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Abstract

   This document presents a new TCP loss detection algorithm called RACK
   ("Recent ACKnowledgment").  RACK uses the notion of time, instead of
   packet or sequence counts, to detect losses, for modern TCP
   implementations that can support per-packet timestamps and the
   selective acknowledgment (SACK) option.  It is intended to replace
   the conventional DUPACK threshold approach and its variants, as well
   as other nonstandard approaches.
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   provisions of BCP 78 and BCP 79.
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   This document presents a new loss detection algorithm called RACK
   ("Recent ACKnowledgment").  RACK uses the notion of time instead of
   the conventional packet or sequence counting approaches for detecting
   losses.  RACK deems a packet lost if some packet sent sufficiently
   later has been delivered.  It does this by recording packet
   transmission times and inferring losses using cumulative
   acknowledgments or selective acknowledgment (SACK) TCP options.

   In the last couple of years we have been observing several
   increasingly common loss and reordering patterns in the Internet:

   1.  Lost retransmissions.  Traffic policers [POLICER16] and burst
       losses often cause retransmissions to be lost again, severely
       increasing TCP latency.

   2.  Tail drops.  Structured request-response traffic turns more
       losses into tail drops.  In such cases, TCP is application-
       limited, so it cannot send new data to probe losses and has to
       rely on retransmission timeouts (RTOs).

   3.  Reordering.  Link layer protocols (e.g., 802.11 block ACK) or
       routers' internal load-balancing can deliver TCP packets out of
       order.  The degree of such reordering is usually within the order
       of the path round trip time.

   Despite TCP stacks (e.g.  Linux) that implement many of the standard
   and proposed loss detection algorithms
   [RFC3517][RFC4653][RFC5827][RFC5681][RFC6675][RFC7765][FACK][THIN-
   STREAM][TLP], we've found that together they do not perform well.
   The main reason is that many of them are based on the classic rule of
   counting duplicate acknowledgments [RFC5681].  They can either detect
   loss quickly or accurately, but not both, especially when the sender
   is application-limited or under reordering that is unpredictable.
   And under these conditions none of them can detect lost
   retransmissions well.

   Also, these algorithms, including RFCs, rarely address the
   interactions with other algorithms.  For example, FACK may consider a
   packet is lost while RFC3517 may not.  Implementing N algorithms
   while dealing with N^2 interactions is a daunting task and error-
   prone.

https://datatracker.ietf.org/doc/html/rfc3517
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   The goal of RACK is to solve all the problems above by replacing many
   of the loss detection algorithms above with one simpler, and also
   more effective, algorithm.

2.  Overview

   The main idea behind RACK is that if a packet has been delivered out
   of order, then the packets sent chronologically before that were
   either lost or reordered.  This concept is not fundamentally
   different from [RFC5681][RFC3517][FACK].  But the key innovation in
   RACK is to use a per-packet transmission timestamp and widely
   deployed SACK options to conduct time-based inferences instead of
   inferring losses with packet or sequence counting approaches.

   Using a threshold for counting duplicate acknowledgments (i.e.,
   dupthresh) is no longer reliable because of today's prevalent
   reordering patterns.  A common type of reordering is that the last
   "runt" packet of a window's worth of packet bursts gets delivered
   first, then the rest arrive shortly after in order.  To handle this
   effectively, a sender would need to constantly adjust the dupthresh
   to the burst size; but this would risk increasing the frequency of
   RTOs on real losses.

   Today's prevalent lost retransmissions also cause problems with
   packet-counting approaches [RFC5681][RFC3517][FACK], since those
   approaches depend on reasoning in sequence number space.
   Retransmissions break the direct correspondence between ordering in
   sequence space and ordering in time.  So when retransmissions are
   lost, sequence-based approaches are often unable to infer and quickly
   repair losses that can be deduced with time-based approaches.

   Instead of counting packets, RACK uses the most recently delivered
   packet's transmission time to judge if some packets sent previous to
   that time have "expired" by passing a certain reordering settling
   window.  On each ACK, RACK marks any already-expired packets lost,
   and for any packets that have not yet expired it waits until the
   reordering window passes and then marks those lost as well.  In
   either case, RACK can repair the loss without waiting for a (long)
   RTO.  RACK can be applied to both fast recovery and timeout recovery,
   and can detect losses on both originally transmitted and
   retransmitted packets, making it a great all-weather recovery
   mechanism.

3.  Requirements

   The reader is expected to be familiar with the definitions given in
   the TCP congestion control [RFC5681] and selective acknowledgment

https://datatracker.ietf.org/doc/html/rfc5681
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   [RFC2018] RFCs.  Familiarity with the conservative SACK-based
   recovery for TCP [RFC6675] is not expected but helps.

   RACK has three requirements:

   1.  The connection MUST use selective acknowledgment (SACK) options
       [RFC2018].

   2.  For each packet sent, the sender MUST store its most recent
       transmission time with (at least) millisecond granularity.  For
       round-trip times lower than a millisecond (e.g., intra-datacenter
       communications) microsecond granularity would significantly help
       the detection latency but is not required.

   3.  For each packet sent, the sender MUST store whether the packet
       has been retransmitted or not.

   We assume that requirement 1 implies the sender keeps a SACK
   scoreboard, which is a data structure to store selective
   acknowledgment information on a per-connection basis.  For the ease
   of explaining the algorithm, we use a pseudo-scoreboard that manages
   the data in sequence number ranges.  But the specifics of the data
   structure are left to the implementor.

   RACK does not need any change on the receiver.

4.  Definitions of variables

   A sender needs to store these new RACK variables:

   "Packet.xmit_ts" is the time of the last transmission of a data
   packet, including any retransmissions, if any.  The sender needs to
   record the transmission time for each packet sent and not yet
   acknowledged.  The time MUST be stored at millisecond granularity or
   finer.

   "RACK.xmit_ts" is the most recent Packet.xmit_ts among all the
   packets that were delivered (either cumulatively acknowledged or
   selectively acknowledged) on the connection.

   "RACK.end_seq" is the ending TCP sequence number of the packet that
   was used to record the RACK.xmit_ts above.

   "RACK.RTT" is the associated RTT measured when RACK.xmit_ts, above,
   was changed.  It is the RTT of the most recently transmitted packet
   that has been delivered (either cumulatively acknowledged or
   selectively acknowledged) on the connection.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018
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   "RACK.reo_wnd" is a reordering window for the connection, computed in
   the unit of time used for recording packet transmission times.  It is
   used to defer the moment at which RACK marks a packet lost.

   "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
   connection.

   Note that the Packet.xmit_ts variable is per packet in flight.  The
   RACK.xmit_ts, RACK.RTT, RACK.reo_wnd, and RACK.min_RTT variables are
   per connection.

5.  Algorithm Details

5.1.  Transmitting a data packet

   Upon transmitting a new packet or retransmitting an old packet,
   record the time in Packet.xmit_ts.  RACK does not care if the
   retransmission is triggered by an ACK, new application data, an RTO,
   or any other means.

5.2.  Upon receiving an ACK

   Step 1: Update RACK.min_RTT.

   Use the RTT measurements obtained in [RFC6298] or [RFC7323] to update
   the estimated minimum RTT in RACK.min_RTT.  The sender can track a
   simple global minimum of all RTT measurements from the connection, or
   a windowed min-filtered value of recent RTT measurements.  This
   document does not specify an exact approach.

   Step 2: Update RACK.reo_wnd.

   To handle the prevalent small degree of reordering, RACK.reo_wnd
   serves as an allowance for settling time before marking a packet
   lost.  By default it is 1 millisecond.  We RECOMMEND implementing the
   reordering detection in [REORDER-DETECT][RFC4737] to dynamically
   adjust the reordering window.  When the sender detects packet
   reordering RACK.reo_wnd MAY be changed to RACK.min_RTT/4.  We discuss
   more about the reordering window in the next section.

   Step 3: Advance RACK.xmit_ts and update RACK.RTT and RACK.end_seq

   Given the information provided in an ACK, each packet cumulatively
   ACKed or SACKed is marked as delivered in the scoreboard.  Among all
   the packets newly ACKed or SACKed in the connection, record the most
   recent Packet.xmit_ts in RACK.xmit_ts if it is ahead of RACK.xmit_ts.
   Ignore the packet if any of its TCP sequences has been retransmitted
   before and either of two condition is true:

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323
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   1.  The Timestamp Echo Reply field (TSecr) of the ACK's timestamp
       option [RFC7323], if available, indicates the ACK was not
       acknowledging the last retransmission of the packet.

   2.  The packet was last retransmitted less than RACK.min_rtt ago.
       While it is still possible the packet is spuriously retransmitted
       because of a recent RTT decrease, we believe that our experience
       suggests this is a reasonable heuristic.

   If this ACK causes a change to RACK.xmit_ts then record the RTT and
   sequence implied by this ACK:

   RACK.RTT = Now() - RACK.xmit_ts
   RACK.end_seq = Packet.end_seq

   Exit here and omit the following steps if RACK.xmit_ts has not
   changed.

   Step 4: Detect losses.

   For each packet that has not been fully SACKed, if RACK.xmit_ts is
   after Packet.xmit_ts + RACK.reo_wnd, then mark the packet (or its
   corresponding sequence range) lost in the scoreboard.  The rationale
   is that if another packet that was sent later has been delivered, and
   the reordering window or "reordering settling time" has already
   passed, the packet was likely lost.

   If a packet that was sent later has been delivered, but the
   reordering window has not passed, then it is not yet safe to deem the
   given packet lost.  Using the basic algorithm above, the sender would
   wait for the next ACK to further advance RACK.xmit_ts; but this risks
   a timeout (RTO) if no more ACKs come back (e.g, due to losses or
   application limit).  For timely loss detection, the sender MAY
   install a "reordering settling" timer set to fire at the earliest
   moment at which it is safe to conclude that some packet is lost.  The
   earliest moment is the time it takes to expire the reordering window
   of the earliest unacked packet in flight.

   This timer expiration value can be derived as follows.  As a starting
   point, we consider that the reordering window has passed if the RACK
   packet was sent sufficiently after the packet in question, or a
   sufficient time has elapsed since the RACK packet was S/ACKed, or
   some combination of the two.  More precisely, RACK marks a packet as
   lost if the reordering window for a packet has elapsed through the
   sum of:

   1.  delta in transmit time between a packet and the RACK packet

https://datatracker.ietf.org/doc/html/rfc7323
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   2.  delta in time between the S/ACK of the RACK packet (RACK.ack_ts)
       and now

   So we mark a packet as lost if:

   RACK.xmit_ts > Packet.xmit_ts   AND
   (RACK.xmit_ts - Packet.xmit_ts) + (now - RACK.ack_ts) > RACK.reo_wnd

   If we solve this second condition for "now", the moment at which we
   can declare a packet lost, then we get:

   now > Packet.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

   Then (RACK.ack_ts - RACK.xmit_ts) is just the RTT of the packet we
   used to set RACK.xmit_ts, so this reduces to:

   now > Packet.xmit_ts + RACK.RTT + RACK.reo_wnd

   The following pseudocode implements the algorithm above.  When an ACK
   is received or the RACK timer expires, call RACK_detect_loss().  The
   algorithm includes an additional optimization to break timestamp ties
   by using the TCP sequence space.  The optimization is particularly
   useful to detect losses in a timely manner with TCP Segmentation
   Offload, where multiple packets in one TSO blob have identical
   timestamps.  It is also useful when the timestamp clock granularity
   is close to or longer than the actual round trip time.

    RACK_detect_loss():
    min_timeout = 0

    For each packet, Packet, in the scoreboard:
        If Packet is already SACKed, ACKed,
           or marked lost and not yet retransmitted:
            Skip to the next packet

        If Packet.xmit_ts > RACK.xmit_ts:
            Skip to the next packet
        If Packet.xmit_ts == RACK.xmit_ts AND // Timestamp tie breaker
           Packet.end_seq > RACK.end_seq
            Skip to the next packet

        timeout = Packet.xmit_ts + RACK.RTT + RACK.reo_wnd + 1
        If Now() >= timeout
            Mark Packet lost
        Else If (min_timeout == 0) or (timeout is before min_timeout):
            min_timeout = timeout

    If min_timeout != 0
        Arm a timer to call RACK_detect_loss() after min_timeout
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6.  Analysis and Discussion

6.1.  Advantages

   The biggest advantage of RACK is that every data packet, whether it
   is an original data transmission or a retransmission, can be used to
   detect losses of the packets sent prior to it.

   Example: tail drop.  Consider a sender that transmits a window of
   three data packets (P1, P2, P3), and P1 and P3 are lost.  Suppose the
   transmission of each packet is at least RACK.reo_wnd (1 millisecond
   by default) after the transmission of the previous packet.  RACK will
   mark P1 as lost when the SACK of P2 is received, and this will
   trigger the retransmission of P1 as R1.  When R1 is cumulatively
   acknowledged, RACK will mark P3 as lost and the sender will
   retransmit P3 as R3.  This example illustrates how RACK is able to
   repair certain drops at the tail of a transaction without any timer.
   Notice that neither the conventional duplicate ACK threshold
   [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]
   algorithm can detect such losses, because of the required packet or
   sequence count.

   Example: lost retransmit.  Consider a window of three data packets
   (P1, P2, P3) that are sent; P1 and P2 are dropped.  Suppose the
   transmission of each packet is at least RACK.reo_wnd (1 millisecond
   by default) after the transmission of the previous packet.  When P3
   is SACKed, RACK will mark P1 and P2 lost and they will be
   retransmitted as R1 and R2.  Suppose R1 is lost again (as a tail
   drop) but R2 is SACKed; RACK will mark R1 lost for retransmission
   again.  Again, neither the conventional three duplicate ACK threshold
   approach, nor [RFC6675], nor the Forward Acknowledgment [FACK]
   algorithm can detect such losses.  And such a lost retransmission is
   very common when TCP is being rate-limited, particularly by token
   bucket policers with large bucket depth and low rate limit.
   Retransmissions are often lost repeatedly because standard congestion
   control requires multiple round trips to reduce the rate below the
   policed rate.

   Example: (small) degree of reordering.  Consider a common reordering
   event: a window of packets are sent as (P1, P2, P3).  P1 and P2 carry
   a full payload of MSS octets, but P3 has only a 1-octet payload due
   to application-limited behavior.  Suppose the sender has detected
   reordering previously (e.g., by implementing the algorithm in
   [REORDER-DETECT]) and thus RACK.reo_wnd is min_RTT/4.  Now P3 is
   reordered and delivered first, before P1 and P2.  As long as P1 and
   P2 are delivered within min_RTT/4, RACK will not consider P1 and P2
   lost.  But if P1 and P2 are delivered outside the reordering window,

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
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   then RACK will still falsely mark P1 and P2 lost.  We discuss how to
   reduce the false positives in the end of this section.

   The examples above show that RACK is particularly useful when the
   sender is limited by the application, which is common for
   interactive, request/response traffic.  Similarly, RACK still works
   when the sender is limited by the receive window, which is common for
   applications that use the receive window to throttle the sender.

   For some implementations (e.g., Linux), RACK works quite efficiently
   with TCP Segmentation Offload (TSO).  RACK always marks the entire
   TSO blob lost because the packets in the same TSO blob have the same
   transmission timestamp.  By contrast, the counting based algorithms
   (e.g., [RFC3517][RFC5681]) may mark only a subset of packets in the
   TSO blob lost, forcing the stack to perform expensive fragmentation
   of the TSO blob, or to selectively tag individual packets lost in the
   scoreboard.

6.2.  Disadvantages

   RACK requires the sender to record the transmission time of each
   packet sent at a clock granularity of one millisecond or finer.  TCP
   implementations that record this already for RTT estimation do not
   require any new per-packet state.  But implementations that are not
   yet recording packet transmission times will need to add per-packet
   internal state (commonly either 4 or 8 octets per packet) to track
   transmission times.  In contrast, the conventional approach requires
   one variable to track number of duplicate ACK threshold.

6.3.  Adjusting the reordering window

   RACK uses a reordering window of min_rtt / 4.  It uses the minimum
   RTT to accommodate reordering introduced by packets traversing
   slightly different paths (e.g., router-based parallelism schemes) or
   out-of-order deliveries in the lower link layer (e.g., wireless links
   using link-layer retransmission).  Alternatively, RACK can use the
   smoothed RTT used in RTT estimation [RFC6298].  However, smoothed RTT
   can be significantly inflated by orders of magnitude due to
   congestion and buffer-bloat, which would result in an overly
   conservative reordering window and slow loss detection.  Furthermore,
   RACK uses a quarter of minimum RTT because Linux TCP uses the same
   factor in its implementation to delay Early Retransmit [RFC5827] to
   reduce spurious loss detections in the presence of reordering, and
   experience shows that this seems to work reasonably well.

   One potential improvement is to further adapt the reordering window
   by measuring the degree of reordering in time, instead of packet
   distances.  But that requires storing the delivery timestamp of each

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc6298
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   packet.  Some scoreboard implementations currently merge SACKed
   packets together to support TSO (TCP Segmentation Offload) for faster
   scoreboard indexing.  Supporting per-packet delivery timestamps is
   difficult in such implementations.  However, we acknowledge that the
   current metric can be improved by further research.

6.4.  Relationships with other loss recovery algorithms

   The primary motivation of RACK is to ultimately provide a simple and
   general replacement for some of the standard loss recovery algorithms
   [RFC5681][RFC6675][RFC5827][RFC4653] and nonstandard ones
   [FACK][THIN-STREAM].  While RACK can be a supplemental loss detection
   on top of these algorithms, this is not necessary, because the RACK
   implicitly subsumes most of them.

   [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate ACK
   threshold based on the current or previous flight sizes.  RACK takes
   a different approach, by using only one ACK event and a reordering
   window.  RACK can be seen as an extended Early Retransmit [RFC5827]
   without a FlightSize limit but with an additional reordering window.
   [FACK] considers an original packet to be lost when its sequence
   range is sufficiently far below the highest SACKed sequence.  In some
   sense RACK can be seen as a generalized form of FACK that operates in
   time space instead of sequence space, enabling it to better handle
   reordering, application-limited traffic, and lost retransmissions.

   Nevertheless RACK is still an experimental algorithm.  Since the
   oldest loss detection algorithm, the 3 duplicate ACK threshold
   [RFC5681], has been standardized and widely deployed, we RECOMMEND
   TCP implementations use both RACK and the algorithm specified in

Section 3.2 in [RFC5681] for compatibility.

   RACK is compatible with and does not interfere with the the standard
   RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eifel
   algorithms [RFC3522].  This is because RACK only detects loss by
   using ACK events.  It neither changes the timer calculation nor
   detects spurious timeouts.

   Furthermore, RACK naturally works well with Tail Loss Probe [TLP]
   because a tail loss probe solicit seither an ACK or SACK, which can
   be used by RACK to detect more losses.  RACK can be used to relax
   TLP's requirement for using FACK and retransmitting the the highest-
   sequenced packet, because RACK is agnostic to packet sequence
   numbers, and uses transmission time instead.  Thus TLP can be
   modified to retransmit the first unacknowledged packet, which can
   improve application latency.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681#section-3.2
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7765
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3522
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6.5.  Interaction with congestion control

   RACK intentionally decouples loss detection from congestion control.
   RACK only detects losses; it does not modify the congestion control
   algorithm [RFC5681][RFC6937].  However, RACK may detect losses
   earlier or later than the conventional duplicate ACK threshold
   approach does.  A packet marked lost by RACK SHOULD NOT be
   retransmitted until congestion control deems this appropriate (e.g.
   using [RFC6937]).

   RACK is applicable for both fast recovery and recovery after a
   retransmission timeout (RTO) in [RFC5681].  The distinction between
   fast recovery or RTO recovery is not necessary because RACK is purely
   based on the transmission time order of packets.  When a packet
   retransmitted by RTO is acknowledged, RACK will mark any unacked
   packet sent sufficiently prior to the RTO as lost, because at least
   one RTT has elapsed since these packets were sent.

6.6.  RACK for other transport protocols

   RACK can be implemented in other transport protocols.  The algorithm
   can skip step 3 and simplify if the protocol can support unique
   transmission or packet identifier (e.g.  TCP echo options).  For
   example, the QUIC protocol implements RACK [QUIC-LR] .

7.  Security Considerations

   RACK does not change the risk profile for TCP.

   An interesting scenario is ACK-splitting attacks [SCWA99]: for an
   MSS-size packet sent, the receiver or the attacker might send MSS
   ACKs that SACK or acknowledge one additional byte per ACK.  This
   would not fool RACK.  RACK.xmit_ts would not advance because all the
   sequences of the packet are transmitted at the same time (carry the
   same transmission timestamp).  In other words, SACKing only one byte
   of a packet or SACKing the packet in entirety have the same effect on
   RACK.

8.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6937
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