
TCP Maintenance and Minor F. Gont
Extensions (tcpm) UTN/FRH
Internet-Draft March 30, 2010
Intended status: Informational
Expires: October 1, 2010

ICMP attacks against TCP
draft-ietf-tcpm-icmp-attacks-12.txt

Abstract

 This document discusses the use of the Internet Control Message
 Protocol (ICMP) to perform a variety of attacks against the
 Transmission Control Protocol (TCP). Additionally, describes a
 number of widely implemented modifications to TCP's handling of ICMP
 error messages that help to mitigate these issues.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 1, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Gont Expires October 1, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft ICMP attacks against TCP March 2010

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

http://trustee.ietf.org/license-info

Gont Expires October 1, 2010 [Page 2]

Internet-Draft ICMP attacks against TCP March 2010

Table of Contents

1. Introduction . 4
2. Background . 5
2.1. The Internet Control Message Protocol (ICMP) 5
2.1.1. ICMP for IP version 4 (ICMP) 5
2.1.2. ICMP for IP version 6 (ICMPv6) 6

2.2. Handling of ICMP error messages 6
 2.3. Handling of ICMP error messages in the context of IPsec . 7

3. Constraints in the possible solutions 8
4. General counter-measures against ICMP attacks 10
4.1. TCP sequence number checking 10
4.2. Port randomization . 11

 4.3. Filtering ICMP error messages based on the ICMP payload . 11
5. Blind connection-reset attack 12
5.1. Description . 12
5.2. Attack-specific counter-measures 13

6. Blind throughput-reduction attack 15
6.1. Description . 15
6.2. Attack-specific counter-measures 16

7. Blind performance-degrading attack 16
7.1. Description . 16
7.2. Attack-specific counter-measures 18
7.3. The counter-measure for the PMTUD attack in action 21
7.3.1. Normal operation for bulk transfers 22
7.3.2. Operation during Path-MTU changes 23
7.3.3. Idle connection being attacked 25

 7.3.4. Active connection being attacked after discovery
 of the Path-MTU 25
 7.3.5. TCP peer attacked when sending small packets just
 after the three-way handshake 26
 7.4. Pseudo-code for the counter-measure for the blind
 performance-degrading attack 27

8. Security Considerations 31
9. IANA Considerations . 32
10. Acknowledgements . 32
11. References . 33
11.1. Normative References 33
11.2. Informative References 33

Appendix A. Changes from previous versions of the draft (to
 be removed by the RFC Editor before publishing
 this document as an RFC) 36

A.1. Changes from draft-ietf-tcpm-icmp-attacks-10 36
A.2. Changes from draft-ietf-tcpm-icmp-attacks-09 36
A.3. Changes from draft-ietf-tcpm-icmp-attacks-08 36
A.4. Changes from draft-ietf-tcpm-icmp-attacks-07 36
A.5. Changes from draft-ietf-tcpm-icmp-attacks-06 36
A.6. Changes from draft-ietf-tcpm-icmp-attacks-05 37

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-10
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-09
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-08
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-07
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-06
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-05

Gont Expires October 1, 2010 [Page 3]

Internet-Draft ICMP attacks against TCP March 2010

A.7. Changes from draft-ietf-tcpm-icmp-attacks-04 37
A.8. Changes from draft-ietf-tcpm-icmp-attacks-03 37
A.9. Changes from draft-ietf-tcpm-icmp-attacks-02 37
A.10. Changes from draft-ietf-tcpm-icmp-attacks-01 37
A.11. Changes from draft-ietf-tcpm-icmp-attacks-00 38
A.12. Changes from draft-gont-tcpm-icmp-attacks-05 38
A.13. Changes from draft-gont-tcpm-icmp-attacks-04 38
A.14. Changes from draft-gont-tcpm-icmp-attacks-03 39
A.15. Changes from draft-gont-tcpm-icmp-attacks-02 39
A.16. Changes from draft-gont-tcpm-icmp-attacks-01 39
A.17. Changes from draft-gont-tcpm-icmp-attacks-00 40

 Author's Address . 40

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-04
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-03
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-00
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-05
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-04
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-03
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-02
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-01
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-00

Gont Expires October 1, 2010 [Page 4]

Internet-Draft ICMP attacks against TCP March 2010

1. Introduction

 ICMP [RFC0792] is a fundamental part of the TCP/IP protocol suite,
 and is used mainly for reporting network error conditions. However,
 the current specifications do not recommend any kind of validation
 checks on the received ICMP error messages, thus allowing variety of
 attacks against TCP [RFC0793] by means of ICMP, which include blind
 connection-reset, blind throughput-reduction, and blind performance-
 degrading attacks. All of these attacks can be performed even being
 off-path, without the need to sniff the packets that correspond to
 the attacked TCP connection.

 While the possible security implications of ICMP have been known in
 the research community for a long time, there has never been an
 official proposal on how to deal with these vulnerabilities. In
 2005, a disclosure process was carried out by the UK's National
 Infrastructure Security Co-ordination Centre (NISCC) (now CPNI,
 Centre for the Protection of National Infrastructure), with the
 collaboration of other computer emergency response teams. A large
 number of implementations were found vulnerable to either all or a
 subset of the attacks discussed in this document [NISCC][US-CERT].
 The affected systems ranged from TCP/IP implementations meant for
 desktop computers, to TCP/IP implementations meant for core Internet
 routers.

 It is clear that implementations should be more cautious when
 processing ICMP error messages, to eliminate or mitigate the use of
 ICMP to perform attacks against TCP [RFC4907].

 This document aims to raise awareness of the use of ICMP to perform a
 variety of attacks against TCP, and discusses several counter-
 measures that eliminate or minimize the impact of these attacks.
 Most of the these counter-measures can be implemented while still
 remaining compliant with the current specifications, as they simply
 describe reasons for not taking the advice provided in the
 specifications in terms of "SHOULDs", but still comply with the
 requirements stated as "MUSTs".

 We note that the counter-measures discussed in this document are not
 part of standard TCP behavior and this document does not change that
 state of affairs. The consensus of the TCPM WG (TCP Maintenance and
 Minor Extensions Working Group) was to document this widespread
 implementation of nonstandard TCP behavior but to not change the TCP
 standard.

Section 2 provides background information on ICMP. Section 3
 discusses the constraints in the general counter-measures that can be
 implemented against the attacks described in this document.

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4907

Gont Expires October 1, 2010 [Page 5]

Internet-Draft ICMP attacks against TCP March 2010

Section 4 describes several general validation checks that can be
 implemented to mitigate any ICMP-based attack. Finally, Section 5,

Section 6, and Section 7, discuss a variety of ICMP attacks that can
 be performed against TCP, and describe attack-specific counter-
 measures that eliminate or greatly mitigate their impact.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Background

2.1. The Internet Control Message Protocol (ICMP)

 The Internet Control Message Protocol (ICMP) is used in the Internet
 architecture mainly to perform the fault-isolation function, that is,
 the group of actions that hosts and routers take to determine that
 there is some network failure [RFC0816].

 When an intermediate router detects a network problem while trying to
 forward an IP packet, it will usually send an ICMP error message to
 the source system, to inform about the network problem taking place.
 In the same way, there are a number of scenarios in which an end-
 system may generate an ICMP error message if it finds a problem while
 processing a datagram. The received ICMP errors are handed to the
 corresponding transport-protocol instance, which will usually perform
 a fault recovery function.

 It is important to note that ICMP error messages are transmitted
 unreliably, and may be discarded due to data corruption, network
 congestion or rate-limiting. Thus, while they provide useful
 information, upper layer protocols cannot depend on ICMP for correct
 operation.

 It should be noted that are no timeliness requirements for ICMP error
 messages. ICMP error messages could be delayed for various reasons,
 and at least in theory could be received with an arbitrarily long
 delay. For example, there are no existing requirements that a router
 flushes any queued ICMP error messages when it is rebooted.

2.1.1. ICMP for IP version 4 (ICMP)

 [RFC0792] specifies the Internet Control Message Protocol (ICMP) to
 be used with the Internet Protocol version 4 (IPv4). It defines,
 among other things, a number of error messages that can be used by
 end-systems and intermediate systems to report errors to the sending
 system. The Host Requirements RFC [RFC1122] classifies ICMP error

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0816
https://datatracker.ietf.org/doc/html/rfc1122

Gont Expires October 1, 2010 [Page 6]

Internet-Draft ICMP attacks against TCP March 2010

 messages into those that indicate "soft errors", and those that
 indicate "hard errors", thus roughly defining the semantics of them.

 The ICMP specification [RFC0792] also defines the ICMP Source Quench
 message (type 4, code 0), which is meant to provide a mechanism for
 flow control and congestion control.

 [RFC1191] defines a mechanism called "Path MTU Discovery" (PMTUD),
 which makes use of ICMP error messages of type 3 (Destination
 Unreachable), code 4 (fragmentation needed and DF bit set) to allow
 systems to determine the MTU of an arbitrary internet path.

 Finally, [RFC4884] redefines selected ICMP messages to include an
 extension structure and a length attribute, such that those ICMP
 messages can carry additional information by encoding that
 information in the extension structure.

Appendix D of [RFC4301] provides information about which ICMP error
 messages are produced by hosts, intermediate routers, or both.

2.1.2. ICMP for IP version 6 (ICMPv6)

 [RFC4443] specifies the Internet Control Message Protocol (ICMPv6) to
 be used with the Internet Protocol version 6 (IPv6) [RFC2460].

 [RFC4443] defines the "Packet Too Big" (type 2, code 0) error
 message, that is analogous to the ICMP "fragmentation needed and DF
 bit set" (type 3, code 4) error message. [RFC1981] defines the Path
 MTU Discovery mechanism for IP Version 6, that makes use of these
 messages to determine the MTU of an arbitrary internet path.

 Finally, [RFC4884] redefines selected ICMP messages to include an
 extension structure and a length attribute, such that those ICMP
 messages can carry additional information by encoding that
 information in the extension structure.

Appendix D of [RFC4301] provides information about which ICMPv6 error
 messages are produced by hosts, intermediate routers, or both.

2.2. Handling of ICMP error messages

 The Host Requirements RFC [RFC1122] states in Section 4.2.3.9 that a
 TCP MUST act on an ICMP error message passed up from the IP layer,
 directing it to the connection that triggered the error.

 In order to allow ICMP messages to be demultiplexed by the receiving
 system, part of the original packet that triggered the message is
 included in the payload of the ICMP error message. Thus, the

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/rfc4301#appendix-D
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/rfc4301#appendix-D
https://datatracker.ietf.org/doc/html/rfc1122

Gont Expires October 1, 2010 [Page 7]

Internet-Draft ICMP attacks against TCP March 2010

 receiving system can use that information to match the ICMP error to
 the transport protocol instance that triggered it.

 Neither the Host Requirements RFC [RFC1122] nor the original TCP
 specification [RFC0793] recommend any validation checks on the
 received ICMP messages. Thus, as long as the ICMP payload contains
 the information that identifies an existing communication instance,
 it will be processed by the corresponding transport-protocol
 instance, and the corresponding action will be performed.

 Therefore, in the case of TCP, an attacker could send a crafted ICMP
 error message to the attacked system, and, as long as he is able to
 guess the four-tuple (i.e., Source IP Address, Source TCP port,
 Destination IP Address, and Destination TCP port) that identifies the
 communication instance to be attacked, he will be able to use ICMP to
 perform a variety of attacks.

 Generally, the four-tuple required to perform these attacks is not
 known. However, as discussed in [Watson] and [RFC4953], there are a
 number of scenarios (notably that of TCP connections established
 between two BGP routers [RFC4271]), in which an attacker may be able
 to know or guess the four-tuple that identifies a TCP connection. In
 such a case, if we assume the attacker knows the two systems involved
 in the TCP connection to be attacked, both the client-side and the
 server-side IP addresses could be known or be within a reasonable
 number of possibilities. Furthermore, as most Internet services use
 the so-called "well-known" ports, only the client port number might
 need to be guessed. In such a scenario, an attacker would need to
 send, in principle, at most 65536 packets to perform any of the
 attacks described in this document. These issues are exacerbated by
 the fact that most systems choose the port numbers they use for
 outgoing connections from a subset of the whole port number space,
 thus reducing the amount of work needed to successfully perform these
 attacks.

 The need to be more cautious when processing received ICMP error
 messages in order to mitigate or eliminate the impact of the attacks
 described in this document has been documented by the Internet
 Architecture Board (IAB) in [RFC4907].

2.3. Handling of ICMP error messages in the context of IPsec

Section 5.2 of [RFC4301] describes the processing of inbound IP
 Traffic in the case of "unprotected-to-protected". In the case of
 ICMP, when an unprotected ICMP error message is received, it is
 matched to the corresponding security association by means of the SPI
 (Security Parameters Index) included in the payload of the ICMP error
 message. Then, local policy is applied to determine whether to

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4907
https://datatracker.ietf.org/doc/html/rfc4301#section-5.2

Gont Expires October 1, 2010 [Page 8]

Internet-Draft ICMP attacks against TCP March 2010

 accept or reject the message and, if accepted, what action to take as
 a result. For example, if an ICMP unreachable message is received,
 the implementation must decide whether to act on it, reject it, or
 act on it with constraints. Section 8 ("Path MTU/DF processing")
 discusses the processing of unauthenticated ICMP "fragmentation
 needed and DF bit set" (type 3, code 3) and ICMPv6 "Packet Too Big"
 (type 2, code 0) messages when an IPsec implementation is configured
 to process (vs. ignore) such messages.

Section 6.1.1 of [RFC4301] notes that processing of unauthenticated
 ICMP error messages may result in denial or degradation of service,
 and therefore it would be desirable to ignore such messages.
 However, it also notes that in many cases ignoring these ICMP
 messages can degrade service, e.g., because of a failure to process
 PMTUD and redirection messages, and therefore there is also a
 motivation for accepting and acting upon them. It finally states
 that to accommodate both ends of this spectrum, a compliant IPsec
 implementation MUST permit a local administrator to configure an
 IPsec implementation to accept or reject unauthenticated ICMP
 traffic, and that this control MUST be at the granularity of ICMP
 type and MAY be at the granularity of ICMP type and code.
 Additionally, an implementation SHOULD incorporate mechanisms and
 parameters for dealing with such traffic.

 Thus, the policy to apply for the processing of unprotected ICMP
 error messages is left up to the implementation and administrator.

3. Constraints in the possible solutions

 If a host wants perform validation checks on the received ICMP error
 messages before acting on them, it is limited by the piece of the
 packet that triggered error that the sender of the ICMP error message
 chose to include in the ICMP payload. This contrains the possible
 validation checks, as the number of bytes of the packet that
 triggered the error message that is included in the ICMP payload is
 limited.

 For ICMPv4, [RFC0792] states that the IP header plus the first 64
 bits of the packet that triggered the ICMP message are to be included
 in the payload of the ICMP error message. Thus, it is assumed that
 all data needed to identify a transport protocol instance and process
 the ICMP error message is contained in the first 64 bits of the
 transport protocol header. Section 3.2.2 of [RFC1122] states that
 "the Internet header and at least the first 8 data octets of the
 datagram that triggered the error" are to be included in the payload
 of ICMP error messages, and that "more than 8 octets MAY be sent",
 thus allowing implementations to include more data from the original

https://datatracker.ietf.org/doc/html/rfc4301#section-6.1.1
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc1122#section-3.2.2

Gont Expires October 1, 2010 [Page 9]

Internet-Draft ICMP attacks against TCP March 2010

 packet than those required by the original ICMP specification. The
 Requirements for IP Version 4 Routers RFC [RFC1812] states that ICMP
 error messages "SHOULD contain as much of the original datagram as
 possible without the length of the ICMP datagram exceeding 576
 bytes".

 Thus, for ICMP messages generated by hosts, we can only expect to get
 the entire IP header of the original packet, plus the first 64 bits
 of its payload. For TCP, this means that the only fields that will
 be included in the ICMP payload are: the source port number, the
 destination port number, and the 32-bit TCP sequence number. This
 clearly imposes a constraint on the possible validation checks that
 can be performed, as there is not much information available on which
 to perform them.

 This means, for example, that even if TCP were signing its segments
 by means of the TCP MD5 signature option [RFC2385], this mechanism
 could not be used as a counter-measure against ICMP-based attacks,
 because, as ICMP messages include only a piece of the TCP segment
 that triggered the error, the MD5 [RFC1321] signature could not be
 recalculated. In the same way, even if the attacked peer were
 authenticating its packets at the IP layer [RFC4301], because only a
 part of the original IP packet would be available, the signature used
 for authentication could not be recalculated, and thus the
 authentication header in the original packet could not be used as a
 counter-measure for ICMP-based attacks against TCP.

 For IPv6, the payload of ICMPv6 error messages includes as many
 octets from the IPv6 packet that triggered the ICMPv6 error message
 as will fit without making the resulting ICMPv6 error message exceed
 the minimum IPv6 MTU (1280 octets) [RFC4443]. Thus, more information
 is available than in the IPv4 case.

 Hosts could require ICMP error messages to be authenticated
 [RFC4301], in order to act upon them. However, while this
 requirement could make sense for those ICMP error messages sent by
 hosts, it would not be feasible for those ICMP error messages
 generated by routers, as this would imply either that the attacked
 system should have a security association [RFC4301] with every
 existing intermediate system, or that it should be able to establish
 one dynamically. Current levels of deployment of protocols for
 dynamic establishment of security associations makes this unfeasible.
 Additionally, this would require routers to use certificates with
 paths compatible for all hosts on the network. Finally, there may be
 some scenarios, such as embedded devices, in which the processing
 power requirements of authentication might not allow IPsec
 authentication to be implemented effectively.

https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4301

Gont Expires October 1, 2010 [Page 10]

Internet-Draft ICMP attacks against TCP March 2010

4. General counter-measures against ICMP attacks

 The following subsections describe a number of mitigation techniques
 that help to eliminate or mitigate the impact of the attacks
 discussed in this document. Rather than being alternative counter-
 measures, they can be implemented together to increase the protection
 against these attacks.

4.1. TCP sequence number checking

 The current specifications do not impose any validity checks on the
 TCP segment that is contained in the ICMP payload. For instance, no
 checks are performed to verify that a received ICMP error message has
 been triggered by a segment that was "in flight" to the destination.
 Thus, even stale ICMP error messages will be acted upon.

 Many TCP implementations have incorporated a validation check such
 that they react only to those ICMP error messages that appear to
 relate to segments currently "in-flight" to the destination system.
 These implementations check that the TCP sequence number contained in
 the payload of the ICMP error message is within the range SND.UNA =<
 SEG.SEQ < SND.NXT. This means that they require that the sequence
 number be within the range of the data already sent but not yet
 acknowledged. If an ICMP error message does not pass this check, it
 is discarded.

 Even if an attacker were able to guess the four-tuple that identifies
 the TCP connection, this additional check would reduce the
 possibility of considering a spoofed ICMP packet as valid to
 Flight_Size/2^^32 (where Flight_Size is the number of data bytes
 already sent to the remote peer, but not yet acknowledged [RFC5681]).
 For connections in the SYN-SENT or SYN-RECEIVED states, this would
 reduce the possibility of considering a spoofed ICMP packet as valid
 to 1/2^^32. For a TCP endpoint with no data "in flight", this would
 completely eliminate the possibility of success of these attacks.

 This validation check has been implemented in Linux [Linux] for many
 years, in OpenBSD [OpenBSD] since 2004, and in FreeBSD [FreeBSD] and
 NetBSD [NetBSD] since 2005.

 It is important to note that while this check greatly increases the
 number of packets required to perform any of the attacks discussed in
 this document, this may not be enough in those scenarios in which
 bandwidth is easily available, and/or large TCP windows [RFC1323] are
 in use. Additionally, this validation check does not help to prevent
 on-path attacks, that is, attacks performed in scenarios in which the
 attacker can sniff the packets that correspond to the target TCP
 connection.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc1323

Gont Expires October 1, 2010 [Page 11]

Internet-Draft ICMP attacks against TCP March 2010

 It should be noted that as there are no timeliness requirements for
 ICMP error messages, the TCP Sequence Number check described in this
 section might cause legitimate ICMP error messages to be discarded.
 Also, even if this check is enforced, TCP might end up responding to
 stale ICMP error messages (e.g., if the Sequence Number for the
 corresponding direction of the data transfer wrap around).

4.2. Port randomization

 As discussed in the previous sections, in order to perform any of the
 attacks described in this document, an attacker would need to guess
 (or know) the four-tuple that identifies the connection to be
 attacked. Increasing the port number range used for outgoing TCP
 connections, and randomizing the port number chosen for each outgoing
 TCP connections would make it harder for an attacker to perform any
 of the attacks discussed in this document.

 [I-D.ietf-tsvwg-port-randomization] recommends that transport
 protocols randomize the ephemeral ports used by clients, and proposes
 a number of randomization algorithms.

4.3. Filtering ICMP error messages based on the ICMP payload

 The source address of ICMP error messages does not need to be spoofed
 to perform the attacks described in this document, as the ICMP error
 messages might legitimately come from an intermediate system.
 Therefore, simple filtering based on the source address of ICMP error
 messages does not serve as a counter-measure against these attacks.
 However, a more advanced packet filtering can be implemented in
 middlebox devices such as firewalls and NATs. Middleboxes
 implementing such advanced filtering look at the payload of the ICMP
 error messages, and perform ingress and egress packet filtering based
 on the source IP address of the IP header contained in the payload of
 the ICMP error message. As the source IP address contained in the
 payload of the ICMP error message does need to be spoofed to perform
 the attacks described in this document, this kind of advanced
 filtering serves as a counter-measure against these attacks. As with
 traditional egress filtering [IP-filtering], egress filtering based
 on the ICMP payload can help to prevent users of the network being
 protected by the firewall from successfully performing ICMP attacks
 against TCP connections established between external systems.
 Additionally, ingress filtering based on the ICMP payload can prevent
 TCP connections established between internal systems from attacks
 performed by external systems. [ICMP-Filtering] provides examples of
 ICMP filtering based on the ICMP payload.

 This filtering technique has been implemented in OpenBSD's Packet
 Filter [OpenBSD-PF], which has in turn been ported to a number of

Gont Expires October 1, 2010 [Page 12]

Internet-Draft ICMP attacks against TCP March 2010

 systems, including FreeBSD [FreeBSD].

5. Blind connection-reset attack

5.1. Description

 When TCP is handed an ICMP error message, it will perform its fault
 recovery function, as follows:

 o If the network problem being reported is a hard error, TCP will
 abort the corresponding connection.

 o If the network problem being reported is a soft error, TCP will
 just record this information, and repeatedly retransmit its data
 until they either get acknowledged, or the connection times out.

 The Host Requirements RFC [RFC1122] states (in Section 4.2.3.9) that
 a host SHOULD abort the corresponding connection when receiving an
 ICMP error message that indicates a "hard error", and states that
 ICMP error messages of type 3 (Destination Unreachable) codes 2
 (protocol unreachable), 3 (port unreachable), and 4 (fragmentation
 needed and DF bit set) should be considered to indicate hard errors.
 In the case of ICMP port unreachables, the specifications are
 ambiguous, as Section 4.2.3.9 of [RFC1122] states that TCP SHOULD
 abort the corresponding connection in response to them, but Section

3.2.2.1 of the same RFC ([RFC1122] states that TCP MUST abort the
 connection in response to them.

 While [RFC4443] did not exist when [RFC1122] was published, one could
 extrapolate the concept of "hard errors" to ICMPv6 error messages of
 type 1 (Destination unreachable) codes 1 (communication with
 destination administratively prohibited), and 4 (port unreachable).

 Thus, an attacker could use ICMP to perform a blind connection-reset
 attack by sending any ICMP error message that indicates a "hard
 error", to either of the two TCP endpoints of the connection.
 Because of TCP's fault recovery policy, the connection would be
 immediately aborted.

 Some stacks are known to extrapolate ICMP hard errors across TCP
 connections, increasing the impact of this attack, as a single ICMP
 packet could bring down all the TCP connections between the
 corresponding peers.

 It is important to note that even if TCP itself were protected
 against the blind connection-reset attack described in [Watson] and
 [I-D.ietf-tcpm-tcpsecure], by means of authentication at the network

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.9
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc1122

Gont Expires October 1, 2010 [Page 13]

Internet-Draft ICMP attacks against TCP March 2010

 layer [RFC4301], by means of the TCP MD5 signature option [RFC2385],
 by means of the TCP-AO [I-D.ietf-tcpm-tcp-auth-opt], or by means of
 the mechanism specified in [I-D.ietf-tcpm-tcpsecure], the blind
 connection-reset attack described in this document would still
 succeed.

5.2. Attack-specific counter-measures

 An analysis of the circumstances in which ICMP messages that indicate
 hard errors may be received can shed some light to mitigate the
 impact of ICMP-based blind connection-reset attacks.

 ICMP type 3 (Destination Unreachable), code 2 (protocol unreachable)

 This ICMP error message indicates that the host sending the ICMP
 error message received a packet meant for a transport protocol it
 does not support. For connection-oriented protocols such as TCP,
 one could expect to receive such an error as the result of a
 connection-establishment attempt. However, it would be strange to
 get such an error during the life of a connection, as this would
 indicate that support for that transport protocol has been removed
 from the system sending the error message during the life of the
 corresponding connection.

 ICMP type 3 (Destination Unreachable), code 3 (port unreachable)

 This error message indicates that the system sending the ICMP
 error message received a packet meant for a socket (IP address,
 port number) on which there is no process listening. Those
 transport protocols which have their own mechanisms for notifying
 this condition should not be receiving these error messages, as
 the protocol would signal the port unreachable condition by means
 of its own messages. Assuming that once a connection is
 established it is not usual for the transport protocol to change
 (or be reloaded), it should be unusual to get these error
 messages.

 ICMP type 3 (Destination Unreachable), code 4 (fragmentation needed
 and DF bit set)

 This error message indicates that an intermediate node needed to
 fragment a datagram, but the DF (Don't Fragment) bit in the IP
 header was set. It is considered a soft error when TCP implements
 PMTUD, and a hard error if TCP does not implement PMTUD. Those
 TCP/IP stacks that do not implement PMTUD (or have disabled it)
 but support IP fragmentation/reassembly should not be sending
 their IP packets with the DF bit set, and thus should not be
 receiving these ICMP error messages. Some TCP/IP stacks that do

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc2385

Gont Expires October 1, 2010 [Page 14]

Internet-Draft ICMP attacks against TCP March 2010

 not implement PMTUD and that do not support IP fragmentation/
 reassembly are known to send their packets with the DF bit set,
 and thus could legitimately receive these ICMP error messages.

 ICMPv6 type 1 (Destination Unreachable), code 1 (communication with
 destination administratively prohibited)

 This error message indicates that the destination is unreachable
 because of an administrative policy. For connection-oriented
 protocols such as TCP, one could expect to receive such an error
 as the result of a connection-establishment attempt. Receiving
 such an error for a connection in any of the synchronized states
 would mean that the administrative policy changed during the life
 of the connection. However, in the same way this error condition
 (which was not present when the connection was established)
 appeared, it could get solved in the near term.

 ICMPv6 type 1 (Destination Unreachable), code 4 (port unreachable)

 This error message is analogous to the ICMP type 3 (Destination
 Unreachable), code 3 (Port unreachable) error message discussed
 above. Therefore, the same considerations apply.

 The Host Requirements RFC [RFC1122] states in Section 4.2.3.9 that
 TCP SHOULD abort the corresponding connection in response to ICMP
 messages of type 3, codes 2 (protocol unreachable), 3 (port
 unreachable), and 4 (fragmentation needed and DF bit set). However,

Section 3.2.2.1 states that TCP MUST accept an ICMP port unreachable
 (type 3, code 3) for the same purpose as an RST. Therefore, for ICMP
 messages of type 3 codes 2 and 4 there is room to go against the
 advice provided in the existing specifications, while in the case of
 ICMP messages of type 3 code 3 there is ambiguity in the
 specifications that may or may not provide some room to go against
 that advice.

 Based on this analysis, most popular TCP implementations treat all
 ICMP "hard errors" received for connections in any of the
 synchronized states (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT,
 CLOSING, LAST-ACK or TIME-WAIT) as "soft errors". That is, they do
 not abort the corresponding connection upon receipt of them.
 Additionally, they do not extrapolate ICMP errors across TCP
 connections. This policy is based on the premise that TCP should be
 as robust as possible. Aborting the connection would be to ignore
 the valuable feature of the Internet that for many internal failures
 it reconstructs its function without any disruption of the end points
 [RFC0816].

 It should be noted that treating ICMP hard errors as soft errors for

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0816

Gont Expires October 1, 2010 [Page 15]

Internet-Draft ICMP attacks against TCP March 2010

 connections in any of the synchronized states may prevent TCP from
 responding quickly to a legitimate ICMP error message.

 It is interesting to note that, as ICMP error messages are
 transmitted unreliably, transport protocols should not depend on them
 for correct functioning. In the event one of these messages were
 legitimate, the corresponding connection would eventually time out.
 Also, applications may still be notified asynchronously about the
 error condition, and thus may still abort their connections on their
 own if they consider it appropriate.

 In scenarios such as that in which an intermediate system sets the DF
 bit in the segments transmitted by a TCP that does not implement
 PMTUD, or the TCP at one of the endpoints of the connection is
 dynamically disabled, TCP would only abort the connection after a
 USER TIMEOUT [RFC0793], losing responsiveness. However, these
 scenarios are very unlikely in production environments, and it is
 probably preferable to potentially lose responsiveness for the sake
 of robustness. It should also be noted that applications may still
 be notified asynchronously about the error condition, and thus may
 still abort their connections on their own if they consider it
 appropriate.

 In scenarios of multipath routing or route changes, failures in some
 (but not all) of the paths may elicit ICMP error messages that would
 likely not cause a connection abort if any of the counter-measures
 described in this section were implemented. However, aborting the
 connection would be to ignore the valuable feature of the Internet
 that for many internal failures it reconstructs its function without
 any disruption of the end points [RFC0816]. That is, communication
 should survive if there is still a working path to the destination
 system [DClark]. Additionally, applications may still be notified
 asynchronously about the error condition, and thus may still abort
 their connections on their own if they consider it appropriate.

 This counter-measure has been implemented in BSD-derived TCP/IP
 implementations (e.g., [FreeBSD], [NetBSD], and [OpenBSD]) for more
 than ten years [Wright][McKusick]. The Linux kernel has also
 implemented this policy for more than ten years [Linux].

6. Blind throughput-reduction attack

6.1. Description

 The Host requirements RFC [RFC1122] states in Section 4.2.3.9 that
 hosts MUST react to ICMP Source Quench messages by slowing
 transmission on the connection. Thus, an attacker could send ICMP

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0816
https://datatracker.ietf.org/doc/html/rfc1122

Gont Expires October 1, 2010 [Page 16]

Internet-Draft ICMP attacks against TCP March 2010

 Source Quench (type 4, code 0) messages to a TCP endpoint to make it
 reduce the rate at which it sends data to the other end-point of the
 connection. [RFC1122] further adds that the RECOMMENDED procedure is
 to put the corresponding connection in the slow-start phase of TCP's
 congestion control algorithm [RFC5681]. In the case of those
 implementations that use an initial congestion window of one segment,
 a sustained attack would reduce the throughput of the attacked
 connection to about SMSS (Sender Maximum Segment Size) [RFC5681]
 bytes per RTT (round-trip time). The throughput achieved during an
 attack might be a little higher if a larger initial congestion window
 is in use [RFC3390].

6.2. Attack-specific counter-measures

 As discussed in the Requirements for IP Version 4 Routers RFC
 [RFC1812], research seems to suggest that ICMP Source Quench is an
 ineffective (and unfair) antidote for congestion. [RFC1812] further
 states that routers SHOULD NOT send ICMP Source Quench messages in
 response to congestion. Furthermore, TCP implements its own
 congestion control mechanisms [RFC5681] [RFC3168], that do not depend
 on ICMP Source Quench messages.

 Based on this reasoning, a large number of implementations completely
 ignore ICMP Source Quench messages meant for TCP connections. This
 behavior has been implemented in, at least, Linux [Linux] since 2004,
 and in FreeBSD [FreeBSD], NetBSD [NetBSD], and OpenBSD [OpenBSD]
 since 2005. However, it must be noted that this behaviour violates
 the requirement in [RFC1122] to react to ICMP Source Quench messages
 by slowing transmission on the connection.

7. Blind performance-degrading attack

7.1. Description

 When one IP system has a large amount of data to send to another
 system, the data will be transmitted as a series of IP datagrams. It
 is usually preferable that these datagrams be of the largest size
 that does not require fragmentation anywhere along the path from the
 source to the destination. This datagram size is referred to as the
 Path MTU (PMTU), and is equal to the minimum of the MTUs of each hop
 in the path. A technique called "Path MTU Discovery" (PMTUD) lets IP
 systems determine the Path MTU of an arbitrary internet path.
 [RFC1191] and [RFC1981] specify the PMTUD mechanism for IPv4 and
 IPv6, respectively.

 The PMTUD mechanism for IPv4 uses the Don't Fragment (DF) bit in the
 IP header to dynamically discover the Path MTU. The basic idea

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires October 1, 2010 [Page 17]

Internet-Draft ICMP attacks against TCP March 2010

 behind the PMTUD mechanism is that a source system assumes that the
 MTU of the path is that of the first hop, and sends all its datagrams
 with the DF bit set. If any of the datagrams is too large to be
 forwarded without fragmentation by some intermediate router, the
 router will discard the corresponding datagram, and will return an
 ICMP "Destination Unreachable" (type 3) "fragmentation needed and DF
 set" (code 4) error message to the sending system. This message will
 report the MTU of the constricting hop, so that the sending system
 can reduce the assumed Path-MTU accordingly.

 For IPv6, intermediate systems do not fragment packets. Thus,
 there's an "implicit" DF bit set in every packet sent on a network.
 If any of the datagrams is too large to be forwarded without
 fragmentation by some intermediate router, the router will discard
 the corresponding datagram, and will return an ICMPv6 "Packet Too
 Big" (type 2, code 0) error message to sending system. This message
 will report the MTU of the constricting hop, so that the sending
 system can reduce the assumed Path-MTU accordingly.

 As discussed in both [RFC1191] and [RFC1981], the Path-MTU Discovery
 mechanism can be used to attack TCP. An attacker could send a
 crafted ICMP "Destination Unreachable, fragmentation needed and DF
 set" packet (or their ICMPv6 counterpart) to the sending system,
 advertising a small Next-Hop MTU. As a result, the attacked system
 would reduce the size of the packets it sends for the corresponding
 connection accordingly.

 The effect of this attack is two-fold. On one hand, it will increase
 the headers/data ratio, thus increasing the overhead needed to send
 data to the remote TCP end-point. On the other hand, if the attacked
 system wanted to keep the same throughput it was achieving before
 being attacked, it would have to increase the packet rate. On
 virtually all systems this will lead to an increased processing
 overhead, thus degrading the overall system performance.

 A particular scenario that may take place is that in which an
 attacker reports a Next-Hop MTU smaller than or equal to the amount
 of bytes needed for headers (IP header, plus TCP header). For
 example, if the attacker reports a Next-Hop MTU of 68 bytes, and the
 amount of bytes used for headers (IP header, plus TCP header) is
 larger than 68 bytes, the assumed Path-MTU will not even allow the
 attacked system to send a single byte of application data without
 fragmentation. This particular scenario might lead to unpredictable
 results. Another possible scenario is that in which a TCP connection
 is being secured by means of IPsec. If the Next-Hop MTU reported by
 the attacker is smaller than the amount of bytes needed for headers
 (IP and IPsec, in this case), the assumed Path-MTU will not even
 allow the attacked system to send a single byte of the TCP header

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires October 1, 2010 [Page 18]

Internet-Draft ICMP attacks against TCP March 2010

 without fragmentation. This is another scenario that may lead to
 unpredictable results.

 For IPv4, the reported Next-Hop MTU could be as small as 68 octets,
 as [RFC0791] requires every internet module to be able to forward a
 datagram of 68 octets without further fragmentation. For IPv6, while
 the required minimum IPv6 MTU is 1280, the reported Next-Hop MTU can
 be smaller than 1280 octets [RFC2460]. If the reported Next-Hop MTU
 is smaller than the minimum IPv6 MTU, the receiving host is not
 required to reduce the Path-MTU to a value smaller than 1280, but is
 required to include a fragmentation header in the outgoing packets to
 that destination from that moment on.

7.2. Attack-specific counter-measures

 The IETF has standardized a Path-MTU Discovery mechanism called
 "Packetization Layer Path MTU Discovery" that does not depend on ICMP
 error messages. Implementation of the aforementioned mechanism in
 replacement of the traditional PMTUD (specified in [RFC1191] and
 [RFC1981]) eliminates this vulnerability. However, it can also lead
 to an increase of the PMTUD convergence time.

 This section describes a modification to the PMTUD mechanism
 specified in [RFC1191] and [RFC1981] that has been incorporated in
 OpenBSD and NetBSD (since 2005) to improve TCP's resistance to the
 blind performance-degrading attack described in Section 7.1. The
 described mechanism basically disregards ICMP messages when a
 connection makes progress, without violating any of the requirements
 stated in [RFC1191] and [RFC1981].

 Henceforth, we will refer to both ICMP "fragmentation needed and DF
 bit set" and ICMPv6 "Packet Too Big" messages as "ICMP Packet Too
 Big" messages.

 In addition to the general validation check described in Section 4.1,
 these implementations include a modification to TCP's reaction to
 ICMP "Packet Too Big" error messages that disregards them when a
 connection makes progress, and honors them only after the
 corresponding data have been retransmitted a specified number of
 times. This means that upon receipt of an ICMP "Packet Too Big"
 error message, TCP just records this information, and honors it only
 when the corresponding data have already been retransmitted a
 specified number of times.

 While this basic policy would greatly mitigate the impact of the
 attack against the PMTUD mechanism, it would also mean that it might
 take TCP more time to discover the Path-MTU for a TCP connection.
 This would be particularly annoying for connections that have just

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires October 1, 2010 [Page 19]

Internet-Draft ICMP attacks against TCP March 2010

 been established, as it might take TCP several transmission attempts
 (and the corresponding timeouts) before it discovers the PMTU for the
 corresponding connection. Thus, this policy would increase the time
 it takes for data to begin to be received at the destination host.

 In order to protect TCP from the attack against the PMTUD mechanism,
 while still allowing TCP to quickly determine the initial Path-MTU
 for a connection, the aforementioned implementations have divided the
 traditional PMTUD mechanism into two stages: Initial Path-MTU
 Discovery, and Path-MTU Update.

 The Initial Path-MTU Discovery stage is when TCP tries to send
 segments that are larger than the ones that have so far been sent and
 acknowledged for this connection. That is, in the Initial Path-MTU
 Discovery stage TCP has no record of these large segments getting to
 the destination host, and thus these implementations believe the
 network when it reports that these packets are too large to reach the
 destination host without being fragmented.

 The Path-MTU Update stage is when TCP tries to send segments that are
 equal to or smaller than the ones that have already been sent and
 acknowledged for this connection. During the Path-MTU Update stage,
 TCP already has knowledge of the estimated Path-MTU for the given
 connection. Thus, in this case these implementations are more
 cautious with the errors being reported by the network.

 In order to allow TCP to distinguish segments between those
 performing Initial Path-MTU Discovery and those performing Path-MTU
 Update, two new variables are introduced to TCP: maxsizeacked and
 maxsizesent.

 maxsizesent holds the size (in octets) of the largest packet that has
 so far been sent for this connection. It is initialized to 68 (the
 minimum IPv4 MTU) when the underlying internet protocol is IPv4, and
 is initialized to 1280 (the minimum IPv6 MTU) when the underlying
 internet protocol is IPv6. Whenever a packet larger than maxsizesent
 octets is sent, maxsizesent is set to that value.

 On the other hand, maxsizeacked holds the size (in octets) of the
 largest packet (data, plus headers) that has so far been acknowledged
 for this connection. It is initialized to 68 (the minimum IPv4 MTU)
 when the underlying internet protocol is IPv4, and is initialized to
 1280 (the minimum IPv6 MTU) when the underlying internet protocol is
 IPv6. Whenever an acknowledgement for a packet larger than
 maxsizeacked octets is received, maxsizeacked is set to the size of
 that acknowledged packet. Note that because of TCP's cumulative
 acknowledgement, a single ACK may acknowledge the receipt of more
 than one packet. When that happens, the algorithm may "incorrectly"

Gont Expires October 1, 2010 [Page 20]

Internet-Draft ICMP attacks against TCP March 2010

 asume it is in the "Path-MTU Update" stage, rather than the "Initial
 Path-MTU Discovery" stage (as described bellow).

 Upon receipt of an ICMP "Packet Too Big" error message, the Next-Hop
 MTU claimed by the ICMP message (henceforth "claimedmtu") is compared
 with maxsizesent. If claimedmtu is larger than maxsizesent, then the
 ICMP error message is silently discarded. The rationale for this is
 that the ICMP error message cannot be legitimate if it claims to have
 been triggered by a packet larger than the largest packet we have so
 far sent for this connection.

 If this check is passed, claimedmtu is compared with maxsizeacked.
 If claimedmtu is equal to or larger than maxsizeacked, TCP is
 supposed to be at the Initial Path-MTU Discovery stage, and thus the
 ICMP "Packet Too Big" error message is honored immediately. That is,
 the assumed Path-MTU is updated according to the Next-Hop MTU claimed
 in the ICMP error message. Also, maxsizesent is reset to the minimum
 MTU of the internet protocol in use (68 for IPv4, and 1280 for IPv6).

 On the other hand, if claimedmtu is smaller than maxsizeacked, TCP is
 supposed to be in the Path-MTU Update stage. At this stage, these
 implementations are more cautious with the errors being reported by
 the network, and therefore just record the received error message,
 and delay the update of the assumed Path-MTU.

 To perform this delay, one new variable and one new parameter is
 introduced to TCP: nsegrto and MAXSEGRTO. nsegrto holds the number of
 times a specified segment has timed out. It is initialized to zero,
 and is incremented by one every time the corresponding segment times
 out. MAXSEGRTO specifies the number of times a given segment must
 timeout before an ICMP "Packet Too Big" error message can be honored,
 and can be set, in principle, to any value greater than or equal to
 0.

 Thus, if nsegrto is greater than or equal to MAXSEGRTO, and there's a
 pending ICMP "Packet Too Big" error message, the corresponding error
 message is processed. At that point, maxsizeacked is set to
 claimedmtu, and maxsizesent is set to 68 (for IPv4) or 1280 (for
 IPv6).

 If while there is a pending ICMP "Packet Too Big" error message the
 TCP SEQ claimed by the pending message is acknowledged (i.e., an ACK
 that acknowledges that sequence number is received), then the
 "pending error" condition is cleared.

 The rationale behind performing this delayed processing of ICMP
 "Packet Too Big" messages is that if there is progress on the
 connection, the ICMP "Packet Too Big" errors must be a false claim.

Gont Expires October 1, 2010 [Page 21]

Internet-Draft ICMP attacks against TCP March 2010

 By checking for progress on the connection, rather than just for
 staleness of the received ICMP messages, TCP is protected from attack
 even if the offending ICMP messages are "in window", and as a
 corollary, is made more robust to spurious ICMP messages triggered
 by, for example, corrupted TCP segments.

 MAXSEGRTO can be set, in principle, to any value greater than or
 equal to 0. Setting MAXSEGRTO to 0 would make TCP perform the
 traditional PMTUD mechanism defined in [RFC1191] and [RFC1981]. A
 MAXSEGRTO of 1 provides enough protection for most cases. In any
 case, implementations are free to choose higher values for this
 constant. MAXSEGRTO could be a function of the Next-Hop MTU claimed
 in the received ICMP "Packet Too Big" message. That is, higher
 values for MAXSEGRTO could be imposed when the received ICMP "Packet
 Too Big" message claims a Next-Hop MTU that is smaller than some
 specified value. Both OpenBSD and NetBSD set MAXSEGRTO to 1.

 In the event a higher level of protection is desired at the expense
 of a higher delay in the discovery of the Path-MTU, an implementation
 could consider TCP to always be in the Path-MTU Update stage, thus
 always delaying the update of the assumed Path-MTU.

Section 7.3 shows this counter-measure in action. Section 7.4 shows
 this counter-measure in pseudo-code.

 It is important to note that the mechanism described in this section
 is an improvement to the current Path-MTU discovery mechanism, to
 mitigate its security implications. The current PMTUD mechanism, as
 specified by [RFC1191] and [RFC1981], still suffers from some
 functionality problems [RFC2923] that this document does not aim to
 address. A mechanism that addresses those issues is described in
 [RFC4821].

7.3. The counter-measure for the PMTUD attack in action

 This section illustrates the operation of the counter-measure for the
 ICMP attack against the PMTUD mechanism that has been implemented in
 OpenBSD and NetBSD . It shows both how the fix protects TCP from
 being attacked and how the counter-measure works in normal scenarios.
 As discussed in Section 7.2, this section assumes the PMTUD-specific
 counter-measure is implemented in addition to the TCP sequence number
 checking described in Section 4.1.

 Figure 1 illustrates an hypothetical scenario in which two hosts are
 connected by means of three intermediate routers. It also shows the
 MTU of each hypothetical hop. All the following subsections assume
 the network setup of this figure.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc4821

Gont Expires October 1, 2010 [Page 22]

Internet-Draft ICMP attacks against TCP March 2010

 Also, for simplicity sake, all subsections assume an IP header of 20
 octets and a TCP header of 20 octets. Thus, for example, when the
 PMTU is assumed to be 1500 octets, TCP will send segments that
 contain, at most, 1460 octets of data.

 For simplicity sake, all the following subsections assume the TCP
 implementation at Host 1 has chosen a a MAXSEGRTO of 1.

 +----+ +----+ +----+ +----+ +----+
 | H1 |--------| R1 |--------| R2 |--------| R3 |--------| H2 |
 +----+ +----+ +----+ +----+ +----+
 MTU=4464 MTU=2048 MTU=1500 MTU=4464

 Figure 1: Hypothetical scenario

7.3.1. Normal operation for bulk transfers

 This subsection shows the counter-measure in normal operation, when a
 TCP connection is used for bulk transfers. That is, it shows how the
 counter-measure works when there is no attack taking place, and a TCP
 connection is used for transferring large amounts of data. This
 section assumes that just after the connection is established, one of
 the TCP endpoints begins to transfer data in packets that are as
 large as possible.

 Host 1 Host 2

 1. --> <SEQ=100><CTL=SYN> -->
 2. <-- <SEQ=X><ACK=101><CTL=SYN,ACK> <--
 3. --> <SEQ=101><ACK=X+1><CTL=ACK> -->
 4. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=4424> -->
 5. <--- ICMP "Packet Too Big" MTU=2048, TCPseq#=101 <--- R1
 6. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=2008> -->
 7. <--- ICMP "Packet Too Big" MTU=1500, TCPseq#=101 <--- R2
 8. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=1460> -->
 9. <-- <SEQ=X+1><ACK=1561><CTL=ACK> <--

 Figure 2: Normal operation for bulk transfers

 nsegrto is initialized to zero. Both maxsizeacked and maxsizesent
 are initialized to the minimum MTU for the internet protocol being
 used (68 for IPv4, and 1280 for IPv6).

 In lines 1 to 3 the three-way handshake takes place, and the
 connection is established. In line 4, H1 tries to send a full-sized

Gont Expires October 1, 2010 [Page 23]

Internet-Draft ICMP attacks against TCP March 2010

 TCP segment. As described by [RFC1191] and [RFC1981], in this case
 TCP will try to send a segment with 4424 bytes of data, which will
 result in an IP packet of 4464 octets. Therefore, maxsizesent is set
 to 4464. When the packet reaches R1, it elicits an ICMP "Packet Too
 Big" error message.

 In line 5, H1 receives the ICMP error message, which reports a Next-
 Hop MTU of 2048 octets. After performing the TCP sequence number
 check described in Section 4.1, the Next-Hop MTU reported by the ICMP
 error message (claimedmtu) is compared with maxsizesent. As it is
 smaller than maxsizesent, it passes the check, and thus is then
 compared with maxsizeacked. As claimedmtu is larger than
 maxsizeacked, TCP assumes that the corresponding TCP segment was
 performing the Initial PMTU Discovery. Therefore, the TCP at H1
 honors the ICMP message by updating the assumed Path-MTU. maxsizesent
 is reset to the minimum MTU of the internet protocol in use (68 for
 IPv4, and 1280 for IPv6).

 In line 6, the TCP at H1 sends a segment with 2008 bytes of data,
 which results in an IP packet of 2048 octets. maxsizesent is thus set
 to 2008 bytes. When the packet reaches R2, it elicits an ICMP
 "Packet Too Big" error message.

 In line 7, H1 receives the ICMP error message, which reports a Next-
 Hop MTU of 1500 octets. After performing the TCP sequence number
 check, the Next-Hop MTU reported by the ICMP error message
 (claimedmtu) is compared with maxsizesent. As it is smaller than
 maxsizesent, it passes the check, and thus is then compared with
 maxsizeacked. As claimedmtu is larger than maxsizeacked, TCP assumes
 that the corresponding TCP segment was performing the Initial PMTU
 Discovery. Therefore, the TCP at H1 honors the ICMP message by
 updating the assumed Path-MTU. maxsizesent is reset to the minimum
 MTU of the internet protocol in use.

 In line 8, the TCP at H1 sends a segment with 1460 bytes of data,
 which results in an IP packet of 1500 octets. maxsizesent is thus set
 to 1500. This packet reaches H2, where it elicits an acknowledgement
 (ACK) segment.

 In line 9, H1 finally gets the acknowledgement for the data segment.
 As the corresponding packet was larger than maxsizeacked, TCP updates
 maxsizeacked, setting it to 1500. At this point TCP has discovered
 the Path-MTU for this TCP connection.

7.3.2. Operation during Path-MTU changes

 Let us suppose a TCP connection between H1 and H2 has already been
 established, and that the PMTU for the connection has already been

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires October 1, 2010 [Page 24]

Internet-Draft ICMP attacks against TCP March 2010

 discovered to be 1500. At this point, both maxsizesent and
 maxsizeacked are equal to 1500, and nsegrto is equal to 0. Suppose
 some time later the PMTU decreases to 1492. For simplicity, let us
 suppose that the Path-MTU has decreased because the MTU of the link
 between R2 and R3 has decreased from 1500 to 1492. Figure 3
 illustrates how the counter-measure would work in this scenario.

 Host 1 Host 2

 1. (Path-MTU decreases)
 2. --> <SEQ=100><ACK=X><CTL=ACK><DATA=1460> -->
 3. <--- ICMP "Packet Too Big" MTU=1492, TCPseq#=100 <--- R2
 4. (Segment times out)
 5. --> <SEQ=100><ACK=X><CTL=ACK><DATA=1452> -->
 6. <-- <SEQ=X><ACK=1552><CTL=ACK> <--

 Figure 3: Operation during Path-MTU changes

 In line 1, the Path-MTU for this connection decreases from 1500 to
 1492. In line 2, the TCP at H1, without being aware of the Path-MTU
 change, sends a 1500-byte packet to H2. When the packet reaches R2,
 it elicits an ICMP "Packet Too Big" error message.

 In line 3, H1 receives the ICMP error message, which reports a Next-
 Hop MTU of 1492 octets. After performing the TCP sequence number
 check, the Next-Hop MTU reported by the ICMP error message
 (claimedmtu) is compared with maxsizesent. As claimedmtu is smaller
 than maxsizesent, it is then compared with maxsizeacked. As
 claimedmtu is smaller than maxsizeacked (full-sized packets were
 getting to the remote end-point), this packet is assumed to be
 performing Path-MTU Update. And a "pending error" condition is
 recorded.

 In line 4, the segment times out. Thus, nsegrto is incremented by 1.
 As nsegrto is greater than or equal to MAXSEGRTO, the assumed Path-
 MTU is updated. nsegrto is reset to 0, and maxsizeacked is set to
 claimedmtu, and maxsizesent is set to the minimum MTU of the internet
 protocol in use.

 In line 5, H1 retransmits the data using the updated PMTU, and thus
 maxsizesent is set to 1492. The resulting packet reaches H2, where
 it elicits an acknowledgement (ACK) segment.

 In line 6, H1 finally gets the acknowledgement for the data segment.
 At this point TCP has discovered the new Path-MTU for this TCP
 connection.

Gont Expires October 1, 2010 [Page 25]

Internet-Draft ICMP attacks against TCP March 2010

7.3.3. Idle connection being attacked

 Let us suppose a TCP connection between H1 and H2 has already been
 established, and the PMTU for the connection has already been
 discovered to be 1500. Figure 4 shows a sample time-line diagram
 that illustrates an idle connection being attacked.

 Host 1 Host 2

 1. --> <SEQ=100><ACK=X><CTL=ACK><DATA=50> -->
 2. <-- <SEQ=X><ACK=150><CTL=ACK> <--
 3. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---
 4. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---
 5. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---

 Figure 4: Idle connection being attacked

 In line 1, H1 sends its last bunch of data. At line 2, H2
 acknowledges the receipt of these data. Then the connection becomes
 idle. In lines 3, 4, and 5, an attacker sends forged ICMP "Packet
 Too Big" error messages to H1. Regardless of how many packets it
 sends and the TCP sequence number each ICMP packet includes, none of
 these ICMP error messages will pass the TCP sequence number check
 described in Section 4.1, as H1 has no unacknowledged data in flight
 to H2. Therefore, the attack does not succeed.

7.3.4. Active connection being attacked after discovery of the Path-MTU

 Let us suppose an attacker attacks a TCP connection for which the
 PMTU has already been discovered. In this case, as illustrated in
 Figure 1, the PMTU would be found to be 1500 bytes. Figure 5 shows a
 possible packet exchange.

Gont Expires October 1, 2010 [Page 26]

Internet-Draft ICMP attacks against TCP March 2010

 Host 1 Host 2

 1. --> <SEQ=100><ACK=X><CTL=ACK><DATA=1460> -->
 2. --> <SEQ=1560><ACK=X><CTL=ACK><DATA=1460> -->
 3. --> <SEQ=3020><ACK=X><CTL=ACK><DATA=1460> -->
 4. --> <SEQ=4480><ACK=X><CTL=ACK><DATA=1460> -->
 5. <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <---
 6. <-- <SEQ=X><CTL=ACK><ACK=1560> <--

 Figure 5: Active connection being attacked after discovery of PMTU

 As we assume the PMTU has already been discovered, we also assume
 both maxsizesent and maxsizeacked are equal to 1500. We assume
 nsegrto is equal to zero, as there have been no segment timeouts.

 In lines 1, 2, 3, and 4, H1 sends four data segments to H2. In line
 5, an attacker sends a forged ICMP packet to H1. We assume the
 attacker is lucky enough to guess both the four-tuple that identifies
 the connection and a valid TCP sequence number. As the Next-Hop MTU
 claimed in the ICMP "Packet Too Big" message (claimedmtu) is smaller
 than maxsizeacked, this packet is assumed to be performing Path-MTU
 Update. Thus, the error message is recorded.

 In line 6, H1 receives an acknowledgement for the segment sent in
 line 1, before it times out. At this point, the "pending error"
 condition is cleared, and the recorded ICMP "Packet Too Big" error
 message is ignored. Therefore, the attack does not succeed.

7.3.5. TCP peer attacked when sending small packets just after the
 three-way handshake

 This section analyzes an scenario in which a TCP peer that is sending
 small segments just after the connection has been established, is
 attacked. The connection could be being used by protocols such as
 SMTP [RFC5321] and HTTP [RFC2616], for example, which usually behave
 like this.

 Figure 6 shows a possible packet exchange for such scenario.

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc2616

Gont Expires October 1, 2010 [Page 27]

Internet-Draft ICMP attacks against TCP March 2010

 Host 1 Host 2

 1. --> <SEQ=100><CTL=SYN> -->
 2. <-- <SEQ=X><ACK=101><CTL=SYN,ACK> <--
 3. --> <SEQ=101><ACK=X+1><CTL=ACK> -->
 4. --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=100> -->
 5. <-- <SEQ=X+1><ACK=201><CTL=ACK> <--
 6. --> <SEQ=201><ACK=X+1><CTL=ACK><DATA=100> -->
 7. --> <SEQ=301><ACK=X+1><CTL=ACK><DATA=100> -->
 8. <--- ICMP "Packet Too Big" MTU=150, TCPseq#=201 <---

 Figure 6: TCP peer attacked when sending small packets just after the
 three-way handshake

 nsegrto is initialized to zero. Both maxsizesent and maxsizeacked
 are initialized to the minimum MTU for the internet protocol being
 used (68 for IPv4, and 1280 for IPv6).

 In lines 1 to 3 the three-way handshake takes place, and the
 connection is established. At this point, the assumed Path-MTU for
 this connection is 4464. In line 4, H1 sends a small segment (which
 results in a 140-byte packet) to H2. maxsizesent is thus set to 140.
 In line 5 this segment is acknowledged, and thus maxsizeacked is set
 to 140.

 In lines 6 and 7, H1 sends two small segments to H2. In line 8,
 while the segments from lines 6 and 7 are still in flight to H2, an
 attacker sends a forged ICMP "Packet Too Big" error message to H1.
 Assuming the attacker is lucky enough to guess a valid TCP sequence
 number, this ICMP message will pass the TCP sequence number check.
 The Next-Hop MTU reported by the ICMP error message (claimedmtu) is
 then compared with maxsizesent. As claimedmtu is larger than
 maxsizesent, the ICMP error message is silently discarded.
 Therefore, the attack does not succeed.

7.4. Pseudo-code for the counter-measure for the blind performance-
 degrading attack

 This section contains a pseudo-code version of the counter-measure
 described in Section 7.2 for the blind performance-degrading attack
 described in Section 7. It is meant as guidance for developers on
 how to implement this counter-measure.

 The pseudo-code makes use of the following variables, constants, and
 functions:

Gont Expires October 1, 2010 [Page 28]

Internet-Draft ICMP attacks against TCP March 2010

 ack
 Variable holding the acknowledgement number contained in the TCP
 segment that has just been received.

 acked_packet_size
 Variable holding the packet size (data, plus headers) the ACK that
 has just been received is acknowledging.

 adjust_mtu()
 Function that adjusts the MTU for this connection, according to
 the ICMP "Packet Too Big" that was last received.

 claimedmtu
 Variable holding the Next-Hop MTU advertised by the ICMP "Packet
 Too Big" error message.

 claimedtcpseq
 Variable holding the TCP sequence number contained in the payload
 of the ICMP "Packet Too Big" message that has just been received
 or was last recorded.

 current_mtu
 Variable holding the assumed Path-MTU for this connection.

 drop_message()
 Function that performs the necessary actions to drop the ICMP
 message being processed.

 initial_mtu
 Variable holding the MTU for new connections, as explained in
 [RFC1191] and [RFC1981].

 maxsizeacked
 Variable holding the largest packet size (data, plus headers) that
 has so far been acked for this connection, as explained in

Section 7.2.

 maxsizesent
 Variable holding the largest packet size (data, plus headers) that
 has so far been sent for this connection, as explained in

Section 7.2.

 nsegrto
 Variable holding the number of times this segment has timed out,
 as explained in Section 7.2.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires October 1, 2010 [Page 29]

Internet-Draft ICMP attacks against TCP March 2010

 packet_size
 Variable holding the size of the IP datagram being sent.

 pending_message
 Variable (flag) that indicates whether there is a pending ICMP
 "Packet Too Big" message to be processed.

 save_message()
 Function that records the ICMP "Packet Too Big" message that has
 just been received.

 MINIMUM_MTU
 Constant holding the minimum MTU for the internet protocol in use
 (68 for IPv4, and 1280 for IPv6).

 MAXSEGRTO
 Constant holding the number of times a given segment must timeout
 before an ICMP "Packet Too Big" error message can be honored.

 EVENT: New TCP connection

 current_mtu = initial_mtu;
 maxsizesent = MINIMUM_MTU;
 maxsizeacked = MINIMUM_MTU;
 nsegrto = 0;
 pending_message = 0;

 EVENT: Segment is sent
 if (packet_size > maxsizesent)
 maxsizesent = packet_size;

 EVENT: Segment is received

 if (acked_packet_size > maxsizeacked)
 maxsizeacked = acked_packet_size;

 if (pending_message)
 if (ack > claimedtcpseq){
 pending_message = 0;
 nsegrto = 0;
 }

 EVENT: ICMP "Packet Too Big" message is received

Gont Expires October 1, 2010 [Page 30]

Internet-Draft ICMP attacks against TCP March 2010

 if (claimedmtu <= MINIMUM_MTU)
 drop_message();

 if (claimedtcpseq < SND.UNA || claimed_TCP_SEQ >= SND.NXT){
 drop_message();
 }

 else {
 if (claimedmtu > maxsizesent || claimedmtu >= current_mtu)
 drop_message();

 else {
 if (claimedmtu > maxsizeacked){
 adjust_mtu();
 current_mtu = claimedmtu;
 maxsizesent = MINIMUM_MTU;
 }

 else {
 pending_message = 1;
 save_message();
 }
 }
 }

 EVENT: Segment times out

 nsegrto++;

 if (pending_message && nsegrto >= MAXSEGRTO){
 adjust_mtu();
 nsegrto = 0;
 pending_message = 0;
 maxsizeacked = claimedmtu;
 maxsizesent = MINIMUM_MTU;
 current_mtu = claimedmtu;
 }

 Notes:
 All comparisons between sequence numbers must be performed using
 sequence number arithmetic.
 The pseudo-code implements the mechanism described in Section 7.2,
 the TCP sequence number checking described in Section 4.1, and the
 validation check on the advertised Next-Hop MTU described in
 [RFC1191] and [RFC1981].

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981

Gont Expires October 1, 2010 [Page 31]

Internet-Draft ICMP attacks against TCP March 2010

8. Security Considerations

 This document describes the use of ICMP error messages to perform a
 number of attacks against the TCP protocol, and describes a number of
 widely-implemented counter-measures that either eliminate or reduce
 the impact of these attacks when they are performed by off-path
 attackers.

Section 4.1 describes a validation check that could be enforced on
 ICMP error messages, such that TCP reacts only to those ICMP error
 messages that appear to relate to segments currently "in-flight" to
 the destination system. This requires more effort on the side of an
 off-path attacker at the expense of possible reduced responsiveness
 to network errors.

Section 4.2 describes how obfuscation of TCP ephemeral ports require
 more effort on the side of the attacker to successfully exploit any
 of the attacks described in this document.

Section 4.3 describes how ICMP error messages could possibly be
 filtered based on their payload, to prevent users of the local
 network from successfully performing attacks against third-party
 connections. This is analogous to ingress filtering and egress
 filtering of IP packets [IP-filtering].

Section 5.2 describes an attack-specific counter-measure for the
 blind connection-reset attack. It describes the processing of ICMP
 "hard errors" as "soft errors" when they are received for connections
 in any of the synchronized states. This countermeasure eliminates
 the aforementioned vulnerability in synchronized connections at the
 expense of a possible reduced responsiveness in some network
 scenarios.

Section 6.2 describes an attack-specific counter-measure for the
 blind throughput-reduction attack. It suggests that the
 aforementioned vulnerability can be eliminated by ignoring ICMP
 Source Quench messages meant for TCP connections. This is in
 accordance with research results that indicate that ICMP Source
 Quench messages are ineffective and unfair antidote for congestion.

 Finally, Section 7.2 describes an attack-specific countermeasure for
 the blind performance-degrading attack. It consists of the
 validation check described in Section 4.1, with a modification that
 makes TCP react to ICMP "Packet Too Big" error messages such that
 they are processed when an outstanding TCP segment times out. This
 countermeasures parallels the Packetization Layer Path MTU Discovery
 (PLPMTUD) mechanism [RFC4821]. It should be noted that if this
 counter-measure is implemented, in some scenarios TCP may respond

https://datatracker.ietf.org/doc/html/rfc4821

Gont Expires October 1, 2010 [Page 32]

Internet-Draft ICMP attacks against TCP March 2010

 more slowly to valid ICMP "Packet Too Big" error messages.

 A discussion of these and other attack vectors for performing similar
 attacks against TCP (along with possible counter-measures) can be
 found in [CPNI-TCP] and [I-D.ietf-tcpm-tcp-security].

9. IANA Considerations

 This document has no actions for IANA. The RFC-Editor can remove
 this section before publication of this document as an RFC.

10. Acknowledgements

 This document was inspired by Mika Liljeberg, while discussing some
 issues related to [RFC5461] by private e-mail. The author would like
 to thank (in alphabetical order): Bora Akyol, Mark Allman, Ran
 Atkinson, James Carlson, Alan Cox, Theo de Raadt, Wesley Eddy, Lars
 Eggert, Ted Faber, Juan Fraschini, Markus Friedl, Guillermo Gont,
 John Heffner, Alfred Hoenes, Vivek Kakkar, Michael Kerrisk, Mika
 Liljeberg, Matt Mathis, David Miller, Toby Moncaster, Miles Nordin,
 Eloy Paris, Kacheong Poon, Andrew Powell, Pekka Savola, Donald Smith,
 Pyda Srisuresh, Fred Templin, and Joe Touch for contributing many
 valuable comments.

 Juan Fraschini and the author of this document implemented freely-
 available audit tools to help vendors audit their systems by
 reproducing the attacks discussed in this document. This tools are
 available at http://www.gont.com.ar/tools/index.html .

 Markus Friedl, Chad Loder, and the author of this document, produced
 and tested in OpenBSD [OpenBSD] the first implementation of the
 counter-measure described in Section 7.2. This first implementation
 helped to test the effectiveness of the ideas introduced in this
 document, and has served as a reference implementation for other
 operating systems.

 The author would like to thank the UK's Centre for the Protection of
 National Infrastructure (CPNI) -- formerly National Infrastructure
 Security Co-ordination Centre (NISCC) -- for coordinating the
 disclosure of these issues with a large number of vendors and CSIRTs
 (Computer Security Incident Response Teams).

 The author wishes to express deep and heartfelt gratitude to Jorge
 Oscar Gont and Nelida Garcia, for their precious motivation and
 guidance.

https://datatracker.ietf.org/doc/html/rfc5461
http://www.gont.com.ar/tools/index.html

Gont Expires October 1, 2010 [Page 33]

Internet-Draft ICMP attacks against TCP March 2010

11. References

11.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 April 2007.

11.2. Informative References

 [CPNI-TCP]
 CPNI, "Security Assessment of the Transmission Control
 Protocol (TCP)", http://www.cpni.gov.uk/Docs/

tn-03-09-security-assessment-TCP.pdf, 2009.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4884
http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-TCP.pdf
http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-TCP.pdf

Gont Expires October 1, 2010 [Page 34]

Internet-Draft ICMP attacks against TCP March 2010

 [DClark] Clark, D., "The Design Philosophy of the DARPA Internet
 Protocols", Computer Communication Review Vol. 18, No. 4,
 1988.

 [FreeBSD] The FreeBSD Project, "http://www.freebsd.org".

 [I-D.ietf-tcpm-tcp-auth-opt]
 Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", draft-ietf-tcpm-tcp-auth-opt-11
 (work in progress), March 2010.

 [I-D.ietf-tcpm-tcp-security]
 Gont, F., "Security Assessment of the Transmission Control
 Protocol (TCP)", draft-ietf-tcpm-tcp-security-01 (work in
 progress), February 2010.

 [I-D.ietf-tcpm-tcpsecure]
 Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
 Robustness to Blind In-Window Attacks",

draft-ietf-tcpm-tcpsecure-12 (work in progress),
 September 2009.

 [I-D.ietf-tsvwg-port-randomization]
 Larsen, M. and F. Gont, "Transport Protocol Port
 Randomization Recommendations",

draft-ietf-tsvwg-port-randomization-06 (work in progress),
 February 2010.

 [ICMP-Filtering]
 Gont, F., "Filtering of ICMP error messages", http://

www.gont.com.ar/papers/
 filtering-of-icmp-error-messages.pdf.

 [IP-filtering]
 NISCC, "NISCC Technical Note 01/2006: Egress and Ingress
 Filtering", http://www.niscc.gov.uk/niscc/docs/

re-20060420-00294.pdf?lang=en, 2006.

 [Linux] The Linux Project, "http://www.kernel.org".

 [McKusick]
 McKusick, M., Bostic, K., Karels, M., and J. Quarterman,
 "The Design and Implementation of the 4.4BSD Operating
 System", Addison-Wesley , 1996.

 [NISCC] NISCC, "NISCC Vulnerability Advisory 532967/NISCC/ICMP:
 Vulnerability Issues in ICMP packets with TCP payloads",

http://www.niscc.gov.uk/niscc/docs/

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-auth-opt-11
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-security-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcpsecure-12
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-06
http://www.gont.com.ar/papers/
http://www.gont.com.ar/papers/
http://www.niscc.gov.uk/niscc/docs/re-20060420-00294.pdf?lang=en
http://www.niscc.gov.uk/niscc/docs/re-20060420-00294.pdf?lang=en
http://www.niscc.gov.uk/niscc/docs/

Gont Expires October 1, 2010 [Page 35]

Internet-Draft ICMP attacks against TCP March 2010

 al-20050412-00308.html?lang=en, 2005.

 [NetBSD] The NetBSD Project, "http://www.netbsd.org".

 [OpenBSD] The OpenBSD Project, "http://www.openbsd.org".

 [OpenBSD-PF]
 The OpenBSD Packet Filter,
 "http://www.openbsd.org/faq/pf/".

 [RFC0816] Clark, D., "Fault isolation and recovery", RFC 816,
 July 1982.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, September 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4907] Aboba, B., "Architectural Implications of Link
 Indications", RFC 4907, June 2007.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, July 2007.

https://datatracker.ietf.org/doc/html/rfc816
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc4907
https://datatracker.ietf.org/doc/html/rfc4953

Gont Expires October 1, 2010 [Page 36]

Internet-Draft ICMP attacks against TCP March 2010

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC5461] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461,
 February 2009.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [US-CERT] US-CERT, "US-CERT Vulnerability Note VU#222750: TCP/IP
 Implementations do not adequately validate ICMP error
 messages", http://www.kb.cert.org/vuls/id/222750, 2005.

 [Watson] Watson, P., "Slipping in the Window: TCP Reset Attacks",
 2004 CanSecWest Conference , 2004.

 [Wright] Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:
 The Implementation", Addison-Wesley , 1994.

Appendix A. Changes from previous versions of the draft (to be removed
 by the RFC Editor before publishing this document as an
 RFC)

A.1. Changes from draft-ietf-tcpm-icmp-attacks-10

 o Addresses IESG review comments by Magnus Westerlund and
 (partially) addresses IESG review comments by Tim Polk.

A.2. Changes from draft-ietf-tcpm-icmp-attacks-09

 o Addresses AD review comments by Lars Eggert (hopefully :-)).

A.3. Changes from draft-ietf-tcpm-icmp-attacks-08

 o Fixes a couple of nits found by... Alfred!. Thanks! (again, and
 again, and again....).

A.4. Changes from draft-ietf-tcpm-icmp-attacks-07

 o Addresses some remaining WGLC feedback sent off-list by Donald
 Smith and Guillermo Gont.

A.5. Changes from draft-ietf-tcpm-icmp-attacks-06

 o Addresses WGLC feedback by Joe Touch and Donald Smith.

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5461
https://datatracker.ietf.org/doc/html/rfc5681
http://www.kb.cert.org/vuls/id/222750
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-10
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-09
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-08
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-07
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-06

Gont Expires October 1, 2010 [Page 37]

Internet-Draft ICMP attacks against TCP March 2010

A.6. Changes from draft-ietf-tcpm-icmp-attacks-05

 o Addresses feedback submitted by Wes Eddy
 (http://www.ietf.org/mail-archive/web/tcpm/current/msg04573.html
 and

http://www.ietf.org/mail-archive/web/tcpm/current/msg04574.html)
 and Joe Touch (on June 8th... couldn't find online ref, sorry) on
 the TCPM WG mailing-list.

A.7. Changes from draft-ietf-tcpm-icmp-attacks-04

 o The draft had expired and thus is resubmitted with no further
 changes. Currently working on a rev of the document (Please send
 feedback!).

A.8. Changes from draft-ietf-tcpm-icmp-attacks-03

 o The draft had expired and thus is resubmitted with no further
 changes.

A.9. Changes from draft-ietf-tcpm-icmp-attacks-02

 o Added a disclaimer to indicate that this document does not update
 the current specifications.

 o Addresses feedback sent off-list by Alfred Hoenes.

 o The text (particularly that which describes the counter-measures)
 was reworded to document what current implementations are doing,
 rather than "proposing" the implementation of the counter-
 measures.

 o Some text has been removed: we're just documenting the problem,
 and what existing implementations have done.

 o Miscellaneous editorial changes.

A.10. Changes from draft-ietf-tcpm-icmp-attacks-01

 o Fixed references to the antispoof documents (were hardcoded and
 missing in the References Section).

 o The draft had expired and thus is resubmitted with only a minor
 editorial change.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-05
http://www.ietf.org/mail-archive/web/tcpm/current/msg04573.html
http://www.ietf.org/mail-archive/web/tcpm/current/msg04574.html
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-04
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-03
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-01

Gont Expires October 1, 2010 [Page 38]

Internet-Draft ICMP attacks against TCP March 2010

A.11. Changes from draft-ietf-tcpm-icmp-attacks-00

 o Added references to the specific sections of each of the
 referenced specifications

 o Corrected the threat analysis

 o Added clarification about whether the counter-measures violate the
 current specifications or not.

 o Changed text so that the document fits better in the Informational
 path

 o Added a specific section on IPsec (Section 2.3)

 o Added clarification and references on the use of ICMP filtering
 based on the ICMP payload

 o Updated references to obsoleted RFCs

 o Added a discussion of multipath scenarios, and possible lose in
 responsiveness resulting from the reaction to hard errors as soft
 errors

 o Miscellaneous editorial changes

A.12. Changes from draft-gont-tcpm-icmp-attacks-05

 o Removed RFC 2119 wording to make the draft suitable for
 publication as an Informational RFC.

 o Added additional checks that should be performed on ICMP error
 messages (checksum of the IP header in the ICMP payload, and
 others).

 o Added clarification of the rationale behind each the TCP SEQ check

 o Miscellaneous editorial changes

A.13. Changes from draft-gont-tcpm-icmp-attacks-04

 o Added section on additional considerations for validating ICMP
 error messages

 o Added reference to (draft) [RFC4907]

 o Added stress on the fact that ICMP error messages are unreliable

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-00
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-05
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-04
https://datatracker.ietf.org/doc/html/rfc4907

Gont Expires October 1, 2010 [Page 39]

Internet-Draft ICMP attacks against TCP March 2010

 o Miscellaneous editorial changes

A.14. Changes from draft-gont-tcpm-icmp-attacks-03

 o Added references to existing implementations of the described
 counter-measures

 o The discussion in Section 4 was improved

 o The discussion of the blind connection-reset vulnerability was
 expanded and improved

 o The counter-measure for the attack against the PMTUD was improved
 and simplified

 o Section 7.4 was added

 o Miscellaneous editorial changes

A.15. Changes from draft-gont-tcpm-icmp-attacks-02

 o Fixed errors in in the discussion of the blind connection-reset
 attack

 o The counter-measure for the attack against the PMTUD mechanism was
 refined to allow quick discovery of the Path-MTU

 o Section 7.3 was added so as to clarify the operation of the
 counter-measure for the attack against the PMTUD mechanism

 o Added CPNI contact information.

 o Miscellaneous editorial changes

A.16. Changes from draft-gont-tcpm-icmp-attacks-01

 o The document was restructured for easier reading

 o A discussion of ICMPv6 was added in several sections of the
 document

 o Added Section on Acknowledgement number checking

 o Added Section 4.3

 o Added Section 7

https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-03
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-02
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-01

Gont Expires October 1, 2010 [Page 40]

Internet-Draft ICMP attacks against TCP March 2010

 o Fixed typo in the ICMP types, in several places

 o Fixed typo in the TCP sequence number check formula

 o Miscellaneous editorial changes

A.17. Changes from draft-gont-tcpm-icmp-attacks-00

 o Added a proposal to change the handling of the so-called ICMP hard
 errors during the synchronized states

 o Added a summary of the relevant RFCs in several sections

 o Miscellaneous editorial changes

Author's Address

 Fernando Gont
 Universidad Tecnologica Nacional / Facultad Regional Haedo
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fernando@gont.com.ar
 URI: http://www.gont.com.ar

https://datatracker.ietf.org/doc/html/draft-gont-tcpm-icmp-attacks-00
http://www.gont.com.ar

Gont Expires October 1, 2010 [Page 41]

