
TCP Maintenance Working Group Y. Cheng
Internet-Draft N. Cardwell
Intended status: Experimental Google, Inc
Expires:March 17, 2017 September 16, 2016

RACK: a time-based fast loss detection algorithm for TCP
draft-ietf-tcpm-rack-00

Abstract

 This document presents a new TCP loss detection algorithm called RACK
 ("Recent ACKnowledgment"). RACK uses the notion of time, instead of
 packet or sequence counts, to detect losses, for modern TCP
 implementations that can support per-packet timestamps and the
 selective acknowledgment (SACK) option. It is intended to replace
 the conventional DUPACK threshold approach and its variants, as well
 as other nonstandard approaches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 7, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Cheng & Cardwell Expires March 7, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RACK September 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 This document presents a new loss detection algorithm called RACK
 ("Recent ACKnowledgment"). RACK uses the notion of time instead of
 the conventional packet or sequence counting approaches for detecting
 losses. RACK deems a packet lost if some packet sent sufficiently
 later has been delivered. It does this by recording packet
 transmission times and inferring losses using cumulative
 acknowledgments or selective acknowledgment (SACK) TCP options.

 In the last couple of years we have been observing several
 increasingly common loss and reordering patterns in the Internet:

 1. Lost retransmissions. Traffic policers [POLICER16] and burst
 losses often cause retransmissions to be lost again, severely
 increasing TCP latency.

 2. Tail drops. Structured request-response traffic turns more
 losses into tail drops. In such cases, TCP is application-
 limited, so it cannot send new data to probe losses and has to
 rely on retransmission timeouts (RTOs).

 3. Reordering. Link layer protocols (e.g., 802.11 block ACK) or
 routers' internal load-balancing can deliver TCP packets out of
 order. The degree of such reordering is usually within the order
 of the path round trip time.

 Despite TCP stacks (e.g. Linux) that implement many of the standard
 and proposed loss detection algorithms
 [RFC3517][RFC4653][RFC5827][RFC5681][RFC6675][RFC7765][FACK][THIN-
 STREAM][TLP], we've found that together they do not perform well.
 The main reason is that many of them are based on the classic rule of
 counting duplicate acknowledgments [RFC5681]. They can either detect
 loss quickly or accurately, but not both, especially when the sender
 is application-limited or under reordering that is unpredictable.
 And under these conditions none of them can detect lost
 retransmissions well.

 Also, these algorithms, including RFCs, rarely address the
 interactions with other algorithms. For example, FACK may consider a
 packet is lost while RFC3517 may not. Implementing N algorithms
 while dealing with N^2 interactions is a daunting task and error-
 prone.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3517

Cheng & Cardwell Expires March 7, 2017 [Page 2]

Internet-Draft RACK September 2016

 The goal of RACK is to solve all the problems above by replacing many
 of the loss detection algorithms above with one simpler, and also
 more effective, algorithm.

2. Overview

 The main idea behind RACK is that if a packet has been delivered out
 of order, then the packets sent chronologically before that were
 either lost or reordered. This concept is not fundamentally
 different from [RFC5681][RFC3517][FACK]. But the key innovation in
 RACK is to use a per-packet transmission timestamp and widely
 deployed SACK options to conduct time-based inferences instead of
 inferring losses with packet or sequence counting approaches.

 Using a threshold for counting duplicate acknowledgments (i.e.,
 dupthresh) is no longer reliable because of today's prevalent
 reordering patterns. A common type of reordering is that the last
 "runt" packet of a window's worth of packet bursts gets delivered
 first, then the rest arrive shortly after in order. To handle this
 effectively, a sender would need to constantly adjust the dupthresh
 to the burst size; but this would risk increasing the frequency of
 RTOs on real losses.

 Today's prevalent lost retransmissions also cause problems with
 packet-counting approaches [RFC5681][RFC3517][FACK], since those
 approaches depend on reasoning in sequence number space.
 Retransmissions break the direct correspondence between ordering in
 sequence space and ordering in time. So when retransmissions are
 lost, sequence-based approaches are often unable to infer and quickly
 repair losses that can be deduced with time-based approaches.

 Instead of counting packets, RACK uses the most recently delivered
 packet's transmission time to judge if some packets sent previous to
 that time have "expired" by passing a certain reordering settling
 window. On each ACK, RACK marks any already-expired packets lost,
 and for any packets that have not yet expired it waits until the
 reordering window passes and then marks those lost as well. In
 either case, RACK can repair the loss without waiting for a (long)
 RTO. RACK can be applied to both fast recovery and timeout recovery,
 and can detect losses on both originally transmitted and
 retransmitted packets, making it a great all-weather recovery
 mechanism.

3. Requirements

 The reader is expected to be familiar with the definitions given in
 the TCP congestion control [RFC5681] and selective acknowledgment

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681

Cheng & Cardwell Expires March 7, 2017 [Page 3]

Internet-Draft RACK September 2016

 [RFC2018] RFCs. Familiarity with the conservative SACK-based
 recovery for TCP [RFC6675] is not expected but helps.

 RACK has three requirements:

 1. The connection MUST use selective acknowledgment (SACK) options
 [RFC2018].

 2. For each packet sent, the sender MUST store its most recent
 transmission time with (at least) millisecond granularity. For
 round-trip times lower than a millisecond (e.g., intra-datacenter
 communications) microsecond granularity would significantly help
 the detection latency but is not required.

 3. For each packet sent, the sender MUST store whether the packet
 has been retransmitted or not.

 We assume that requirement 1 implies the sender keeps a SACK
 scoreboard, which is a data structure to store selective
 acknowledgment information on a per-connection basis. For the ease
 of explaining the algorithm, we use a pseudo-scoreboard that manages
 the data in sequence number ranges. But the specifics of the data
 structure are left to the implementor.

 RACK does not need any change on the receiver.

4. Definitions of variables

 A sender needs to store these new RACK variables:

 "Packet.xmit_ts" is the time of the last transmission of a data
 packet, including any retransmissions, if any. The sender needs to
 record the transmission time for each packet sent and not yet
 acknowledged. The time MUST be stored at millisecond granularity or
 finer.

 "RACK.xmit_ts" is the most recent Packet.xmit_ts among all the
 packets that were delivered (either cumulatively acknowledged or
 selectively acknowledged) on the connection.

 "RACK.end_seq" is the ending TCP sequence number of the packet that
 was used to record the RACK.xmit_ts above.

 "RACK.RTT" is the associated RTT measured when RACK.xmit_ts, above,
 was changed. It is the RTT of the most recently transmitted packet
 that has been delivered (either cumulatively acknowledged or
 selectively acknowledged) on the connection.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018

Cheng & Cardwell Expires March 7, 2017 [Page 4]

Internet-Draft RACK September 2016

 "RACK.reo_wnd" is a reordering window for the connection, computed in
 the unit of time used for recording packet transmission times. It is
 used to defer the moment at which RACK marks a packet lost.

 "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
 connection.

 Note that the Packet.xmit_ts variable is per packet in flight. The
 RACK.xmit_ts, RACK.RTT, RACK.reo_wnd, and RACK.min_RTT variables are
 per connection.

5. Algorithm Details

5.1. Transmitting a data packet

 Upon transmitting a new packet or retransmitting an old packet,
 record the time in Packet.xmit_ts. RACK does not care if the
 retransmission is triggered by an ACK, new application data, an RTO,
 or any other means.

5.2. Upon receiving an ACK

 Step 1: Update RACK.min_RTT.

 Use the RTT measurements obtained in [RFC6298] or [RFC7323] to update
 the estimated minimum RTT in RACK.min_RTT. The sender can track a
 simple global minimum of all RTT measurements from the connection, or
 a windowed min-filtered value of recent RTT measurements. This
 document does not specify an exact approach.

 Step 2: Update RACK.reo_wnd.

 To handle the prevalent small degree of reordering, RACK.reo_wnd
 serves as an allowance for settling time before marking a packet
 lost. By default it is 1 millisecond. We RECOMMEND implementing the
 reordering detection in [REORDER-DETECT][RFC4737] to dynamically
 adjust the reordering window. When the sender detects packet
 reordering RACK.reo_wnd MAY be changed to RACK.min_RTT/4. We discuss
 more about the reordering window in the next section.

 Step 3: Advance RACK.xmit_ts and update RACK.RTT and RACK.end_seq

 Given the information provided in an ACK, each packet cumulatively
 ACKed or SACKed is marked as delivered in the scoreboard. Among all
 the packets newly ACKed or SACKed in the connection, record the most
 recent Packet.xmit_ts in RACK.xmit_ts if it is ahead of RACK.xmit_ts.
 Ignore the packet if any of its TCP sequences has been retransmitted
 before and either of two condition is true:

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323

Cheng & Cardwell Expires March 7, 2017 [Page 5]

Internet-Draft RACK September 2016

 1. The Timestamp Echo Reply field (TSecr) of the ACK's timestamp
 option [RFC7323], if available, indicates the ACK was not
 acknowledging the last retransmission of the packet.

 2. The packet was last retransmitted less than RACK.min_rtt ago.
 While it is still possible the packet is spuriously retransmitted
 because of a recent RTT decrease, we believe that our experience
 suggests this is a reasonable heuristic.

 If this ACK causes a change to RACK.xmit_ts then record the RTT and
 sequence implied by this ACK:

 RACK.RTT = Now() - RACK.xmit_ts
 RACK.end_seq = Packet.end_seq

 Exit here and omit the following steps if RACK.xmit_ts has not
 changed.

 Step 4: Detect losses.

 For each packet that has not been fully SACKed, if RACK.xmit_ts is
 after Packet.xmit_ts + RACK.reo_wnd, then mark the packet (or its
 corresponding sequence range) lost in the scoreboard. The rationale
 is that if another packet that was sent later has been delivered, and
 the reordering window or "reordering settling time" has already
 passed, the packet was likely lost.

 If a packet that was sent later has been delivered, but the
 reordering window has not passed, then it is not yet safe to deem the
 given packet lost. Using the basic algorithm above, the sender would
 wait for the next ACK to further advance RACK.xmit_ts; but this risks
 a timeout (RTO) if no more ACKs come back (e.g, due to losses or
 application limit). For timely loss detection, the sender MAY
 install a "reordering settling" timer set to fire at the earliest
 moment at which it is safe to conclude that some packet is lost. The
 earliest moment is the time it takes to expire the reordering window
 of the earliest unacked packet in flight.

 This timer expiration value can be derived as follows. As a starting
 point, we consider that the reordering window has passed if the RACK
 packet was sent sufficiently after the packet in question, or a
 sufficient time has elapsed since the RACK packet was S/ACKed, or
 some combination of the two. More precisely, RACK marks a packet as
 lost if the reordering window for a packet has elapsed through the
 sum of:

 1. delta in transmit time between a packet and the RACK packet

https://datatracker.ietf.org/doc/html/rfc7323

Cheng & Cardwell Expires March 7, 2017 [Page 6]

Internet-Draft RACK September 2016

 2. delta in time between the S/ACK of the RACK packet (RACK.ack_ts)
 and now

 So we mark a packet as lost if:

 RACK.xmit_ts > Packet.xmit_ts AND
 (RACK.xmit_ts - Packet.xmit_ts) + (now - RACK.ack_ts) > RACK.reo_wnd

 If we solve this second condition for "now", the moment at which we
 can declare a packet lost, then we get:

 now > Packet.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

 Then (RACK.ack_ts - RACK.xmit_ts) is just the RTT of the packet we
 used to set RACK.xmit_ts, so this reduces to:

 now > Packet.xmit_ts + RACK.RTT + RACK.reo_wnd

 The following pseudocode implements the algorithm above. When an ACK
 is received or the RACK timer expires, call RACK_detect_loss(). The
 algorithm includes an additional optimization to break timestamp ties
 by using the TCP sequence space. The optimization is particularly
 useful to detect losses in a timely manner with TCP Segmentation
 Offload, where multiple packets in one TSO blob have identical
 timestamps. It is also useful when the timestamp clock granularity
 is close to or longer than the actual round trip time.

 RACK_detect_loss():
 min_timeout = 0

 For each packet, Packet, in the scoreboard:
 If Packet is already SACKed, ACKed,
 or marked lost and not yet retransmitted:
 Skip to the next packet

 If Packet.xmit_ts > RACK.xmit_ts:
 Skip to the next packet
 If Packet.xmit_ts == RACK.xmit_ts AND // Timestamp tie breaker
 Packet.end_seq > RACK.end_seq
 Skip to the next packet

 timeout = Packet.xmit_ts + RACK.RTT + RACK.reo_wnd + 1
 If Now() >= timeout
 Mark Packet lost
 Else If (min_timeout == 0) or (timeout is before min_timeout):
 min_timeout = timeout

 If min_timeout != 0
 Arm a timer to call RACK_detect_loss() after min_timeout

Cheng & Cardwell Expires March 7, 2017 [Page 7]

Internet-Draft RACK September 2016

6. Analysis and Discussion

6.1. Advantages

 The biggest advantage of RACK is that every data packet, whether it
 is an original data transmission or a retransmission, can be used to
 detect losses of the packets sent prior to it.

 Example: tail drop. Consider a sender that transmits a window of
 three data packets (P1, P2, P3), and P1 and P3 are lost. Suppose the
 transmission of each packet is at least RACK.reo_wnd (1 millisecond
 by default) after the transmission of the previous packet. RACK will
 mark P1 as lost when the SACK of P2 is received, and this will
 trigger the retransmission of P1 as R1. When R1 is cumulatively
 acknowledged, RACK will mark P3 as lost and the sender will
 retransmit P3 as R3. This example illustrates how RACK is able to
 repair certain drops at the tail of a transaction without any timer.
 Notice that neither the conventional duplicate ACK threshold
 [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]
 algorithm can detect such losses, because of the required packet or
 sequence count.

 Example: lost retransmit. Consider a window of three data packets
 (P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the
 transmission of each packet is at least RACK.reo_wnd (1 millisecond
 by default) after the transmission of the previous packet. When P3
 is SACKed, RACK will mark P1 and P2 lost and they will be
 retransmitted as R1 and R2. Suppose R1 is lost again (as a tail
 drop) but R2 is SACKed; RACK will mark R1 lost for retransmission
 again. Again, neither the conventional three duplicate ACK threshold
 approach, nor [RFC6675], nor the Forward Acknowledgment [FACK]
 algorithm can detect such losses. And such a lost retransmission is
 very common when TCP is being rate-limited, particularly by token
 bucket policers with large bucket depth and low rate limit.
 Retransmissions are often lost repeatedly because standard congestion
 control requires multiple round trips to reduce the rate below the
 policed rate.

 Example: (small) degree of reordering. Consider a common reordering
 event: a window of packets are sent as (P1, P2, P3). P1 and P2 carry
 a full payload of MSS octets, but P3 has only a 1-octet payload due
 to application-limited behavior. Suppose the sender has detected
 reordering previously (e.g., by implementing the algorithm in
 [REORDER-DETECT]) and thus RACK.reo_wnd is min_RTT/4. Now P3 is
 reordered and delivered first, before P1 and P2. As long as P1 and
 P2 are delivered within min_RTT/4, RACK will not consider P1 and P2
 lost. But if P1 and P2 are delivered outside the reordering window,

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Cheng & Cardwell Expires March 7, 2017 [Page 8]

Internet-Draft RACK September 2016

 then RACK will still falsely mark P1 and P2 lost. We discuss how to
 reduce the false positives in the end of this section.

 The examples above show that RACK is particularly useful when the
 sender is limited by the application, which is common for
 interactive, request/response traffic. Similarly, RACK still works
 when the sender is limited by the receive window, which is common for
 applications that use the receive window to throttle the sender.

 For some implementations (e.g., Linux), RACK works quite efficiently
 with TCP Segmentation Offload (TSO). RACK always marks the entire
 TSO blob lost because the packets in the same TSO blob have the same
 transmission timestamp. By contrast, the counting based algorithms
 (e.g., [RFC3517][RFC5681]) may mark only a subset of packets in the
 TSO blob lost, forcing the stack to perform expensive fragmentation
 of the TSO blob, or to selectively tag individual packets lost in the
 scoreboard.

6.2. Disadvantages

 RACK requires the sender to record the transmission time of each
 packet sent at a clock granularity of one millisecond or finer. TCP
 implementations that record this already for RTT estimation do not
 require any new per-packet state. But implementations that are not
 yet recording packet transmission times will need to add per-packet
 internal state (commonly either 4 or 8 octets per packet) to track
 transmission times. In contrast, the conventional approach requires
 one variable to track number of duplicate ACK threshold.

6.3. Adjusting the reordering window

 RACK uses a reordering window of min_rtt / 4. It uses the minimum
 RTT to accommodate reordering introduced by packets traversing
 slightly different paths (e.g., router-based parallelism schemes) or
 out-of-order deliveries in the lower link layer (e.g., wireless links
 using link-layer retransmission). Alternatively, RACK can use the
 smoothed RTT used in RTT estimation [RFC6298]. However, smoothed RTT
 can be significantly inflated by orders of magnitude due to
 congestion and buffer-bloat, which would result in an overly
 conservative reordering window and slow loss detection. Furthermore,
 RACK uses a quarter of minimum RTT because Linux TCP uses the same
 factor in its implementation to delay Early Retransmit [RFC5827] to
 reduce spurious loss detections in the presence of reordering, and
 experience shows that this seems to work reasonably well.

 One potential improvement is to further adapt the reordering window
 by measuring the degree of reordering in time, instead of packet
 distances. But that requires storing the delivery timestamp of each

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827

Cheng & Cardwell Expires March 7, 2017 [Page 9]

Internet-Draft RACK September 2016

 packet. Some scoreboard implementations currently merge SACKed
 packets together to support TSO (TCP Segmentation Offload) for faster
 scoreboard indexing. Supporting per-packet delivery timestamps is
 difficult in such implementations. However, we acknowledge that the
 current metric can be improved by further research.

6.4. Relationships with other loss recovery algorithms

 The primary motivation of RACK is to ultimately provide a simple and
 general replacement for some of the standard loss recovery algorithms
 [RFC5681][RFC6675][RFC5827][RFC4653] and nonstandard ones
 [FACK][THIN-STREAM]. While RACK can be a supplemental loss detection
 on top of these algorithms, this is not necessary, because the RACK
 implicitly subsumes most of them.

 [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate ACK
 threshold based on the current or previous flight sizes. RACK takes
 a different approach, by using only one ACK event and a reordering
 window. RACK can be seen as an extended Early Retransmit [RFC5827]
 without a FlightSize limit but with an additional reordering window.
 [FACK] considers an original packet to be lost when its sequence
 range is sufficiently far below the highest SACKed sequence. In some
 sense RACK can be seen as a generalized form of FACK that operates in
 time space instead of sequence space, enabling it to better handle
 reordering, application-limited traffic, and lost retransmissions.

 Nevertheless RACK is still an experimental algorithm. Since the
 oldest loss detection algorithm, the 3 duplicate ACK threshold
 [RFC5681], has been standardized and widely deployed, we RECOMMEND
 TCP implementations use both RACK and the algorithm specified in

Section 3.2 in [RFC5681] for compatibility.

 RACK is compatible with and does not interfere with the the standard
 RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eifel
 algorithms [RFC3522]. This is because RACK only detects loss by
 using ACK events. It neither changes the timer calculation nor
 detects spurious timeouts.

 Furthermore, RACK naturally works well with Tail Loss Probe [TLP]
 because a tail loss probe solicit seither an ACK or SACK, which can
 be used by RACK to detect more losses. RACK can be used to relax
 TLP's requirement for using FACK and retransmitting the the highest-
 sequenced packet, because RACK is agnostic to packet sequence
 numbers, and uses transmission time instead. Thus TLP can be
 modified to retransmit the first unacknowledged packet, which can
 improve application latency.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681#section-3.2
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7765
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3522

Cheng & Cardwell Expires March 7, 2017 [Page 10]

Internet-Draft RACK September 2016

6.5. Interaction with congestion control

 RACK intentionally decouples loss detection from congestion control.
 RACK only detects losses; it does not modify the congestion control
 algorithm [RFC5681][RFC6937]. However, RACK may detect losses
 earlier or later than the conventional duplicate ACK threshold
 approach does. A packet marked lost by RACK SHOULD NOT be
 retransmitted until congestion control deems this appropriate (e.g.
 using [RFC6937]).

 RACK is applicable for both fast recovery and recovery after a
 retransmission timeout (RTO) in [RFC5681]. The distinction between
 fast recovery or RTO recovery is not necessary because RACK is purely
 based on the transmission time order of packets. When a packet
 retransmitted by RTO is acknowledged, RACK will mark any unacked
 packet sent sufficiently prior to the RTO as lost, because at least
 one RTT has elapsed since these packets were sent.

6.6. RACK for other transport protocols

 RACK can be implemented in other transport protocols. The algorithm
 can skip step 3 and simplify if the protocol can support unique
 transmission or packet identifier (e.g. TCP echo options). For
 example, the QUIC protocol implements RACK [QUIC-LR] .

7. Security Considerations

 RACK does not change the risk profile for TCP.

 An interesting scenario is ACK-splitting attacks [SCWA99]: for an
 MSS-size packet sent, the receiver or the attacker might send MSS
 ACKs that SACK or acknowledge one additional byte per ACK. This
 would not fool RACK. RACK.xmit_ts would not advance because all the
 sequences of the packet are transmitted at the same time (carry the
 same transmission timestamp). In other words, SACKing only one byte
 of a packet or SACKing the packet in entirety have the same effect on
 RACK.

8. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc5681

Cheng & Cardwell Expires March 7, 2017 [Page 11]

Internet-Draft RACK September 2016

9. Acknowledgments

 The authors thank Matt Mathis for his insights in FACK and Michael
 Welzl for his per-packet timer idea that inspired this work. Nandita
 Dukkipati, Eric Dumazet, Randy Stewart, Van Jacobson, Ian Swett, and
 Jana Iyengar contributed to the algorithm and the implementations in
 Linux, FreeBSD and QUIC.

10. References

10.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", September
 1981.

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", May 2013.

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
 November 2006.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, August 2012.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298, June
 2011.

 [RFC5827] Allman, M., Ayesta, U., Wang, L., Blanton, J., and P.
 Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, April 2010.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681

Cheng & Cardwell Expires March 7, 2017 [Page 12]

Internet-Draft RACK September 2016

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance",
 September 2014.

10.2. Informative References

 [FACK] Mathis, M. and M. Jamshid, "Forward acknowledgement:
 refining TCP congestion control", ACM SIGCOMM Computer
 Communication Review, Volume 26, Issue 4, Oct. 1996. ,
 1996.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Drops", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), August 2013.

 [RFC7765] Hurtig, P., Brunstrom, A., Petlund, A., and M. Welzl, "TCP
 and SCTP RTO Restart", February 2016.

 [REORDER-DETECT]
 Zimmermann, A., Schulte, L., Wolff, C., and A. Hannemann,
 "Detection and Quantification of Packet Reordering with
 TCP", draft-zimmermann-tcpm-reordering-detection-02 (work
 in progress), November 2014.

 [QUIC-LR] Iyengar, J. and I. Swett, "QUIC Loss Recovery And
 Congestion Control", draft-tsvwg-quic-loss-recovery-01
 (work in progress), June 2016.

 [THIN-STREAM]
 Petlund, A., Evensen, K., Griwodz, C., and P. Halvorsen,
 "TCP enhancements for interactive thin-stream
 applications", NOSSDAV , 2008.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control With a Misbehaving Receiver", ACM
 Computer Communication Review, 29(5) , 1999.

 [POLICER16]
 Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng,
 Y., Karim, T., Katz-Bassett, E., and R. Govindan, "An
 Analysis of Traffic Policing in the Web", ACM SIGCOMM ,
 2016.

https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://datatracker.ietf.org/doc/html/draft-zimmermann-tcpm-reordering-detection-02
https://datatracker.ietf.org/doc/html/draft-tsvwg-quic-loss-recovery-01

Cheng & Cardwell Expires March 7, 2017 [Page 13]

Internet-Draft RACK September 2016

Authors' Addresses

 Yuchung Cheng
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043
 USA

 Email: ycheng@google.com

 Neal Cardwell
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: ncardwell@google.com

Cheng & Cardwell Expires March 7, 2017 [Page 14]

