
TCPM Working Group G. Fairhurst
Internet-Draft A. Sathiaseelan
Obsoletes: 2861 (if approved) R. Secchi
Updates: 5681 (if approved) University of Aberdeen
Intended status: Standards Track December 16, 2013
Expires: June 19, 2014

Updating TCP to support Rate-Limited Traffic
draft-ietf-tcpm-newcwv-04

Abstract

 This document proposes an update to RFC 5681 to address issues that
 arise when TCP is used to support traffic that exhibits periods where
 the sending rate is limited by the application rather than the
 congestion window. It updates TCP to allow a TCP sender to restart
 quickly following either an idle or rate-limited interval. This
 method is expected to benefit applications that send rate-limited
 traffic using TCP, while also providing an appropriate response if
 congestion is experienced.

 It also evaluates the Experimental specification of TCP Congestion
 Window Validation, CWV, defined in RFC 2861, and concludes that RFC

2861 sought to address important issues, but failed to deliver a
 widely used solution. This document therefore recommends that the
 status of RFC 2861 is moved from Experimental to Historic, and that
 it is replaced by the current specification.

 NOTE: The standards status of this WG document is under review for
 consideration as either Experimental (EXP) or Proposed Standard (PS).
 This decision will be made later as the document is finalised.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Fairhurst, et al. Expires June 19, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft new-CWV December 2013

 This Internet-Draft will expire on June 19, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Fairhurst, et al. Expires June 19, 2014 [Page 2]

Internet-Draft new-CWV December 2013

Table of Contents

1. Introduction . 4
2. Reviewing experience with TCP-CWV 5
3. Terminology . 5

 4. An updated TCP response to idle and application-limited
 periods . 6
 4.1. A method for preserving cwnd during the idle and
 application-limited periods. 7

4.2. Initialisation . 8
4.3. The nonvalidated phase 8
4.4. TCP congestion control during the nonvalidated phase . . . 8
4.4.1. Response to congestion in the nonvalidated phase . . . 9
4.4.2. Sender burst control during the nonvalidated phase . . 10
4.4.3. Adjustment at the end of the nonvalidated phase . . . 11
4.4.4. Examples of Implementation 11

5. Determining a safe period to preserve cwnd 13
6. Security Considerations 14
7. IANA Considerations . 14
8. Acknowledgments . 14
9. Author Notes . 14
9.1. Other related work . 14
9.2. Revision notes . 17

10. References . 19
10.1. Normative References 19
10.2. Informative References 19

 Authors' Addresses . 20

Fairhurst, et al. Expires June 19, 2014 [Page 3]

Internet-Draft new-CWV December 2013

1. Introduction

 TCP is used to support a range of application behaviours. The TCP
 congestion window (cwnd) controls the number of unacknowledged
 packets/bytes that a TCP flow may have in the network at any time, a
 value known as the FlightSize [RFC5681]. A bulk application will
 always have data available to transmit. The rate at which it sends
 is therefore limited by the maximum permitted by the receiver
 advertised window and the sender congestion window (cwnd). In
 contrast, a rate-limited application will experience periods when the
 sender is either idle or is unable to send at the maximum rate
 permitted by the cwnd. This latter case is called rate-limited. The
 focus of this document is on the operation of TCP in such an idle or
 rate-limited case.

 Standard TCP [RFC5681] requires the cwnd to be reset to the restart
 window (RW) when an application becomes idle. [RFC2861] noted that
 this TCP behaviour was not always observed in current
 implementations. Recent experiments [Bis08] confirm this to still be
 the case.

 Standard TCP does not impose additional restrictions on the growth of
 the cwnd when a TCP sender is rate-limited. A rate-limited sender
 may therefore grow a cwnd far beyond that corresponding to the
 current transmit rate, resulting in a value that does not reflect
 current information about the state of the network path the flow is
 using. Use of such an invalid cwnd may result in reduced application
 performance and/or could significantly contribute to network
 congestion.

 [RFC2861] proposed a solution to these issues in an experimental
 method known as Congestion Window Validation (CWV). CWV was intended
 to help reduce cases where TCP accumulated an invalid cwnd. The use
 and drawbacks of using the CWV algorithm in RFC 2861 with an
 application are discussed in Section 2.

Section 3 defines relevant terminology.

Section 4 specifies an alternative to CWV that seeks to address the
 same issues, but does this in a way that is expected to mitigate the
 impact on an application that varies its sending rate. The method
 described applies to both a rate-limited and an idle condition.

Section 5 describes the rationale for selecting the safe period to
 preserve the cwnd.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861

Fairhurst, et al. Expires June 19, 2014 [Page 4]

Internet-Draft new-CWV December 2013

2. Reviewing experience with TCP-CWV

RFC 2861 described a simple modification to the TCP congestion
 control algorithm that decayed the cwnd after the transition to a
 "sufficiently-long" idle period. This used the slow-start threshold
 (ssthresh) to save information about the previous value of the
 congestion window. The approach relaxed the standard TCP behaviour
 [RFC5681] for an idle session, intended to improve application
 performance. CWV also modified the behaviour for a rate-limited
 session where a sender transmitted at a rate less than allowed by
 cwnd.

RFC 2861 has been implemented in some mainstream operating systems as
 the default behaviour [Bis08]. Analysis (e.g. [Bis10] [Fai12]) has
 shown that a TCP sender using CWV is able to use available capacity
 on a shared path after an idle period. This can benefit some
 applications, especially over long delay paths, when compared to the
 slow-start restart specified by standard TCP. However, CWV would
 only benefit an application if the idle period were less than several
 Retransmission Time Out (RTO) intervals [RFC6298], since the
 behaviour would otherwise be the same as for standard TCP, which
 resets the cwnd to the RTCP Restart Window (RW) after this period.

 Experience with RFC 2861 suggests that although the CWV method
 benefited the network in a rate-limited scenario (reducing the
 probability of network congestion), the behaviour was too
 conservative for many common rate-limited applications. This
 mechanism did not therefore offer the desirable increase in
 application performance for rate-limited applications and it is
 unclear whether applications actually use this mechanism in the
 general Internet.

 It is therefore concluded that CWV, as defined in RFC2681, was often
 a poor solution for many rate-limited applications. It had the
 correct motivation, but had the wrong approach to solving this
 problem.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The document assumes familiarity with the terminology of TCP
 congestion control [RFC5681].

 The following new terminology is introduced:

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2681
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires June 19, 2014 [Page 5]

Internet-Draft new-CWV December 2013

 cwnd-limited: A TCP flow that sends the number of segments permitted
 by the cwnd, where the application utilises the allowed sending rate.

 pipeACK sample: A meaure of the volume of data acknowledged by the
 network within an RTT.

 pipeACK variable: A variable that measures the available capacity
 using the set of pipeACK samples.

 pipeACK Sampling Period: The maximum period that a measured pipeACK
 sample may influence the pipeACK variable.

 Non-validated phase: The phase where the cwnd reflects a previous
 measurement of the available path capacity.

 Non-validated period, NVP: The maximum period for which cwnd is
 preserved in the non-validated phase.

 Rate-limited: A TCP flow that does not consume more than one half of
 cwnd, and hence operates in the non-validated phase.

 Validated phase: The phase where the cwnd reflects a current estimate
 of the available path capacity.

4. An updated TCP response to idle and application-limited periods

 This section proposes an update to the TCP congestion control
 behaviour during a rate-limited period. The new method permits a TCP
 sender to preserve the cwnd when an application becomes idle or when
 the sender is unable to send at the maximum rate permitted by the
 cwnd (the non-validated period, NVP, see section 5). The period
 where actual usage is less than allowed by cwnd, is named as the non-
 validated phase. This method allows an application to resume
 transmission at a previous rate without incurring the delay of slow-
 start. However, if the TCP sender experiences congestion using the
 preserved cwnd, it is required to immediately reset the cwnd to an
 appropriate value specified by the method. If a sender does not take
 advantage of the preserved cwnd within the NVP, the value of cwnd is
 reduced, ensuring the value better reflects the capacity that was
 recently actually used.

 It is expected that this update will satisfy the requirements of many
 rate-limited applications and at the same time provide an appropriate
 method for use in the Internet. It also reduces the incentive for an
 application to send data simply to keep transport congestion state.
 (This is sometimes known as "padding").

Fairhurst, et al. Expires June 19, 2014 [Page 6]

Internet-Draft new-CWV December 2013

 The new method does not differentiate between times when the sender
 has become idle or rate-limited. This is partly a response to
 recognition that some applications wish to transmit at a rate less
 than allowed by the sender cwnd, and that it can be hard to make a
 distinction between rate-limited and idle behaviour. This is
 expected to encourage applications and TCP stacks to use standards-
 based congestion control methods. It may also encourage the use of
 long-lived connections where this offers benefit (such as persistent
 http).

 The method is specified in following subsections.

4.1. A method for preserving cwnd during the idle and application-
 limited periods.

 [RFC5681] defines a variable, FlightSize, that indicates the amount
 of outstanding data in the network. This is assumed to be equal to
 the value of Pipe calculated based on the pipe algorithm [RFC3517].
 In RFC5681 this value is used during loss recovery, whereas in this
 method a new variable "pipeACK" is introduced to measure the
 acknowledged size of the pipe, which is used to determine if the
 sender has validated the cwnd.

 A sender determines a pipeACK sample by measuring the volume of data
 that was acknowledged by the network over the period of a measured
 Round Trip Time (RTT). Using the variables defined in [RFC3517], a
 value could be measured by caching the value of HighACK and after one
 RTT measuring the difference between the cached HighACK value and the
 current HighACK value. Other equivalent methods may be used.

 A sender is not required to continuously update the pipeACK variable
 after each received ACK, but SHOULD perform a pipeACK sample at least
 once per RTT when it has sent unacknowledged segments.

 The pipeACK variable MAY consider multiple pipeACK samples over the
 pipeACK Sampling Period. The value of the pipeACK variable MUST NOT
 exceed the maximum (highest value) within the sampling period. This
 specification defines the pipeACK Sampling Period as Max(3*RTT, 1
 second). This period enables a sender to compensate for large
 fluctuations in the sending rate, where there may be pauses in
 transmission, and allows the pipeACK variable to reflect the largest
 recently measured pipeACK sample.

 When no measurements are available, the pipeACK variable is set to
 the "undefined value". This value is used to inhibit entering the
 nonvalidated phase until the first new measurement of a pipeACK
 sample.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3517

Fairhurst, et al. Expires June 19, 2014 [Page 7]

Internet-Draft new-CWV December 2013

 The method RECOMMENDS that the TCP SACK option [RFC3517] is enabled.
 This allows the sender to more accurately determine the number of
 missing bytes during the loss recovery phase, and using this method
 will result in a higher cwnd following loss.

4.2. Initialisation

 A sender starts a TCP connection in the Validated phase and
 initialises the pipeACK variable to the "undefined" value. This
 value inhibits use of the value in cwv calculations.

4.3. The nonvalidated phase

 The updated method creates a new TCP sender phase that captures
 whether the cwnd reflects a validated or non-validated value. The
 phases are defined as:

 o Validated phase: pipeACK >=(1/2)*cwnd, or pipeACK is undefined.
 This is the normal phase, where cwnd is expected to be an
 approximate indication of the capacity currently available along
 the network path, and the standard methods are used to increase
 cwnd (currently [RFC5681]). The rule for transitioning to the
 non-validated phase is specified in section 4.4.

 o Non-validated phase: pipeACK <(1/2)*cwnd. This is the phase where
 the cwnd has a value based on a previous measurement of the
 available capacity, and the usage of this capacity has not been
 validated in the pipeACK Sampling Period. That is, when it is not
 known whether the cwnd reflects the currently available capacity
 along the network path. The mechanisms to be used in this phase
 seek to determine a safe value for cwnd and an appropriate
 reaction to congestion. These mechanisms are specified in section

4.4.

 The value 1/2 was selected to reduce the effects of variations in the
 pipeACK variable, and to allow the sender some flexibility in when it
 sends data.

4.4. TCP congestion control during the nonvalidated phase

 A TCP sender MUST enter the non-validated phase when the pipeACK is
 less than (1/2)*cwnd.

 A TCP sender that enters the non-validated phase will preserve the
 cwnd (i.e., this neither grows nor reduces while the sender remains
 in this phase). If the sender receives an indication of congestion
 (loss or Explicit Congestion Notification, ECN, mark [RFC3168]) it
 uses the method described below. The phase is concluded after a

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168

Fairhurst, et al. Expires June 19, 2014 [Page 8]

Internet-Draft new-CWV December 2013

 fixed period of time (the NVP, as explained in section 4.4.2) or when
 the sender transmits sufficient data so that pipeACK > (1/2)*cwnd
 (i.e. it is no longer rate-limited).

 The behaviour in the non-validated phase is specified as:

 o A cwnd-limited sender uses the standard TCP method to increase
 cwnd (i.e. a TCP sender that fully utilises the cwnd is permitted
 to increase cwnd each received ACK).

 o A sender that is not cwnd-limited MUST NOT increase the cwnd when
 ACK packets are received in this phase.

 o If the sender receives an indication of congestion while in the
 non-validated phase (i.e. detects loss, or an ECN mark), the
 sender MUST exit the non-validated phase (reducing the cwnd as
 defined in section 4.3.1).

 o If the Retransmission Time Out (RTO) expires while in the non-
 validated phase, the sender MUST exit the non-validated phase. It
 then resumes using the Standard TCP RTO mechanism [RFC5681]. (The
 resulting reduction of cwnd described in section 4.3.2 is
 appropriate, since any accumulated path history is considered
 unreliable).

 o A sender with a pipeACK variable greater than (1/2)*cwnd SHOULD
 enter the validated phase. (A rate-limited sender will not
 normally be impacted by whether it is in a validated or non-
 validated phase, since it will normally not consume the entire
 cwnd. However a change to the validated phase will release the
 sender from constraints on the growth of cwnd, and restore the use
 of the standard congestion response.)

4.4.1. Response to congestion in the nonvalidated phase

 Reception of congestion feedback while in the non-validated phase is
 interpreted as an indication that it was inappropriate for the sender
 to use the preserved cwnd. The sender is therefore required to
 quickly reduce the rate to avoid further congestion. Since the cwnd
 does not have a validated value, a new cwnd value must be selected
 based on the utilised rate.

 A sender that detects a packet-drop, or receives an indication of an
 ECN marked packet, MUST record the current FlightSize in the variable
 LossFlightSize and MUST calculate a safe cwnd for loss recovery using
 the method below:
 cwnd = (Max(pipeACK,LossFlightSize))/2.

https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires June 19, 2014 [Page 9]

Internet-Draft new-CWV December 2013

 If there is a valid pipeACK value, the new cwnd is adjusted to
 reflect that a nonvalidated cwnd may be larger than the actual
 FlightSize, or recently used FlightSize (recorded in pipeACK). The
 updated cwnd therefore prevents overshoot by a sender significantly
 increasing its transmission rate during the recovery period.

 At the end of the recovery phase, the TCP sender MUST reset the cwnd
 using the method below:
 cwnd = (Max(pipeACK,LossFlightSize) - R)/2.

 Where, R is the volume of data that was retransmitted during the
 recovery phase. This follows the method proposed for Jump Start
 [Liu07]. The inclusion of the term R makes an adjustment more
 conservative than standard TCP. (This is required, since the sender
 may have sent more segments than a Standard TCP sender would have
 done. The additional reduction is beneficial when the LossFlightSize
 significantly overshoots the available path capacity incurring
 significant loss, for instance an intense traffic burst following a
 non-validated period.)

 If the sender implements a method that allows it to identify the
 number of ECN-marked segments within a window that were observed by
 the receiver, the sender SHOULD use the method above, further
 reducing R by the number of marked segments.

 The sender MUST also re-initialise the pipeACK variable to the
 "undefined" value. This ensures that standard TCP methods are used
 immediately after completing loss recovery until a new pipeACK value
 can be determined.

 ssthresh is adjusted using the standard TCP method.

4.4.2. Sender burst control during the nonvalidated phase

 TCP congestion control allows a sender to accumulate a cwnd that
 would allow it to send a bursts of segments with a total size up to
 the difference between the FlightsSize and cwnd. Such bursts can
 impact other flows that share a network bottleneck and/or may induce
 congestion when buffering is limited.

 Various methods have been proposed to control the sender bustiness
 [Hug01], [All05]. For example, TCP can limit the number of new
 segments it sends per received ACK . This is effective when a flow
 of ACKs is received, but can not be used to control a sender that has
 not send appreciable data in the previous RTT [All05].

 This document recommends using a method to avoid line-rate bursts
 after an idle or rate-limited period when there is less reliable

Fairhurst, et al. Expires June 19, 2014 [Page 10]

Internet-Draft new-CWV December 2013

 information about the capacity of the network path: A TCP sender in
 the non-validated phase SHOULD control the maximum burst size, e.g.
 using a rate-based pacing algorithm in which a sender paces out the
 cwnd over its estimate of the RTT, or some other method, to prevent
 many segments being transmitted contiguously at line-rate. The most
 appropriate method(s) to implement pacing depend on the design of the
 TCP/IP stack, speed of interface and whether hardware support (such
 as TCP Segment Offload, TSO) is used. The present document does not
 recommend any specific method.

4.4.3. Adjustment at the end of the nonvalidated phase

 An application that remains in the non-validated phase for a period
 greater than the NVP is required to adjust its congestion control
 state. If the sender exits the non-validated phase after this
 period, it MUST update the ssthresh:

 ssthresh = max(ssthresh, 3*cwnd/4).

 (This adjustment of ssthresh ensures that the sender records that it
 has safely sustained the present rate. The change is beneficial to
 rate-limited flows that encounter occasional congestion, and could
 otherwise suffer an unwanted additional delay in recovering the
 sending rate.)

 The sender MUST then update cwnd to be not greater than:

 cwnd = max(1/2*cwnd, IW).

 Where IW is the appropriate TCP initial window, used by the TCP
 sender (e.g. [RFC5681]).

 (This adjustment ensures that sender responds conservatively at the
 end of the non-validated phase by reducing the cwnd to better reflect
 the current rate of the sender. The cwnd update does not take into
 account FlightSize or pipeACK value because these values only reflect
 historical data and do not reflect the current sending rate.)

4.4.4. Examples of Implementation

 This section is intended to provide informative examples of
 implementation methods. Implementations may choose to use other
 methods that comply with the normative requirements.

 A pipeACK sample may be measured once each RTT. This reduces the
 sender processing burden for calculating after each acknowledgement
 and also reduces storage requirements at the sender.

https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires June 19, 2014 [Page 11]

Internet-Draft new-CWV December 2013

 Since application behaviour can be bursty using CWV, it may be
 desirable to implement a maximum filter to accumulate the measured
 values so that the pipeACK variable records the largest pipeACK
 sample within the pipeACK Sampling Period. One simple way to
 implement this is to divide the pipeACK Sampling Period into several
 (e.g. 5) equal length measurement periods. The sender then records
 the start time for each measurement period and the highest measured
 pipeACK sample. At the end of the measurement period, any
 measurement(s) that are older than the pipeACK Sampling Period are
 discarded. The pipeACK variable is then assigned the largest of the
 set of the highest measured values.

 +----------+----------+ +----------+---......
 | Sample A | Sample B | No | Sample C | Sample D
 | | | Sample | | | | | |
 | |\ 5 | | | |
 | | | | | | /\ 4 |
 | | | | |\ 3 | | | \ |
 | | \ | | \--- | | / \ | /| 2
 |/ \------| - | | / \------/ \...
 +----------+---------\+----/ /----+/---------+-------------> Time

 <--|
 Sampling Period Current Time

 Figure 1: Example of measuring pipeACK samples

 Figure 1 shows an example of how measurement samples may be
 collected. At the time represented by the figure new samples are
 being accumulated into sample D. Three previous samples also fall
 within the pipeACK Sampling Period: A, B, and C. There was also a
 period of inactivity between samples B and C during which no
 measurements were taken. The current value of the pipeACK variable
 will be 5, the maximum across all samples.

 After one further measurement period, Sample A will be discarded,
 since it then is older than the pipeACK Sampling Period and the
 pipeACK variable will be recalculated, Its value will be the larger
 of Sample C or the final value accumulated in Sample D.

 Note that the NVP period does not necessarily require a new timer to
 be implemented. An alternative is to record a timestamp when the
 sender enters the NVP. Each time a sender transmits a new segment,
 this timestamp may be used to determine if the NVP period has
 expired. If the period expires, the sender may take into account how
 many units of the NVP period have passed and make one reduction (as
 defined in section 4.3.2) for each NVP period.

Fairhurst, et al. Expires June 19, 2014 [Page 12]

Internet-Draft new-CWV December 2013

 A method is required to detect the cwnd-limited condition. In simple
 terms this method is true only when the TCP sender's FlightSize is
 equal to or larger than the cwnd. However, an implementation must
 consider other constraints on the way in which cwnd variable is used,
 for instance the need to support methods such as the Nagle Algorithm
 and TCP Segment Offload (TSO). This can result in a sender becoming
 cwnd-limited when the cwnd is nearly, rather than completely, equal
 to the FlightSize.

5. Determining a safe period to preserve cwnd

 This section documents the rationale for selecting the maximum period
 that cwnd may be preserved, known as the non-validated period, NVP.

 Limiting the period that cwnd may be preserved avoids undesirable
 side effects that would result if the cwnd were to be kept
 unnecessarily high for an arbitrary long period, which was a part of
 the problem that CWV originally attempted to address. The period a
 sender may safely preserve the cwnd, is a function of the period that
 a network path is expected to sustain the capacity reflected by cwnd.
 There is no ideal choice for this time.

 A period of five minutes was chosen for this NVP. This is a
 compromise that was larger than the idle intervals of common
 applications, but not sufficiently larger than the period for which
 the capacity of an Internet path may commonly be regarded as stable.
 The capacity of wired networks is usually relatively stable for
 periods of several minutes and that load stability increases with the
 capacity. This suggests that cwnd may be preserved for at least a
 few minutes.

 There are cases where the TCP throughput exhibits significant
 variability over a time less than five minutes. Examples could
 include wireless topologies, where TCP rate variations may fluctuate
 on the order of a few seconds as a consequence of medium access
 protocol instabilities. Mobility changes may also impact TCP
 performance over short time scales. Senders that observe such rapid
 changes in the path characteristic may also experience increased
 congestion with the new method, however such variation would likely
 also impact TCP's behaviour when supporting interactive and bulk
 applications.

 Routing algorithms may modify the network path, disrupting the RTT
 measurement and changing the capacity available to a TCP connection,
 however such changes do not often occur within a time frame of a few
 minutes.

Fairhurst, et al. Expires June 19, 2014 [Page 13]

Internet-Draft new-CWV December 2013

 The value of five minutes is therefore expected to be sufficient for
 most current applications. Simulation studies (e.g. [Bis11]) also
 suggest that for many practical applications, the performance using
 this value will not be significantly different to that observed using
 a non-standard method that does not reset the cwnd after idle.

 Finally, other TCP sender mechanisms have used a 5 minute timer, and
 there could be simplifications in some implementations by reusing the
 same interval. TCP defines a default user timeout of 5 minutes
 [RFC0793] i.e. how long transmitted data may remain unacknowledged
 before a connection is forcefully closed.

6. Security Considerations

 General security considerations concerning TCP congestion control are
 discussed in [RFC5681]. This document describes an algorithm that
 updates one aspect of the congestion control procedures, and so the
 considerations described in RFC 5681 also apply to this algorithm.

7. IANA Considerations

 There are no IANA considerations.

8. Acknowledgments

 The authors acknowledge the contributions of Dr I Biswas, Mr Ziaul
 Hossain in supporting the evaluation of CWV and for their help in
 developing the mechanisms proposed in this draft. We also
 acknowledge comments received from the Internet Congestion Control
 Research Group, in particular Yuchung Cheng, Mirja Kuehlewind, and
 Joe Touch. This work was part-funded by the European Community under
 its Seventh Framework Programme through the Reducing Internet
 Transport Latency (RITE) project (ICT-317700).

9. Author Notes

 RFC-Editor note: please remove this section prior to publication.

9.1. Other related work

 RFC-Editor note: please remove this section prior to publication.

 There are several issues to be discussed more widely:

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires June 19, 2014 [Page 14]

Internet-Draft new-CWV December 2013

 o There are potential interactions with the Experimental update in
 [RFC6928] that raises the TCP initial Window to ten segments, do
 these cases need to be elaborated?

 This relates to the Experimental specification for increasing
 the TCP IW defined in RFC 6928.

 The two methods have different functions and different response
 to loss/congestion.

RFC 6928 proposes an experimental update to TCP that would
 increase the IW to ten segments. This would allow faster
 opening of the cwnd, and also a large (same size) restart
 window. This approach is based on the assumption that many
 forward paths can sustain bursts of up to ten segments without
 (appreciable) loss. Such a significant increase in cwnd must
 be matched with an equally large reduction of cwnd if loss/
 congestion is detected, and such a congestion indication is
 likely to require future use of IW=10 to be disabled for this
 path for some time. This guards against the unwanted behaviour
 of a series of short flows continuously flooding a network path
 without network congestion feedback.

 In contrast, this document proposes an update with a rationale
 that relies on recent previous path history to select an
 appropriate cwnd after restart.

 The behaviour differs in three ways:

 1) For applications that send little initially, new-cwv may
 constrain more than RFC 6928, but would not require the
 connection to reset any path information when a restart
 incurred loss. In contrast, new-cwv would allow the TCP
 connection to preserve the cached cwnd, any loss, would impact
 cwnd, but not impact other flows.

 2) For applications that utilise more capacity than provided by
 a cwnd of 10 segments, this method would permit a larger
 restart window compared to a restart using the method in RFC

6928. This is justified by the recent path history.

 3) new-CWV is attended to also be used for rate-limited
 applications, where the application sends, but does not seek to
 fully utilise the cwnd. In this case, new-cwv constrains the
 cwnd to that justified by the recent path history. The
 performance trade-offs are hence different, and it would be

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928

Fairhurst, et al. Expires June 19, 2014 [Page 15]

Internet-Draft new-CWV December 2013

 possible to enable new-cwv when also using the method in RFC
6928, and yield benefits.

 o There is potential overlap with the Laminar proposal
 (draft-mathis-tcpm-tcp-laminar)

 The current draft was intended as a standards-track update to
 TCP, rather than a new transport variant. At least, it would
 be good to understand how the two interact and whether there is
 a possibility of a single method.

 o There is potential performance loss in loss of a short burst
 (off list with M Allman)

 A sender can transmit several segments then become idle. If
 the first segments are all ACK'ed the ssthresh collapses to a
 small value (no new data is sent by the idle sender). Loss of
 the later data results in congestion (e.g. maybe a RED drop or
 some other cause, rather than the maximum rate of this flow).
 When the sender performs loss recovery it may have an
 appreciable pipeACK and cwnd, but a very low FlightSize - the
 Standard algorithm results in an unusually low cwnd (1/2
 FlightSize).

 A constant rate flow would have maintained a FlightSize
 appropriate to pipeACK (cwnd if it is a bulk flow).

 This could be fixed by adding a new state variable? It could
 also be argued this is a corner case (e.g. loss of only the
 last segments would have resulted in RTO), the impact could be
 significant.

 o There is potential interaction with TCP Control Block Sharing(M
 Welzl)

 An application that is non-validated can accumulate a cwnd that
 is larger than the actual capacity. Is this a fair value to
 use in TCB sharing?

 We propose that TCB sharing should use the pipeACK in place of
 cwnd when a TCP sender is in the Nonvalidated phase. This
 value better reflects the capacity that the flow has utilised

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-tcp-laminar

Fairhurst, et al. Expires June 19, 2014 [Page 16]

Internet-Draft new-CWV December 2013

 in the network path.

9.2. Revision notes

 RFC-Editor note: please remove this section prior to publication.

 Draft 03 was submitted to ICCRG to receive comments and feedback.

 Draft 04 contained the first set of clarifications after feedback:

 o Changed name to application limited and used the term rate-limited
 in all places.

 o Added justification and many minor changes suggested on the list.

 o Added text to tie-in with more accurate ECN marking.

 o Added ref to Hug01

 Draft 05 contained various updates:

 o New text to redefine how to measure the acknowledged pipe,
 differentiating this from the FlightSize, and hence avoiding
 previous issues with infrequent large bursts of data not being
 validated. A key point new feature is that pipeACK only triggers
 leaving the NVP after the size of the pipe has been acknowledged.
 This removed the need for hysteresis.

 o Reduction values were changed to 1/2, following analysis of
 suggestions from ICCRG. This also sets the "target" cwnd as twice
 the used rate for non-validated case.

 o Introduced a symbolic name (NVP) to denote the 5 minute period.

 Draft 06 contained various updates:

 o Required reset of pipeACK after congestion.

 o Added comment on the effect of congestion after a short burst (M.
 Allman).

 o Correction of minor Typos.

 WG draft 00 contained various updates:

 o Updated initialisation of pipeACK to maximum value.

Fairhurst, et al. Expires June 19, 2014 [Page 17]

Internet-Draft new-CWV December 2013

 o Added note on intended status still to be determined.

 WG draft 01 contained:

 o Added corrections from Richard Scheffenegger.

 o Raffaello Secchi added to the mechanism, based on implementation
 experience.

 o Removed that the requirement for the method to use TCP SACK option
 [RFC3517] to be enabled - Although it may be desirable to use
 SACK, this is not essential to the algorithm.

 o Added the notion of the sampling period to accommodate large rate
 variations and ensure that the method is stable. This algorithm
 to be validated through implementation.

 WG draft 02 contained:

 o Clarified language around pipeACK variable and pipeACK sample -
 Feedback from Aris Angelogiannopoulos.

 WG draft 03 contained:

 o Editorial corrections - Feedback from Anna Brunstrom.

 o An adjustment to the procedure at the start and end of loss
 recovery to align the two equations.

 o Further clarification of the "undefined" value of the pipeACK
 variable.

 WG draft 04 contained:

 o Editorial corrections.

 o Introduced the "cwnd-limited" term.

 o An adjustment to the procedure at the start of a cwnd-limited
 phase - the new text is intended to ensure that new-cwv is not
 unnecessarily more conservative than standard TCP when the flow is
 cwnd-limited. This resolves two issues: first it prevents
 pathologies in which pipeACK increases slowly and eraticaly. It
 also ensures that performance of bulk applications is not
 significantly impacted when using the method.

 o Clearly identifies that pacing (or equivalent) is requiring during
 the NVP to control bustiness. New section added.

https://datatracker.ietf.org/doc/html/rfc3517

Fairhurst, et al. Expires June 19, 2014 [Page 18]

Internet-Draft new-CWV December 2013

10. References

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928, April 2013.

10.2. Informative References

 [All05] "Notes on burst mitigation for transport protocols",
 March 2005.

 [Bis08] Biswas and Fairhurst, "A Practical Evaluation of
 Congestion Window Validation Behaviour, 9th Annual
 Postgraduate Symposium in the Convergence of
 Telecommunications, Networking and Broadcasting (PGNet),
 Liverpool, UK", June 2008.

 [Bis10] Biswas, Sathiaseelan, Secchi, and Fairhurst, "Analysing
 TCP for Bursty Traffic, Int'l J. of Communications,
 Network and System Sciences, 7(3)", June 2010.

 [Bis11] Biswas, "PhD Thesis, Internet congestion control for
 variable rate TCP traffic, School of Engineering,

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6928

Fairhurst, et al. Expires June 19, 2014 [Page 19]

Internet-Draft new-CWV December 2013

 University of Aberdeen", June 2011.

 [Fai12] Sathiaseelan, Secchi, Fairhurst, and Biswas, "Enhancing
 TCP Performance to support Variable-Rate Traffic, 2nd
 Capacity Sharing Workshop, ACM CoNEXT, Nice, France, 10th
 December 2012.", June 2008.

 [Hug01] Hughes, Touch, and Heidemann, "Issues in TCP Slow-Start
 Restart After Idle (Work-in-Progress)", December 2001.

 [Liu07] Liu, Allman, Jiny, and Wang, "Congestion Control without a
 Startup Phase, 5th International Workshop on Protocols for
 Fast Long-Distance Networks (PFLDnet), Los Angeles,
 California, USA", February 2007.

Authors' Addresses

 Godred Fairhurst
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen, Scotland AB24 3UE
 UK

 Email: gorry@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk

 Arjuna Sathiaseelan
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen, Scotland AB24 3UE
 UK

 Email: arjuna@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk

http://www.erg.abdn.ac.uk
http://www.erg.abdn.ac.uk

Fairhurst, et al. Expires June 19, 2014 [Page 20]

Internet-Draft new-CWV December 2013

 Raffaello Secchi
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen, Scotland AB24 3UE
 UK

 Email: raffaello@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk

Fairhurst, et al. Expires June 19, 2014 [Page 21]

http://www.erg.abdn.ac.uk

