfc5562>.

https://ieeexplore.ieee.org/document/8316790
https://ieeexplore.ieee.org/document/8002899
https://datatracker.ietf.org/doc/html/rfc8311
https://lore.kernel.org/patchwork/patch/1057812/
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc3540
https://www.rfc-editor.org/info/rfc3540
https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5562
https://www.rfc-editor.org/info/rfc5562

Bagnulo & Briscoe Expires January 9, 2020 [Page 42]

Internet-Draft ECN++ July 2019

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5690] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding
 Acknowledgement Congestion Control to TCP", RFC 5690,
 DOI 10.17487/RFC5690, February 2010,
 <https://www.rfc-editor.org/info/rfc5690>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7567] Baker, F., Ed. and G. Fairhurst, Ed., "IETF
 Recommendations Regarding Active Queue Management",

BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
 <https://www.rfc-editor.org/info/rfc7567>.

 [RFC7661] Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating
 TCP to Support Rate-Limited Traffic", RFC 7661,
 DOI 10.17487/RFC7661, October 2015,
 <https://www.rfc-editor.org/info/rfc7661>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [strict-ecn]
 Dumazet, E., "tcp: be more strict before accepting ECN
 negociation", Linux netdev patch list , May 2012,
 <https://patchwork.ozlabs.org/patch/156953/>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5690
https://www.rfc-editor.org/info/rfc5690
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/bcp197
https://datatracker.ietf.org/doc/html/rfc7567
https://www.rfc-editor.org/info/rfc7567
https://datatracker.ietf.org/doc/html/rfc7661
https://www.rfc-editor.org/info/rfc7661
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://patchwork.ozlabs.org/patch/156953/

Bagnulo & Briscoe Expires January 9, 2020 [Page 43]

Internet-Draft ECN++ July 2019

 Marcelo Bagnulo
 Universidad Carlos III de Madrid
 Av. Universidad 30
 Leganes, Madrid 28911
 SPAIN

 Phone: 34 91 6249500
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es

 Bob Briscoe
 CableLabs
 UK

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

http://www.it.uc3m.es
http://bobbriscoe.net/

Bagnulo & Briscoe Expires January 9, 2020 [Page 44]

