
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-tcpm-hystartplusplus-09

Published: 26 August 2022

Intended Status: Standards Track

Expires: 27 February 2023

Authors: P. Balasubramanian

Confluent

Y. Huang

Microsoft

M. Olson

Microsoft

HyStart++: Modified Slow Start for TCP

Abstract

This document describes HyStart++, a simple modification to the slow

start phase of congestion control algorithms. Traditional slow start

can overshoot the ideal send rate in many cases, causing high packet

loss and poor performance. HyStart++ uses a delay increase heuristic

to find an exit point before possible overshoot. It also adds a

mitigation to prevent jitter from causing premature slow start exit.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Definitions

4. HyStart++ Algorithm

4.1. Summary

4.2. Algorithm Details

4.3. Tuning constants and other considerations

5. Deployments and Performance Evaluations

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

[RFC5681] describes the slow start congestion control algorithm for

TCP. The slow start algorithm is used when the congestion window

(cwnd) is less than the slow start threshold (ssthresh). During slow

start, in absence of packet loss signals, TCP increases cwnd

exponentially to probe the network capacity. This fast growth can

overshoot the ideal sending rate and cause significant packet loss

which cannot always be recovered efficiently.

HyStart++ uses delay increase as a signal to exit slow start before

potential packet loss occurs as a result of overshoot. This is one

of two algorithms specified in [HyStart]. After the slow start exit,

a novel Conservative Slow Start (CSS) phase is used to determine

whether the slow start exit was premature and to resume slow start.

This mitigation improves performance in presence of jitter. HyStart+

+ reduces packet loss and retransmissions, and improves goodput in

lab measurements and real world deployments.

While this document describes Hystart++ for TCP, it can also be used

for other transport protocols which use slow start such as QUIC

[RFC9002] or SCTP [RFC9260].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

3. Definitions

We repeat here some definition from [RFC5681] to aid the reader.

SENDER MAXIMUM SEGMENT SIZE (SMSS): The SMSS is the size of the

largest segment that the sender can transmit. This value can be

based on the maximum transmission unit of the network, the path MTU

discovery [RFC1191], [RFC4821] algorithm, RMSS (see next item), or

other factors. The size does not include the TCP/IP headers and

options.

RECEIVER MAXIMUM SEGMENT SIZE (RMSS): The RMSS is the size of the

largest segment the receiver is willing to accept. This is the value

specified in the MSS option sent by the receiver during connection

startup. Or, if the MSS option is not used, it is 536 bytes

[RFC1122]. The size does not include the TCP/IP headers and options.

RECEIVER WINDOW (rwnd): The most recently advertised receiver

window.

CONGESTION WINDOW (cwnd): A TCP state variable that limits the

amount of data a TCP can send. At any given time, a TCP MUST NOT

send data with a sequence number higher than the sum of the highest

acknowledged sequence number and the minimum of cwnd and rwnd.

4. HyStart++ Algorithm

4.1. Summary

[HyStart] specifies two algorithms (a "Delay Increase" algorithm and

an "Inter-Packet Arrival" algorithm) to be run in parallel to detect

that the sending rate has reached capacity. In practice, the Inter-

Packet Arrival algorithm does not perform well and is not able to

detect congestion early, primarily due to ACK compression. The idea

of the Delay Increase algorithm is to look for spikes in RTT (round-

trip time), which suggest that the bottleneck buffer is filling up.

In HyStart++, a TCP sender uses traditional slow start and then uses

the "Delay Increase" algorithm to trigger an exit from slow start.

But instead of going straight from slow start to congestion

avoidance, the sender spends a number of RTTs in a Conservative Slow

Start (CSS) phase to determine whether the exit from slow start was

premature. During CSS, the congestion window is grown exponentially

like in regular slow start, but with a smaller exponential base,

resulting in less aggressive growth. If the RTT reduces during CSS,

it's concluded that the RTT spike was not related to congestion

caused by the connection sending at a rate greater than the ideal

send rate, and the connection resumes slow start. If the RTT

inflation persists throughout CSS, the connection enters congestion

avoidance.

¶

¶

¶

¶

¶

¶

¶

4.2. Algorithm Details

The following pseudocode integrates Appropriate Byte Counting as

described in [RFC3465]. In particular, see [RFC3465] for the

definition of the variable L.

lastRoundMinRTT and currentRoundMinRTT are initialized to infinity

at the initialization time. currRTT is the RTT sampled from the

latest incoming ACK and initialized to infinity.

Hystart++ measures rounds using sequence numbers, as follows: Define

windowEnd as a sequence number initialized to SND.NXT. When

windowEnd is ACKed, the current round ends and windowEnd is set to

SND.NXT.

At the start of each round during standard slow start ([RFC5681])

and CSS:

lastRoundMinRTT = currentRoundMinRTT

currentRoundMinRTT = infinity

rttSampleCount = 0

For each arriving ACK in slow start, where N is the number of

previously unacknowledged bytes acknowledged in the arriving ACK:

Update the cwnd:

 cwnd = cwnd + min (N, L * SMSS)

Keep track of minimum observed RTT:

 currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

 rttSampleCount += 1

For rounds where at least N_RTT_SAMPLE RTT samples have been

obtained and currentRoundMinRTT and lastRoundMinRTT are valid, check

if delay increase triggers slow start exit:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

if (rttSampleCount >= N_RTT_SAMPLE AND

 currentRoundMinRTT != infinity AND

 lastRoundMinRTT != infinity)

 RttThresh = clamp(MIN_RTT_THRESH,

 lastRoundMinRTT / 8,

 MAX_RTT_THRESH)

 if (currentRoundMinRTT >= (lastRoundMinRTT + RttThresh))

 cssBaselineMinRtt = currentRoundMinRTT

 exit slow start and enter CSS

For each arriving ACK in CSS, where N is the number of previously

unacknowledged bytes acknowledged in the arriving ACK:

Update the cwnd:

cwnd = cwnd + (min (N, L * SMSS) / CSS_GROWTH_DIVISOR)

Keep track of minimum observed RTT:

currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

rttSampleCount += 1

For CSS rounds where at least N_RTT_SAMPLE RTT samples have been

obtained, check if current round's minRTT drops below baseline

indicating that HyStart exit was spurious:

if (currentRoundMinRTT < cssBaselineMinRtt)

 cssBaselineMinRtt = infinity

 resume slow start including HyStart++

CSS lasts at most CSS_ROUNDS rounds. If the transition into CSS

happens in the middle of a round, that partial round counts towards

the limit.

If CSS_ROUNDS rounds are complete, enter congestion avoidance.

ssthresh = cwnd

If loss or ECN-marking is observed anytime during standard slow

start or CSS, enter congestion avoidance.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ssthresh = cwnd

4.3. Tuning constants and other considerations

It is RECOMMENDED that a HyStart++ implementation use the following

constants:

MIN_RTT_THRESH = 4 msec

MAX_RTT_THRESH = 16 msec

N_RTT_SAMPLE = 8

CSS_GROWTH_DIVISOR = 4

CSS_ROUNDS = 5

These constants have been determined with lab measurements and real

world deployments. An implementation MAY tune them for different

network characteristics.

The delay increase sensitivity is determined by MIN_RTT_THRESH and

MAX_RTT_THRESH. Smaller values of MIN_RTT_THRESH may cause spurious

exits from slow start. Larger values of MAX_RTT_THRESH may result in

slow start not exiting until loss is encountered for connections on

large RTT paths.

A TCP implementation is REQUIRED to take at least one RTT sample

each round. Using lower values of N_RTT_SAMPLE will lower the

accuracy of the measured RTT for the round; higher values will

improve accuracy at the cost of more processing.

The minimum value of CSS_GROWTH_DIVISOR MUST be at least 2. A value

of 1 results in the same aggressive behavior as regular slow start.

Values larger than 4 will cause the algorithm to be less aggressive

and maybe less performant.

Smaller values of CSS_ROUNDS may miss detecting jitter and larger

values may limit performance.

An implementation SHOULD use HyStart++ only for the initial slow

start (when ssthresh is at its initial value of arbitrarily high per

[RFC5681]) and fall back to using traditional slow start for the

remainder of the connection lifetime. This is acceptable because

subsequent slow starts will use the discovered ssthresh value to

exit slow start and avoid the overshoot problem. An implementation

MAY use HyStart++ to grow the restart window ([RFC5681]) after a

long idle period.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

In application limited scenarios, the amount of data in flight could

fall below the BDP and result in smaller RTT samples which can

trigger an exit back to slow start. It is expected that a connection

might oscillate between CSS and slow start in such scenarios. But

this behavior will neither result in a connection prematurely

entering congestion avoidance nor cause overshooting compared to

slow start.

5. Deployments and Performance Evaluations

As of the time of writing, HyStart++ as described in draft versions

01 through 04 was default enabled for all TCP connections in the

Windows operating system for over three years with an actual L = 8.

The original Hystart has been default-enabled for all TCP

connections in the Linux operating system using the default

congestion control module CUBIC ([RFC8312]) for a decade with an

infinite L.

In lab measurements with Windows TCP, HyStart++ shows both goodput

improvements as well as reductions in packet loss and

retransmissions compared to traditional slow start. For example,

across a variety of tests on a 100 Mbps link with a bottleneck

buffer size of bandwidth-delay product, HyStart++ reduces bytes

retransmitted by 50% and retransmission timeouts by 36%.

In an A/B test where we compare HyStart++ draft 01 to traditional

slow start across a large Windows device population, out of 52

billion TCP connections, 0.7% of connections move from 1 RTO to 0

RTOs and another 0.7% connections move from 2 RTOs to 1 RTO with

HyStart++. This test did not focus on send heavy connections and the

impact on send heavy connections is likely much higher. We plan to

conduct more such production experiments to gather more data in the

future.

6. Security Considerations

HyStart++ enhances slow start and inherits the general security

considerations discussed in [RFC5681].

7. IANA Considerations

This document has no actions for IANA.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

[RFC5681]

[HyStart]

[RFC1122]

[RFC1191]

[RFC3465]

[RFC4821]

[RFC8174]

[RFC8312]

[RFC9002]

[RFC9260]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

8.2. Informative References

Ha, S. and I. Ree, "Hybrid Slow Start for High-Bandwidth

and Long-Distance Networks", DOI 10.1145/1851182.1851192,

International Workshop on Protocols for Fast Long-

Distance Networks, 2008, <https://

pdfs.semanticscholar.org/25e9/

ef3f03315782c7f1cbcd31b587857adae7d1.pdf>.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Mogul, J C. and S E. Deering, "Path MTU discovery", RFC

1191, DOI 10.17487/RFC1191, November 1990, <https://

www.rfc-editor.org/info/rfc1191>.

Allman, M., "TCP Congestion Control with Appropriate Byte

Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February

2003, <https://www.rfc-editor.org/info/rfc3465>.

Mathis, M. and J. Heffner, "Packetization Layer Path MTU

Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,

<https://www.rfc-editor.org/info/rfc4821>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L.,

and R. Scheffenegger, "CUBIC for Fast Long-Distance

Networks", RFC 8312, DOI 10.17487/RFC8312, February 2018,

<https://www.rfc-editor.org/info/rfc8312>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/info/rfc9002>.

Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control

Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,

June 2022, <https://www.rfc-editor.org/info/rfc9260>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5681
https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf
https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf
https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc3465
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8312
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9260

Authors' Addresses

Praveen Balasubramanian

Confluent

899 West Evelyn Ave

Mountain View, CA 94041

United States of America

Email: pravb.ietf@gmail.com

Yi Huang

Microsoft

One Microsoft Way

Redmond, WA 94052

United States of America

Phone: +1 425 703 0447

Email: huanyi@microsoft.com

Matt Olson

Microsoft

Phone: +1 425 538 8598

Email: maolson@microsoft.com

mailto:pravb.ietf@gmail.com
tel:+1%20425%20703%200447
mailto:huanyi@microsoft.com
tel:+1%20425%20538%208598
mailto:maolson@microsoft.com

	HyStart++: Modified Slow Start for TCP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Definitions
	4. HyStart++ Algorithm
	4.1. Summary
	4.2. Algorithm Details
	4.3. Tuning constants and other considerations

	5. Deployments and Performance Evaluations
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

