
TCP Maintenance and Minor F. Gont
Extensions (tcpm) UTN/FRH
Internet-Draft February 23, 2006
Expires: August 27, 2006

ICMP attacks against TCP
draft-ietf-tcpm-icmp-attacks-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 27, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document discusses the use of the Internet Control Message
 Protocol (ICMP) to perform a variety of attacks against the
 Transmission Control Protocol (TCP) and other similar protocols. It
 proposes several counter-measures to eliminate or minimize the impact
 of these attacks.

Gont Expires August 27, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft ICMP attacks against TCP February 2006

Table of Contents

1. Introduction . 4
2. Background . 5
2.1. The Internet Control Message Protocol (ICMP) 5
2.1.1. ICMP for IP version 4 (ICMP) 5
2.1.2. ICMP for IP version 6 (ICMPv6) 6

2.2. Handling of ICMP error messages 6
3. Constraints in the possible solutions 7
4. General counter-measures against ICMP attacks 8
4.1. TCP sequence number checking 8
4.2. Port randomization . 9

 4.3. Filtering ICMP error messages based on the ICMP payload . 9
5. Blind connection-reset attack 10
5.1. Description . 10
5.2. Attack-specific counter-measures 11
5.2.1. Changing the reaction to hard errors 11
5.2.2. Delaying the connection-reset 13

6. Blind throughput-reduction attack 14
6.1. Description . 14
6.2. Attack-specific counter-measures 14

7. Blind performance-degrading attack 14
7.1. Description . 14
7.2. Attack-specific counter-measures 16

8. Security Considerations 19
9. Acknowledgements . 19
10. References . 20
10.1. Normative References 20
10.2. Informative References 21

Appendix A. The counter-measure for the PMTUD attack in action . 23
A.1. Normal operation for bulk transfers 23
A.2. Operation during Path-MTU changes 25
A.3. Idle connection being attacked 26

 A.4. Active connection being attacked after discovery of
 the Path-MTU . 27
 A.5. TCP peer attacked when sending small packets just
 after the three-way handshake 27

Appendix B. Pseudo-code for the counter-measure for the blind
 performance-degrading attack 28

Appendix C. Additional considerations for the validation of
 ICMP error messages 32

Appendix D. Advice and guidance to vendors 32
Appendix E. Changes from previous versions of the draft 33
E.1. Changes from draft-gont-tcpm-icmp-attacks-05 33
E.2. Changes from draft-gont-tcpm-icmp-attacks-04 33
E.3. Changes from draft-gont-tcpm-icmp-attacks-03 33
E.4. Changes from draft-gont-tcpm-icmp-attacks-02 33
E.5. Changes from draft-gont-tcpm-icmp-attacks-01 34

https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-05
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-04
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-03
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-02
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-01

Gont Expires August 27, 2006 [Page 2]

Internet-Draft ICMP attacks against TCP February 2006

E.6. Changes from draft-gont-tcpm-icmp-attacks-00 34
 Author's Address . 35
 Intellectual Property and Copyright Statements 36

Gont Expires August 27, 2006 [Page 3]

https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-00

Internet-Draft ICMP attacks against TCP February 2006

1. Introduction

 ICMP [RFC0792] is a fundamental part of the TCP/IP protocol suite,
 and is used mainly for reporting network error conditions. However,
 the current specifications do not recommend any kind of validation
 checks on the received ICMP error messages, thus leaving the door
 open to a variety of attacks that can be performed against TCP
 [RFC0793] by means of ICMP, which include blind connection-reset,
 blind throughput-reduction, and blind performance-degrading attacks.
 All of these attacks can be performed even being off-path, without
 the need to sniff the packets that correspond to the attacked TCP
 connection.

 While the security implications of ICMP have been known in the
 research community for a long time, there has never been an official
 proposal on how to deal with these vulnerabiliies. Thus, only a few
 implementations have implemented validation checks on the received
 ICMP error messages to minimize the impact of these attacks.

 Recently, a disclosure process has been carried out by the UK's
 National Infrastructure Security Co-ordination Centre (NISCC), with
 the collaboration of other computer emergency response teams. A
 large number of implementations were found vulnerable to either all
 or a subset of the attacks discussed in this document [NISCC][US-
 CERT]. The affected systems ranged from TCP/IP implementations meant
 for desktop computers, to TCP/IP implementations meant for core
 Internet routers.

 It is clear that implementations should be more cautious when
 processing ICMP error messages, to eliminate or mitigate the use of
 ICMP to perform attacks against TCP [I-D.iab-link-indications].

 This document aims to raise awareness of the use of ICMP to perform a
 variety of attacks against TCP, and proposes several counter-measures
 that eliminate or minimize the impact of these attacks.

Section 2 provides background information on ICMP. Section 3
 discusses the constraints in the general counter-measures that can be
 implemented against the attacks described in this document.

Section 4 proposes several general validation checks and counter-
 measures that can be implemented to mitigate any ICMP-based attack.
 Finally, Section 5, Section 6, and Section 7, discuss a variety of
 ICMP attacks that can be performed against TCP, and propose attack-
 specific counter-measures that eliminate or greatly mitigate their
 impact.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc0793

Gont Expires August 27, 2006 [Page 4]

Internet-Draft ICMP attacks against TCP February 2006

 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Background

2.1. The Internet Control Message Protocol (ICMP)

 The Internet Control Message Protocol (ICMP) is used in the Internet
 Architecture mainly to perform the fault-isolation function, that is,
 the group of actions that hosts and routers take to determine that
 there is some network failure [RFC0816]

 When an intermediate router detects a network problem while trying to
 forward an IP packet, it will usually send an ICMP error message to
 the source host, to raise awareness of the network problem taking
 place. In the same way, there are a number of scenarios in which an
 end-system may generate an ICMP error message if it finds a problem
 while processing a datagram. The received ICMP errors are handled to
 the corresponding transport-protocol instance, which will usually
 perform a fault recovery function.

 It is important to note that ICMP error messages are unreliable, and
 may be discarded due to data corruption, network congestion and rate-
 limiting. Thus, while they provide useful information, upper layer
 protocols cannot depend on ICMP for correct operation.

2.1.1. ICMP for IP version 4 (ICMP)

 [RFC0792] specifies the Internet Control Message Protocol (ICMP) to
 be used with the Internet Protocol version 4 (IPv4). It defines,
 among other things, a number of error messages that can be used by
 end-systems and intermediate systems to report network errors to the
 sending host. The Host Requirements RFC [RFC1122] classifies ICMP
 error messages into those that indicate "soft errors", and those that
 indicate "hard errors", thus roughly defining the semantics of them.

 The ICMP specification [RFC0792] also defines the ICMP Source Quench
 message (type 4, code 0), which is meant to provide a mechanism for
 flow control and congestion control.

 [RFC1191] defines a mechanism called "Path MTU Discovery" (PMTUD),
 which makes use of ICMP error messages of type 3 (Destination
 Unreachable), code 4 (fragmentation needed and DF bit set) to allow
 hosts to determine the MTU of an arbitrary internet path.

Appendix D of [RFC2401] provides information about which ICMP error
 messages are produced by hosts, intermediate routers, or both.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0816
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc2401#appendix-D

Gont Expires August 27, 2006 [Page 5]

Internet-Draft ICMP attacks against TCP February 2006

2.1.2. ICMP for IP version 6 (ICMPv6)

 [RFC2463] specifies the Internet Control Message Protocol (ICMPv6) to
 be used with the Internet Protocol version 6 (IPv6) [RFC2460].

 [RFC2463] defines the "Packet Too Big" (type 2, code 0) error
 message, that is analogous to the ICMP "fragmentation needed and DF
 bit set" (type 3, code 4) error message. [RFC1981] defines the Path
 MTU Discovery mechanism for IP Version 6, that makes use of these
 messages to determine the MTU of an arbitrary internet path.

Appendix D of [RFC2401] provides information about which ICMPv6 error
 messages are produced by hosts, intermediate routers, or both.

2.2. Handling of ICMP error messages

 The Host Requirements RFC [RFC1122] states that a TCP MUST act on an
 ICMP error message passed up from the IP layer, directing it to the
 connection that elicited the error.

 In order to allow ICMP messages to be demultiplexed by the receiving
 host, part of the original packet that elicited the message is
 included in the payload of the ICMP error message. Thus, the
 receiving host can use that information to match the ICMP error to
 the transport protocol instance that elicited it.

 Neither the Host Requirements RFC [RFC1122] nor the original TCP
 specification [RFC0793] recommend any validation checks on the
 received ICMP messages. Thus, as long as the ICMP payload contains
 the information that identifies an existing communication instance,
 it will be processed by the corresponding transport-protocol
 instance, and the corresponding action will be performed.

 Therefore, in the case of TCP, an attacker could send a forged ICMP
 message to the attacked host, and, as long as he is able to guess the
 four-tuple that identifies the communication instance to be attacked,
 he will be able to use ICMP to perform a variety of attacks.

 As discussed in [Watson], there are a number of scenarios in which an
 attacker may be able to know or guess the four-tuple that identifies
 a TCP connection. If we assume the attacker knows the two systems
 involved in the TCP connection to be attacked, both the client-side
 and the server-side IP addresses will be known. Furthermore, as most
 Internet services use the so-called "well-known" ports, only the
 client port number would need to be guessed. This means that an
 attacker would need to send, in principle, at most 65536 packets to
 perform any of the attacks described in this document. However, most
 systems choose the port numbers they use for outgoing connections

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2401#appendix-D
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0793

Gont Expires August 27, 2006 [Page 6]

Internet-Draft ICMP attacks against TCP February 2006

 from a subset of the whole port number space. Thus, in practice,
 fewer packets are needed to perform any of the attacks discussed in
 this document.

 It is clear that TCP should be more cautious when processing received
 ICMP error messages, in order to mitigate or eliminate the impact of
 the attacks described in this document [I-D.iab-link-indications].

3. Constraints in the possible solutions

 For ICMPv4, [RFC0792] states that the internet header plus the first
 64 bits of the packet that elicited the ICMP message are to be
 included in the payload of the ICMP error message. Thus, it is
 assumed that all data needed to identify a transport protocol
 instance and process the ICMP error message is contained in the first
 64 bits of the transport protocol header. [RFC1122] states that "the
 Internet header and at least the first 8 data octets of the datagram
 that triggered the error" are to be included in the payload of ICMP
 error messages, and that "more than 8 octets MAY be sent", thus
 allowing implementations to include more data from the original
 packet than those required by the original ICMP specification. The
 Requirements for IP Version 4 Routers RFC [RFC1812] states that ICMP
 error messages "SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 Thus, for ICMP messages generated by hosts, we can only expect to get
 the entire IP header of the original packet, plus the first 64 bits
 of its payload. For TCP, this means that the only fields that will
 be included in the ICMP payload are: the source port number, the
 destination port number, and the 32-bit TCP sequence number. This
 clearly imposes a constraint on the possible validation checks that
 can be performed, as there is not much information avalable on which
 to perform them.

 This means, for example, that even if TCP were signing its segments
 by means of the TCP MD5 signature option [RFC2385], this mechanism
 could not be used as a counter-measure against ICMP-based attacks,
 because, as ICMP messages include only a piece of the TCP segment
 that elicited the error, the MD5 [RFC1321] signature could not be
 recalculated. In the same way, even if the attacked peer were
 authenticating its packets at the IP layer [RFC2401], because only a
 part of the original IP packet would be available, the signature used
 for authentication could not be recalculated, and thus this mechanism
 could not be used as a counter-measure aganist ICMP-based attacks
 against TCP.

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2401

Gont Expires August 27, 2006 [Page 7]

Internet-Draft ICMP attacks against TCP February 2006

 For IPv6, the payload of ICMPv6 error messages includes as many
 octets from the IPv6 packet that elicited the ICMPv6 error message as
 will fit without making the resulting ICMPv6 packet exceed the
 minimum IPv6 MTU (1280 octets) [RFC2463]. Thus, more information is
 available than in the IPv4 case.

 Hosts could require ICMP error messages to be authenticated
 [RFC2401], in order to act upon them. However, while this
 requirement could make sense for those ICMP error messages sent by
 hosts, it would not be feasible for those ICMP error messages
 generated by routers, as this would imply either that the attacked
 host should have a security association [RFC2401] with every existing
 intermediate system, or that it should be able to establish one
 dynamically. Current levels of deployment of protocols for dynamic
 establishment of security associations makes this unfeasible. Also,
 there may be some cases, such as embedded devices, in which the
 processing power requirements of authentication could not allow IPSec
 authentication to be implemented effectively.

 Additional considerations for the validation of ICMP error messages
 can be found in Appendix C

4. General counter-measures against ICMP attacks

 There are a number of counter-measures that can be implemented to
 eliminate or mitigate the impact of the attacks discussed in this
 document. Rather than being alternative counter-measures, they can
 be implemented together to increase the protection against these
 attacks. In particular, all TCP implementations should perform the
 TCP sequence number checking described in Section 4.1.

4.1. TCP sequence number checking

 The current specifications do not impose any validity checks on the
 TCP segment that is contained in the ICMP payload. For instance, no
 checks are performed to verify that a received ICMP error message has
 been elicited by a segment that was "in flight" to destination.
 Thus, even stale ICMP error messages will be acted upon.

 TCP should check that the TCP sequence number contained in the
 payload of the ICMP error message is within the range SND.UNA =<
 SEG.SEQ < SND.NXT. This means that the sequence number should be
 within the range of the data already sent but not yet acknowledged.
 If an ICMP error message does not pass this check, it should be
 discarded.

 Even if an attacker were able to guess the four-tuple that identifies

https://datatracker.ietf.org/doc/html/rfc2463
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2401

Gont Expires August 27, 2006 [Page 8]

Internet-Draft ICMP attacks against TCP February 2006

 the TCP connection, this additional check would reduce the
 possibility of considering a spoofed ICMP packet as valid to
 Flight_Size/2^^32 (where Flight_Size is the number of data bytes
 already sent to the remote peer, but not yet acknowledged [RFC2581]).
 For connections in the SYN-SENT or SYN-RECEIVED states, this would
 reduce the possibility of considering a spoofed ICMP packet as valid
 to 1/2^^32. For a TCP endpoint with no data "in flight", this would
 completely eliminate the possibility of success of these attacks.

 This validation check has been implemented in Linux [Linux] for many
 years, in OpenBSD [OpenBSD] since 2004, and in FreeBSD [FreeBSD] and
 NetBSD [NetBSD] since 2005.

 It is important to note that while this check greatly increases the
 number of packets required to perform any of the attacks discussed in
 this document, this may not be enough in those scenarios in which
 bandwidth is easily available, and/or large TCP windows [RFC1323] are
 in use. Therefore, implementation of the attack-specific counter-
 measures discussed in this document is strongly recommended.

4.2. Port randomization

 As discussed in the previous sections, in order to perform any of the
 attacks described in this document, an attacker would need to guess
 (or know) the four-tuple that identifies the connection to be
 attacked. Increasing the port number range used for outgoing TCP
 connections, and randomizing the port number chosen for each outgoing
 TCP conenctions would make it harder for an attacker to perform any
 of the attacks discussed in this document.

 [I-D.larsen-tsvwg-port-randomisation] discusses a number of
 algorithms to randomize the ephemeral ports used by clients.

4.3. Filtering ICMP error messages based on the ICMP payload

 The source address of ICMP error messages does not need to be spoofed
 to perform the attacks described in this document. Therefore, simple
 filtering based on the source address of ICMP error messages does not
 serve as a counter-measure against these attacks. However, a more
 advanced packet filtering could be implemented in firewalls as a
 counter-measure. Firewalls implementing such advanced filtering
 would look at the payload of the ICMP error messages, and would
 perform ingress and egress packet filtering based on the source IP
 address of the IP header contained in the payload of the ICMP error
 message. As the source IP address contained in the payload of the
 ICMP error message does need to be spoofed to perform the attacks
 described in this document, this kind of advanced filtering would
 serve as a counter-measure against these attacks.

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc1323

Gont Expires August 27, 2006 [Page 9]

Internet-Draft ICMP attacks against TCP February 2006

5. Blind connection-reset attack

5.1. Description

 When TCP is handled an ICMP error message, it will perform its fault
 recovery function, as follows:

 o If the network problem being reported is a hard error, TCP will
 abort the corresponding connection.

 o If the network problem being reported is a soft error, TCP will
 just record this information, and repeatedly retransmit its data
 until they either get acknowledged, or the connection times out.

 The Host Requirements RFC [RFC1122] states that a host SHOULD abort
 the corresponding connection when receiving an ICMP error message
 that indicates a "hard error", and states that ICMP error messages of
 type 3 (Destination Unreachable) codes 2 (protocol unreachable), 3
 (port unreachable), and 4 (fragmentation needed and DF bit set)
 should be considered to indicate hard errors. While [RFC2463] did
 not exist when [RFC1122] was published, one could extrapolate the
 concept of "hard errors" to ICMPv6 error messages of type 1
 (Destination unreachable) codes 1 (communication with destination
 administratively prohibited), and 4 (port unreachable).

 Thus, an attacker could use ICMP to perform a blind connection-reset
 attack. That is, even being off-path, an attacker could reset any
 TCP connection taking place. In order to perform such an attack, an
 attacker would send any ICMP error message that indicates a "hard
 error", to either of the two TCP endpoints of the connection.
 Because of TCP's fault recovery policy, the connection would be
 immediately aborted.

 As discussed in Section 2.2, all an attacker needs to know to perform
 such an attack is the socket pair that identifies the TCP connection
 to be attacked. In some scenarios, the IP addresses and port numbers
 in use may be easily guessed or known to the attacker [Watson].

 Some stacks are known to extrapolate ICMP errors across TCP
 connections, increasing the impact of this attack, as a single ICMP
 packet could bring down all the TCP connections between the
 corresponding peers.

 It is important to note that even if TCP itself were protected
 against the blind connection-reset attack described in [Watson] and
 [I-D.ietf-tcpm-tcpsecure], by means authentication at the network
 layer [RFC2401], by means of the TCP MD5 signature option [RFC2385],
 or by means of the mechanism proposed in [I-D.ietf-tcpm-tcpsecure],

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2463
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2385

Gont Expires August 27, 2006 [Page 10]

Internet-Draft ICMP attacks against TCP February 2006

 the blind connection-reset attack described in this document would
 still succeed.

5.2. Attack-specific counter-measures

5.2.1. Changing the reaction to hard errors

 An analysis of the circumstances in which ICMP messages that indicate
 hard errors may be received can shed some light to eliminate the
 impact of ICMP-based blind connection-reset attacks.

 ICMP type 3 (Destination Unreachable), code 2 (protocol unreachable)

 This ICMP error message indicates that the host sending the ICMP
 error message received a packet meant for a transport protocol it
 does not support. For connection-oriented protocols such as TCP,
 one could expect to receive such an error as the result of a
 connection-establishment attempt. However, it would be strange to
 get such an error during the life of a connection, as this would
 indicate that support for that transport protocol has been removed
 from the host sending the error message during the life of the
 corresponding connection. Thus, it would be fair to treat ICMP
 protocol unreachable error messages as soft errors (or completely
 ignore them) if they are meant for connections that are in
 synchronized states. For TCP, this means TCP should treat ICMP
 protocol unreachable error messages as soft errors (or completely
 ignore them) if they are meant for connections that are in the
 ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK
 or TIME-WAIT states.

 ICMP type 3 (Destination Unreachable), code 3 (port unreachable)

 This error message indicates that the host sending the ICMP error
 message received a packet meant for a socket (IP address, port
 number) on which there is no process listening. Those transport
 protocols which have their own mechanisms for notifying this
 condition should not be receiving these error messages. However,
 the Host Requirements RFC [RFC1122] states that even those
 transport protocols that have their own mechanism for notifying
 the sender that a port is unreachable MUST nevertheless accept an
 ICMP Port Unreachable for the same purpose. For security reasons,
 it would be fair to treat ICMP port unreachable messages as soft
 errors (or completely ignore them) when they are meant for
 protocols that have their own mechanism for reporting this error
 condition.

https://datatracker.ietf.org/doc/html/rfc1122

Gont Expires August 27, 2006 [Page 11]

Internet-Draft ICMP attacks against TCP February 2006

 ICMP type 3 (Destination Unreachable), code 4 (fragmentation needed
 and DF bit set)

 This error message indicates that an intermediate node needed to
 fragment a datagram, but the DF (Don't Fragment) bit in the IP
 header was set. Those systems that do not implement the PMTUD
 mechanism should not be sending their IP packets with the DF bit
 set, and thus should not be receiving these ICMP error messages.
 Thus, it would be fair for them to treat this ICMP error message
 as indicating a soft error, therefore not aborting the
 corresponding connection when such an error message is received.
 On the other hand, and for obvious reasons, those systems
 implementing the Path-MTU Discovery (PMTUD) mechanism [RFC1191]
 should not abort the corresponding connection when such an ICMP
 error message is received.

 ICMPv6 type 1 (Destination Unreachable), code 1 (communication with
 destination administratively prohibited)

 This error message indicates that the destination is unreachable
 because of an administrative policy. For connection-oriented
 protocols such as TCP, one could expect to receive such an error
 as the result of a connection-establishment attempt. Receiving
 such an error for a connection in any of the synchronized states
 would mean that the administrative policy changed during the life
 of the connection. Therefore, while it would be possible for a
 firewall to be reconfigured during the life of a connection, it
 would be fair, for security reasons, to ignore these messages for
 connections that are in the ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2,
 CLOSE-WAIT, CLOSING, LAST-ACK or TIME-WAIT states.

 ICMPv6 type 1 (Destination Unreachable), code 4 (port unreachable)

 This error message is analogous to the ICMP type 3 (Destination
 Unreachable), code 3 (Port unreachable) error message discussed
 above. Therefore, the same considerations apply.

 Therefore, TCP should treat all of the above messages as indicating
 "soft errors", rather than "hard errors", and thus should not abort
 the corresponding connection upon receipt of them. This is policy is
 based on the premise that TCP should be as robust as possible. Also,
 as discussed in Section 5.1, hosts should not extrapolate ICMP errors
 across TCP connections.

 In case the received message were legitimate, it would mean that the
 "hard error" condition appeared during the life of the connection.
 However, there is no reason to think that in the same way this error
 condition appeared, it won't get solved in the near term. Therefore,

https://datatracker.ietf.org/doc/html/rfc1191

Gont Expires August 27, 2006 [Page 12]

Internet-Draft ICMP attacks against TCP February 2006

 treating the received ICMP error messages as "soft errors" would make
 TCP more robust, and could avoid TCP from aborting a TCP connection
 unnecesarily. Aborting the connection would be to ignore the
 valuable feature of the Internet that for many internal failures it
 reconstructs its function without any disruption of the end points
 [RFC0816].

 Also, it is important to note that the "Host Requirements RFC"
 [RFC1122] allows this alternative processing of ICMP error messages.

 One scenario in which a host would benefit from treating the so-
 called ICMP "hard errors" as "soft errors" would be that in which the
 packets that correspond to a given TCP connection are routed along
 multiple different paths. Some (but not all) of these paths may be
 experiencing an error condition, and therefore generating the so-
 called ICMP hard errors. However, communication should survive if
 there is still a working path to the destination host [DClark].
 Thus, treating the so-called "hard errors" as "soft errors" when a
 connection is in any of the synchronized states would make TCP
 achieve this goal.

 It is interesting to note that, as ICMP error messages are
 unreliable, transport protocols should not depend on them for correct
 functioning. In the event one of these messages were legitimate, the
 corresponding connection would eventually time out. Also,
 applications may still be notified asynchronously about the received
 error messages, and thus may still abort their connections on their
 own if they consider it appropriate.

 This counter-measure has been implemented in BSD-derived TCP/IP
 implementations (e.g., [FreeBSD], [NetBSD], and [OpenBSD]) for more
 than ten years [Wright][McKusick]. The Linux kernel has implemented
 this policy for more than ten years, too [Linux].

5.2.2. Delaying the connection-reset

 An alternative counter-measure could be to delay the connection
 reset. Rather than immediately aborting a connection, a TCP would
 abort a connection only after an ICMP error message indicating a hard
 error has been received, and the corresponding data have already been
 retransmitted more than some specified number of times.

 The rationale behind this proposed fix is that if a host can make
 forward progress on a connection, it can completely disregard the
 "hard errors" being indicated by the received ICMP error messages.

 While this counter-measure could be useful, we think that the
 counter-measure discussed in Section 5.2.1 is easier to implement,

https://datatracker.ietf.org/doc/html/rfc0816
https://datatracker.ietf.org/doc/html/rfc1122

Gont Expires August 27, 2006 [Page 13]

Internet-Draft ICMP attacks against TCP February 2006

 and provides increased protection against this type of attack.

6. Blind throughput-reduction attack

6.1. Description

 The Host requirements RFC [RFC1122] states that hosts MUST react to
 ICMP Source Quench messages by slowing transmission on the
 connection. Thus, an attacker could send ICMP Source Quench (type 4,
 code 0) messages to a TCP endpoint to make it reduce the rate at
 which it sends data to the other end-point of the connection.
 [RFC1122] further adds that the RECOMMENDED procedure is to put the
 corresponding connection in the slow-start phase of TCP's congestion
 control algorithm [RFC2581]. In the case of those implementations
 that use an initial congestion window of one segment, a sustained
 attack would reduce the throughput of the attacked connection to
 about SMSS (Sender Maximum Segment Size) [RFC2581] bytes per RTT
 (round-trip time). The throughput achieved during attack might be a
 little higher if a larger initial congestion window is in use
 [RFC3390].

6.2. Attack-specific counter-measures

 The Host Requirements RFC [RFC1122] states that hosts MUST react to
 ICMP Source Quench messages by slowing transmission on the
 connection. However, as discussed in the Requirements for IP Version
 4 Routers RFC [RFC1812], research seems to suggest ICMP Source Quench
 is an ineffective (and unfair) antidote for congestion. [RFC1812]
 further states that routers SHOULD NOT send ICMP Source Quench
 messages in response to congestion. On the other hand, TCP
 implements its own congestion control mechanisms [RFC2581] [RFC3168],
 that do not depend on ICMP Source Quench messages. Thus, hosts
 should completely ignore ICMP Source Quench messages meant for TCP
 connections.

 This behavior has been implemented in Linux [Linux] since 2004, and
 in FreeBSD [FreeBSD], NetBSD [NetBSD], and OpenBSD [OpenBSD] since
 2005.

7. Blind performance-degrading attack

7.1. Description

 When one IP host has a large amount of data to send to another host,
 the data will be transmitted as a series of IP datagrams. It is
 usually preferable that these datagrams be of the largest size that

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3168

Gont Expires August 27, 2006 [Page 14]

Internet-Draft ICMP attacks against TCP February 2006

 does not require fragmentation anywhere along the path from the
 source to the destination. This datagram size is referred to as the
 Path MTU (PMTU), and is equal to the minimum of the MTUs of each hop
 in the path [RFC1191].

 A technique called "Path MTU Discovery" (PMTUD) mechanism lets IP
 hosts determine the Path MTU of an arbitrary internet path.
 [RFC1191] and [RFC1981] specify the PMTUD mechanism for IPv4 and
 IPv6, respectively.

 The PMTUD mechanism for IPv4 uses the Don't Fragment (DF) bit in the
 IP header to dynamically discover the Path MTU. The basic idea
 behind the PMTUD mechanism is that a source host assumes that the MTU
 of the path is that of the first hop, and sends all its datagrams
 with the DF bit set. If any of the datagrams is too large to be
 forwarded without fragmentation by some intermediate router, the
 router will discard the corresponding datagram, and will return an
 ICMP "Destination Unreachable" (type 3) "fragmentation neeed and DF
 set" (code 4) error message to sending host. This message will
 report the MTU of the constricting hop, so that the sending host can
 reduce the assumed Path-MTU accordingly.

 For IPv6, intermediate systems do not fragment packets. Thus,
 there's an "implicit" DF bit set in every packet sent on a network.
 If any of the datagrams is too large to be forwarded without
 fragmentation by some intermediate router, the router will discard
 the corresponding datagram, and will return an ICMPv6 "Packet Too
 Big" (type 2, code 0) error message to sending host. This message
 will report the MTU of the constricting hop, so that the sending host
 can reduce the assumed Path-MTU accordingly.

 As discussed in both [RFC1191] and [RFC1981], the Path-MTU Discovery
 mechanism can be used to attack TCP. An attacker could send a forged
 ICMP "Destination Unreachable, fragmentation needed and DF set"
 packet (or their ICMPv6 counterpart) to the sending host, advertising
 a small Next-Hop MTU. As a result, the attacked system would reduce
 the size of the packets it sends for the corresponding connection
 accordingly.

 The effect of this attack is two-fold. On one hand, it will increase
 the headers/data ratio, thus increasing the overhead needed to send
 data to the remote TCP end-point. On the other hand, if the attacked
 system wanted to keep the same throughput it was achieving before
 being attacked, it would have to increase the packet rate. On
 virtually all systems this will lead to an increase in the IRQ
 (Interrrupt ReQuest) rate, thus increasing processor utilization, and
 degrading the overall system performance.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires August 27, 2006 [Page 15]

Internet-Draft ICMP attacks against TCP February 2006

 A particular scenario that may take place is that in which an
 attacker reports a Next-Hop MTU smaller than or equal to the amount
 of bytes needed for headers (IP header, plus TCP header). For
 example, if the attacker reports a Next-Hop MTU of 68 bytes, and the
 amount of bytes used for headers (IP header, plus TCP header) is
 larger than 68 bytes, the assumed Path-MTU will not even allow the
 attacked host to send a single byte of application data without
 fragmentation. This particular scenario might lead to unpredictable
 results. Another posible scenario is that in which a TCP connection
 is being secured by means of IPSec. If the Next-Hop MTU reported by
 the attacker is smaller than the amount of bytes needed for headers
 (IP and IPSec, in this case), the assumed Path-MTU will not even
 allow the attacked host to send a single byte of the TCP header
 without fragmentation. This is another scenario that may lead to
 unpredictable results.

 For IPv4, the reported Next-Hop MTU could be as low as 68 octets, as
 [RFC0791] requires every internet module to be able to forward a
 datagram of 68 octets without further fragmentation. For IPv6, the
 reported Next-Hop MTU could be as low as 1280 octets (the minimum
 IPv6 MTU) [RFC2460].

7.2. Attack-specific counter-measures

 Henceforth, we will refer to both ICMP "fragmentation needed and DF
 bit set" and ICMPv6 "Packet Too Big" messages as "ICMP Packet Too
 Big" messages.

 In addition to the general validation check described in Section 4.1,
 a counter-measure similar to that described in Section 5.2.2 could be
 implemented to greatly minimize the impact of this attack.

 This would mean that upon receipt of an ICMP "Packet Too Big" error
 message, TCP would just record this information, and would honor it
 only when the corresponding data had already been retransmitted a
 specified number of times.

 While this policy would greatly mitigate the impact of the attack
 against the PMTUD mechanism, it would also mean that it might take
 TCP more time to discover the Path-MTU for a TCP connection. This
 would be particularly annoying for connections that have just been
 established, as it might take TCP several transmission attempts (and
 the corresponding timeouts) before it discovers the PMTU for the
 corresponding connection. Thus, this policy would increase the time
 it takes for data to begin to be received at the destination host.

 We would like to protect TCP from the attack against the PMTUD
 mechanism, while still allowing TCP to quickly determine the initial

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460

Gont Expires August 27, 2006 [Page 16]

Internet-Draft ICMP attacks against TCP February 2006

 Path-MTU for a connection.

 To achieve both goals, we can divide the traditional PMTUD mechanism
 into two stages: Initial Path-MTU Discovery, and Path-MTU Update.

 The Initial Path-MTU Discovery stage is when TCP tries to send
 segments that are larger than the ones that have so far been sent and
 acknowledged for this connection. That is, in the Initial Path-MTU
 Discovery stage TCP has no record of these large segments getting to
 the destination host, and thus it would be fair to believe the
 network when it reports that these packets are too large to reach the
 destination host without being fragmented.

 The Path-MTU Update stage is when TCP tries to send segments that are
 equal to or smaller than the ones that have already been sent and
 acknowledged for this connection. During the Path-MTU Update stage,
 TCP already has knowledge of the estimated Path-MTU for the given
 connection. Thus, it would be fair to be more cautious with the
 errors being reported by the network.

 In order to allow TCP to distinguish segments between those
 performing Initial Path-MTU Discovery and those performing Path-MTU
 Update, two new variables should be introduced to TCP: maxsizeacked
 and maxsizesent.

 maxsizesent would hold the size (in octets) of the largest packet
 that has so far been sent for this connection. It would be
 initialized to 68 (the minimum IPv4 MTU) when the underlying internet
 protocol is IPv4, and would be initialized to 1280 (the minimum IPv6
 MTU) when the underlying internet protocol is IPv6. Whenever a
 packet larger than maxsizesent octets is sent, maxsizesent should be
 set to that value.

 On the other hand, maxsizeacked would hold the size (in octets) of
 the largest packet that has so far been acknowledged for this
 connection. It would be initialized to 68 (the minimum IPv4 MTU)
 when the underlying internet protocol is IPv4, and would be
 initialized to 1280 (the minimum IPv6 MTU) when the underlying
 internet protocol is IPv6. Whenever an acknowledgement for a packet
 larger than maxsizeacked octets is received, maxsizeacked should be
 set to the size of that acknowledged packet.

 Upon receipt of an ICMP "Packet Too Big" error message, the Next-Hop
 MTU claimed by the ICMP message (henceforth "claimedmtu") should be
 compared with maxsizesent. If claimedmtu is equal to or larger than
 maxsizesent, then the ICMP error message should be silently
 discarded. The rationale for this is that the ICMP error message
 cannot be legitimate if it claims to have been elicited by a packet

Gont Expires August 27, 2006 [Page 17]

Internet-Draft ICMP attacks against TCP February 2006

 larger than the largest packet we have so far sent for this
 connection.

 If this check is passed, claimedmtu should be compared with
 maxsizeacked. If claimedmtu is equal to or larger than maxsizeacked,
 TCP is supposed to be at the Initial Path-MTU Discovery stage, and
 thus the ICMP "Packet Too Big" error message should be honored
 immediately. That is, the assumed Path-MTU should be updated
 according to the Next-Hop MTU claimed in the ICMP error message.
 Also, maxsizesent should be reset to the minimum MTU of the internet
 protocol in use (68 for IPv4, and 1280 for IPv6).

 On the other hand, if claimedmtu is smaller than maxsizeacked, TCP is
 supposed to be in the Path-MTU Update stage. At this stage, we
 should be more cautious with the errors being reported by the
 network, and should therefore just record the received error message,
 and delay the update of the assumed Path-MTU.

 To perform this delay, one new variable and one new parameter should
 be introduced to TCP: nsegrto and MAXSEGRTO. nsegrto will hold the
 number of times a specified segment has timed out. It should be
 initialized to zero, and should be incremented by one everytime the
 corresponding segment times out. MAXSEGRRTO should specify the
 number of times a given segment must timeout before an ICMP "Packet
 Too Big" error message can be honored, and can be set, in principle,
 to any value greater than or equal to 0.

 Thus, if nsegrto is greater than or equal to MAXSEGRTO, and there's a
 pending ICMP "Packet Too Big" error message, the correspoing error
 message should be processed. At that point, maxsizeacked should be
 set to claimedmtu, and maxsizesent should be set to 68 (for IPv4) or
 1280 (for IPv6).

 If while there is a pending ICMP "Packet Too Big" error message the
 TCP SEQ claimed by the pending message is acknowledged (i.e., an ACK
 that acknowledges that sequence number is received), then the
 "pending error" condition should be cleared.

 The rationale behind performing this delayed processing of ICMP
 "Packet Too Big" messages is that if there is progress on the
 connection, the ICMP "Packet Too Big" errors must be a false claim.
 By checking for progress on the connection, rather than just for
 staleness of the received ICMP messages, TCP is protected from attack
 even if the offending ICMP messages are "in window", and as a
 corollary, is made more robust to spurious ICMP messages elicited by,
 for example, corrupted TCP segments.

 MAXSEGRTO can be set, in principle, to any value greater than or

Gont Expires August 27, 2006 [Page 18]

Internet-Draft ICMP attacks against TCP February 2006

 equal to 0. Setting MAXSEGRTO to 0 would make TCP perform the
 traditional PMTUD mechanism defined in [RFC1191] and [RFC1981]. A
 MAXSEGRTO of 1 should provide enough protection for most cases. In
 any case, implementations are free to choose higher values for this
 constant. MAXSEGRTO could be a function of the Next-Hop MTU claimed
 in the received ICMP "Packet Too Big" message. That is, higher
 values for MAXSEGRTO could be imposed when the received ICMP "Packet
 Too Big" message claims a Next-Hop MTU that is smaller than some
 specified value.

 In the event a higher level of protection is desired at the expense
 of a higher delay in the discovery of the Path-MTU, an implementation
 could consider TCP to always be in the Path-MTU Update stage, thus
 always delaying the update of the assumed Path-MTU.

Appendix A shows the proposed counter-measure in action. Appendix B
 shows the proposed counter-measure in pseudo-code.

 This behavior has been implemented in NetBSD [NetBSD] and OpenBSD
 [OpenBSD] since 2005.

 It is important to note that the mechanism proposed in this section
 is an improvement to the current Path-MTU discovery mechanism, to
 mitigate its security implications. The current PMTUD mechanism, as
 specified by [RFC1191] and [RFC1981], still suffers from some
 functionality problems [RFC2923] that this document does not aim to
 address. A mechanism that addresses those issues is described in
 [I-D.ietf-pmtud-method].

8. Security Considerations

 This document describes the use of ICMP error messages to perform a
 number of attacks against the TCP protocol, and proposes a number of
 counter-measures that either eliminate or reduce the impact of these
 attacks.

9. Acknowledgements

 This document was inspired by Mika Liljeberg, while discussing some
 issues related to [I-D.gont-tcpm-tcp-soft-errors] by private e-mail.
 The author would like to thank Ran Atkinson, James Carlson, Alan Cox,
 Theo de Raadt, Ted Faber, Juan Fraschini, Markus Friedl, Guillermo
 Gont, John Heffner, Vivek Kakkar, Michael Kerrisk, Mika Liljeberg,
 Matt Mathis, David Miller, Miles Nordin, Eloy Paris, Kacheong Poon,
 Andrew Powell, Pekka Savola, Joe Touch, and Andres Trapanotto, for
 contributing many valuable comments.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2923

Gont Expires August 27, 2006 [Page 19]

Internet-Draft ICMP attacks against TCP February 2006

 Juan Fraschini and the author of this document implemented freely-
 available audit tools to help vendors audit their systems by
 reproducing the attacks discussed in this document.

 Markus Friedl, Chad Loder, and the author of this document, produced
 and tested in OpenBSD [OpenBSD] the first implementation of the
 counter-measure described in Section 7.2. This first implementation
 helped to test the effectiveness of the ideas introduced in this
 document, and has served as a reference implementation for other
 operating systems.

 The author would like to thank the UK's National Infrastructure
 Security Co-ordination Centre (NISCC) for coordinating the disclosure
 of these issues with a large number of vendors and CSIRTs (Computer
 Security Incident Response Teams).

 The author wishes to express deep and heartfelt gratitude to Jorge
 Oscar Gont and Nelida Garcia, for their precious motivation and
 guidance.

10. References

10.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Gont Expires August 27, 2006 [Page 20]

Internet-Draft ICMP attacks against TCP February 2006

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2463] Conta, A. and S. Deering, "Internet Control Message
 Protocol (ICMPv6) for the Internet Protocol Version 6
 (IPv6) Specification", RFC 2463, December 1998.

10.2. Informative References

 [DClark] Clark, D., "The Design Philosophy of the DARPA Internet
 Protocols", Computer Communication Review Vol. 18, No. 4,
 1988.

 [FreeBSD] The FreeBSD Project, "http://www.freebsd.org".

 [I-D.gont-tcpm-tcp-soft-errors]
 Gont, F., "TCP's Reaction to Soft Errors",

draft-gont-tcpm-tcp-soft-errors-02 (work in progress),
 September 2005.

 [I-D.iab-link-indications]
 Aboba, B., "Architectural Implications of Link
 Indications", draft-iab-link-indications-04 (work in
 progress), December 2005.

 [I-D.ietf-pmtud-method]
 Mathis, M. and J. Heffner, "Path MTU Discovery",

draft-ietf-pmtud-method-05 (work in progress),
 October 2005.

 [I-D.ietf-tcpm-tcpsecure]
 Dalal, M., "Improving TCP's Robustness to Blind In-Window
 Attacks", draft-ietf-tcpm-tcpsecure-03 (work in progress),
 May 2005.

 [I-D.larsen-tsvwg-port-randomisation]
 Larsen, M., "Port Randomisation",

draft-larsen-tsvwg-port-randomisation-00 (work in
 progress), October 2004.

 [Linux] The Linux Project, "http://www.kernel.org".

 [McKusick]
 McKusick, M., Bostic, K., Karels, M., and J. Quarterman,
 "The Design and Implementation of the 4.4BSD Operating

https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2463
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-soft-errors-02
https://datatracker.ietf.org/doc/html/draft-iab-link-indications-04
https://datatracker.ietf.org/doc/html/draft-ietf-pmtud-method-05
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcpsecure-03
https://datatracker.ietf.org/doc/html/draft-larsen-tsvwg-port-randomisation-00

Gont Expires August 27, 2006 [Page 21]

Internet-Draft ICMP attacks against TCP February 2006

 System", Addison-Wesley , 1996.

 [NISCC] NISCC, "NISCC Vulnerability Advisory 532967/NISCC/ICMP:
 Vulnerability Issues in ICMP packets with TCP payloads",

http://www.niscc.gov.uk/niscc/docs/
al-20050412-00308.html?lang=en, 2005.

 [NetBSD] The NetBSD Project, "http://www.netbsd.org".

 [OpenBSD] The OpenBSD Project, "http://www.openbsd.org".

 [RFC0816] Clark, D., "Fault isolation and recovery", RFC 816,
 July 1982.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
 April 2001.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [US-CERT] US-CERT, "US-CERT Vulnerability Note VU#222750: TCP/IP
 Implementations do not adequately validate ICMP error
 messages", http://www.kb.cert.org/vuls/id/222750, 2005.

 [Watson] Watson, P., "Slipping in the Window: TCP Reset Attacks",

http://www.niscc.gov.uk/niscc/docs/al-20050412-00308.html?lang=en
http://www.niscc.gov.uk/niscc/docs/al-20050412-00308.html?lang=en
https://datatracker.ietf.org/doc/html/rfc816
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3390
http://www.kb.cert.org/vuls/id/222750

Gont Expires August 27, 2006 [Page 22]

Internet-Draft ICMP attacks against TCP February 2006

 2004 CanSecWest Conference , 2004.

 [Wright] Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:
 The Implementation", Addison-Wesley , 1994.

Appendix A. The counter-measure for the PMTUD attack in action

 This appendix shows the proposed counter-measure for the ICMP attack
 against the PMTUD mechanism in action. It shows both how the fix
 protects TCP from being attacked and how the counter-measure works in
 normal scenarios. As discussed in Section 7.2, this Appendix assumes
 the PMTUD-specific counter-measure is implemented in addition to the
 TCP sequence number checking described in Section 4.1.

 Figure 1 illustrates an hypothetical scenario in which two hosts are
 connected by means of three intermediate routers. It also shows the
 MTU of each hypothetical hop. All the following subsections assume
 the network setup of this figure.

 Also, for simplicity sake, all subsections assume an IP header of 20
 octets and a TCP header of 20 octets. Thus, for example, when the
 PMTU is assumed to be 1500 octets, TCP will send segments that
 contain, at most, 1460 octets of data.

 For simplicity sake, all the following subsections assume the TCP
 implementation at Host 1 has chosen a a MAXSEGRTO of 1.

 +----+ +----+ +----+ +----+ +----+
 | H1 |--------| R1 |--------| R2 |--------| R3 |--------| H2 |
 +----+ +----+ +----+ +----+ +----+
 MTU=4464 MTU=2048 MTU=1500 MTU=4464

 Figure 1: Hypothetical scenario

A.1. Normal operation for bulk transfers

 This subsection shows the proposed counter-measure in normal
 operation, when a TCP connection is used for bulk transfers. That
 is, it shows how the proposed counter-measure works when there is no
 attack taking place, and a TCP connection is used for transferring
 large amounts of data. This section assumes that just after the
 connection is established, one of the TCP endpoints begins to
 transfer data in packets that are as large as possible.

Gont Expires August 27, 2006 [Page 23]

Internet-Draft ICMP attacks against TCP February 2006

 Host 1 Host 2

 1. --> <SEQ=100><CTL=SYN> -->
 2. <-- <SEQ=X><ACK=101><CTL=SYN,ACK> <--
 3. --> <SEQ=101><ACK=X+1><CTL=ACK> -->
 4. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=4424> -->
 5. <--- ICMP "Packet Too Big" MTU=2048, TCPseq#=101 <--- R1
 6. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=2008> -->
 7. <--- ICMP "Packet Too Big" MTU=1500, TCPseq#=101 <--- R2
 8. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=1460> -->
 9. <-- <SEQ=X+1><ACK=1561><CTL=ACK> <--

 Figure 2: Normal operation for bulk transfers

 nsegrto is initialized to zero. Both maxsizeacked and maxsizesent
 are initialized to the minimum MTU for the internet protocol being
 used (68 for IPv4, and 1280 for IPv6).

 In lines 1 to 3 the three-way handshake takes place, and the
 connection is established. In line 4, H1 tries to send a full-sized
 TCP segment. As described by [RFC1191] and [RFC1981], in this case
 TCP will try to send a segment with 4424 bytes of data, which will
 result in an IP packet of 4464 octets. Therefore, maxsizesent is set
 to 4464. When the packet reaches R1, it elicits an ICMP "Packet Too
 Big" error message.

 In line 5, H1 receives the ICMP error message, which reports a Next-
 Hop MTU of 2048 octets. After performing the TCP sequence number
 check described in Section 4.1, the Next-Hop MTU reported by the ICMP
 error message (claimedmtu) is compared with maxsizesent. As it is
 smaller than maxsizesent, it passes the check, and thus is then
 compared with maxsizeacked. As claimedmtu is larger than
 maxsizeacked, TCP assumes that the corresponding TCP segment was
 performing the Initial PMTU Discovery. Therefore, the TCP at H1
 honors the ICMP message by updating the assumed Path-MTU. maxsizesent
 is reset to the minimum MTU of the internet protocol in use (68 for
 IPv4, and 1280 for IPv6).

 In line 6, the TCP at H1 sends a segment with 2008 bytes of data,
 which results in an IP packet of 2048 octets. maxsizesent is thus set
 to 2008 bytes. When the packet reaches R2, it elicits an ICMP
 "Packet Too Big" error message.

 In line 7, H1 receives the ICMP error message, which reports a Next-
 Hop MTU of 1500 octets. After performing the TCP sequence number
 check, the Next-Hop MTU reported by the ICMP error message
 (claimedmtu) is compared with maxsizesent. As it is smaller than

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires August 27, 2006 [Page 24]

Internet-Draft ICMP attacks against TCP February 2006

 maxsizesent, it passes the check, and thus is then compared with
 maxsizeacked. As claimedmtu is larger than maxsizeacked, TCP assumes
 that the corresponding TCP segment was performing the Initial PMTU
 Discovery. Therefore, the TCP at H1 honors the ICMP message by
 updating the assumed Path-MTU. maxsizesent is reset to the minimum
 MTU of the internet protocol in use.

 In line 8, the TCP at H1 sends a segment with 1460 bytes of data,
 which results in an IP packet of 1500 octets. maxsizesent is thus set
 to 1500. This packet reaches H2, where it elicits an acknowledgement
 (ACK) segment.

 In line 9, H1 finally gets the acknowledgement for the data segment.
 As the corresponding packet was larger than maxsizeacked, TCP updates
 maxsizeacked, setting it to 1500. At this point TCP has discovered
 the Path-MTU for this TCP connection.

A.2. Operation during Path-MTU changes

 Let us suppose a TCP connection between H1 and H2 has already been
 established, and that the PMTU for the connection has already been
 discovered to be 1500. At this point, both maxsizesent and
 maxsizeacked are equal to 1500, and nsegrto is equal to 0. Suppose
 some time later the PMTU decreases to 1492. For simplicity, let us
 suppose that the Path-MTU has decreased because the MTU of the link
 between R2 and R3 has decreased from 1500 to 1492. Figure 3
 illustrates how the proposed counter-measure would work in this
 scenario.

 Host 1 Host 2

 1. (Path-MTU decreases)
 2. --> <SEQ=100><ACK=X><CTL=ACK><DATA=1500> -->
 3. <--- ICMP "Packet Too Big" MTU=1492, TCPseq#=100 <--- R2
 4. (Segment times out)
 5. --> <SEQ=100><ACK=X><CTL=ACK><DATA=1452> -->
 6. <-- <SEQ=X><ACK=1552><CTL=ACK> <--

 Figure 3: Operation during Path-MTU changes

 In line 1, the Path-MTU for this connection decreases from 1500 to
 1492. In line 2, the TCP at H1, without being aware of the Path-MTU
 change, sends a 1500-byte packet to H2. When the packet reaches R2,
 it elicits an ICMP "Packet Too Big" error message.

 In line 3, H1 receives the ICMP error message, which reports a Next-

Gont Expires August 27, 2006 [Page 25]

Internet-Draft ICMP attacks against TCP February 2006

 Hop MTU of 1492 octets. After performing the TCP sequence number
 check, the Next-Hop MTU reported by the ICMP error message
 (claimedmtu) is compared with maxsizesent. As claimedmtu is smaller
 than maxsizesent, it is then compared with maxsizeacked. As
 claimedmtu is smaller than maxsizeacked (full-sized packets were
 getting to the remote end-point), this packet is assumed to be
 performing Path-MTU Update. And a "pending error" condition is
 recorded.

 In line 4, the segment times out. Thus, nsegrto is incremented by 1.
 As nsegrto is greater than or equal to MAXSEGRTO, the assumed Path-
 MTU is updated. nsegrto is reset to 0, and maxsizeacked is set to
 claimedmtu, and maxsizesent is set to the minimum MTU of the internet
 protocol in use.

 In line 5, H1 retransmits the data using the updated PMTU, and thus
 maxsizesent is set to 1492. The resulting packet reaches H2, where
 it elicits an acknowledgement (ACK) segment.

 In line 6, H1 finally gets the acknowledgement for the data segment.
 At this point TCP has discovered the new Path-MTU for this TCP
 connection.

A.3. Idle connection being attacked

 Let us suppose a TCP connection between H1 and H2 has already been
 established, and the PMTU for the connection has already been
 discovered to be 1500. Figure 4 shows a sample time-line diagram
 that illustrates an idle connection being attacked.

 Host 1 Host 2

 1. --> <SEQ=100><ACK=X><CTL=ACK><DATA=50> -->
 2. <-- <SEQ=X><ACK=150><CTL=ACK> <--
 3. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---
 4. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---
 5. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---

 Figure 4: Idle connection being attacked

 In line 1, H1 sends its last bunch of data. At line 2, H2
 acknowledges the receipt of these data. Then the connection becomes
 idle. In lines 3, 4, and 5, an attacker sends forged ICMP "Packet
 Too Big" error messages to H1. Regardless of how many packets it
 sends and the TCP sequence number each ICMP packet includes, none of
 these ICMP error messages will pass the TCP sequence number check

Gont Expires August 27, 2006 [Page 26]

Internet-Draft ICMP attacks against TCP February 2006

 described in Section 4.1, as H1 has no unacknowledged data in flight
 to H2. Therefore, the attack does not succeed.

A.4. Active connection being attacked after discovery of the Path-MTU

 Let us suppose an attacker attacks a TCP connection for which the
 PMTU has already been discovered. In this case, as illustrated in
 Figure 1, the PMTU would be found to be 1500 bytes. Figure 5 shows a
 possible packet exchange.

 Host 1 Host 2

 1. --> <SEQ=100><ACK=X><CTL=ACK><DATA=1460> -->
 2. --> <SEQ=1560><ACK=X><CTL=ACK><DATA=1460> -->
 3. --> <SEQ=3020><ACK=X><CTL=ACK><DATA=1460> -->
 4. --> <SEQ=4480><ACK=X><CTL=ACK><DATA=1460> -->
 5. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---
 6. <-- <SEQ=X><CTL=ACK><ACK=1560> <--

 Figure 5: Active connection being attacked after discovery of PMTU

 As we assume the PMTU has already been discovered, we also assume
 both maxsizesent and maxsizeacked are equal to 1500. We assume
 nsegrto is equal to zero, as there have been no segment timeouts.

 In lines 1, 2, 3, and 4, H1 sends four data segments to H2. In line
 5, an attacker sends a forged ICMP packet to H1. We assume the
 attacker is lucky enough to guess both the four-tuple that identifies
 the connection and a valid TCP sequence number. As the Next-Hop MTU
 claimed in the ICMP "Packet Too Big" message (claimedmtu) is smaller
 than maxsizeacked, this packet is assumed to be performing Path-MTU
 Update. Thus, the error message is recorded.

 In line 6, H1 receives an acknowledgement for the segment sent in
 line 1, before it times out. At this point, the "pending error"
 condition is cleared, and the recorded ICMP "Packet Too Big" error
 message is ignored. Therefore, the attack does not succeed.

A.5. TCP peer attacked when sending small packets just after the three-
 way handshake

 This section analyzes an scenario in which a TCP peer that is sending
 small segments just after the connection has been established, is
 attacked. The connection could be being used by protocols such as
 SMTP [RFC2821] and HTTP [RFC2616], for example, which usually behave
 like this.

https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2616

Gont Expires August 27, 2006 [Page 27]

Internet-Draft ICMP attacks against TCP February 2006

 Figure 6 shows a possible packet exchange for such scenario.

 Host 1 Host 2

 1. --> <SEQ=100><CTL=SYN> -->
 2. <-- <SEQ=X><ACK=101><CTL=SYN,ACK> <--
 3. --> <SEQ=101><ACK=X+1><CTL=ACK> -->
 4. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=100> -->
 5. <-- <SEQ=X+1><ACK=201><CTL=ACK> <--
 6. --> <SEQ=201><ACK=X+1><CTL=ACK><DATA=100> -->
 7. --> <SEQ=301><ACK=X+1><CTL=ACK><DATA=100> -->
 8. <--- ICMP "Packet Too Big" MTU=150, TCPseq#=101 <---

 Figure 6: TCP peer attacked when sending small packets just after the
 three-way handshake

 nsegrto is initialized to zero. Both maxsizesent and maxsizeacked
 are initialized to the minimum MTU for the internet protocol being
 used (68 for IPv4, and 1280 for IPv6).

 In lines 1 to 3 the three-way handshake takes place, and the
 connection is established. At this point, the assumed Path-MTU for
 this connection is 4464. In line 4, H1 sends a small segment (which
 results in a 140-byte packet) to H2. maxsizesent is thus set to 140.
 In line 5 this segment is acknowledged, and thus maxsizeacked is set
 to 140.

 In lines 6 and 7, H1 sends two small segments to H2. In line 8,
 while the segments from lines 6 and 7 are still in flight to H2, an
 attacker sends a forged ICMP "Packet Too Big" error message to H1.
 Assuming the attacker is lucky enough to guess a valid TCP sequence
 number, this ICMP message will pass the TCP sequence number check.
 The Next-Hop MTU reported by the ICMP error message (claimedmtu) is
 then compared with maxsizesent. As claimedmtu is larger than
 maxsizesent, the ICMP error message is silently discarded.
 Therefore, the attack does not succeed.

Appendix B. Pseudo-code for the counter-measure for the blind
 performance-degrading attack

 This section contains a pseudo-code version of the counter-measure
 described in Section 7.2 for the blind performance-degrading attack
 described in Section 7. It is meant as guidance for developers on
 how to implement this counter-measure.

Gont Expires August 27, 2006 [Page 28]

Internet-Draft ICMP attacks against TCP February 2006

 The pseudo-code makes use of the following variables, constants, and
 functions:

 ack
 Variable holding the acknowledgement number contained in the TCP
 segment that has just been received.

 acked_packet_size
 Variable holding the packet size (data, plus headers) the ACK that
 has just been received is acknowledging.

 adjust_mtu()
 Function that adjusts the MTU for this connection, according to
 the ICMP "Packet Too Big" that was last received.

 claimedmtu
 Variable holding the Next-Hop MTU advertised by the ICMP "Packet
 Too Big" error message.

 claimedtcpseq
 Variable holding the TCP sequence number contained in the payload
 of the ICMP "Packet Too Big" message that has just been received
 or was last recorded.

 current_mtu
 Variable holding the assumed Path-MTU for this connection.

 drop_message()
 Function that performs the necessary actions to drop the ICMP
 message being processed.

 initial_mtu
 Variable holding the MTU for new connections, as explained in
 [RFC1191] and [RFC1981].

 maxsizeacked
 Variable holding the largest packet size (data, plus headers) that
 has so for been acked for this connection, as explained in

Section 7.2

 maxsizesent
 Variable holding the largest packet size (data, plus headers) that
 has so for been sent for this connection, as explained in

Section 7.2

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires August 27, 2006 [Page 29]

Internet-Draft ICMP attacks against TCP February 2006

 nsegrto
 Variable holding the number of times this segment has timed out,
 as explained in Section 7.2

 packet_size
 Variable holding the size of the IP datagram being sent

 pending_message
 Variable (flag) that indicates whether there is a pending ICMP
 "Packet Too Big" message to be processed.

 save_message()
 Function that records the ICMP "Packet Too Big" message that has
 just been received.

 MINIMUM_MTU
 Constant holding the minimum MTU for the internet protocol in use
 (68 for IPv4, and 1280 for IPv6.

 MAXSEGRTO
 Constant holding the number of times a given segment must timeout
 before an ICMP "Packet Too Big" error message can be honored.

 EVENT: New TCP connection

 current_mtu = initial_mtu;
 maxsizesent = MINIMUM_MTU;
 maxsizeacked = MINIMUM_MTU;
 nsegrto = 0;
 pending_message = 0;

 EVENT: Segment is sent
 if (packet_size > maxsizesent)
 maxsizesent = packet_size;

 EVENT: Segment is received

 if (acked_packet_size > maxsizeacked)
 maxsizeacked = acked_packet_size;

 if (pending_mesage)
 if (ack > claimedtcpseq){
 pending_message = 0;
 nsegrto = 0;
 }

Gont Expires August 27, 2006 [Page 30]

Internet-Draft ICMP attacks against TCP February 2006

 EVENT: ICMP "Packet Too Big" message is received

 if (claimedtcpseq < SND.UNA || claimed_TCP_SEQ >= SND.NXT){
 drop_message();
 }

 else {
 if (claimedmtu >= maxsizesent || claimedmtu >= current_mtu)
 drop_message();

 else {
 if (claimedmtu > maxsizeacked){
 adjust_mtu();
 current_mtu = claimedmtu;
 maxsizesent = MINIMUM_MTU;
 }

 else {
 pending_message = 1;
 save_message();
 }
 }
 }

 EVENT: Segment times out

 nsegrto++;

 if (pending_message && nsegrto >= MAXSEGRTO){
 adjust_mtu();
 nsegrto = 0;
 pending_message = 0;
 maxsizeacked = claimedmtu;
 maxsizesent = MINIMUM_MTU;
 current_mtu = claimedmtu;
 }

 Notes:
 All comparisions between sequence numbers must be performed using
 sequence number arithmethic.
 The pseudo-code implements the mechanism described in Section 7.2,
 the TCP sequence number checking described in Section 4.1, and the
 validation check on the advertised Next-Hop MTU described in
 [RFC1191] and [RFC1981].

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires August 27, 2006 [Page 31]

Internet-Draft ICMP attacks against TCP February 2006

Appendix C. Additional considerations for the validation of ICMP error
 messages

 The checksum of the IP datagram contained in the ICMP payload should
 be checked to be valid. In case it is invalid, the ICMP error
 message should be silently dropped.

 If a full IP datagram is contained in the ICMP payload, and the IP
 datagram is authenticated [RFC2401], the signature should be
 recalculated for that packet. If it doesn't match the one already
 included in the ICMP payload, the ICMP error message should be
 silently dropped.

 If a full TCP segment is contained in the payload of the ICMP error
 message, then the first check that should be performed is that the
 TCP checksum is valid. Then, if a TCP MD5 option is present, the MD5
 signature should be recalculated for the encapsulated packet, and if
 it doesn't match the one contained in the TCP MD5 option, the ICMP
 error message should be silently dropped.

 Regardless of whether the received ICMP error message contains a full
 packet or not, if a TCP timestamp option is present, it should be
 used to validate the error message according to the rules specified
 in [RFC1323].

 It must be noted that most of the checks discussed in this appendix
 imply that the ICMP error message contains more data than just the
 full IP header and the first 64 bits of the payload of the original
 datagram that elicited the error message. As discussed in Section 3,
 for obvious reasons one should not expect an attacker to include in
 the packets it sends more information than that required to by the
 current specifications.

Appendix D. Advice and guidance to vendors

 Vendors are urged to contact NISCC (vulteam@niscc.gov.uk) if they
 think they may be affected by the issues described in this document.
 As the lead coordination center for these issues, NISCC is well
 placed to give advice and guidance as required.

 NISCC works extensively with government departments and agencies,
 commercial organizations and the academic community to research
 vulnerabilities and potential threats to IT systems especially where
 they may have an impact on Critical National Infrastructure's (CNI).

 Other ways to contact NISCC, plus NISCC's PGP public key, are
 available at http://www.uniras.gov.uk/vuls/ .

https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc1323
http://www.uniras.gov.uk/vuls/

Gont Expires August 27, 2006 [Page 32]

Internet-Draft ICMP attacks against TCP February 2006

Appendix E. Changes from previous versions of the draft

E.1. Changes from draft-gont-tcpm-icmp-attacks-05

 o Removed RFC 2119 wording to make the draft suitable for
 publication as an Informational RFC.

 o Added additional checks that should be performed on ICMP error
 messages (checksum of the IP header in the ICMP payload, and
 others).

 o Added clarification of the rationale behind each the TCP SEQ check

 o Miscellaneous editorial changes

E.2. Changes from draft-gont-tcpm-icmp-attacks-04

 o Added Appendix C

 o Added reference to [I-D.iab-link-indications]

 o Added stress on the fact that ICMP error messages are unreliable

 o Miscellaneous editorial changes

E.3. Changes from draft-gont-tcpm-icmp-attacks-03

 o Added references to existing implementations of the proposed
 counter-measures

 o The discussion in Section 4 was improved

 o The discussion in Section 5.2.1 was expanded and improved

 o The proposed counter-measure for the attack against the PMTUD was
 improved and simplified

 o Appendix B was added

 o Miscellaneous editorial changes

E.4. Changes from draft-gont-tcpm-icmp-attacks-02

 o Fixed errors in Section 5.2.1

 o The proposed counter-measure for the attack against the PMTUD
 mechanism was refined to allow quick discovery of the Path-MTU

https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-05
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-04
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-03
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-02

Gont Expires August 27, 2006 [Page 33]

Internet-Draft ICMP attacks against TCP February 2006

 o Appendix A was added so as to clarify the operation of the
 counter-measure for the attack against the PMTUD mechanism

 o Added Appendix D

 o Miscellaneous editorial changes

E.5. Changes from draft-gont-tcpm-icmp-attacks-01

 o The document was restructured for easier reading

 o A discussion of ICMPv6 was added in several sections of the
 document

 o Added Section on Acknowledgement number checking"/>

 o Added Section 4.3

 o Added Section 7

 o Fixed typo in the ICMP types, in several places

 o Fixed typo in the TCP sequence number check formula

 o Miscellaneous editorial changes

E.6. Changes from draft-gont-tcpm-icmp-attacks-00

 o Added a proposal to change the handling of the so-called ICMP hard
 errors during the synchronized states

 o Added a summary of the relevant RFCs in several sections

 o Miscellaneous editorial changes

https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-01
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-00

Gont Expires August 27, 2006 [Page 34]

Internet-Draft ICMP attacks against TCP February 2006

Author's Address

 Fernando Gont
 Universidad Tecnologica Nacional
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fernando@gont.com.ar

Gont Expires August 27, 2006 [Page 35]

Internet-Draft ICMP attacks against TCP February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Gont Expires August 27, 2006 [Page 36]

