
TCP Maintenance Working Group Y. Cheng
Internet-Draft N. Cardwell
Intended status: Experimental N. Dukkipati
Expires: January 3, 2019 P. Jha
 Google, Inc
 July 2, 2018

RACK: a time-based fast loss detection algorithm for TCP
draft-ietf-tcpm-rack-04

Abstract

 This document presents a new TCP loss detection algorithm called RACK
 ("Recent ACKnowledgment"). RACK uses the notion of time, instead of
 packet or sequence counts, to detect losses, for modern TCP
 implementations that can support per-packet timestamps and the
 selective acknowledgment (SACK) option. It is intended to replace
 the conventional DUPACK threshold approach and its variants, as well
 as other nonstandard approaches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Cheng, et al. Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft RACK July 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 This document presents a new loss detection algorithm called RACK
 ("Recent ACKnowledgment"). RACK uses the notion of time instead of
 the conventional packet or sequence counting approaches for detecting
 losses. RACK deems a packet lost if some packet sent sufficiently
 later has been delivered. It does this by recording packet
 transmission times and inferring losses using cumulative
 acknowledgments or selective acknowledgment (SACK) TCP options.

 In the last couple of years we have been observing several
 increasingly common loss and reordering patterns in the Internet:

 1. Lost retransmissions. Traffic policers [POLICER16] and burst
 losses often cause retransmissions to be lost again, severely
 increasing TCP latency.

 2. Tail drops. Structured request-response traffic turns more
 losses into tail drops. In such cases, TCP is application-
 limited, so it cannot send new data to probe losses and has to
 rely on retransmission timeouts (RTOs).

 3. Reordering. Link layer protocols (e.g., 802.11 block ACK) or
 routers' internal load-balancing can deliver TCP packets out of
 order. The degree of such reordering is usually within the order
 of the path round trip time.

 Despite TCP stacks (e.g. Linux) that implement many of the standard
 and proposed loss detection algorithms
 [RFC4653][RFC5827][RFC5681][RFC6675][RFC7765][FACK][THIN-STREAM],
 we've found that together they do not perform well. The main reason
 is that many of them are based on the classic rule of counting
 duplicate acknowledgments [RFC5681]. They can either detect loss
 quickly or accurately, but not both, especially when the sender is
 application-limited or under reordering that is unpredictable. And
 under these conditions none of them can detect lost retransmissions
 well.

 Also, these algorithms, including RFCs, rarely address the
 interactions with other algorithms. For example, FACK may consider a
 packet is lost while RFC6675 may not. Implementing N algorithms
 while dealing with N^2 interactions is a daunting task and error-
 prone.

https://datatracker.ietf.org/doc/html/rfc4653
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc7765
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires January 3, 2019 [Page 2]

Internet-Draft RACK July 2018

 The goal of RACK is to solve all the problems above by replacing many
 of the loss detection algorithms above with one more effective
 algorithm to handle loss and reordering.

2. Overview

 The main idea behind RACK is that if a packet has been delivered out
 of order, then the packets sent chronologically before that were
 either lost or reordered. This concept is not fundamentally
 different from [RFC5681][RFC6675][FACK]. But the key innovation in
 RACK is to use a per-packet transmission timestamp and widely
 deployed SACK options to conduct time-based inferences instead of
 inferring losses with packet or sequence counting approaches.

 Using a threshold for counting duplicate acknowledgments (i.e.,
 DupThresh) alone is no longer reliable because of today's prevalent
 reordering patterns. A common type of reordering is that the last
 "runt" packet of a window's worth of packet bursts gets delivered
 first, then the rest arrive shortly after in order. To handle this
 effectively, a sender would need to constantly adjust the DupThresh
 to the burst size; but this would risk increasing the frequency of
 RTOs on real losses.

 Today's prevalent lost retransmissions also cause problems with
 packet-counting approaches [RFC5681][RFC6675][FACK], since those
 approaches depend on reasoning in sequence number space.
 Retransmissions break the direct correspondence between ordering in
 sequence space and ordering in time. So when retransmissions are
 lost, sequence-based approaches are often unable to infer and quickly
 repair losses that can be deduced with time-based approaches.

 Instead of counting packets, RACK uses the most recently delivered
 packet's transmission time to judge if some packets sent previous to
 that time have "expired" by passing a certain reordering settling
 window. On each ACK, RACK marks any already-expired packets lost,
 and for any packets that have not yet expired it waits until the
 reordering window passes and then marks those lost as well. In
 either case, RACK can repair the loss without waiting for a (long)
 RTO. RACK can be applied to both fast recovery and timeout recovery,
 and can detect losses on both originally transmitted and
 retransmitted packets, making it a great all-weather loss detection
 mechanism.

3. Design Rationale for Reordering Tolerance

 The reordering behavior of networks can evolve (over years) in
 response to the behavior of transport protocols and applications, as
 well as the needs of network designers and operators. From a network

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et al. Expires January 3, 2019 [Page 3]

Internet-Draft RACK July 2018

 or link designer's viewpoint, parallelization (eg. link bonding) is
 the easiest way to get a network to go faster. Therefore their main
 constraint on speed is reordering, and there is pressure to relax
 that constraint. If RACK becomes widely deployed, the underlying
 networks may introduce more reordering for higher throughput. But
 this may result in excessive reordering that hurts end to end
 performance:

 1. End host packet processing: extreme reordering on high-speed
 networks would incur high CPU cost by greatly reducing the
 effectiveness of aggregation mechanisms, such as large receive
 offload (LRO) and generic receive offload (GRO), and
 significantly increasing the number of ACKs.

 2. Congestion control: TCP congestion control implicitly assumes the
 feedback from ACKs are from the same bottleneck. Therefore it
 cannot handle well scenarios where packets are traversing largely
 disjoint paths.

 3. Loss recovery: Having an excessively large reordering window to
 accommodate widely different latencies from different paths would
 increase the latency of loss recovery.

 An end-to-end transport protocol cannot tell immediately whether a
 hole is reordering or loss. It can only distinguish between the two
 in hindsight if the hole in the sequence space gets filled later
 without a retransmission. How long the sender waits for such
 potential reordering events to settle is determined by the current
 reordering window.

 Given these considerations, a core design philosophy of RACK is to
 adapt to the measured duration of reordering events, within
 reasonable and specific bounds. To accomplish this RACK places the
 following mandates on the reordering window:

 1. The initial RACK reordering window SHOULD be set to a small
 fraction of the round-trip time.

 2. If no reordering has been observed, then RACK SHOULD honor the
 classic 3-DUPACK rule for initiating fast recovery. One simple
 way to implement this is to temporarily override the reorder
 window to 0.

 3. The RACK reordering window SHOULD leverage Duplicate Selective
 Acknowledgement (DSACK) information [RFC3708] to adaptively
 estimate the duration of reordering events.

https://datatracker.ietf.org/doc/html/rfc3708

Cheng, et al. Expires January 3, 2019 [Page 4]

Internet-Draft RACK July 2018

 4. The RACK reordering window MUST be bounded and this bound SHOULD
 be one round trip.

 As a flow starts, either condition 1 or condition 2 or both would
 trigger RACK to start the recovery process quickly. The low initial
 reordering window and use of the 3-DUPACK rule are key to achieving
 low-latency loss recovery for short flows by risking spurious
 retransmissions to recover losses quickly. This rationale is that
 spurious retransmissions for short flows are not expected to produce
 excessive network traffic.

 For long flows the design tolerates reordering within a round trip.
 This handles reordering caused by path divergence in small time
 scales (reordering within the round-trip time of the shortest path),
 which should tolerate much of the reordering from link bonding,
 multipath routing, or link-layer out-of-order delivery. It also
 relaxes ordering constraints to allow sending flights of TCP packets
 on different paths dynamically for better load-balancing (e.g.
 flowlets).

 However, the fact that the initial RACK reordering window is low, and
 the RACK reordering window's adaptive growth is bounded, means that
 there will continue to be a cost to reordering and a limit to RACK's
 adaptation to reordering. This maintains a disincentive for network
 designers and operators to introduce needless or excessive
 reordering, particularly because they have to allow for low round
 trip time paths. This means RACK will not encourage networks to
 perform inconsiderate fine-grained packet-spraying over highly
 disjoint paths with very different characteristics. There are good
 alternative solutions, such as MPTCP, for such networks.

 To conclude, the RACK algorithm aims to adapt to small degrees of
 reordering, quickly recover most losses within one to two round
 trips, and avoid costly retransmission timeouts (RTOs). In the
 presence of reordering, the adaptation algorithm can impose
 sometimes-needless delays when it waits to disambiguate loss from
 reordering, but the penalty for waiting is bounded to one round trip
 and such delays are confined to longer-running flows.

 This document provides a concrete and detailed reordering window
 adaptation algorithm for implementors. We note that the specifics of
 the algorithm are likely to evolve over time. But that is a separate
 engineering optimization that's out of scope for this document.

Cheng, et al. Expires January 3, 2019 [Page 5]

Internet-Draft RACK July 2018

4. Requirements

 The reader is expected to be familiar with the definitions given in
 the TCP congestion control [RFC5681] and selective acknowledgment
 [RFC2018] RFCs. Familiarity with the conservative SACK-based
 recovery for TCP [RFC6675] is not expected but helps.

 RACK has three requirements:

 1. The connection MUST use selective acknowledgment (SACK) options
 [RFC2018].

 2. For each packet sent, the sender MUST store its most recent
 transmission time with (at least) millisecond granularity. For
 round-trip times lower than a millisecond (e.g., intra-datacenter
 communications) microsecond granularity would significantly help
 the detection latency but is not required.

 3. For each packet sent, the sender MUST remember whether the packet
 has been retransmitted or not.

 We assume that requirement 1 implies the sender keeps a SACK
 scoreboard, which is a data structure to store selective
 acknowledgment information on a per-connection basis ([RFC6675]
 section 3). For the ease of explaining the algorithm, we use a
 pseudo-scoreboard that manages the data in sequence number ranges.
 But the specifics of the data structure are left to the implementor.

 RACK does not need any change on the receiver.

5. Definitions of variables

 A sender needs to store these new RACK variables:

 "Packet.xmit_ts" is the time of the last transmission of a data
 packet, including retransmissions, if any. The sender needs to
 record the transmission time for each packet sent and not yet
 acknowledged. The time MUST be stored at millisecond granularity or
 finer.

 "RACK.packet". Among all the packets that have been either
 selectively or cumulatively acknowledged, RACK.packet is the one that
 was sent most recently (including retransmissions).

 "RACK.xmit_ts" is the latest transmission timestamp of RACK.packet.

 "RACK.end_seq" is the ending TCP sequence number of RACK.packet.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675#section-3
https://datatracker.ietf.org/doc/html/rfc6675#section-3

Cheng, et al. Expires January 3, 2019 [Page 6]

Internet-Draft RACK July 2018

 "RACK.rtt" is the RTT of the most recently transmitted packet that
 has been delivered (either cumulatively acknowledged or selectively
 acknowledged) on the connection.

 "RACK.rtt_seq" is the SND.NXT when RACK.rtt is updated.

 "RACK.reo_wnd" is a reordering window computed in the unit of time
 used for recording packet transmission times. It is used to defer
 the moment at which RACK marks a packet lost.

 "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
 connection.

 "RACK.ack_ts" is the time when all the sequences in RACK.packet were
 selectively or cumulatively acknowledged.

 "RACK.reo_wnd_incr" is the multiplier applied to adjust RACK.reo_wnd

 "RACK.reo_wnd_persist" is the number of loss recoveries before
 resetting RACK.reo_wnd "RACK.dsack" indicates if a DSACK option has
 been received since last RACK.reo_wnd change "RACK.pkts_sacked"
 returns the total number of packets selectively acknowledged in the
 SACK scoreboard.

 "RACK.reord" indicates the connection has detected packet reordering
 event(s)

 "RACK.fack" is the highest selectively or cumulatively acknowledged
 sequence

 Note that the Packet.xmit_ts variable is per packet in flight. The
 RACK.xmit_ts, RACK.end_seq, RACK.rtt, RACK.reo_wnd, and RACK.min_RTT
 variables are kept in the per-connection TCP control block.
 RACK.packet and RACK.ack_ts are used as local variables in the
 algorithm.

6. Algorithm Details

6.1. Transmitting a data packet

 Upon transmitting a new packet or retransmitting an old packet,
 record the time in Packet.xmit_ts. RACK does not care if the
 retransmission is triggered by an ACK, new application data, an RTO,
 or any other means.

Cheng, et al. Expires January 3, 2019 [Page 7]

Internet-Draft RACK July 2018

6.2. Upon receiving an ACK

 Step 1: Update RACK.min_RTT.

 Use the RTT measurements obtained via [RFC6298] or [RFC7323] to
 update the estimated minimum RTT in RACK.min_RTT. The sender can
 track a simple global minimum of all RTT measurements from the
 connection, or a windowed min-filtered value of recent RTT
 measurements. This document does not specify an exact approach.

 Step 2: Update RACK stats

 Given the information provided in an ACK, each packet cumulatively
 ACKed or SACKed is marked as delivered in the scoreboard. Among all
 the packets newly ACKed or SACKed in the connection, record the most
 recent Packet.xmit_ts in RACK.xmit_ts if it is ahead of RACK.xmit_ts.
 Sometimes the timestamps of RACK.Packet and Packet could carry the
 same transmit timestamps due to clock granularity or segmentation
 offloading (i.e. the two packets were sent as a jumbo frame into the
 NIC). In that case the sequence numbers of RACK.end_seq and
 Packet.end_seq are compared to break the tie.

 Since an ACK can also acknowledge retransmitted data packets,
 RACK.rtt can be vastly underestimated if the retransmission was
 spurious. To avoid that, ignore a packet if any of its TCP sequences
 have been retransmitted before and either of two conditions is true:

 1. The Timestamp Echo Reply field (TSecr) of the ACK's timestamp
 option [RFC7323], if available, indicates the ACK was not
 acknowledging the last retransmission of the packet.

 2. The packet was last retransmitted less than RACK.min_rtt ago.

 If the ACK is not ignored as invalid, update the RACK.rtt to be the
 RTT sample calculated using this ACK, and continue. If this ACK or
 SACK was for the most recently sent packet, then record the
 RACK.xmit_ts timestamp and RACK.end_seq sequence implied by this ACK.
 Otherwise exit here and omit the following steps.

 Notice that the second condition above is a heuristic. This
 heuristic would fail to update RACK stats if the packet is spuriously
 retransmitted because of a recent minimum RTT decrease (e.g. path
 change). Consequentially RACK may not detect losses from ACK events
 and the recovery resorts to the (slower) TLP or RTO timer-based
 events. However such events should be rare and the connection would
 pick up the new minimum RTT when the recovery ends to avoid repeated
 similar failures.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323

Cheng, et al. Expires January 3, 2019 [Page 8]

Internet-Draft RACK July 2018

 Step 2 may be summarized in pseudocode as:

 RACK_sent_after(t1, seq1, t2, seq2):
 If t1 > t2:
 Return true
 Else if t1 == t2 AND seq1 > seq2:
 Return true
 Else:
 Return false

 RACK_update():
 For each Packet newly acknowledged cumulatively or selectively:
 rtt = Now() - Packet.xmit_ts
 If Packet.retransmitted is TRUE:
 If ACK.ts_option.echo_reply < Packet.xmit_ts:
 Return
 If rtt < RACK.min_rtt:
 Return

 RACK.rtt = rtt
 If RACK_sent_after(Packet.xmit_ts, Packet.end_seq
 RACK.xmit_ts, RACK.end_seq):
 RACK.xmit_ts = Packet.xmit_ts

 Step 3: Detect packet reordering

 To detect reordering, the sender looks for original data packets
 being delivered out of order in sequence space. The sender tracks
 the highest sequence selectively or cumulatively acknowledged in the
 RACK.fack variable. The name fack stands for the most forward ACK
 originated from the [FACK] draft. If the ACK selectively or
 cumulatively acknowledges an unacknowledged and also never
 retransmitted sequence below RACK.fack, then the corresponding packet
 has been reordered and RACK.reord is set to 1.

 The heuristic above only detects reordering if the re-ordered packet
 has not yet been retransmitted. This is a major drawback because if
 RACK has a low reordering window and the network is reordering
 packets, RACK may falsely retransmit frequently. Consequently RACK
 may fail to detect reordering to increase the reordering window,
 because the reordered packets were already (falsely) retransmitted.

 DSACK [RFC3708] can help mitigate this issue. The false
 retransmission would solicit DSACK option in the ACK. Therefore if
 the ACK has a DSACK option covering some sequence that were both
 acknowledged and retransmitted, this implies the original packet was
 reordered but RACK retransmitted the packet too quickly and should
 set RACK.reord to 1.

https://datatracker.ietf.org/doc/html/rfc3708

Cheng, et al. Expires January 3, 2019 [Page 9]

Internet-Draft RACK July 2018

 RACK_detect_reordering():
 For each Packet newly acknowledged cumulatively or selectively:
 If Packet.end_seq > RACK.fack:
 RACK.fack = Packet.end_seq
 Else if Packet.end_seq < RACK.fack AND
 Packet.retransmitted is FALSE:
 RACK.reord = TRUE
 For each Packet covered by the DSACK option:
 If Packet.retransmitted is TRUE:
 RACK.reord = TRUE

 Step 4: Update RACK reordering window

 To handle the prevalent small degree of reordering, RACK.reo_wnd
 serves as an allowance for settling time before marking a packet
 lost. This section documents a detailed algorithm following the
 design rationale section. RACK starts initially with a conservative
 window of min_RTT/4. If no reordering has been observed, RACK uses
 RACK.reo_wnd of 0 during loss recovery, in order to retransmit
 quickly, or when the number of DUPACKs exceeds the classic DUPACK
 threshold. The subtle difference of this approach and conventional
 one [RFC5681][RFC6675] is dicussed later in the section of "RACK and
 TLP discussions".

 Further, RACK MAY use DSACK [RFC3708] to adapt the reordering window,
 to higher degrees of reordering, if DSACK is supported. Receiving an
 ACK with a DSACK indicates a spurious retransmission, which in turn
 suggests that the RACK reordering window, RACK.reo_wnd, is likely too
 small. The sender MAY increase the RACK.reo_wnd window linearly for
 every round trip in which the sender receives a DSACK, so that after
 N distinct round trips in which a DSACK is received, the RACK.reo_wnd
 becomes (N+1) * min_RTT / 4, with an upper-bound of SRTT. The
 inflated RACK.reo_wnd would persist for 16 loss recoveries and after
 which it resets to its starting value, min_RTT / 4.

 The following pseudocode implements above algorithm. Note that
 extensions that require additional TCP features (e.g. DSACK) would
 work if the feature functions simply return false.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3708

Cheng, et al. Expires January 3, 2019 [Page 10]

Internet-Draft RACK July 2018

 RACK_update_reo_wnd():
 RACK.min_RTT = TCP_min_RTT()
 If DSACK option is present:
 RACK.dsack = true

 If SND.UNA < RACK.rtt_seq:
 RACK.dsack = false /* React to DSACK once per round trip */

 If RACK.dsack:
 RACK.reo_wnd_incr += 1
 RACK.dsack = false
 RACK.rtt_seq = SND.NXT
 RACK.reo_wnd_persist = 16 /* Keep window for 16 recoveries */
 Else if exiting loss recovery:
 RACK.reo_wnd_persist -= 1
 If RACK.reo_wnd_persist <= 0:
 RACK.reo_wnd_incr = 1

 If RACK.reordering_seen is FALSE:
 If in loss recovery: /* If in fast or timeout recovery */
 RACK.reo_wnd = 0
 Return
 Else if RACK.pkts_sacked >= RACK.dupthresh:
 RACK.reo_wnd = 0
 return
 RACK.reo_wnd = RACK.min_RTT / 4 * RACK.reo_wnd_incr
 RACK.reo_wnd = min(RACK.reo_wnd, SRTT)

 Step 5: Detect losses.

 For each packet that has not been SACKed, if RACK.xmit_ts is after
 Packet.xmit_ts + RACK.reo_wnd, then mark the packet (or its
 corresponding sequence range) lost in the scoreboard. The rationale
 is that if another packet that was sent later has been delivered, and
 the reordering window or "reordering settling time" has already
 passed, then the packet was likely lost.

 If another packet that was sent later has been delivered, but the
 reordering window has not passed, then it is not yet safe to deem the
 unacked packet lost. Using the basic algorithm above, the sender
 would wait for the next ACK to further advance RACK.xmit_ts; but this
 risks a timeout (RTO) if no more ACKs come back (e.g, due to losses
 or application limit). For timely loss detection, the sender MAY
 install a "reordering settling" timer set to fire at the earliest
 moment at which it is safe to conclude that some packet is lost. The
 earliest moment is the time it takes to expire the reordering window
 of the earliest unacked packet in flight.

Cheng, et al. Expires January 3, 2019 [Page 11]

Internet-Draft RACK July 2018

 This timer expiration value can be derived as follows. As a starting
 point, we consider that the reordering window has passed if the
 RACK.packet was sent sufficiently after the packet in question, or a
 sufficient time has elapsed since the RACK.packet was S/ACKed, or
 some combination of the two. More precisely, RACK marks a packet as
 lost if the reordering window for a packet has elapsed through the
 sum of:

 1. delta in transmit time between a packet and the RACK.packet

 2. delta in time between RACK.ack_ts and now

 So we mark a packet as lost if:

 RACK.xmit_ts >= Packet.xmit_ts
 AND
 (RACK.xmit_ts - Packet.xmit_ts) + (now - RACK.ack_ts) >= RACK.reo_wnd

 If we solve this second condition for "now", the moment at which we
 can declare a packet lost, then we get:

 now >= Packet.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

 Then (RACK.ack_ts - RACK.xmit_ts) is just the RTT of the packet we
 used to set RACK.xmit_ts, so this reduces to:

 Packet.xmit_ts + RACK.rtt + RACK.reo_wnd - now <= 0

 The following pseudocode implements the algorithm above. When an ACK
 is received or the RACK timer expires, call RACK_detect_loss(). The
 algorithm includes an additional optimization to break timestamp ties
 by using the TCP sequence space. The optimization is particularly
 useful to detect losses in a timely manner with TCP Segmentation
 Offload, where multiple packets in one TSO blob have identical
 timestamps. It is also useful when the timestamp clock granularity
 is close to or longer than the actual round trip time.

Cheng, et al. Expires January 3, 2019 [Page 12]

Internet-Draft RACK July 2018

RACK_detect_loss():
 timeout = 0

 For each packet, Packet, not acknowledged yet:
 If Packet.lost is TRUE or Packet.retransmitted is FALSE:
 Continue /* Lost packet not retransmitted yet */

 If RACK_sent_after(RACK.xmit_ts, RACK.end_seq,
 Packet.xmit_ts, Packet.end_seq):
 remaining = Packet.xmit_ts + RACK.rtt + RACK.reo_wnd - Now()
 If remaining <= 0:
 Packet.lost = TRUE
 Else:
 timeout = max(remaining, timeout)

 If timeout != 0
 Arm a timer to call RACK_detect_loss() after timeout

 Implementation optimization: looping through packets in the SACK
 scoreboard above could be very costly on large-BDP networks since the
 inflight could be very large. If the implementation can organize the
 scoreboard data structures to have packets sorted by the last
 (re)transmission time, then the loop can start on the least recently
 sent packet and abort on the first packet sent after RACK.time_ts.
 This can be implemented by using a seperate list sorted in time
 order. The implementation inserts the packet at the tail of the list
 when it is (re)transmitted, and removes a packet from the list when
 it is delivered or marked lost. We RECOMMEND such an optimization
 because it enables implementations to support high-BDP networks.
 This optimization is implemented in Linux and sees orders of
 magnitude improvement in CPU usage on high-speed WAN networks.

6.3. Tail Loss Probe: fast recovery for tail losses

 This section describes a supplemental algorithm, Tail Loss Probe
 (TLP), which leverages RACK to further reduce RTO recoveries. TLP
 triggers fast recovery to quickly repair tail losses that can
 otherwise be recovered by RTOs only. After an original data
 transmission, TLP sends a probe data segment within one to two RTTs.
 The probe data segment can either be new, previously unsent data, or
 a retransmission of previously sent data just below SND.NXT. In
 either case the goal is to elicit more feedback from the receiver, in
 the form of an ACK (potentially with SACK blocks), to allow RACK to
 trigger fast recovery instead of an RTO.

 An RTO occurs when the first unacknowledged sequence number is not
 acknowledged after a conservative period of time has elapsed
 [RFC6298]. Common causes of RTOs include:

https://datatracker.ietf.org/doc/html/rfc6298

Cheng, et al. Expires January 3, 2019 [Page 13]

Internet-Draft RACK July 2018

 1. The entire flight of data is lost.

 2. Tail losses of data segments at the end of an application
 transaction.

 3. Tail losses of ACKs at the end of an application transaction.

 4. Lost retransmits, which can halt fast recovery based on [RFC6675]
 if the ACK stream completely dries up. For example, consider a
 window of three data packets (P1, P2, P3) that are sent; P1 and
 P2 are dropped. On receipt of a SACK for P3, RACK marks P1 and
 P2 as lost and retransmits them as R1 and R2. Suppose R1 and R2
 are lost as well, so there are no more returning ACKs to detect
 R1 and R2 as lost. Recovery stalls.

 5. An unexpectedly long round-trip time (RTT). This can cause ACKs
 to arrive after the RTO timer expires. The F-RTO algorithm
 [RFC5682] is designed to detect such spurious retransmission
 timeouts and at least partially undo the consequences of such
 events, but F-RTO cannot be used in many situations.

6.4. Tail Loss Probe: An Example

 Following is an example of TLP. All events listed are at a TCP
 sender.

 1. Sender transmits segments 1-10: 1, 2, 3, ..., 8, 9, 10. There is
 no more new data to transmit. A PTO is scheduled to fire in 2
 RTTs, after the transmission of the 10th segment.

 2. Sender receives acknowledgements (ACKs) for segments 1-5;
 segments 6-10 are lost and no ACKs are received. The sender
 reschedules its PTO timer relative to the last received ACK,
 which is the ACK for segment 5 in this case. The sender sets the
 PTO interval using the calculation described in step (2) of the
 algorithm.

 3. When PTO fires, sender retransmits segment 10.

 4. After an RTT, a SACK for packet 10 arrives. The ACK also carries
 SACK holes for segments 6, 7, 8 and 9. This triggers RACK-based
 loss recovery.

 5. The connection enters fast recovery and retransmits the remaining
 lost segments.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5682

Cheng, et al. Expires January 3, 2019 [Page 14]

Internet-Draft RACK July 2018

6.5. Tail Loss Probe Algorithm Details

 We define the terminology used in specifying the TLP algorithm:

 FlightSize: amount of outstanding data in the network, as defined in
 [RFC5681].

 RTO: The transport's retransmission timeout (RTO) is based on
 measured round-trip times (RTT) between the sender and receiver, as
 specified in [RFC6298] for TCP. PTO: Probe timeout (PTO) is a timer
 event indicating that an ACK is overdue. Its value is constrained to
 be smaller than or equal to an RTO.

 SRTT: smoothed round-trip time, computed as specified in [RFC6298].

 The TLP algorithm has three phases, which we discuss in turn.

6.5.1. Phase 1: Scheduling a loss probe

 Step 1: Check conditions for scheduling a PTO.

 A sender should check to see if it should schedule a PTO in the
 following situations:

 1. After transmitting new data that was not itself a TLP probe

 2. Upon receiving an ACK that cumulatively acknowledges data

 3. Upon receiving a SACK that selectively acknowledges data that was
 last sent before the segment with SEG.SEQ=SND.UNA was last
 (re)transmitted

 A sender should schedule a PTO only if all of the following
 conditions are met:

 1. The connection supports SACK [RFC2018]

 2. The connection has no SACKed sequences in the SACK scoreboard

 3. The connection is not in loss recovery

 If a PTO can be scheduled according to these conditions, the sender
 should schedule a PTO. If there was a previously scheduled PTO or
 RTO pending, then that pending PTO or RTO should first be cancelled,
 and then the new PTO should be scheduled.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2018

Cheng, et al. Expires January 3, 2019 [Page 15]

Internet-Draft RACK July 2018

 If a PTO cannot be scheduled according to these conditions, then the
 sender MUST arm the RTO timer if there is unacknowledged data in
 flight.

 Step 2: Select the duration of the PTO.

 A sender SHOULD use the following logic to select the duration of a
 PTO:

 TLP_timeout():
 If SRTT is available:
 PTO = 2 * SRTT
 If FlightSize = 1:
 PTO += WCDelAckT
 Else:
 PTO += 2ms
 Else:
 PTO = 1 sec

 If Now() + PTO > TCP_RTO_expire():
 PTO = TCP_RTO_expire() - Now()

 Aiming for a PTO value of 2*SRTT allows a sender to wait long enough
 to know that an ACK is overdue. Under normal circumstances, i.e. no
 losses, an ACK typically arrives in one SRTT. But choosing PTO to be
 exactly an SRTT is likely to generate spurious probes given that
 network delay variance and even end-system timings can easily push an
 ACK to be above an SRTT. We chose PTO to be the next integral
 multiple of SRTT.

 Similarly, network delay variations and end-system processing
 latencies and timer granularities can easily delay ACKs beyond
 2*SRTT, so senders SHOULD add at least 2ms to a computed PTO value
 (and MAY add more if the sending host OS timer granularity is more
 coarse than 1ms).

 WCDelAckT stands for worst case delayed ACK timer. When FlightSize
 is 1, PTO is inflated by WCDelAckT time to compensate for a potential
 long delayed ACK timer at the receiver. The RECOMMENDED value for
 WCDelAckT is 200ms.

 Finally, if the time at which an RTO would fire (here denoted
 "TCP_RTO_expire") is sooner than the computed time for the PTO, then
 a probe is scheduled to be sent at that earlier time.

Cheng, et al. Expires January 3, 2019 [Page 16]

Internet-Draft RACK July 2018

6.5.2. Phase 2: Sending a loss probe

 When the PTO fires, transmit a probe data segment:

 TLP_send_probe():
 If an unsent segment exists AND
 the receive window allows new data to be sent:
 Transmit the lowest-sequence unsent segment of up to SMSS
 Increment FlightSize by the size of the newly-sent segment
 Else:
 Retransmit the highest-sequence segment sent so far
 The cwnd remains unchanged

 When the loss probe is a retransmission, the sender uses the highest-
 sequence segment sent so far. This is in order to deal with the
 retransmission ambiguity problem in TCP. Suppose a sender sends N
 segments, and then retransmits the last segment (segment N) as a loss
 probe, and then the sender receives a SACK for segment N. As long as
 the sender waits for any required RACK reordering settling timer to
 then expire, it doesn't matter if that SACK was for the original
 transmission of segment N or the TLP retransmission; in either case
 the arrival of the SACK for segment N provides evidence that the N-1
 segments preceding segment N were likely lost. In the case where
 there is only one original outstanding segment of data (N=1), the
 same logic (trivially) applies: an ACK for a single outstanding
 segment tells the sender the N-1=0 segments preceding that segment
 were lost. Furthermore, whether there are N>1 or N=1 outstanding
 segments, there is a question about whether the original last segment
 or its TLP retransmission were lost; the sender estimates this using
 TLP recovery detection (see below).

 Note that after transmitting a TLP, the sender MUST arm an RTO timer,
 and not the PTO timer. This ensures that the sender does not send
 repeated, back-to-back TLP probes.

6.5.3. Phase 3: ACK processing

 On each incoming ACK, the sender should check the conditions in Step
 1 of Phase 1 to see if it should schedule (or reschedule) the loss
 probe timer.

6.6. TLP recovery detection

 If the only loss in an outstanding window of data was the last
 segment, then a TLP loss probe retransmission of that data segment
 might repair the loss. TLP recovery detection examines ACKs to
 detect when the probe might have repaired a loss, and thus allows

Cheng, et al. Expires January 3, 2019 [Page 17]

Internet-Draft RACK July 2018

 congestion control to properly reduce the congestion window (cwnd)
 [RFC5681].

 Consider a TLP retransmission episode where a sender retransmits a
 tail packet in a flight. The TLP retransmission episode ends when
 the sender receives an ACK with a SEG.ACK above the SND.NXT at the
 time the episode started. During the TLP retransmission episode the
 sender checks for a duplicate ACK or D-SACK indicating that both the
 original segment and TLP retransmission arrived at the receiver,
 meaning there was no loss that needed repairing. If the TLP sender
 does not receive such an indication before the end of the TLP
 retransmission episode, then it MUST estimate that either the
 original data segment or the TLP retransmission were lost, and
 congestion control MUST react appropriately to that loss as it would
 any other loss.

 Since a significant fraction of the hosts that support SACK do not
 support duplicate selective acknowledgments (D-SACKs) [RFC2883] the
 TLP algorithm for detecting such lost segments relies only on basic
 SACK support [RFC2018].

 Definitions of variables

 TLPRxtOut: a boolean indicating whether there is an unacknowledged
 TLP retransmission.

 TLPHighRxt: the value of SND.NXT at the time of sending a TLP
 retransmission.

6.6.1. Initializing and resetting state

 When a connection is created, or suffers a retransmission timeout, or
 enters fast recovery, it executes the following:

 TLPRxtOut = false

6.6.2. Recording loss probe states

 Senders MUST only send a TLP loss probe retransmission if TLPRxtOut
 is false. This ensures that at any given time a connection has at
 most one outstanding TLP retransmission. This allows the sender to
 use the algorithm described in this section to estimate whether any
 data segments were lost.

 Note that this condition only restricts TLP loss probes that are
 retransmissions. There may be an arbitrary number of outstanding
 unacknowledged TLP loss probes that consist of new, previously-unsent

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2018

Cheng, et al. Expires January 3, 2019 [Page 18]

Internet-Draft RACK July 2018

 data, since the retransmission timeout and fast recovery algorithms
 are sufficient to detect losses of such probe segments.

 Upon sending a TLP probe that is a retransmission, the sender sets
 TLPRxtOut to true and TLPHighRxt to SND.NXT.

 Detecting recoveries accomplished by loss probes

 Step 1: Track ACKs indicating receipt of original and retransmitted
 segments

 A sender considers both the original segment and TLP probe
 retransmission segment as acknowledged if either 1 or 2 are true:

 1. This is a duplicate acknowledgment (as defined in [RFC5681],
 section 2), and all of the following conditions are met:

 1. TLPRxtOut is true

 2. SEG.ACK == TLPHighRxt

 3. SEG.ACK == SND.UNA

 4. the segment contains no SACK blocks for sequence ranges above
 TLPHighRxt

 5. the segment contains no data

 6. the segment is not a window update

 2. This is an ACK acknowledging a sequence number at or above
 TLPHighRxt and it contains a D-SACK; i.e. all of the following
 conditions are met:

 1. TLPRxtOut is true

 2. SEG.ACK >= TLPHighRxt

 3. the ACK contains a D-SACK block

 If neither conditions are met, then the sender estimates that the
 receiver received both the original data segment and the TLP probe
 retransmission, and so the sender considers the TLP episode to be
 done, and records that fact by setting TLPRxtOut to false.

 Step 2: Mark the end of a TLP retransmission episode and detect
 losses

https://datatracker.ietf.org/doc/html/rfc5681#section-2
https://datatracker.ietf.org/doc/html/rfc5681#section-2

Cheng, et al. Expires January 3, 2019 [Page 19]

Internet-Draft RACK July 2018

 If the sender receives a cumulative ACK for data beyond the TLP loss
 probe retransmission then, in the absence of reordering on the return
 path of ACKs, it should have received any ACKs for the original
 segment and TLP probe retransmission segment. At that time, if the
 TLPRxtOut flag is still true and thus indicates that the TLP probe
 retransmission remains unacknowledged, then the sender should presume
 that at least one of its data segments was lost, so it SHOULD invoke
 a congestion control response equivalent to fast recovery.

 More precisely, on each ACK the sender executes the following:

 if (TLPRxtOut and SEG.ACK >= TLPHighRxt) {
 TLPRxtOut = false
 EnterRecovery()
 ExitRecovery()
 }

7. RACK and TLP discussions

7.1. Advantages

 The biggest advantage of RACK is that every data packet, whether it
 is an original data transmission or a retransmission, can be used to
 detect losses of the packets sent chronologically prior to it.

 Example: TAIL DROP. Consider a sender that transmits a window of
 three data packets (P1, P2, P3), and P1 and P3 are lost. Suppose the
 transmission of each packet is at least RACK.reo_wnd (1 millisecond
 by default) after the transmission of the previous packet. RACK will
 mark P1 as lost when the SACK of P2 is received, and this will
 trigger the retransmission of P1 as R1. When R1 is cumulatively
 acknowledged, RACK will mark P3 as lost and the sender will
 retransmit P3 as R3. This example illustrates how RACK is able to
 repair certain drops at the tail of a transaction without any timer.
 Notice that neither the conventional duplicate ACK threshold
 [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]
 algorithm can detect such losses, because of the required packet or
 sequence count.

 Example: LOST RETRANSMIT. Consider a window of three data packets
 (P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the
 transmission of each packet is at least RACK.reo_wnd (1 millisecond
 by default) after the transmission of the previous packet. When P3
 is SACKed, RACK will mark P1 and P2 lost and they will be
 retransmitted as R1 and R2. Suppose R1 is lost again but R2 is
 SACKed; RACK will mark R1 lost for retransmission again. Again,
 neither the conventional three duplicate ACK threshold approach, nor
 [RFC6675], nor the Forward Acknowledgment [FACK] algorithm can detect

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires January 3, 2019 [Page 20]

Internet-Draft RACK July 2018

 such losses. And such a lost retransmission is very common when TCP
 is being rate-limited, particularly by token bucket policers with
 large bucket depth and low rate limit. Retransmissions are often
 lost repeatedly because standard congestion control requires multiple
 round trips to reduce the rate below the policed rate.

 Example: SMALL DEGREE OF REORDERING. Consider a common reordering
 event: a window of packets are sent as (P1, P2, P3). P1 and P2 carry
 a full payload of MSS octets, but P3 has only a 1-octet payload.
 Suppose the sender has detected reordering previously and thus
 RACK.reo_wnd is min_RTT/4. Now P3 is reordered and delivered first,
 before P1 and P2. As long as P1 and P2 are delivered within
 min_RTT/4, RACK will not consider P1 and P2 lost. But if P1 and P2
 are delivered outside the reordering window, then RACK will still
 falsely mark P1 and P2 lost. We discuss how to reduce false
 positives in the end of this section.

 The examples above show that RACK is particularly useful when the
 sender is limited by the application, which is common for
 interactive, request/response traffic. Similarly, RACK still works
 when the sender is limited by the receive window, which is common for
 applications that use the receive window to throttle the sender.

 For some implementations (e.g., Linux), RACK works quite efficiently
 with TCP Segmentation Offload (TSO). RACK always marks the entire
 TSO blob lost because the packets in the same TSO blob have the same
 transmission timestamp. By contrast, the algorithms based on
 sequence counting (e.g., [RFC6675][RFC5681]) may mark only a subset
 of packets in the TSO blob lost, forcing the stack to perform
 expensive fragmentation of the TSO blob, or to selectively tag
 individual packets lost in the scoreboard.

7.2. Disadvantages

 RACK requires the sender to record the transmission time of each
 packet sent at a clock granularity of one millisecond or finer. TCP
 implementations that record this already for RTT estimation do not
 require any new per-packet state. But implementations that are not
 yet recording packet transmission times will need to add per-packet
 internal state (commonly either 4 or 8 octets per packet or TSO blob)
 to track transmission times. In contrast, the conventional [RFC6675]
 loss detection approach does not require any per-packet state beyond
 the SACK scoreboard. This is particularly useful on ultra-low RTT
 networks where the RTT is far less than the sender TCP clock
 grainularity (e.g. inside data-centers).

 RACK can easily and optionally support the conventional approach in
 [RFC6675][RFC5681] by resetting the reordering window to zero when

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires January 3, 2019 [Page 21]

Internet-Draft RACK July 2018

 the threshold is met. Note that this approach differs slightly from
 [RFC6675] which considers a packet lost when at least #DupThresh
 higher-sequenc packets are SACKed. RACK's approach considers a
 packet lost when at least one higher sequence packet is SACKed and
 the total number of SACKed packets is at least DupThresh. For
 example, suppose a connection sends 10 packets, and packets 3, 5, 7
 are SACKed. [RFC6675] considers packets 1 and 2 lost. RACK
 considers packets 1, 2, 4, 6 lost.

7.3. Adjusting the reordering window

 When the sender detects packet reordering, RACK uses a reordering
 window of min_rtt / 4. It uses the minimum RTT to accommodate
 reordering introduced by packets traversing slightly different paths
 (e.g., router-based parallelism schemes) or out-of-order deliveries
 in the lower link layer (e.g., wireless links using link-layer
 retransmission). RACK uses a quarter of minimum RTT because Linux
 TCP used the same factor in its implementation to delay Early
 Retransmit [RFC5827] to reduce spurious loss detections in the
 presence of reordering, and experience shows that this seems to work
 reasonably well. We have evaluated using the smoothed RTT (SRTT from
 [RFC6298] RTT estimation) or the most recently measured RTT
 (RACK.rtt) using an experiment similar to that in the Performance
 Evaluation section. They do not make any significant difference in
 terms of total recovery latency.

7.4. Relationships with other loss recovery algorithms

 The primary motivation of RACK is to ultimately provide a simple and
 general replacement for some of the standard loss recovery algorithms
 [RFC5681][RFC6675][RFC5827][RFC4653], as well as some nonstandard
 ones [FACK][THIN-STREAM]. While RACK can be a supplemental loss
 detection mechanism on top of these algorithms, this is not
 necessary, because RACK implicitly subsumes most of them.

 [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate ACK
 threshold based on the current or previous flight sizes. RACK takes
 a different approach, by using only one ACK event and a reordering
 window. RACK can be seen as an extended Early Retransmit [RFC5827]
 without a FlightSize limit but with an additional reordering window.
 [FACK] considers an original packet to be lost when its sequence
 range is sufficiently far below the highest SACKed sequence. In some
 sense RACK can be seen as a generalized form of FACK that operates in
 time space instead of sequence space, enabling it to better handle
 reordering, application-limited traffic, and lost retransmissions.

 Nevertheless RACK is still an experimental algorithm. Since the
 oldest loss detection algorithm, the 3 duplicate ACK threshold

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827

Cheng, et al. Expires January 3, 2019 [Page 22]

Internet-Draft RACK July 2018

 [RFC5681], has been standardized and widely deployed. RACK can
 easily and optionally support the conventional approach for
 compatibility.

 RACK is compatible with and does not interfere with the the standard
 RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eifel
 algorithms [RFC3522]. This is because RACK only detects loss by
 using ACK events. It neither changes the RTO timer calculation nor
 detects spurious timeouts.

 Furthermore, RACK naturally works well with Tail Loss Probe [TLP]
 because a tail loss probe solicits either an ACK or SACK, which can
 be used by RACK to detect more losses. RACK can be used to relax
 TLP's requirement for using FACK and retransmitting the the highest-
 sequenced packet, because RACK is agnostic to packet sequence
 numbers, and uses transmission time instead. Thus TLP could be
 modified to retransmit the first unacknowledged packet, which could
 improve application latency.

7.5. Interaction with congestion control

 RACK intentionally decouples loss detection from congestion control.
 RACK only detects losses; it does not modify the congestion control
 algorithm [RFC5681][RFC6937]. However, RACK may detect losses
 earlier or later than the conventional duplicate ACK threshold
 approach does. A packet marked lost by RACK SHOULD NOT be
 retransmitted until congestion control deems this appropriate.
 Specifically, Proportional Rate Reduction [RFC6937] SHOULD be used
 when using RACK.

 RACK is applicable for both fast recovery and recovery after a
 retransmission timeout (RTO) in [RFC5681]. RACK applies equally to
 fast recovery and RTO recovery because RACK is purely based on the
 transmission time order of packets. When a packet retransmitted by
 RTO is acknowledged, RACK will mark any unacked packet sent
 sufficiently prior to the RTO as lost, because at least one RTT has
 elapsed since these packets were sent.

 The following simple example compares how RACK and non-RACK loss
 detection interacts with congestion control: suppose a TCP sender has
 a congestion window (cwnd) of 20 packets on a SACK-enabled
 connection. It sends 10 data packets and all of them are lost.

 Without RACK, the sender would time out, reset cwnd to 1, and
 retransmit the first packet. It would take four round trips (1 + 2 +
 4 + 3 = 10) to retransmit all the 10 lost packets using slow start.
 The recovery latency would be RTO + 4*RTT, with an ending cwnd of 4
 packets due to congestion window validation.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7765
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et al. Expires January 3, 2019 [Page 23]

Internet-Draft RACK July 2018

 With RACK, a sender would send the TLP after 2*RTT and get a DUPACK.
 If the sender implements Proportional Rate Reduction [RFC6937] it
 would slow start to retransmit the remaining 9 lost packets since the
 number of packets in flight (0) is lower than the slow start
 threshold (10). The slow start would again take four round trips (1
 + 2 + 4 + 3 = 10). The recovery latency would be 2*RTT + 4*RTT, with
 an ending cwnd set to the slow start threshold of 10 packets.

 In both cases, the sender after the recovery would be in congestion
 avoidance. The difference in recovery latency (RTO + 4*RTT vs 6*RTT)
 can be significant if the RTT is much smaller than the minimum RTO (1
 second in RFC6298) or if the RTT is large. The former case is common
 in local area networks, data-center networks, or content distribution
 networks with deep deployments. The latter case is more common in
 developing regions with highly congested and/or high-latency
 networks. The ending congestion window after recovery also impacts
 subsequent data transfer.

7.6. TLP recovery detection with delayed ACKs

 Delayed ACKs complicate the detection of repairs done by TLP, since
 with a delayed ACK the sender receives one fewer ACK than would
 normally be expected. To mitigate this complication, before sending
 a TLP loss probe retransmission, the sender should attempt to wait
 long enough that the receiver has sent any delayed ACKs that it is
 withholding. The sender algorithm described above features such a
 delay, in the form of WCDelAckT. Furthermore, if the receiver
 supports duplicate selective acknowledgments (D-SACKs) [RFC2883] then
 in the case of a delayed ACK the sender's TLP recovery detection
 algorithm (see above) can use the D-SACK information to infer that
 the original and TLP retransmission both arrived at the receiver.

 If there is ACK loss or a delayed ACK without a D-SACK, then this
 algorithm is conservative, because the sender will reduce cwnd when
 in fact there was no packet loss. In practice this is acceptable,
 and potentially even desirable: if there is reverse path congestion
 then reducing cwnd can be prudent.

7.7. RACK for other transport protocols

 RACK can be implemented in other transport protocols. The algorithm
 can be simplified by skipping step 3 if the protocol can support a
 unique transmission or packet identifier (e.g. TCP timestamp options
 [RFC7323]). For example, the QUIC protocol implements RACK [QUIC-
 LR].

https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc7323

Cheng, et al. Expires January 3, 2019 [Page 24]

Internet-Draft RACK July 2018

8. Experiments and Performance Evaluations

 RACK and TLP have been deployed at Google, for both connections to
 users in the Internet and internally. We conducted a performance
 evaluation experiment for RACK and TLP on a small set of Google Web
 servers in Western Europe that serve mostly European and some African
 countries. The experiment lasted three days in March 2017. The
 servers were divided evenly into four groups of roughly 5.3 million
 flows each:

 Group 1 (control): RACK off, TLP off, RFC 6675 on

 Group 2: RACK on, TLP off, RFC 6675 on

 Group 3: RACK on, TLP on, RFC 6675 on

 Group 4: RACK on, TLP on, RFC 6675 off

 All groups used Linux with CUBIC congestion control, an initial
 congestion window of 10 packets, and the fq/pacing qdisc. In terms
 of specific recovery features, all groups enabled RFC5682 (F-RTO) but
 disabled FACK because it is not an IETF RFC. FACK was excluded
 because the goal of this setup is to compare RACK and TLP to RFC-
 based loss recoveries. Since TLP depends on either FACK or RACK, we
 could not run another group that enables TLP only (with both RACK and
 FACK disabled). Group 4 is to test whether RACK plus TLP can
 completely replace the DupThresh-based [RFC6675].

 The servers sit behind a load balancer that distributes the
 connections evenly across the four groups.

 Each group handles a similar number of connections and sends and
 receives similar amounts of data. We compare total time spent in
 loss recovery across groups. The recovery time is measured from when
 the recovery and retransmission starts, until the remote host has
 acknowledged the highest sequence (SND.NXT) at the time the recovery
 started. Therefore the recovery includes both fast recoveries and
 timeout recoveries.

 Our data shows that Group 2 recovery latency is only 0.3% lower than
 the Group 1 recovery latency. But Group 3 recovery latency is 25%
 lower than Group 1 due to a 40% reduction in RTO-triggered
 recoveries! Therefore it is important to implement both TLP and RACK
 for performance. Group 4's total recovery latency is 0.02% lower
 than Group 3's, indicating that RACK plus TLP can successfully
 replace RFC6675 as a standalone recovery mechanism.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires January 3, 2019 [Page 25]

Internet-Draft RACK July 2018

 We want to emphasize that the current experiment is limited in terms
 of network coverage. The connectivity in Western Europe is fairly
 good, therefore loss recovery is not a major performance bottleneck.
 We plan to expand our experiments to regions with worse connectivity,
 in particular on networks with strong traffic policing.

9. Security Considerations

 RACK does not change the risk profile for TCP.

 An interesting scenario is ACK-splitting attacks [SCWA99]: for an
 MSS-size packet sent, the receiver or the attacker might send MSS
 ACKs that SACK or acknowledge one additional byte per ACK. This
 would not fool RACK. RACK.xmit_ts would not advance because all the
 sequences of the packet are transmitted at the same time (carry the
 same transmission timestamp). In other words, SACKing only one byte
 of a packet or SACKing the packet in entirety have the same effect on
 RACK.

10. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

11. Acknowledgments

 The authors thank Matt Mathis for his insights in FACK and Michael
 Welzl for his per-packet timer idea that inspired this work. Eric
 Dumazet, Randy Stewart, Van Jacobson, Ian Swett, Rick Jones, Jana
 Iyengar, Hiren Panchasara, Praveen Balasubramanian, Yoshifumi
 Nishida, and Bob Briscoe contributed to the draft and the
 implementations in Linux, FreeBSD and QUIC.

12. References

12.1. Normative References

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2883

Cheng, et al. Expires January 3, 2019 [Page 26]

Internet-Draft RACK July 2018

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
 November 2006.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC5827] Allman, M., Ayesta, U., Wang, L., Blanton, J., and P.
 Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, April 2010.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298, June
 2011.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, August 2012.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", May 2013.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance",
 September 2014.

 [RFC793] Postel, J., "Transmission Control Protocol", September
 1981.

12.2. Informative References

 [FACK] Mathis, M. and M. Jamshid, "Forward acknowledgement:
 refining TCP congestion control", ACM SIGCOMM Computer
 Communication Review, Volume 26, Issue 4, Oct. 1996. ,
 1996.

 [POLICER16]
 Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng,
 Y., Karim, T., Katz-Bassett, E., and R. Govindan, "An
 Analysis of Traffic Policing in the Web", ACM SIGCOMM ,
 2016.

https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires January 3, 2019 [Page 27]

Internet-Draft RACK July 2018

 [QUIC-LR] Iyengar, J. and I. Swett, "QUIC Loss Recovery And
 Congestion Control", draft-tsvwg-quic-loss-recovery-01
 (work in progress), June 2016.

 [RFC7765] Hurtig, P., Brunstrom, A., Petlund, A., and M. Welzl, "TCP
 and SCTP RTO Restart", February 2016.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control With a Misbehaving Receiver", ACM
 Computer Communication Review, 29(5) , 1999.

 [THIN-STREAM]
 Petlund, A., Evensen, K., Griwodz, C., and P. Halvorsen,
 "TCP enhancements for interactive thin-stream
 applications", NOSSDAV , 2008.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Drops", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), August 2013.

Authors' Addresses

 Yuchung Cheng
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043
 USA

 Email: ycheng@google.com

 Neal Cardwell
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: ncardwell@google.com

 Nandita Dukkipati
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043

 Email: nanditad@google.com

https://datatracker.ietf.org/doc/html/draft-tsvwg-quic-loss-recovery-01
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01

Cheng, et al. Expires January 3, 2019 [Page 28]

Internet-Draft RACK July 2018

 Priyaranjan Jha
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043

 Email: priyarjha@google.com

Cheng, et al. Expires January 3, 2019 [Page 29]

