
TCP Maintenance Working Group M. Mathis
Internet-Draft N. Dukkipati
Obsoletes: 6937 (if approved) Y. Cheng
Intended status: Standards Track Google, Inc.
Expires: 26 August 2021 22 February 2021

Proportional Rate Reduction for TCP
draft-ietf-tcpm-prr-rfc6937bis-01

Abstract

 This document updates the experimental Proportional Rate Reduction
 (PRR) algorithm, described RFC 6937, to standards track. PRR
 potentially replaces the Fast Recovery and Rate-Halving algorithms.
 All of these algorithms regulate the amount of data sent by TCP or
 other transport protocol during loss recovery. PRR accurately
 regulates the actual flight size through recovery such that at the
 end of recovery it will be as close as possible to the ssthresh, as
 determined by the congestion control algorithm.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 26 August 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

Mathis, et al. Expires 26 August 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft Proportional Rate Reduction February 2021

 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Document and WG Information 3

2. Background . 3
3. Changes From RFC 6937 . 5
4. Relationships to other standards 6
5. Definitions . 7
6. Algorithms . 8
7. Examples . 9
8. Properties . 12
9. Adapting PRR to other transport protocols 14
10. Acknowledgements . 14
11. Security Considerations 15
12. Normative References . 15
13. Informative References 15
Appendix A. Strong Packet Conservation Bound 17

 Authors' Addresses . 18

1. Introduction

 This document updates the Proportional Rate Reduction (PRR) algorithm
 described in [RFC6937] from experimental to standards track. PRR
 accuracy regulates the amount of data sent during loss recovery, such
 that at the end of recovery the flight size will be as close as
 possible to the ssthresh, as determined by the congestion control
 algorithm. PRR has been deployed in at least 3 major operating
 systems covering the vast majority of today's web traffic.

 The only change from RFC 6937 is the introduction of a new heuristic
 that replaces a manual configuration parameter. There have been no
 changes to the behaviors of the algorithms or the previously
 published results. The new heuristic only changes behaviors in
 corner cases that were not relevant prior to the Lost Retransmission
 Detection (LRD) algorithm which was not implemented until after RFC

6937 was published. This document also includes additional
 discussion about integration into other congestion control and
 recovery algorithms.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc2119

Mathis, et al. Expires 26 August 2021 [Page 2]

Internet-Draft Proportional Rate Reduction February 2021

1.1. Document and WG Information

 Formatted: 2021-02-22 14:22:57-08:00

 Please send all comments, questions and feedback to tcpm@ietf.org

 About revision 00:

 The introduction above was drawn from draft-mathis-tcpm-rfc6937bis-
00. All of the text below was copied verbatim from RFC 6937, to

 facilitate comparison between RFC 6937 and this document as it
 evolves.

 About revision 01:

 * Recast the RFC 6937 introduction as background

 * Made "Changes From RFC 6937" an explicit section

 * Made Relationships to other standards more explicit

 * Added a generalized safeACK heuristic

 * Provided hints for non TCP implementations

 * Added language about detecting ACK splitting, but have no advice
 on actions (yet)

2. Background

 This section is copied almost verbatim from the introduction to RFC
6937.

 Standard congestion control [RFC5681] requires that TCP (and other
 protocols) reduce their congestion window (cwnd) in response to
 losses. Fast Recovery, described in the same document, is the
 reference algorithm for making this adjustment. Its stated goal is
 to recover TCP's self clock by relying on returning ACKs during
 recovery to clock more data into the network. Fast Recovery
 typically adjusts the window by waiting for one half round-trip time
 (RTT) of ACKs to pass before sending any data. It is fragile because
 it cannot compensate for the implicit window reduction caused by the
 losses themselves.

RFC 6675 [RFC6675] makes Fast Recovery with Selective Acknowledgement
 (SACK) [RFC2018] more accurate by computing "pipe", a sender side
 estimate of the number of bytes still outstanding in the network.

https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-rfc6937bis-00
https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-rfc6937bis-00
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018

Mathis, et al. Expires 26 August 2021 [Page 3]

Internet-Draft Proportional Rate Reduction February 2021

 With RFC 6675, Fast Recovery is implemented by sending data as
 necessary on each ACK to prevent pipe from falling below slow-start
 threshold (ssthresh), the window size as determined by the congestion
 control algorithm. This protects Fast Recovery from timeouts in many
 cases where there are heavy losses, although not if the entire second
 half of the window of data or ACKs are lost. However, a single ACK
 carrying a SACK option that implies a large quantity of missing data
 can cause a step discontinuity in the pipe estimator, which can cause
 Fast Retransmit to send a burst of data.

 The Rate-Halving algorithm sends data on alternate ACKs during
 recovery, such that after 1 RTT the window has been halved. Rate-
 Halving was implemented in Linux after only being informally
 published [RHweb], including an uncompleted document [RHID]. Rate-
 Halving also does not adequately compensate for the implicit window
 reduction caused by the losses and assumes a net 50% window
 reduction, which was completely standard at the time it was written
 but not appropriate for modern congestion control algorithms, such as
 CUBIC [CUBIC], which reduce the window by less than 50%. As a
 consequence, Rate-Halving often allows the window to fall further
 than necessary, reducing performance and increasing the risk of
 timeouts if there are additional losses.

 PRR avoids these excess window adjustments such that at the end of
 recovery the actual window size will be as close as possible to
 ssthresh, the window size as determined by the congestion control
 algorithm. It is patterned after Rate-Halving, but using the
 fraction that is appropriate for the target window chosen by the
 congestion control algorithm. During PRR, one of two additional
 Reduction Bound algorithms limits the total window reduction due to
 all mechanisms, including transient application stalls and the losses
 themselves.

 We describe two slightly different Reduction Bound algorithms:
 Conservative Reduction Bound (CRB), which is strictly packet
 conserving; and a Slow Start Reduction Bound (SSRB), which is more
 aggressive than CRB by, at most, 1 segment per ACK. PRR-CRB meets
 the Strong Packet Conservation Bound described in Appendix A;
 however, in real networks it does not perform as well as the
 algorithms described in RFC 6675, which prove to be more aggressive
 in a significant number of cases. SSRB offers a compromise by
 allowing TCP to send 1 additional segment per ACK relative to CRB in
 some situations. Although SSRB is less aggressive than RFC 6675
 (transmitting fewer segments or taking more time to transmit them),
 it outperforms it, due to the lower probability of additional losses
 during recovery.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 4]

Internet-Draft Proportional Rate Reduction February 2021

 The Strong Packet Conservation Bound on which PRR and both Reduction
 Bounds are based is patterned after Van Jacobson's packet
 conservation principle: segments delivered to the receiver are used
 as the clock to trigger sending the same number of segments back into
 the network. As much as possible, PRR and the Reduction Bound
 algorithms rely on this self clock process, and are only slightly
 affected by the accuracy of other estimators, such as pipe [RFC6675]
 and cwnd. This is what gives the algorithms their precision in the
 presence of events that cause uncertainty in other estimators.

 The original definition of the packet conservation principle
 [Jacobson88] treated packets that are presumed to be lost (e.g.,
 marked as candidates for retransmission) as having left the network.
 This idea is reflected in the pipe estimator defined in RFC 6675 and
 used here, but it is distinct from the Strong Packet Conservation
 Bound as described in Appendix A, which is defined solely on the
 basis of data arriving at the receiver.

3. Changes From RFC 6937

 The largest change since RFC 6937 [RFC6937] is the introduction of a
 new heuristic that uses good recovery progress (For TCP, snd.una
 advances and no additional segments are marked as lost) to select
 which Reduction Bound. RFC 6937 left the choice of Reduction Bound
 to the discretion of the implementer but recommended to use BBR-SSRB
 by default. For all of the environments explored in earlier PRR
 research, the new heuristic is consistent with the old
 recommendation.

 The paper "An Internet-Wide Analysis of Traffic Policing"
 [Flach2016policing] uncovered a crucial situation, not previously
 explored, where both Reduction Bounds perform very poorly, but for
 different reasons. Under many configurations, token bucket traffic
 policers [token_bucket] can suddenly start discarding a large
 fraction of the traffic, without any warning to the end systems. The
 transport congestion control has no opportunity to measure the token
 rate, and sets ssthresh based on the previously observed path
 performance. This value for ssthresh may result in a data rate that
 is substantially larger than the token rate, causing persistent high
 loss. Under these conditions, both reduction bounds perform very
 poorly. PRR-CRB is too timid, sometimes causing very long recovery
 times at smaller than necessary windows, and PRR-SSRB is too
 aggressive, often causing many retransmissions to be lost multiple
 times.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937

Mathis, et al. Expires 26 August 2021 [Page 5]

Internet-Draft Proportional Rate Reduction February 2021

 Investigating these environments led to the development of a
 "safeACK" heuristic to dynamically switch between Reduction Bounds:
 use PRR-SSRB for ACKs reporting that the recovery is making good
 progress (snd.una is advancing without any new losses) and PRR-CRB
 otherwise

 This heuristic is only invoked where application-limited behavior,
 losses or other events cause the flight size to fall below ssthresh.
 The extreme loss rates that make the heuristic important are only
 common in the presence of token bucket policers, which are
 pathologically wasteful and inefficient [Flach2016policing]. In
 these environments the heuristic serves to salvage a bad situation
 and any reasonable implementation of the heuristic performs far
 better than either bound by itself. The heuristic has no effect
 whatsoever in congestion events where there are no lost
 retransmissions, including all of the examples described below and in

RFC 6937.

 Since RFC 6937 was written, PRR has also been adapted to perform
 multiplicative window reduction for non-loss based congestion control
 algorithms, such as for RFC 3168 style ECN. This is typically done
 by using some parts of the loss recovery state machine (in particular
 the RecoveryPoint from RFC 6675) to invoke the PRR ACK processing for
 exactly one round trip worth of ACKs.

 For RFC 6937 we published a companion paper [IMC11] in which we
 evaluated Fast Retransmit, Rate-Halving and various experimental PRR
 versions in a large scale measurement study. Today, the legacy
 algorithms used in that study have already faded from the code base,
 making such comparisons impossible without recreating historical
 algorithms. Readers interested in the measurement study should
 review section 5 of RFC 6937 and the IMC paper [IMC11].

4. Relationships to other standards

 PRR is described as modifications to "TCP Congestion Control"
 [RFC5681], and "A Conservative Loss Recovery Algorithm Based on
 Selective Acknowledgment (SACK) for TCP" [RFC6675]. It is most
 accurate and more easily implemented with SACK [RFC2018], but does
 not require SACK.

https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6937#section-5
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018

Mathis, et al. Expires 26 August 2021 [Page 6]

Internet-Draft Proportional Rate Reduction February 2021

 The SafeACK heuristic came about as a consequence of robust Lost
 Retransmission Detection under development in an early precursor to
 [RACK]. Without LRD, policers that cause very high loss rates are
 guaranteed to also cause retransmission timeouts because both RFC

5681 and RFC 6675 will send retransmissions above the policed rate.
 PRR and the SafeACK heuristic were already well in place before the
 RACK algorithm was fully matured. Note that there is no experience
 implementing or testing RACK without PRR.

 For this reason it is recommended that PRR is implemented with RACK.

5. Definitions

 The following terms, parameters, and state variables are used as they
 are defined in earlier documents:

RFC 793: snd.una (send unacknowledged).

RFC 5681: duplicate ACK, FlightSize, Sender Maximum Segment Size
 (SMSS).

RFC 6675: covered (as in "covered sequence numbers").

 Voluntary window reductions: choosing not to send data in response to
 some ACKs, for the purpose of reducing the sending window size and
 data rate.

 We define some additional variables:

 SACKd: The total number of bytes that the scoreboard indicates have
 been delivered to the receiver. This can be computed by scanning the
 scoreboard and counting the total number of bytes covered by all sack
 blocks. If SACK is not in use, SACKd is not defined.

 DeliveredData: The total number of bytes that the current ACK
 indicates have been delivered to the receiver. With SACK,
 DeliveredData can be computed precisely as the change in snd.una,
 plus the (signed) change in SACKd. In recovery without SACK,
 DeliveredData is estimated to be 1 SMSS on duplicate
 acknowledgements, and on a subsequent partial or full ACK,
 DeliveredData is estimated to be the change in snd.una, minus 1 SMSS
 for each preceding duplicate ACK. If this calculation results in a
 negative DeliveredData the data sender can infer that the receiver is
 using a ACK splitting attack [and do what? @@@@]

 Note that DeliveredData is robust; for TCP using SACK, DeliveredData
 can be precisely computed anywhere along the return path by
 inspecting the returning ACKs. The consequence of missing ACKs is

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 7]

Internet-Draft Proportional Rate Reduction February 2021

 that later ACKs will show a larger DeliveredData. Furthermore, for
 any TCP (with or without SACK), the sum of DeliveredData must agree
 with the forward progress over the same time interval.

 safeACK: A local variable indicating that the current ACK reported
 good progress -- snd.una advanced with no additional segments newly
 marked lost.

 sndcnt: A local variable indicating exactly how many bytes should be
 sent in response to each ACK. Note that the decision of which data
 to send (e.g., retransmit missing data or send more new data) is out
 of scope for this document.

6. Algorithms

 At the beginning of recovery, initialize PRR state. This assumes a
 modern congestion control algorithm, CongCtrlAlg(), that might set
 ssthresh to something other than FlightSize/2:

 ssthresh = CongCtrlAlg() // Target cwnd after recovery
 prr_delivered = 0 // Total bytes delivered during recovery
 prr_out = 0 // Total bytes sent during recovery
 RecoverFS = snd.nxt-snd.una // FlightSize at the start of recovery

 Figure 1

 On every ACK during recovery compute:
 DeliveredData = change_in(snd.una) + change_in(SACKd)
 prr_delivered += DeliveredData
 pipe = (RFC 6675 pipe algorithm)
 safeACK = (snd.una advances with no new losses)
 if (pipe > ssthresh) {
 // Proportional Rate Reduction
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
 } else {
 // Two version of the reduction bound
 if (safeACK) { // PRR+SSRB
 limit = MAX(prr_delivered - prr_out, DeliveredData) + MSS
 } else { // PRR+CRB
 limit = prr_delivered - prr_out
 }
 // Attempt to catch up, as permitted by limit
 sndcnt = MIN(ssthresh - pipe, limit)
 }

 Figure 2

https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 8]

Internet-Draft Proportional Rate Reduction February 2021

 On any data transmission or retransmission:
 prr_out += (data sent) // strictly less than or equal to sndcnt

 Figure 3

7. Examples

 We illustrate these algorithms by showing their different behaviors
 for two scenarios: TCP experiencing either a single loss or a burst
 of 15 consecutive losses. In all cases we assume bulk data (no
 application pauses), standard Additive Increase Multiplicative
 Decrease (AIMD) congestion control, and cwnd = FlightSize = pipe = 20
 segments, so ssthresh will be set to 10 at the beginning of recovery.
 We also assume standard Fast Retransmit and Limited Transmit
 [RFC3042], so TCP will send 2 new segments followed by 1 retransmit
 in response to the first 3 duplicate ACKs following the losses.

 Each of the diagrams below shows the per ACK response to the first
 round trip for the various recovery algorithms when the zeroth
 segment is lost. The top line indicates the transmitted segment
 number triggering the ACKs, with an X for the lost segment. "cwnd"
 and "pipe" indicate the values of these algorithms after processing
 each returning ACK. "Sent" indicates how much 'N'ew or
 'R'etransmitted data would be sent. Note that the algorithms for
 deciding which data to send are out of scope of this document.

 We are including the Linux Rate_Halving implementation to illustrate
 the state-of-the-art at the time, even though this algorithm is no
 longer supported.

 When there is a single loss, PRR with either of the Reduction Bound
 algorithms has the same behavior. We show "RB", a flag indicating
 which Reduction Bound subexpression ultimately determined the value
 of sndcnt. When there are minimal losses, "limit" (both algorithms)
 will always be larger than ssthresh - pipe, so the sndcnt will be
 ssthresh - pipe, indicated by "s" in the "RB" row.

https://datatracker.ietf.org/doc/html/rfc3042

Mathis, et al. Expires 26 August 2021 [Page 9]

Internet-Draft Proportional Rate Reduction February 2021

RFC 6675
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 cwnd: 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
 pipe: 19 19 18 18 17 16 15 14 13 12 11 10 10 10 10 10 10 10 10
 sent: N N R N N N N N N N N

 Rate-Halving (Historical Linux)
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 cwnd: 20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11
 pipe: 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10
 sent: N N R N N N N N N N N

 PRR
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 pipe: 19 19 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 10
 sent: N N R N N N N N N N N
 RB: s s
 Cwnd is not shown because PRR does not use it.

 Key for RB
 s: sndcnt = ssthresh - pipe // from ssthresh
 b: sndcnt = prr_delivered - prr_out + SMSS // from banked
 d: sndcnt = DeliveredData + SMSS // from DeliveredData
 (Sometimes, more than one applies.)

 Figure 4

 Note that all 3 algorithms send the same total amount of data. RFC
6675 experiences a "half window of silence", while the Rate-Halving

 and PRR spread the voluntary window reduction across an entire RTT.

 Next, we consider the same initial conditions when the first 15
 packets (0-14) are lost. During the remainder of the lossy RTT, only
 5 ACKs are returned to the sender. We examine each of these
 algorithms in succession.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 10]

Internet-Draft Proportional Rate Reduction February 2021

RFC 6675
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 cwnd: 20 20 11 11 11
 pipe: 19 19 4 10 10
 sent: N N 7R R R

 Rate-Halving (Historical Linux)
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 cwnd: 20 20 5 5 5
 pipe: 19 19 4 4 4
 sent: N N R R R

 PRR-CRB
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 pipe: 19 19 4 4 4
 sent: N N R R R
 RB: b b b

 PRR-SSRB
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 pipe: 19 19 4 5 6
 sent: N N 2R 2R 2R
 RB: bd d d

 Figure 5

 In this specific situation, RFC 6675 is more aggressive because once
 Fast Retransmit is triggered (on the ACK for segment 17), TCP
 immediately retransmits sufficient data to bring pipe up to cwnd.
 Our earlier measurements [RFC 6937 section 6] indicates that RFC 6675
 significantly outperforms Rate-Halving, PRR-CRB, and some other
 similarly conservative algorithms that we tested, showing that it is
 significantly common for the actual losses to exceed the window
 reduction determined by the congestion control algorithm.

 The Linux implementation of Rate-Halving included an early version of
 the Conservative Reduction Bound [RHweb]. With this algorithm, the 5
 ACKs trigger exactly 1 transmission each (2 new data, 3 old data),
 and cwnd is set to 5. At a window size of 5, it takes 3 round trips

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 11]

Internet-Draft Proportional Rate Reduction February 2021

 to retransmit all 15 lost segments. Rate-Halving does not raise the
 window at all during recovery, so when recovery finally completes,
 TCP will slow start cwnd from 5 up to 10. In this example, TCP
 operates at half of the window chosen by the congestion control for
 more than 3 RTTs, increasing the elapsed time and exposing it to
 timeouts in the event that there are additional losses.

 PRR-CRB implements a Conservative Reduction Bound. Since the total
 losses bring pipe below ssthresh, data is sent such that the total
 data transmitted, prr_out, follows the total data delivered to the
 receiver as reported by returning ACKs. Transmission is controlled
 by the sending limit, which is set to prr_delivered - prr_out. This
 is indicated by the RB:b tagging in the figure. In this case, PRR-
 CRB is exposed to exactly the same problems as Rate-Halving; the
 excess window reduction causes it to take excessively long to recover
 the losses and exposes it to additional timeouts.

 PRR-SSRB increases the window by exactly 1 segment per ACK until pipe
 rises to ssthresh during recovery. This is accomplished by setting
 limit to one greater than the data reported to have been delivered to
 the receiver on this ACK, implementing slow start during recovery,
 and indicated by RB:d tagging in the figure. Although increasing the
 window during recovery seems to be ill advised, it is important to
 remember that this is actually less aggressive than permitted by RFC

5681, which sends the same quantity of additional data as a single
 burst in response to the ACK that triggered Fast Retransmit.

 For less extreme events, where the total losses are smaller than the
 difference between FlightSize and ssthresh, PRR-CRB and PRR-SSRB have
 identical behaviors.

8. Properties

 The following properties are common to both PRR-CRB and PRR-SSRB,
 except as noted:

 PRR maintains TCP's ACK clocking across most recovery events,
 including burst losses. RFC 6675 can send large unclocked bursts
 following burst losses.

 Normally, PRR will spread voluntary window reductions out evenly
 across a full RTT. This has the potential to generally reduce the
 burstiness of Internet traffic, and could be considered to be a type
 of soft pacing. Hypothetically, any pacing increases the probability
 that different flows are interleaved, reducing the opportunity for
 ACK compression and other phenomena that increase traffic burstiness.
 However, these effects have not been quantified.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 12]

Internet-Draft Proportional Rate Reduction February 2021

 If there are minimal losses, PRR will converge to exactly the target
 window chosen by the congestion control algorithm. Note that as TCP
 approaches the end of recovery, prr_delivered will approach RecoverFS
 and sndcnt will be computed such that prr_out approaches ssthresh.

 Implicit window reductions, due to multiple isolated losses during
 recovery, cause later voluntary reductions to be skipped. For small
 numbers of losses, the window size ends at exactly the window chosen
 by the congestion control algorithm.

 For burst losses, earlier voluntary window reductions can be undone
 by sending extra segments in response to ACKs arriving later during
 recovery. Note that as long as some voluntary window reductions are
 not undone, the final value for pipe will be the same as ssthresh,
 the target cwnd value chosen by the congestion control algorithm.

 PRR with either Reduction Bound improves the situation when there are
 application stalls, e.g., when the sending application does not queue
 data for transmission quickly enough or the receiver stops advancing
 rwnd (receiver window). When there is an application stall early
 during recovery, prr_out will fall behind the sum of the
 transmissions permitted by sndcnt. The missed opportunities to send
 due to stalls are treated like banked voluntary window reductions;
 specifically, they cause prr_delivered - prr_out to be significantly
 positive. If the application catches up while TCP is still in
 recovery, TCP will send a partial window burst to catch up to exactly
 where it would have been had the application never stalled. Although
 this burst might be viewed as being hard on the network, this is
 exactly what happens every time there is a partial RTT application
 stall while not in recovery. We have made the partial RTT stall
 behavior uniform in all states. Changing this behavior is out of
 scope for this document.

 PRR with Reduction Bound is less sensitive to errors in the pipe
 estimator. While in recovery, pipe is intrinsically an estimator,
 using incomplete information to estimate if un-SACKed segments are
 actually lost or merely out of order in the network. Under some
 conditions, pipe can have significant errors; for example, pipe is
 underestimated when a burst of reordered data is prematurely assumed
 to be lost and marked for retransmission. If the transmissions are
 regulated directly by pipe as they are with RFC 6675, a step
 discontinuity in the pipe estimator causes a burst of data, which
 cannot be retracted once the pipe estimator is corrected a few ACKs
 later. For PRR, pipe merely determines which algorithm, PRR or the
 Reduction Bound, is used to compute sndcnt from DeliveredData. While
 pipe is underestimated, the algorithms are different by at most 1
 segment per ACK. Once pipe is updated, they converge to the same
 final window at the end of recovery.

https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 13]

Internet-Draft Proportional Rate Reduction February 2021

 Under all conditions and sequences of events during recovery, PRR-CRB
 strictly bounds the data transmitted to be equal to or less than the
 amount of data delivered to the receiver. We claim that this Strong
 Packet Conservation Bound is the most aggressive algorithm that does
 not lead to additional forced losses in some environments. It has
 the property that if there is a standing queue at a bottleneck with
 no cross traffic, the queue will maintain exactly constant length for
 the duration of the recovery, except for +1/-1 fluctuation due to
 differences in packet arrival and exit times. See Appendix A for a
 detailed discussion of this property.

 Although the Strong Packet Conservation Bound is very appealing for a
 number of reasons, our earlier measurements [RFC 6937 section 6]
 demonstrate that it is less aggressive and does not perform as well
 as RFC 6675, which permits bursts of data when there are bursts of
 losses. PRR-SSRB is a compromise that permits TCP to send 1 extra
 segment per ACK as compared to the Packet Conserving Bound. From the
 perspective of a strict Packet Conserving Bound, PRR-SSRB does indeed
 open the window during recovery; however, it is significantly less
 aggressive than RFC 6675 in the presence of burst losses.

9. Adapting PRR to other transport protocols

 The main PRR algorithm and reductions bounds can be adapted to any
 transport that can support RFC 6675.

 The safeACK heuristic can be generalized as any ACK of a
 retransmission that does not cause some other segment to be marked
 for retransmission. That is, PRR_SSRB is safe on any ACK that
 reduces the total number of pending and outstanding retransmissions.

10. Acknowledgements

 This document is based in part on previous incomplete work by Matt
 Mathis, Jeff Semke, and Jamshid Mahdavi [RHID] and influenced by
 several discussions with John Heffner.

 Monia Ghobadi and Sivasankar Radhakrishnan helped analyze the
 experiments.

 Ilpo Jarvinen reviewed the code.

 Mark Allman improved the document through his insightful review.

 Neal Cardwell for reviewing and testing the patch.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 14]

Internet-Draft Proportional Rate Reduction February 2021

11. Security Considerations

 PRR does not change the risk profile for TCP.

 Implementers that change PRR from counting bytes to segments have to
 be cautious about the effects of ACK splitting attacks [Savage99],
 where the receiver acknowledges partial segments for the purpose of
 confusing the sender's congestion accounting.

12. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, DOI 10.17487/RFC6675, August 2012,
 <https://www.rfc-editor.org/info/rfc6675>.

13. Informative References

 [CUBIC] Rhee, I. and L. Xu, "CUBIC: A new TCP-friendly high-speed
 TCP variant", PFLDnet 2005, February 2005.

 [FACK] Mathis, M. and J. Mahdavi, "Forward Acknowledgment:
 Refining TCP Congestion Control", ACM SIGCOMM SIGCOMM96,
 August 1996.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://www.rfc-editor.org/info/rfc6675

Mathis, et al. Expires 26 August 2021 [Page 15]

Internet-Draft Proportional Rate Reduction February 2021

 [Flach2016policing]
 Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng,
 Y., Al Karim, T., Katz-Bassett, E., and R. Govindan, "An
 Internet-Wide Analysis of Traffic Policing", ACM
 SIGCOMM SIGCOMM2016, August 2016.

 [IMC11] Dukkipati, N., Mathis, M., Cheng, Y., and M. Ghobadi,
 "Proportional Rate Reduction for TCP", Proceedings of the
 11th ACM SIGCOMM Conference on Internet Measurement
 2011, Berlin, Germany, November 2011.

 [Jacobson88]
 Jacobson, V., "Congestion Avoidance and Control", SIGCOMM
 Comput. Commun. Rev. 18(4), August 1988.

 [Laminar] Mathis, M., "Laminar TCP and the case for refactoring TCP
 congestion control", Work in Progress, 16 July 2012.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP's Loss Recovery Using Limited Transmit", RFC 3042,
 DOI 10.17487/RFC3042, January 2001,
 <https://www.rfc-editor.org/info/rfc3042>.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517,
 DOI 10.17487/RFC3517, April 2003,
 <https://www.rfc-editor.org/info/rfc3517>.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", RFC 6937, DOI 10.17487/RFC6937,
 May 2013, <https://www.rfc-editor.org/info/rfc6937>.

 [RHID] Mathis, M., Semke, J., and J. Mahdavi, "The Rate-Halving
 Algorithm for TCP Congestion Control", Work in Progress,
 August 1999.

 [RHweb] Mathis, M. and J. Mahdavi, "TCP Rate-Halving with Bounding
 Parameters", Web publication, December 1997,
 <http://www.psc.edu/networking/papers/FACKnotes/current/>.

 [Savage99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP congestion control with a misbehaving receiver",
 SIGCOMM Comput. Commun. Rev. 29(5), October 1999.

https://datatracker.ietf.org/doc/html/rfc3042
https://www.rfc-editor.org/info/rfc3042
https://datatracker.ietf.org/doc/html/rfc3517
https://www.rfc-editor.org/info/rfc3517
https://datatracker.ietf.org/doc/html/rfc6937
https://www.rfc-editor.org/info/rfc6937
http://www.psc.edu/networking/papers/FACKnotes/current/

Mathis, et al. Expires 26 August 2021 [Page 16]

Internet-Draft Proportional Rate Reduction February 2021

Appendix A. Strong Packet Conservation Bound

 PRR-CRB is based on a conservative, philosophically pure, and
 aesthetically appealing Strong Packet Conservation Bound, described
 here. Although inspired by the packet conservation principle
 [Jacobson88], it differs in how it treats segments that are missing
 and presumed lost. Under all conditions and sequences of events
 during recovery, PRR-CRB strictly bounds the data transmitted to be
 equal to or less than the amount of data delivered to the receiver.
 Note that the effects of presumed losses are included in the pipe
 calculation, but do not affect the outcome of PRR-CRB, once pipe has
 fallen below ssthresh.

 We claim that this Strong Packet Conservation Bound is the most
 aggressive algorithm that does not lead to additional forced losses
 in some environments. It has the property that if there is a
 standing queue at a bottleneck that is carrying no other traffic, the
 queue will maintain exactly constant length for the entire duration
 of the recovery, except for +1/-1 fluctuation due to differences in
 packet arrival and exit times. Any less aggressive algorithm will
 result in a declining queue at the bottleneck. Any more aggressive
 algorithm will result in an increasing queue or additional losses if
 it is a full drop tail queue.

 We demonstrate this property with a little thought experiment:

 Imagine a network path that has insignificant delays in both
 directions, except for the processing time and queue at a single
 bottleneck in the forward path. By insignificant delay, we mean when
 a packet is "served" at the head of the bottleneck queue, the
 following events happen in much less than one bottleneck packet time:
 the packet arrives at the receiver; the receiver sends an ACK that
 arrives at the sender; the sender processes the ACK and sends some
 data; the data is queued at the bottleneck.

 If sndcnt is set to DeliveredData and nothing else is inhibiting
 sending data, then clearly the data arriving at the bottleneck queue
 will exactly replace the data that was served at the head of the
 queue, so the queue will have a constant length. If queue is drop
 tail and full, then the queue will stay exactly full. Losses or
 reordering on the ACK path only cause wider fluctuations in the queue
 size, but do not raise its peak size, independent of whether the data
 is in order or out of order (including loss recovery from an earlier
 RTT). Any more aggressive algorithm that sends additional data will
 overflow the drop tail queue and cause loss. Any less aggressive
 algorithm will under-fill the queue. Therefore, setting sndcnt to
 DeliveredData is the most aggressive algorithm that does not cause
 forced losses in this simple network. Relaxing the assumptions

Mathis, et al. Expires 26 August 2021 [Page 17]

Internet-Draft Proportional Rate Reduction February 2021

 (e.g., making delays more authentic and adding more flows, delayed
 ACKs, etc.) is likely to increase the fine grained fluctuations in
 queue size but does not change its basic behavior.

 Note that the congestion control algorithm implements a broader
 notion of optimal that includes appropriately sharing the network.
 Typical congestion control algorithms are likely to reduce the data
 sent relative to the Packet Conserving Bound implemented by PRR,
 bringing TCP's actual window down to ssthresh.

Authors' Addresses

 Matt Mathis
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 United States of America

 Email: mattmathis@google.com

 Nandita Dukkipati
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 United States of America

 Email: nanditad@google.com

 Yuchung Cheng
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 United States of America

 Email: ycheng@google.com

Mathis, et al. Expires 26 August 2021 [Page 18]

