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Abstract

   This document updates the experimental Proportional Rate Reduction
   (PRR) algorithm, described RFC 6937, to standards track.  PRR
   potentially replaces the Fast Recovery and Rate-Halving algorithms.
   All of these algorithms regulate the amount of data sent by TCP or
   other transport protocol during loss recovery.  PRR accurately
   regulates the actual flight size through recovery such that at the
   end of recovery it will be as close as possible to the ssthresh, as
   determined by the congestion control algorithm.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 26 August 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
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   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.
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1.  Introduction

   This document updates the Proportional Rate Reduction (PRR) algorithm
   described in [RFC6937] from experimental to standards track.  PRR
   accuracy regulates the amount of data sent during loss recovery, such
   that at the end of recovery the flight size will be as close as
   possible to the ssthresh, as determined by the congestion control
   algorithm.  PRR has been deployed in at least 3 major operating
   systems covering the vast majority of today's web traffic.

   The only change from RFC 6937 is the introduction of a new heuristic
   that replaces a manual configuration parameter.  There have been no
   changes to the behaviors of the algorithms or the previously
   published results.  The new heuristic only changes behaviors in
   corner cases that were not relevant prior to the Lost Retransmission
   Detection (LRD) algorithm which was not implemented until after RFC

6937 was published.  This document also includes additional
   discussion about integration into other congestion control and
   recovery algorithms.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119]
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1.1.  Document and WG Information

   Formatted: 2021-02-22 14:22:57-08:00

   Please send all comments, questions and feedback to tcpm@ietf.org

   About revision 00:

   The introduction above was drawn from draft-mathis-tcpm-rfc6937bis-
00.  All of the text below was copied verbatim from RFC 6937, to

   facilitate comparison between RFC 6937 and this document as it
   evolves.

   About revision 01:

   *  Recast the RFC 6937 introduction as background

   *  Made "Changes From RFC 6937" an explicit section

   *  Made Relationships to other standards more explicit

   *  Added a generalized safeACK heuristic

   *  Provided hints for non TCP implementations

   *  Added language about detecting ACK splitting, but have no advice
      on actions (yet)

2.  Background

   This section is copied almost verbatim from the introduction to RFC
6937.

   Standard congestion control [RFC5681] requires that TCP (and other
   protocols) reduce their congestion window (cwnd) in response to
   losses.  Fast Recovery, described in the same document, is the
   reference algorithm for making this adjustment.  Its stated goal is
   to recover TCP's self clock by relying on returning ACKs during
   recovery to clock more data into the network.  Fast Recovery
   typically adjusts the window by waiting for one half round-trip time
   (RTT) of ACKs to pass before sending any data.  It is fragile because
   it cannot compensate for the implicit window reduction caused by the
   losses themselves.

RFC 6675 [RFC6675] makes Fast Recovery with Selective Acknowledgement
   (SACK) [RFC2018] more accurate by computing "pipe", a sender side
   estimate of the number of bytes still outstanding in the network.
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   With RFC 6675, Fast Recovery is implemented by sending data as
   necessary on each ACK to prevent pipe from falling below slow-start
   threshold (ssthresh), the window size as determined by the congestion
   control algorithm.  This protects Fast Recovery from timeouts in many
   cases where there are heavy losses, although not if the entire second
   half of the window of data or ACKs are lost.  However, a single ACK
   carrying a SACK option that implies a large quantity of missing data
   can cause a step discontinuity in the pipe estimator, which can cause
   Fast Retransmit to send a burst of data.

   The Rate-Halving algorithm sends data on alternate ACKs during
   recovery, such that after 1 RTT the window has been halved.  Rate-
   Halving was implemented in Linux after only being informally
   published [RHweb], including an uncompleted document [RHID].  Rate-
   Halving also does not adequately compensate for the implicit window
   reduction caused by the losses and assumes a net 50% window
   reduction, which was completely standard at the time it was written
   but not appropriate for modern congestion control algorithms, such as
   CUBIC [CUBIC], which reduce the window by less than 50%.  As a
   consequence, Rate-Halving often allows the window to fall further
   than necessary, reducing performance and increasing the risk of
   timeouts if there are additional losses.

   PRR avoids these excess window adjustments such that at the end of
   recovery the actual window size will be as close as possible to
   ssthresh, the window size as determined by the congestion control
   algorithm.  It is patterned after Rate-Halving, but using the
   fraction that is appropriate for the target window chosen by the
   congestion control algorithm.  During PRR, one of two additional
   Reduction Bound algorithms limits the total window reduction due to
   all mechanisms, including transient application stalls and the losses
   themselves.

   We describe two slightly different Reduction Bound algorithms:
   Conservative Reduction Bound (CRB), which is strictly packet
   conserving; and a Slow Start Reduction Bound (SSRB), which is more
   aggressive than CRB by, at most, 1 segment per ACK.  PRR-CRB meets
   the Strong Packet Conservation Bound described in Appendix A;
   however, in real networks it does not perform as well as the
   algorithms described in RFC 6675, which prove to be more aggressive
   in a significant number of cases.  SSRB offers a compromise by
   allowing TCP to send 1 additional segment per ACK relative to CRB in
   some situations.  Although SSRB is less aggressive than RFC 6675
   (transmitting fewer segments or taking more time to transmit them),
   it outperforms it, due to the lower probability of additional losses
   during recovery.
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   The Strong Packet Conservation Bound on which PRR and both Reduction
   Bounds are based is patterned after Van Jacobson's packet
   conservation principle: segments delivered to the receiver are used
   as the clock to trigger sending the same number of segments back into
   the network.  As much as possible, PRR and the Reduction Bound
   algorithms rely on this self clock process, and are only slightly
   affected by the accuracy of other estimators, such as pipe [RFC6675]
   and cwnd.  This is what gives the algorithms their precision in the
   presence of events that cause uncertainty in other estimators.

   The original definition of the packet conservation principle
   [Jacobson88] treated packets that are presumed to be lost (e.g.,
   marked as candidates for retransmission) as having left the network.
   This idea is reflected in the pipe estimator defined in RFC 6675 and
   used here, but it is distinct from the Strong Packet Conservation
   Bound as described in Appendix A, which is defined solely on the
   basis of data arriving at the receiver.

3.  Changes From RFC 6937

   The largest change since RFC 6937 [RFC6937] is the introduction of a
   new heuristic that uses good recovery progress (For TCP, snd.una
   advances and no additional segments are marked as lost) to select
   which Reduction Bound.  RFC 6937 left the choice of Reduction Bound
   to the discretion of the implementer but recommended to use BBR-SSRB
   by default.  For all of the environments explored in earlier PRR
   research, the new heuristic is consistent with the old
   recommendation.

   The paper "An Internet-Wide Analysis of Traffic Policing"
   [Flach2016policing] uncovered a crucial situation, not previously
   explored, where both Reduction Bounds perform very poorly, but for
   different reasons.  Under many configurations, token bucket traffic
   policers [token_bucket] can suddenly start discarding a large
   fraction of the traffic, without any warning to the end systems.  The
   transport congestion control has no opportunity to measure the token
   rate, and sets ssthresh based on the previously observed path
   performance.  This value for ssthresh may result in a data rate that
   is substantially larger than the token rate, causing persistent high
   loss.  Under these conditions, both reduction bounds perform very
   poorly.  PRR-CRB is too timid, sometimes causing very long recovery
   times at smaller than necessary windows, and PRR-SSRB is too
   aggressive, often causing many retransmissions to be lost multiple
   times.

https://datatracker.ietf.org/doc/html/rfc6675
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https://datatracker.ietf.org/doc/html/rfc6937
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   Investigating these environments led to the development of a
   "safeACK" heuristic to dynamically switch between Reduction Bounds:
   use PRR-SSRB for ACKs reporting that the recovery is making good
   progress (snd.una is advancing without any new losses) and PRR-CRB
   otherwise

   This heuristic is only invoked where application-limited behavior,
   losses or other events cause the flight size to fall below ssthresh.
   The extreme loss rates that make the heuristic important are only
   common in the presence of token bucket policers, which are
   pathologically wasteful and inefficient [Flach2016policing].  In
   these environments the heuristic serves to salvage a bad situation
   and any reasonable implementation of the heuristic performs far
   better than either bound by itself.  The heuristic has no effect
   whatsoever in congestion events where there are no lost
   retransmissions, including all of the examples described below and in

RFC 6937.

   Since RFC 6937 was written, PRR has also been adapted to perform
   multiplicative window reduction for non-loss based congestion control
   algorithms, such as for RFC 3168 style ECN.  This is typically done
   by using some parts of the loss recovery state machine (in particular
   the RecoveryPoint from RFC 6675) to invoke the PRR ACK processing for
   exactly one round trip worth of ACKs.

   For RFC 6937 we published a companion paper [IMC11] in which we
   evaluated Fast Retransmit, Rate-Halving and various experimental PRR
   versions in a large scale measurement study.  Today, the legacy
   algorithms used in that study have already faded from the code base,
   making such comparisons impossible without recreating historical
   algorithms.  Readers interested in the measurement study should
   review section 5 of RFC 6937 and the IMC paper [IMC11].

4.  Relationships to other standards

   PRR is described as modifications to "TCP Congestion Control"
   [RFC5681], and "A Conservative Loss Recovery Algorithm Based on
   Selective Acknowledgment (SACK) for TCP" [RFC6675].  It is most
   accurate and more easily implemented with SACK [RFC2018], but does
   not require SACK.

https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc3168
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   The SafeACK heuristic came about as a consequence of robust Lost
   Retransmission Detection under development in an early precursor to
   [RACK].  Without LRD, policers that cause very high loss rates are
   guaranteed to also cause retransmission timeouts because both RFC

5681 and RFC 6675 will send retransmissions above the policed rate.
   PRR and the SafeACK heuristic were already well in place before the
   RACK algorithm was fully matured.  Note that there is no experience
   implementing or testing RACK without PRR.

   For this reason it is recommended that PRR is implemented with RACK.

5.  Definitions

   The following terms, parameters, and state variables are used as they
   are defined in earlier documents:

RFC 793: snd.una (send unacknowledged).

RFC 5681: duplicate ACK, FlightSize, Sender Maximum Segment Size
   (SMSS).

RFC 6675: covered (as in "covered sequence numbers").

   Voluntary window reductions: choosing not to send data in response to
   some ACKs, for the purpose of reducing the sending window size and
   data rate.

   We define some additional variables:

   SACKd: The total number of bytes that the scoreboard indicates have
   been delivered to the receiver.  This can be computed by scanning the
   scoreboard and counting the total number of bytes covered by all sack
   blocks.  If SACK is not in use, SACKd is not defined.

   DeliveredData: The total number of bytes that the current ACK
   indicates have been delivered to the receiver.  With SACK,
   DeliveredData can be computed precisely as the change in snd.una,
   plus the (signed) change in SACKd.  In recovery without SACK,
   DeliveredData is estimated to be 1 SMSS on duplicate
   acknowledgements, and on a subsequent partial or full ACK,
   DeliveredData is estimated to be the change in snd.una, minus 1 SMSS
   for each preceding duplicate ACK.  If this calculation results in a
   negative DeliveredData the data sender can infer that the receiver is
   using a ACK splitting attack [and do what? @@@@]

   Note that DeliveredData is robust; for TCP using SACK, DeliveredData
   can be precisely computed anywhere along the return path by
   inspecting the returning ACKs.  The consequence of missing ACKs is

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
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   that later ACKs will show a larger DeliveredData.  Furthermore, for
   any TCP (with or without SACK), the sum of DeliveredData must agree
   with the forward progress over the same time interval.

   safeACK: A local variable indicating that the current ACK reported
   good progress -- snd.una advanced with no additional segments newly
   marked lost.

   sndcnt: A local variable indicating exactly how many bytes should be
   sent in response to each ACK.  Note that the decision of which data
   to send (e.g., retransmit missing data or send more new data) is out
   of scope for this document.

6.  Algorithms

   At the beginning of recovery, initialize PRR state.  This assumes a
   modern congestion control algorithm, CongCtrlAlg(), that might set
   ssthresh to something other than FlightSize/2:

      ssthresh = CongCtrlAlg()  // Target cwnd after recovery
      prr_delivered = 0         // Total bytes delivered during recovery
      prr_out = 0               // Total bytes sent during recovery
      RecoverFS = snd.nxt-snd.una // FlightSize at the start of recovery

                                  Figure 1

   On every ACK during recovery compute:
      DeliveredData = change_in(snd.una) + change_in(SACKd)
      prr_delivered += DeliveredData
      pipe = (RFC 6675 pipe algorithm)
      safeACK = (snd.una advances with no new losses)
      if (pipe > ssthresh) {
         // Proportional Rate Reduction
         sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
      } else {
         // Two version of the reduction bound
         if (safeACK) {    // PRR+SSRB
           limit = MAX(prr_delivered - prr_out, DeliveredData) + MSS
         } else {               // PRR+CRB
           limit = prr_delivered - prr_out
         }
         // Attempt to catch up, as permitted by limit
         sndcnt = MIN(ssthresh - pipe, limit)
      }

                                  Figure 2

https://datatracker.ietf.org/doc/html/rfc6675
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   On any data transmission or retransmission:
     prr_out += (data sent) // strictly less than or equal to sndcnt

                                  Figure 3

7.  Examples

   We illustrate these algorithms by showing their different behaviors
   for two scenarios: TCP experiencing either a single loss or a burst
   of 15 consecutive losses.  In all cases we assume bulk data (no
   application pauses), standard Additive Increase Multiplicative
   Decrease (AIMD) congestion control, and cwnd = FlightSize = pipe = 20
   segments, so ssthresh will be set to 10 at the beginning of recovery.
   We also assume standard Fast Retransmit and Limited Transmit
   [RFC3042], so TCP will send 2 new segments followed by 1 retransmit
   in response to the first 3 duplicate ACKs following the losses.

   Each of the diagrams below shows the per ACK response to the first
   round trip for the various recovery algorithms when the zeroth
   segment is lost.  The top line indicates the transmitted segment
   number triggering the ACKs, with an X for the lost segment.  "cwnd"
   and "pipe" indicate the values of these algorithms after processing
   each returning ACK.  "Sent" indicates how much 'N'ew or
   'R'etransmitted data would be sent.  Note that the algorithms for
   deciding which data to send are out of scope of this document.

   We are including the Linux Rate_Halving implementation to illustrate
   the state-of-the-art at the time, even though this algorithm is no
   longer supported.

   When there is a single loss, PRR with either of the Reduction Bound
   algorithms has the same behavior.  We show "RB", a flag indicating
   which Reduction Bound subexpression ultimately determined the value
   of sndcnt.  When there are minimal losses, "limit" (both algorithms)
   will always be larger than ssthresh - pipe, so the sndcnt will be
   ssthresh - pipe, indicated by "s" in the "RB" row.

https://datatracker.ietf.org/doc/html/rfc3042
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RFC 6675
   ack#   X  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
   cwnd:    20 20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
   pipe:    19 19 18 18 17 16 15 14 13 12 11 10 10 10 10 10 10 10 10
   sent:     N  N  R                          N  N  N  N  N  N  N  N

   Rate-Halving (Historical Linux)
   ack#   X  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
   cwnd:    20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11
   pipe:    19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10
   sent:     N  N  R     N     N     N     N     N     N     N     N

   PRR
   ack#   X  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
   pipe:    19 19 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 10
   sent:     N  N  R     N     N     N     N     N     N        N  N
   RB:                                                          s  s
       Cwnd is not shown because PRR does not use it.

   Key for RB
   s: sndcnt = ssthresh - pipe                 // from ssthresh
   b: sndcnt = prr_delivered - prr_out + SMSS  // from banked
   d: sndcnt = DeliveredData + SMSS            // from DeliveredData
   (Sometimes, more than one applies.)

                                  Figure 4

   Note that all 3 algorithms send the same total amount of data.  RFC
6675 experiences a "half window of silence", while the Rate-Halving

   and PRR spread the voluntary window reduction across an entire RTT.

   Next, we consider the same initial conditions when the first 15
   packets (0-14) are lost.  During the remainder of the lossy RTT, only
   5 ACKs are returned to the sender.  We examine each of these
   algorithms in succession.

https://datatracker.ietf.org/doc/html/rfc6675
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RFC 6675
   ack#   X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 15 16 17 18 19
   cwnd:                                              20 20 11 11 11
   pipe:                                              19 19  4 10 10
   sent:                                               N  N 7R  R  R

   Rate-Halving (Historical Linux)
   ack#   X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 15 16 17 18 19
   cwnd:                                              20 20  5  5  5
   pipe:                                              19 19  4  4  4
   sent:                                               N  N  R  R  R

   PRR-CRB
   ack#   X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 15 16 17 18 19
   pipe:                                              19 19  4  4  4
   sent:                                               N  N  R  R  R
   RB:                                                       b  b  b

   PRR-SSRB
   ack#   X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 15 16 17 18 19
   pipe:                                              19 19  4  5  6
   sent:                                               N  N 2R 2R 2R
   RB:                                                      bd  d  d

                                  Figure 5

   In this specific situation, RFC 6675 is more aggressive because once
   Fast Retransmit is triggered (on the ACK for segment 17), TCP
   immediately retransmits sufficient data to bring pipe up to cwnd.
   Our earlier measurements [RFC 6937 section 6] indicates that RFC 6675
   significantly outperforms Rate-Halving, PRR-CRB, and some other
   similarly conservative algorithms that we tested, showing that it is
   significantly common for the actual losses to exceed the window
   reduction determined by the congestion control algorithm.

   The Linux implementation of Rate-Halving included an early version of
   the Conservative Reduction Bound [RHweb].  With this algorithm, the 5
   ACKs trigger exactly 1 transmission each (2 new data, 3 old data),
   and cwnd is set to 5.  At a window size of 5, it takes 3 round trips

https://datatracker.ietf.org/doc/html/rfc6675
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   to retransmit all 15 lost segments.  Rate-Halving does not raise the
   window at all during recovery, so when recovery finally completes,
   TCP will slow start cwnd from 5 up to 10.  In this example, TCP
   operates at half of the window chosen by the congestion control for
   more than 3 RTTs, increasing the elapsed time and exposing it to
   timeouts in the event that there are additional losses.

   PRR-CRB implements a Conservative Reduction Bound.  Since the total
   losses bring pipe below ssthresh, data is sent such that the total
   data transmitted, prr_out, follows the total data delivered to the
   receiver as reported by returning ACKs.  Transmission is controlled
   by the sending limit, which is set to prr_delivered - prr_out.  This
   is indicated by the RB:b tagging in the figure.  In this case, PRR-
   CRB is exposed to exactly the same problems as Rate-Halving; the
   excess window reduction causes it to take excessively long to recover
   the losses and exposes it to additional timeouts.

   PRR-SSRB increases the window by exactly 1 segment per ACK until pipe
   rises to ssthresh during recovery.  This is accomplished by setting
   limit to one greater than the data reported to have been delivered to
   the receiver on this ACK, implementing slow start during recovery,
   and indicated by RB:d tagging in the figure.  Although increasing the
   window during recovery seems to be ill advised, it is important to
   remember that this is actually less aggressive than permitted by RFC

5681, which sends the same quantity of additional data as a single
   burst in response to the ACK that triggered Fast Retransmit.

   For less extreme events, where the total losses are smaller than the
   difference between FlightSize and ssthresh, PRR-CRB and PRR-SSRB have
   identical behaviors.

8.  Properties

   The following properties are common to both PRR-CRB and PRR-SSRB,
   except as noted:

   PRR maintains TCP's ACK clocking across most recovery events,
   including burst losses.  RFC 6675 can send large unclocked bursts
   following burst losses.

   Normally, PRR will spread voluntary window reductions out evenly
   across a full RTT.  This has the potential to generally reduce the
   burstiness of Internet traffic, and could be considered to be a type
   of soft pacing.  Hypothetically, any pacing increases the probability
   that different flows are interleaved, reducing the opportunity for
   ACK compression and other phenomena that increase traffic burstiness.
   However, these effects have not been quantified.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
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   If there are minimal losses, PRR will converge to exactly the target
   window chosen by the congestion control algorithm.  Note that as TCP
   approaches the end of recovery, prr_delivered will approach RecoverFS
   and sndcnt will be computed such that prr_out approaches ssthresh.

   Implicit window reductions, due to multiple isolated losses during
   recovery, cause later voluntary reductions to be skipped.  For small
   numbers of losses, the window size ends at exactly the window chosen
   by the congestion control algorithm.

   For burst losses, earlier voluntary window reductions can be undone
   by sending extra segments in response to ACKs arriving later during
   recovery.  Note that as long as some voluntary window reductions are
   not undone, the final value for pipe will be the same as ssthresh,
   the target cwnd value chosen by the congestion control algorithm.

   PRR with either Reduction Bound improves the situation when there are
   application stalls, e.g., when the sending application does not queue
   data for transmission quickly enough or the receiver stops advancing
   rwnd (receiver window).  When there is an application stall early
   during recovery, prr_out will fall behind the sum of the
   transmissions permitted by sndcnt.  The missed opportunities to send
   due to stalls are treated like banked voluntary window reductions;
   specifically, they cause prr_delivered - prr_out to be significantly
   positive.  If the application catches up while TCP is still in
   recovery, TCP will send a partial window burst to catch up to exactly
   where it would have been had the application never stalled.  Although
   this burst might be viewed as being hard on the network, this is
   exactly what happens every time there is a partial RTT application
   stall while not in recovery.  We have made the partial RTT stall
   behavior uniform in all states.  Changing this behavior is out of
   scope for this document.

   PRR with Reduction Bound is less sensitive to errors in the pipe
   estimator.  While in recovery, pipe is intrinsically an estimator,
   using incomplete information to estimate if un-SACKed segments are
   actually lost or merely out of order in the network.  Under some
   conditions, pipe can have significant errors; for example, pipe is
   underestimated when a burst of reordered data is prematurely assumed
   to be lost and marked for retransmission.  If the transmissions are
   regulated directly by pipe as they are with RFC 6675, a step
   discontinuity in the pipe estimator causes a burst of data, which
   cannot be retracted once the pipe estimator is corrected a few ACKs
   later.  For PRR, pipe merely determines which algorithm, PRR or the
   Reduction Bound, is used to compute sndcnt from DeliveredData.  While
   pipe is underestimated, the algorithms are different by at most 1
   segment per ACK.  Once pipe is updated, they converge to the same
   final window at the end of recovery.

https://datatracker.ietf.org/doc/html/rfc6675
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   Under all conditions and sequences of events during recovery, PRR-CRB
   strictly bounds the data transmitted to be equal to or less than the
   amount of data delivered to the receiver.  We claim that this Strong
   Packet Conservation Bound is the most aggressive algorithm that does
   not lead to additional forced losses in some environments.  It has
   the property that if there is a standing queue at a bottleneck with
   no cross traffic, the queue will maintain exactly constant length for
   the duration of the recovery, except for +1/-1 fluctuation due to
   differences in packet arrival and exit times.  See Appendix A for a
   detailed discussion of this property.

   Although the Strong Packet Conservation Bound is very appealing for a
   number of reasons, our earlier measurements [RFC 6937 section 6]
   demonstrate that it is less aggressive and does not perform as well
   as RFC 6675, which permits bursts of data when there are bursts of
   losses.  PRR-SSRB is a compromise that permits TCP to send 1 extra
   segment per ACK as compared to the Packet Conserving Bound.  From the
   perspective of a strict Packet Conserving Bound, PRR-SSRB does indeed
   open the window during recovery; however, it is significantly less
   aggressive than RFC 6675 in the presence of burst losses.

9.  Adapting PRR to other transport protocols

   The main PRR algorithm and reductions bounds can be adapted to any
   transport that can support RFC 6675.

   The safeACK heuristic can be generalized as any ACK of a
   retransmission that does not cause some other segment to be marked
   for retransmission.  That is, PRR_SSRB is safe on any ACK that
   reduces the total number of pending and outstanding retransmissions.
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11.  Security Considerations

   PRR does not change the risk profile for TCP.

   Implementers that change PRR from counting bytes to segments have to
   be cautious about the effects of ACK splitting attacks [Savage99],
   where the receiver acknowledges partial segments for the purpose of
   confusing the sender's congestion accounting.
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Appendix A.  Strong Packet Conservation Bound

   PRR-CRB is based on a conservative, philosophically pure, and
   aesthetically appealing Strong Packet Conservation Bound, described
   here.  Although inspired by the packet conservation principle
   [Jacobson88], it differs in how it treats segments that are missing
   and presumed lost.  Under all conditions and sequences of events
   during recovery, PRR-CRB strictly bounds the data transmitted to be
   equal to or less than the amount of data delivered to the receiver.
   Note that the effects of presumed losses are included in the pipe
   calculation, but do not affect the outcome of PRR-CRB, once pipe has
   fallen below ssthresh.

   We claim that this Strong Packet Conservation Bound is the most
   aggressive algorithm that does not lead to additional forced losses
   in some environments.  It has the property that if there is a
   standing queue at a bottleneck that is carrying no other traffic, the
   queue will maintain exactly constant length for the entire duration
   of the recovery, except for +1/-1 fluctuation due to differences in
   packet arrival and exit times.  Any less aggressive algorithm will
   result in a declining queue at the bottleneck.  Any more aggressive
   algorithm will result in an increasing queue or additional losses if
   it is a full drop tail queue.

   We demonstrate this property with a little thought experiment:

   Imagine a network path that has insignificant delays in both
   directions, except for the processing time and queue at a single
   bottleneck in the forward path.  By insignificant delay, we mean when
   a packet is "served" at the head of the bottleneck queue, the
   following events happen in much less than one bottleneck packet time:
   the packet arrives at the receiver; the receiver sends an ACK that
   arrives at the sender; the sender processes the ACK and sends some
   data; the data is queued at the bottleneck.

   If sndcnt is set to DeliveredData and nothing else is inhibiting
   sending data, then clearly the data arriving at the bottleneck queue
   will exactly replace the data that was served at the head of the
   queue, so the queue will have a constant length.  If queue is drop
   tail and full, then the queue will stay exactly full.  Losses or
   reordering on the ACK path only cause wider fluctuations in the queue
   size, but do not raise its peak size, independent of whether the data
   is in order or out of order (including loss recovery from an earlier
   RTT).  Any more aggressive algorithm that sends additional data will
   overflow the drop tail queue and cause loss.  Any less aggressive
   algorithm will under-fill the queue.  Therefore, setting sndcnt to
   DeliveredData is the most aggressive algorithm that does not cause
   forced losses in this simple network.  Relaxing the assumptions
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   (e.g., making delays more authentic and adding more flows, delayed
   ACKs, etc.) is likely to increase the fine grained fluctuations in
   queue size but does not change its basic behavior.

   Note that the congestion control algorithm implements a broader
   notion of optimal that includes appropriately sharing the network.
   Typical congestion control algorithms are likely to reduce the data
   sent relative to the Packet Conserving Bound implemented by PRR,
   bringing TCP's actual window down to ssthresh.
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