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Abstract

   This document presents a new TCP loss detection algorithm called RACK
   ("Recent ACKnowledgment").  RACK uses the notion of time, instead of
   packet or sequence counts, to detect losses, for modern TCP
   implementations that can support per-packet timestamps and the
   selective acknowledgment (SACK) option.  It is intended to replace
   the conventional DUPACK threshold approach and its variants, as well
   as other nonstandard approaches.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   This document presents a new loss detection algorithm called RACK
   ("Recent ACKnowledgment").  RACK uses the notion of time instead of
   the conventional packet or sequence counting approaches for detecting
   losses.  RACK deems a packet lost if some packet sent sufficiently
   later has been delivered.  It does this by recording packet
   transmission times and inferring losses using cumulative
   acknowledgments or selective acknowledgment (SACK) TCP options.

   In the last couple of years we have been observing several
   increasingly common loss and reordering patterns in the Internet:

   1.  Lost retransmissions.  Traffic policers [POLICER16] and burst
       losses often cause retransmissions to be lost again, severely
       increasing TCP latency.

   2.  Tail drops.  Structured request-response traffic turns more
       losses into tail drops.  In such cases, TCP is application-
       limited, so it cannot send new data to probe losses and has to
       rely on retransmission timeouts (RTOs).

   3.  Reordering.  Link layer protocols (e.g., 802.11 block ACK) or
       routers' internal load-balancing can deliver TCP packets out of
       order.  The degree of such reordering is usually within the order
       of the path round trip time.

   Despite TCP stacks (e.g.  Linux) that implement many of the standard
   and proposed loss detection algorithms
   [RFC4653][RFC5827][RFC5681][RFC6675][RFC7765][FACK][THIN-STREAM],
   we've found that together they do not perform well.  The main reason
   is that many of them are based on the classic rule of counting
   duplicate acknowledgments [RFC5681].  They can either detect loss
   quickly or accurately, but not both, especially when the sender is
   application-limited or under reordering that is unpredictable.  And
   under these conditions none of them can detect lost retransmissions
   well.

   Also, these algorithms, including RFCs, rarely address the
   interactions with other algorithms.  For example, FACK may consider a
   packet is lost while RFC6675 may not.  Implementing N algorithms
   while dealing with N^2 interactions is a daunting task and error-
   prone.

https://datatracker.ietf.org/doc/html/rfc4653
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc7765
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
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   The goal of RACK is to solve all the problems above by replacing many
   of the loss detection algorithms above with one more effective
   algorithm to handle loss and reordering.

2.  Overview

   The main idea behind RACK is that if a packet has been delivered out
   of order, then the packets sent chronologically before that were
   either lost or reordered.  This concept is not fundamentally
   different from [RFC5681][RFC6675][FACK].  But the key innovation in
   RACK is to use a per-packet transmission timestamp and widely
   deployed SACK options to conduct time-based inferences instead of
   inferring losses with packet or sequence counting approaches.

   Using a threshold for counting duplicate acknowledgments (i.e.,
   DupThresh) alone is no longer reliable because of today's prevalent
   reordering patterns.  A common type of reordering is that the last
   "runt" packet of a window's worth of packet bursts gets delivered
   first, then the rest arrive shortly after in order.  To handle this
   effectively, a sender would need to constantly adjust the DupThresh
   to the burst size; but this would risk increasing the frequency of
   RTOs on real losses.

   Today's prevalent lost retransmissions also cause problems with
   packet-counting approaches [RFC5681][RFC6675][FACK], since those
   approaches depend on reasoning in sequence number space.
   Retransmissions break the direct correspondence between ordering in
   sequence space and ordering in time.  So when retransmissions are
   lost, sequence-based approaches are often unable to infer and quickly
   repair losses that can be deduced with time-based approaches.

   Instead of counting packets, RACK uses the most recently delivered
   packet's transmission time to judge if some packets sent previous to
   that time have "expired" by passing a certain reordering settling
   window.  On each ACK, RACK marks any already-expired packets lost,
   and for any packets that have not yet expired it waits until the
   reordering window passes and then marks those lost as well.  In
   either case, RACK can repair the loss without waiting for a (long)
   RTO.  RACK can be applied to both fast recovery and timeout recovery,
   and can detect losses on both originally transmitted and
   retransmitted packets, making it a great all-weather loss detection
   mechanism.

3.  Design Rationale for Reordering Tolerance

   The reordering behavior of networks can evolve (over years) in
   response to the behavior of transport protocols and applications, as
   well as the needs of network designers and operators.  From a network

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
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   or link designer's viewpoint, parallelization (eg. link bonding) is
   the easiest way to get a network to go faster.  Therefore their main
   constraint on speed is reordering, and there is pressure to relax
   that constraint.  If RACK becomes widely deployed, the underlying
   networks may introduce more reordering for higher throughput.  But
   this may result in excessive reordering that hurts end to end
   performance:

   1.  End host packet processing: extreme reordering on high-speed
       networks would incur high CPU cost by greatly reducing the
       effectiveness of aggregation mechanisms, such as large receive
       offload (LRO) and generic receive offload (GRO), and
       significantly increasing the number of ACKs.

   2.  Congestion control: TCP congestion control implicitly assumes the
       feedback from ACKs are from the same bottleneck.  Therefore it
       cannot handle well scenarios where packets are traversing largely
       disjoint paths.

   3.  Loss recovery: Having an excessively large reordering window to
       accommodate widely different latencies from different paths would
       increase the latency of loss recovery.

   An end-to-end transport protocol cannot tell immediately whether a
   hole is reordering or loss.  It can only distinguish between the two
   in hindsight if the hole in the sequence space gets filled later
   without a retransmission.  How long the sender waits for such
   potential reordering events to settle is determined by the current
   reordering window.

   Given these considerations, a core design philosophy of RACK is to
   adapt to the measured duration of reordering events, within
   reasonable and specific bounds.  To accomplish this RACK places the
   following mandates on the reordering window:

   1.  The initial RACK reordering window SHOULD be set to a small
       fraction of the round-trip time.

   2.  If no reordering has been observed, then RACK SHOULD honor the
       classic 3-DUPACK rule for initiating fast recovery.  One simple
       way to implement this is to temporarily override the reorder
       window to 0.

   3.  The RACK reordering window SHOULD leverage Duplicate Selective
       Acknowledgement (DSACK) information [RFC3708] to adaptively
       estimate the duration of reordering events.

https://datatracker.ietf.org/doc/html/rfc3708
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   4.  The RACK reordering window MUST be bounded and this bound SHOULD
       be one round trip.

   As a flow starts, either condition 1 or condition 2 or both would
   trigger RACK to start the recovery process quickly.  The low initial
   reordering window and use of the 3-DUPACK rule are key to achieving
   low-latency loss recovery for short flows by risking spurious
   retransmissions to recover losses quickly.  This rationale is that
   spurious retransmissions for short flows are not expected to produce
   excessive network traffic.

   For long flows the design tolerates reordering within a round trip.
   This handles reordering caused by path divergence in small time
   scales (reordering within the round-trip time of the shortest path),
   which should tolerate much of the reordering from link bonding,
   multipath routing, or link-layer out-of-order delivery.  It also
   relaxes ordering constraints to allow sending flights of TCP packets
   on different paths dynamically for better load-balancing (e.g.
   flowlets).

   However, the fact that the initial RACK reordering window is low, and
   the RACK reordering window's adaptive growth is bounded, means that
   there will continue to be a cost to reordering and a limit to RACK's
   adaptation to reordering.  This maintains a disincentive for network
   designers and operators to introduce needless or excessive
   reordering, particularly because they have to allow for low round
   trip time paths.  This means RACK will not encourage networks to
   perform inconsiderate fine-grained packet-spraying over highly
   disjoint paths with very different characteristics.  There are good
   alternative solutions, such as MPTCP, for such networks.

   To conclude, the RACK algorithm aims to adapt to small degrees of
   reordering, quickly recover most losses within one to two round
   trips, and avoid costly retransmission timeouts (RTOs).  In the
   presence of reordering, the adaptation algorithm can impose
   sometimes-needless delays when it waits to disambiguate loss from
   reordering, but the penalty for waiting is bounded to one round trip
   and such delays are confined to longer-running flows.

   This document provides a concrete and detailed reordering window
   adaptation algorithm for implementors.  We note that the specifics of
   the algorithm are likely to evolve over time.  But that is a separate
   engineering optimization that's out of scope for this document.
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4.  Requirements

   The reader is expected to be familiar with the definitions given in
   the TCP congestion control [RFC5681] and selective acknowledgment
   [RFC2018] RFCs.  Familiarity with the conservative SACK-based
   recovery for TCP [RFC6675] is not expected but helps.

   RACK has three requirements:

   1.  The connection MUST use selective acknowledgment (SACK) options
       [RFC2018].

   2.  For each packet sent, the sender MUST store its most recent
       transmission time with (at least) millisecond granularity.  For
       round-trip times lower than a millisecond (e.g., intra-datacenter
       communications) microsecond granularity would significantly help
       the detection latency but is not required.

   3.  For each packet sent, the sender MUST remember whether the packet
       has been retransmitted or not.

   We assume that requirement 1 implies the sender keeps a SACK
   scoreboard, which is a data structure to store selective
   acknowledgment information on a per-connection basis ([RFC6675]
   section 3).  For the ease of explaining the algorithm, we use a
   pseudo-scoreboard that manages the data in sequence number ranges.
   But the specifics of the data structure are left to the implementor.

   RACK does not need any change on the receiver.

5.  Definitions of variables

   A sender needs to store these new RACK variables:

   "Packet.xmit_ts" is the time of the last transmission of a data
   packet, including retransmissions, if any.  The sender needs to
   record the transmission time for each packet sent and not yet
   acknowledged.  The time MUST be stored at millisecond granularity or
   finer.

   "RACK.packet".  Among all the packets that have been either
   selectively or cumulatively acknowledged, RACK.packet is the one that
   was sent most recently (including retransmissions).

   "RACK.xmit_ts" is the latest transmission timestamp of RACK.packet.

   "RACK.end_seq" is the ending TCP sequence number of RACK.packet.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675#section-3
https://datatracker.ietf.org/doc/html/rfc6675#section-3
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   "RACK.rtt" is the RTT of the most recently transmitted packet that
   has been delivered (either cumulatively acknowledged or selectively
   acknowledged) on the connection.

   "RACK.rtt_seq" is the SND.NXT when RACK.rtt is updated.

   "RACK.reo_wnd" is a reordering window computed in the unit of time
   used for recording packet transmission times.  It is used to defer
   the moment at which RACK marks a packet lost.

   "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
   connection.

   "RACK.ack_ts" is the time when all the sequences in RACK.packet were
   selectively or cumulatively acknowledged.

   "RACK.reo_wnd_incr" is the multiplier applied to adjust RACK.reo_wnd

   "RACK.reo_wnd_persist" is the number of loss recoveries before
   resetting RACK.reo_wnd "RACK.dsack" indicates if a DSACK option has
   been received since last RACK.reo_wnd change "RACK.pkts_sacked"
   returns the total number of packets selectively acknowledged in the
   SACK scoreboard.

   "RACK.reord" indicates the connection has detected packet reordering
   event(s)

   "RACK.fack" is the highest selectively or cumulatively acknowledged
   sequence

   Note that the Packet.xmit_ts variable is per packet in flight.  The
   RACK.xmit_ts, RACK.end_seq, RACK.rtt, RACK.reo_wnd, and RACK.min_RTT
   variables are kept in the per-connection TCP control block.
   RACK.packet and RACK.ack_ts are used as local variables in the
   algorithm.

6.  Algorithm Details

6.1.  Transmitting a data packet

   Upon transmitting a new packet or retransmitting an old packet,
   record the time in Packet.xmit_ts.  RACK does not care if the
   retransmission is triggered by an ACK, new application data, an RTO,
   or any other means.
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6.2.  Upon receiving an ACK

   Step 1: Update RACK.min_RTT.

   Use the RTT measurements obtained via [RFC6298] or [RFC7323] to
   update the estimated minimum RTT in RACK.min_RTT.  The sender can
   track a simple global minimum of all RTT measurements from the
   connection, or a windowed min-filtered value of recent RTT
   measurements.  This document does not specify an exact approach.

   Step 2: Update RACK stats

   Given the information provided in an ACK, each packet cumulatively
   ACKed or SACKed is marked as delivered in the scoreboard.  Among all
   the packets newly ACKed or SACKed in the connection, record the most
   recent Packet.xmit_ts in RACK.xmit_ts if it is ahead of RACK.xmit_ts.
   Sometimes the timestamps of RACK.Packet and Packet could carry the
   same transmit timestamps due to clock granularity or segmentation
   offloading (i.e. the two packets were sent as a jumbo frame into the
   NIC).  In that case the sequence numbers of RACK.end_seq and
   Packet.end_seq are compared to break the tie.

   Since an ACK can also acknowledge retransmitted data packets,
   RACK.rtt can be vastly underestimated if the retransmission was
   spurious.  To avoid that, ignore a packet if any of its TCP sequences
   have been retransmitted before and either of two conditions is true:

   1.  The Timestamp Echo Reply field (TSecr) of the ACK's timestamp
       option [RFC7323], if available, indicates the ACK was not
       acknowledging the last retransmission of the packet.

   2.  The packet was last retransmitted less than RACK.min_rtt ago.

   If the ACK is not ignored as invalid, update the RACK.rtt to be the
   RTT sample calculated using this ACK, and continue.  If this ACK or
   SACK was for the most recently sent packet, then record the
   RACK.xmit_ts timestamp and RACK.end_seq sequence implied by this ACK.
   Otherwise exit here and omit the following steps.

   Notice that the second condition above is a heuristic.  This
   heuristic would fail to update RACK stats if the packet is spuriously
   retransmitted because of a recent minimum RTT decrease (e.g. path
   change).  Consequentially RACK may not detect losses from ACK events
   and the recovery resorts to the (slower) TLP or RTO timer-based
   events.  However such events should be rare and the connection would
   pick up the new minimum RTT when the recovery ends to avoid repeated
   similar failures.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323


Cheng, et al.            Expires January 3, 2019                [Page 8]



Internet-Draft                    RACK                         July 2018

   Step 2 may be summarized in pseudocode as:

   RACK_sent_after(t1, seq1, t2, seq2):
       If t1 > t2:
           Return true
       Else if t1 == t2 AND seq1 > seq2:
           Return true
       Else:
           Return false

   RACK_update():
       For each Packet newly acknowledged cumulatively or selectively:
           rtt = Now() - Packet.xmit_ts
           If Packet.retransmitted is TRUE:
               If ACK.ts_option.echo_reply < Packet.xmit_ts:
                  Return
               If rtt < RACK.min_rtt:
                  Return

           RACK.rtt = rtt
           If RACK_sent_after(Packet.xmit_ts, Packet.end_seq
                              RACK.xmit_ts, RACK.end_seq):
               RACK.xmit_ts = Packet.xmit_ts

   Step 3: Detect packet reordering

   To detect reordering, the sender looks for original data packets
   being delivered out of order in sequence space.  The sender tracks
   the highest sequence selectively or cumulatively acknowledged in the
   RACK.fack variable.  The name fack stands for the most forward ACK
   originated from the [FACK] draft.  If the ACK selectively or
   cumulatively acknowledges an unacknowledged and also never
   retransmitted sequence below RACK.fack, then the corresponding packet
   has been reordered and RACK.reord is set to 1.

   The heuristic above only detects reordering if the re-ordered packet
   has not yet been retransmitted.  This is a major drawback because if
   RACK has a low reordering window and the network is reordering
   packets, RACK may falsely retransmit frequently.  Consequently RACK
   may fail to detect reordering to increase the reordering window,
   because the reordered packets were already (falsely) retransmitted.

   DSACK [RFC3708] can help mitigate this issue.  The false
   retransmission would solicit DSACK option in the ACK.  Therefore if
   the ACK has a DSACK option covering some sequence that were both
   acknowledged and retransmitted, this implies the original packet was
   reordered but RACK retransmitted the packet too quickly and should
   set RACK.reord to 1.

https://datatracker.ietf.org/doc/html/rfc3708
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   RACK_detect_reordering():
       For each Packet newly acknowledged cumulatively or selectively:
           If Packet.end_seq > RACK.fack:
               RACK.fack = Packet.end_seq
           Else if Packet.end_seq < RACK.fack AND
                   Packet.retransmitted is FALSE:
               RACK.reord = TRUE
       For each Packet covered by the DSACK option:
           If Packet.retransmitted is TRUE:
               RACK.reord = TRUE

   Step 4: Update RACK reordering window

   To handle the prevalent small degree of reordering, RACK.reo_wnd
   serves as an allowance for settling time before marking a packet
   lost.  This section documents a detailed algorithm following the
   design rationale section.  RACK starts initially with a conservative
   window of min_RTT/4.  If no reordering has been observed, RACK uses
   RACK.reo_wnd of 0 during loss recovery, in order to retransmit
   quickly, or when the number of DUPACKs exceeds the classic DUPACK
   threshold.  The subtle difference of this approach and conventional
   one [RFC5681][RFC6675] is dicussed later in the section of "RACK and
   TLP discussions".

   Further, RACK MAY use DSACK [RFC3708] to adapt the reordering window,
   to higher degrees of reordering, if DSACK is supported.  Receiving an
   ACK with a DSACK indicates a spurious retransmission, which in turn
   suggests that the RACK reordering window, RACK.reo_wnd, is likely too
   small.  The sender MAY increase the RACK.reo_wnd window linearly for
   every round trip in which the sender receives a DSACK, so that after
   N distinct round trips in which a DSACK is received, the RACK.reo_wnd
   becomes (N+1) * min_RTT / 4, with an upper-bound of SRTT.  The
   inflated RACK.reo_wnd would persist for 16 loss recoveries and after
   which it resets to its starting value, min_RTT / 4.

   The following pseudocode implements above algorithm.  Note that
   extensions that require additional TCP features (e.g.  DSACK) would
   work if the feature functions simply return false.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3708
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   RACK_update_reo_wnd():
       RACK.min_RTT = TCP_min_RTT()
       If DSACK option is present:
           RACK.dsack = true

       If SND.UNA < RACK.rtt_seq:
           RACK.dsack = false  /* React to DSACK once per round trip */

       If RACK.dsack:
           RACK.reo_wnd_incr += 1
           RACK.dsack = false
           RACK.rtt_seq = SND.NXT
           RACK.reo_wnd_persist = 16 /* Keep window for 16 recoveries */
       Else if exiting loss recovery:
           RACK.reo_wnd_persist -= 1
           If RACK.reo_wnd_persist <= 0:
               RACK.reo_wnd_incr = 1

       If RACK.reordering_seen is FALSE:
           If in loss recovery:  /* If in fast or timeout recovery */
               RACK.reo_wnd = 0
               Return
           Else if RACK.pkts_sacked >= RACK.dupthresh:
               RACK.reo_wnd = 0
               return
       RACK.reo_wnd = RACK.min_RTT / 4 * RACK.reo_wnd_incr
       RACK.reo_wnd = min(RACK.reo_wnd, SRTT)

   Step 5: Detect losses.

   For each packet that has not been SACKed, if RACK.xmit_ts is after
   Packet.xmit_ts + RACK.reo_wnd, then mark the packet (or its
   corresponding sequence range) lost in the scoreboard.  The rationale
   is that if another packet that was sent later has been delivered, and
   the reordering window or "reordering settling time" has already
   passed, then the packet was likely lost.

   If another packet that was sent later has been delivered, but the
   reordering window has not passed, then it is not yet safe to deem the
   unacked packet lost.  Using the basic algorithm above, the sender
   would wait for the next ACK to further advance RACK.xmit_ts; but this
   risks a timeout (RTO) if no more ACKs come back (e.g, due to losses
   or application limit).  For timely loss detection, the sender MAY
   install a "reordering settling" timer set to fire at the earliest
   moment at which it is safe to conclude that some packet is lost.  The
   earliest moment is the time it takes to expire the reordering window
   of the earliest unacked packet in flight.



Cheng, et al.            Expires January 3, 2019               [Page 11]



Internet-Draft                    RACK                         July 2018

   This timer expiration value can be derived as follows.  As a starting
   point, we consider that the reordering window has passed if the
   RACK.packet was sent sufficiently after the packet in question, or a
   sufficient time has elapsed since the RACK.packet was S/ACKed, or
   some combination of the two.  More precisely, RACK marks a packet as
   lost if the reordering window for a packet has elapsed through the
   sum of:

   1.  delta in transmit time between a packet and the RACK.packet

   2.  delta in time between RACK.ack_ts and now

   So we mark a packet as lost if:

   RACK.xmit_ts >= Packet.xmit_ts
              AND
   (RACK.xmit_ts - Packet.xmit_ts) + (now - RACK.ack_ts) >= RACK.reo_wnd

   If we solve this second condition for "now", the moment at which we
   can declare a packet lost, then we get:

   now >= Packet.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

   Then (RACK.ack_ts - RACK.xmit_ts) is just the RTT of the packet we
   used to set RACK.xmit_ts, so this reduces to:

   Packet.xmit_ts + RACK.rtt + RACK.reo_wnd - now <= 0

   The following pseudocode implements the algorithm above.  When an ACK
   is received or the RACK timer expires, call RACK_detect_loss().  The
   algorithm includes an additional optimization to break timestamp ties
   by using the TCP sequence space.  The optimization is particularly
   useful to detect losses in a timely manner with TCP Segmentation
   Offload, where multiple packets in one TSO blob have identical
   timestamps.  It is also useful when the timestamp clock granularity
   is close to or longer than the actual round trip time.
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RACK_detect_loss():
    timeout = 0

    For each packet, Packet, not acknowledged yet:
        If Packet.lost is TRUE or Packet.retransmitted is FALSE:
            Continue /* Lost packet not retransmitted yet */

        If RACK_sent_after(RACK.xmit_ts, RACK.end_seq,
                           Packet.xmit_ts, Packet.end_seq):
            remaining = Packet.xmit_ts + RACK.rtt + RACK.reo_wnd - Now()
            If remaining <= 0:
                Packet.lost = TRUE
            Else:
                timeout = max(remaining, timeout)

    If timeout != 0
        Arm a timer to call RACK_detect_loss() after timeout

   Implementation optimization: looping through packets in the SACK
   scoreboard above could be very costly on large-BDP networks since the
   inflight could be very large.  If the implementation can organize the
   scoreboard data structures to have packets sorted by the last
   (re)transmission time, then the loop can start on the least recently
   sent packet and abort on the first packet sent after RACK.time_ts.
   This can be implemented by using a seperate list sorted in time
   order.  The implementation inserts the packet at the tail of the list
   when it is (re)transmitted, and removes a packet from the list when
   it is delivered or marked lost.  We RECOMMEND such an optimization
   because it enables implementations to support high-BDP networks.
   This optimization is implemented in Linux and sees orders of
   magnitude improvement in CPU usage on high-speed WAN networks.

6.3.  Tail Loss Probe: fast recovery for tail losses

   This section describes a supplemental algorithm, Tail Loss Probe
   (TLP), which leverages RACK to further reduce RTO recoveries.  TLP
   triggers fast recovery to quickly repair tail losses that can
   otherwise be recovered by RTOs only.  After an original data
   transmission, TLP sends a probe data segment within one to two RTTs.
   The probe data segment can either be new, previously unsent data, or
   a retransmission of previously sent data just below SND.NXT.  In
   either case the goal is to elicit more feedback from the receiver, in
   the form of an ACK (potentially with SACK blocks), to allow RACK to
   trigger fast recovery instead of an RTO.

   An RTO occurs when the first unacknowledged sequence number is not
   acknowledged after a conservative period of time has elapsed
   [RFC6298].  Common causes of RTOs include:

https://datatracker.ietf.org/doc/html/rfc6298
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   1.  The entire flight of data is lost.

   2.  Tail losses of data segments at the end of an application
       transaction.

   3.  Tail losses of ACKs at the end of an application transaction.

   4.  Lost retransmits, which can halt fast recovery based on [RFC6675]
       if the ACK stream completely dries up.  For example, consider a
       window of three data packets (P1, P2, P3) that are sent; P1 and
       P2 are dropped.  On receipt of a SACK for P3, RACK marks P1 and
       P2 as lost and retransmits them as R1 and R2.  Suppose R1 and R2
       are lost as well, so there are no more returning ACKs to detect
       R1 and R2 as lost.  Recovery stalls.

   5.  An unexpectedly long round-trip time (RTT).  This can cause ACKs
       to arrive after the RTO timer expires.  The F-RTO algorithm
       [RFC5682] is designed to detect such spurious retransmission
       timeouts and at least partially undo the consequences of such
       events, but F-RTO cannot be used in many situations.

6.4.  Tail Loss Probe: An Example

   Following is an example of TLP.  All events listed are at a TCP
   sender.

   1.  Sender transmits segments 1-10: 1, 2, 3, ..., 8, 9, 10.  There is
       no more new data to transmit.  A PTO is scheduled to fire in 2
       RTTs, after the transmission of the 10th segment.

   2.  Sender receives acknowledgements (ACKs) for segments 1-5;
       segments 6-10 are lost and no ACKs are received.  The sender
       reschedules its PTO timer relative to the last received ACK,
       which is the ACK for segment 5 in this case.  The sender sets the
       PTO interval using the calculation described in step (2) of the
       algorithm.

   3.  When PTO fires, sender retransmits segment 10.

   4.  After an RTT, a SACK for packet 10 arrives.  The ACK also carries
       SACK holes for segments 6, 7, 8 and 9.  This triggers RACK-based
       loss recovery.

   5.  The connection enters fast recovery and retransmits the remaining
       lost segments.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5682
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6.5.  Tail Loss Probe Algorithm Details

   We define the terminology used in specifying the TLP algorithm:

   FlightSize: amount of outstanding data in the network, as defined in
   [RFC5681].

   RTO: The transport's retransmission timeout (RTO) is based on
   measured round-trip times (RTT) between the sender and receiver, as
   specified in [RFC6298] for TCP.  PTO: Probe timeout (PTO) is a timer
   event indicating that an ACK is overdue.  Its value is constrained to
   be smaller than or equal to an RTO.

   SRTT: smoothed round-trip time, computed as specified in [RFC6298].

   The TLP algorithm has three phases, which we discuss in turn.

6.5.1.  Phase 1: Scheduling a loss probe

   Step 1: Check conditions for scheduling a PTO.

   A sender should check to see if it should schedule a PTO in the
   following situations:

   1.  After transmitting new data that was not itself a TLP probe

   2.  Upon receiving an ACK that cumulatively acknowledges data

   3.  Upon receiving a SACK that selectively acknowledges data that was
       last sent before the segment with SEG.SEQ=SND.UNA was last
       (re)transmitted

   A sender should schedule a PTO only if all of the following
   conditions are met:

   1.  The connection supports SACK [RFC2018]

   2.  The connection has no SACKed sequences in the SACK scoreboard

   3.  The connection is not in loss recovery

   If a PTO can be scheduled according to these conditions, the sender
   should schedule a PTO.  If there was a previously scheduled PTO or
   RTO pending, then that pending PTO or RTO should first be cancelled,
   and then the new PTO should be scheduled.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2018
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   If a PTO cannot be scheduled according to these conditions, then the
   sender MUST arm the RTO timer if there is unacknowledged data in
   flight.

   Step 2: Select the duration of the PTO.

   A sender SHOULD use the following logic to select the duration of a
   PTO:

   TLP_timeout():
       If SRTT is available:
           PTO = 2 * SRTT
           If FlightSize = 1:
              PTO += WCDelAckT
           Else:
              PTO += 2ms
       Else:
           PTO = 1 sec

       If Now() + PTO > TCP_RTO_expire():
           PTO = TCP_RTO_expire() - Now()

   Aiming for a PTO value of 2*SRTT allows a sender to wait long enough
   to know that an ACK is overdue.  Under normal circumstances, i.e. no
   losses, an ACK typically arrives in one SRTT.  But choosing PTO to be
   exactly an SRTT is likely to generate spurious probes given that
   network delay variance and even end-system timings can easily push an
   ACK to be above an SRTT.  We chose PTO to be the next integral
   multiple of SRTT.

   Similarly, network delay variations and end-system processing
   latencies and timer granularities can easily delay ACKs beyond
   2*SRTT, so senders SHOULD add at least 2ms to a computed PTO value
   (and MAY add more if the sending host OS timer granularity is more
   coarse than 1ms).

   WCDelAckT stands for worst case delayed ACK timer.  When FlightSize
   is 1, PTO is inflated by WCDelAckT time to compensate for a potential
   long delayed ACK timer at the receiver.  The RECOMMENDED value for
   WCDelAckT is 200ms.

   Finally, if the time at which an RTO would fire (here denoted
   "TCP_RTO_expire") is sooner than the computed time for the PTO, then
   a probe is scheduled to be sent at that earlier time.



Cheng, et al.            Expires January 3, 2019               [Page 16]



Internet-Draft                    RACK                         July 2018

6.5.2.  Phase 2: Sending a loss probe

   When the PTO fires, transmit a probe data segment:

   TLP_send_probe():
       If an unsent segment exists AND
          the receive window allows new data to be sent:
           Transmit the lowest-sequence unsent segment of up to SMSS
           Increment FlightSize by the size of the newly-sent segment
       Else:
           Retransmit the highest-sequence segment sent so far
       The cwnd remains unchanged

   When the loss probe is a retransmission, the sender uses the highest-
   sequence segment sent so far.  This is in order to deal with the
   retransmission ambiguity problem in TCP.  Suppose a sender sends N
   segments, and then retransmits the last segment (segment N) as a loss
   probe, and then the sender receives a SACK for segment N.  As long as
   the sender waits for any required RACK reordering settling timer to
   then expire, it doesn't matter if that SACK was for the original
   transmission of segment N or the TLP retransmission; in either case
   the arrival of the SACK for segment N provides evidence that the N-1
   segments preceding segment N were likely lost.  In the case where
   there is only one original outstanding segment of data (N=1), the
   same logic (trivially) applies: an ACK for a single outstanding
   segment tells the sender the N-1=0 segments preceding that segment
   were lost.  Furthermore, whether there are N>1 or N=1 outstanding
   segments, there is a question about whether the original last segment
   or its TLP retransmission were lost; the sender estimates this using
   TLP recovery detection (see below).

   Note that after transmitting a TLP, the sender MUST arm an RTO timer,
   and not the PTO timer.  This ensures that the sender does not send
   repeated, back-to-back TLP probes.

6.5.3.  Phase 3: ACK processing

   On each incoming ACK, the sender should check the conditions in Step
   1 of Phase 1 to see if it should schedule (or reschedule) the loss
   probe timer.

6.6.  TLP recovery detection

   If the only loss in an outstanding window of data was the last
   segment, then a TLP loss probe retransmission of that data segment
   might repair the loss.  TLP recovery detection examines ACKs to
   detect when the probe might have repaired a loss, and thus allows
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   congestion control to properly reduce the congestion window (cwnd)
   [RFC5681].

   Consider a TLP retransmission episode where a sender retransmits a
   tail packet in a flight.  The TLP retransmission episode ends when
   the sender receives an ACK with a SEG.ACK above the SND.NXT at the
   time the episode started.  During the TLP retransmission episode the
   sender checks for a duplicate ACK or D-SACK indicating that both the
   original segment and TLP retransmission arrived at the receiver,
   meaning there was no loss that needed repairing.  If the TLP sender
   does not receive such an indication before the end of the TLP
   retransmission episode, then it MUST estimate that either the
   original data segment or the TLP retransmission were lost, and
   congestion control MUST react appropriately to that loss as it would
   any other loss.

   Since a significant fraction of the hosts that support SACK do not
   support duplicate selective acknowledgments (D-SACKs) [RFC2883] the
   TLP algorithm for detecting such lost segments relies only on basic
   SACK support [RFC2018].

   Definitions of variables

   TLPRxtOut: a boolean indicating whether there is an unacknowledged
   TLP retransmission.

   TLPHighRxt: the value of SND.NXT at the time of sending a TLP
   retransmission.

6.6.1.  Initializing and resetting state

   When a connection is created, or suffers a retransmission timeout, or
   enters fast recovery, it executes the following:

       TLPRxtOut = false

6.6.2.  Recording loss probe states

   Senders MUST only send a TLP loss probe retransmission if TLPRxtOut
   is false.  This ensures that at any given time a connection has at
   most one outstanding TLP retransmission.  This allows the sender to
   use the algorithm described in this section to estimate whether any
   data segments were lost.

   Note that this condition only restricts TLP loss probes that are
   retransmissions.  There may be an arbitrary number of outstanding
   unacknowledged TLP loss probes that consist of new, previously-unsent

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2018
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   data, since the retransmission timeout and fast recovery algorithms
   are sufficient to detect losses of such probe segments.

   Upon sending a TLP probe that is a retransmission, the sender sets
   TLPRxtOut to true and TLPHighRxt to SND.NXT.

   Detecting recoveries accomplished by loss probes

   Step 1: Track ACKs indicating receipt of original and retransmitted
   segments

   A sender considers both the original segment and TLP probe
   retransmission segment as acknowledged if either 1 or 2 are true:

   1.  This is a duplicate acknowledgment (as defined in [RFC5681],
       section 2), and all of the following conditions are met:

       1.  TLPRxtOut is true

       2.  SEG.ACK == TLPHighRxt

       3.  SEG.ACK == SND.UNA

       4.  the segment contains no SACK blocks for sequence ranges above
           TLPHighRxt

       5.  the segment contains no data

       6.  the segment is not a window update

   2.  This is an ACK acknowledging a sequence number at or above
       TLPHighRxt and it contains a D-SACK; i.e. all of the following
       conditions are met:

       1.  TLPRxtOut is true

       2.  SEG.ACK >= TLPHighRxt

       3.  the ACK contains a D-SACK block

   If neither conditions are met, then the sender estimates that the
   receiver received both the original data segment and the TLP probe
   retransmission, and so the sender considers the TLP episode to be
   done, and records that fact by setting TLPRxtOut to false.

   Step 2: Mark the end of a TLP retransmission episode and detect
   losses

https://datatracker.ietf.org/doc/html/rfc5681#section-2
https://datatracker.ietf.org/doc/html/rfc5681#section-2
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   If the sender receives a cumulative ACK for data beyond the TLP loss
   probe retransmission then, in the absence of reordering on the return
   path of ACKs, it should have received any ACKs for the original
   segment and TLP probe retransmission segment.  At that time, if the
   TLPRxtOut flag is still true and thus indicates that the TLP probe
   retransmission remains unacknowledged, then the sender should presume
   that at least one of its data segments was lost, so it SHOULD invoke
   a congestion control response equivalent to fast recovery.

   More precisely, on each ACK the sender executes the following:

       if (TLPRxtOut and SEG.ACK >= TLPHighRxt) {
           TLPRxtOut = false
           EnterRecovery()
           ExitRecovery()
       }

7.  RACK and TLP discussions

7.1.  Advantages

   The biggest advantage of RACK is that every data packet, whether it
   is an original data transmission or a retransmission, can be used to
   detect losses of the packets sent chronologically prior to it.

   Example: TAIL DROP.  Consider a sender that transmits a window of
   three data packets (P1, P2, P3), and P1 and P3 are lost.  Suppose the
   transmission of each packet is at least RACK.reo_wnd (1 millisecond
   by default) after the transmission of the previous packet.  RACK will
   mark P1 as lost when the SACK of P2 is received, and this will
   trigger the retransmission of P1 as R1.  When R1 is cumulatively
   acknowledged, RACK will mark P3 as lost and the sender will
   retransmit P3 as R3.  This example illustrates how RACK is able to
   repair certain drops at the tail of a transaction without any timer.
   Notice that neither the conventional duplicate ACK threshold
   [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]
   algorithm can detect such losses, because of the required packet or
   sequence count.

   Example: LOST RETRANSMIT.  Consider a window of three data packets
   (P1, P2, P3) that are sent; P1 and P2 are dropped.  Suppose the
   transmission of each packet is at least RACK.reo_wnd (1 millisecond
   by default) after the transmission of the previous packet.  When P3
   is SACKed, RACK will mark P1 and P2 lost and they will be
   retransmitted as R1 and R2.  Suppose R1 is lost again but R2 is
   SACKed; RACK will mark R1 lost for retransmission again.  Again,
   neither the conventional three duplicate ACK threshold approach, nor
   [RFC6675], nor the Forward Acknowledgment [FACK] algorithm can detect

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
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   such losses.  And such a lost retransmission is very common when TCP
   is being rate-limited, particularly by token bucket policers with
   large bucket depth and low rate limit.  Retransmissions are often
   lost repeatedly because standard congestion control requires multiple
   round trips to reduce the rate below the policed rate.

   Example: SMALL DEGREE OF REORDERING.  Consider a common reordering
   event: a window of packets are sent as (P1, P2, P3).  P1 and P2 carry
   a full payload of MSS octets, but P3 has only a 1-octet payload.
   Suppose the sender has detected reordering previously and thus
   RACK.reo_wnd is min_RTT/4.  Now P3 is reordered and delivered first,
   before P1 and P2.  As long as P1 and P2 are delivered within
   min_RTT/4, RACK will not consider P1 and P2 lost.  But if P1 and P2
   are delivered outside the reordering window, then RACK will still
   falsely mark P1 and P2 lost.  We discuss how to reduce false
   positives in the end of this section.

   The examples above show that RACK is particularly useful when the
   sender is limited by the application, which is common for
   interactive, request/response traffic.  Similarly, RACK still works
   when the sender is limited by the receive window, which is common for
   applications that use the receive window to throttle the sender.

   For some implementations (e.g., Linux), RACK works quite efficiently
   with TCP Segmentation Offload (TSO).  RACK always marks the entire
   TSO blob lost because the packets in the same TSO blob have the same
   transmission timestamp.  By contrast, the algorithms based on
   sequence counting (e.g., [RFC6675][RFC5681]) may mark only a subset
   of packets in the TSO blob lost, forcing the stack to perform
   expensive fragmentation of the TSO blob, or to selectively tag
   individual packets lost in the scoreboard.

7.2.  Disadvantages

   RACK requires the sender to record the transmission time of each
   packet sent at a clock granularity of one millisecond or finer.  TCP
   implementations that record this already for RTT estimation do not
   require any new per-packet state.  But implementations that are not
   yet recording packet transmission times will need to add per-packet
   internal state (commonly either 4 or 8 octets per packet or TSO blob)
   to track transmission times.  In contrast, the conventional [RFC6675]
   loss detection approach does not require any per-packet state beyond
   the SACK scoreboard.  This is particularly useful on ultra-low RTT
   networks where the RTT is far less than the sender TCP clock
   grainularity (e.g. inside data-centers).

   RACK can easily and optionally support the conventional approach in
   [RFC6675][RFC5681] by resetting the reordering window to zero when

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
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   the threshold is met.  Note that this approach differs slightly from
   [RFC6675] which considers a packet lost when at least #DupThresh
   higher-sequenc packets are SACKed.  RACK's approach considers a
   packet lost when at least one higher sequence packet is SACKed and
   the total number of SACKed packets is at least DupThresh.  For
   example, suppose a connection sends 10 packets, and packets 3, 5, 7
   are SACKed.  [RFC6675] considers packets 1 and 2 lost.  RACK
   considers packets 1, 2, 4, 6 lost.

7.3.  Adjusting the reordering window

   When the sender detects packet reordering, RACK uses a reordering
   window of min_rtt / 4.  It uses the minimum RTT to accommodate
   reordering introduced by packets traversing slightly different paths
   (e.g., router-based parallelism schemes) or out-of-order deliveries
   in the lower link layer (e.g., wireless links using link-layer
   retransmission).  RACK uses a quarter of minimum RTT because Linux
   TCP used the same factor in its implementation to delay Early
   Retransmit [RFC5827] to reduce spurious loss detections in the
   presence of reordering, and experience shows that this seems to work
   reasonably well.  We have evaluated using the smoothed RTT (SRTT from
   [RFC6298] RTT estimation) or the most recently measured RTT
   (RACK.rtt) using an experiment similar to that in the Performance
   Evaluation section.  They do not make any significant difference in
   terms of total recovery latency.

7.4.  Relationships with other loss recovery algorithms

   The primary motivation of RACK is to ultimately provide a simple and
   general replacement for some of the standard loss recovery algorithms
   [RFC5681][RFC6675][RFC5827][RFC4653], as well as some nonstandard
   ones [FACK][THIN-STREAM].  While RACK can be a supplemental loss
   detection mechanism on top of these algorithms, this is not
   necessary, because RACK implicitly subsumes most of them.

   [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate ACK
   threshold based on the current or previous flight sizes.  RACK takes
   a different approach, by using only one ACK event and a reordering
   window.  RACK can be seen as an extended Early Retransmit [RFC5827]
   without a FlightSize limit but with an additional reordering window.
   [FACK] considers an original packet to be lost when its sequence
   range is sufficiently far below the highest SACKed sequence.  In some
   sense RACK can be seen as a generalized form of FACK that operates in
   time space instead of sequence space, enabling it to better handle
   reordering, application-limited traffic, and lost retransmissions.

   Nevertheless RACK is still an experimental algorithm.  Since the
   oldest loss detection algorithm, the 3 duplicate ACK threshold

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
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   [RFC5681], has been standardized and widely deployed.  RACK can
   easily and optionally support the conventional approach for
   compatibility.

   RACK is compatible with and does not interfere with the the standard
   RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eifel
   algorithms [RFC3522].  This is because RACK only detects loss by
   using ACK events.  It neither changes the RTO timer calculation nor
   detects spurious timeouts.

   Furthermore, RACK naturally works well with Tail Loss Probe [TLP]
   because a tail loss probe solicits either an ACK or SACK, which can
   be used by RACK to detect more losses.  RACK can be used to relax
   TLP's requirement for using FACK and retransmitting the the highest-
   sequenced packet, because RACK is agnostic to packet sequence
   numbers, and uses transmission time instead.  Thus TLP could be
   modified to retransmit the first unacknowledged packet, which could
   improve application latency.

7.5.  Interaction with congestion control

   RACK intentionally decouples loss detection from congestion control.
   RACK only detects losses; it does not modify the congestion control
   algorithm [RFC5681][RFC6937].  However, RACK may detect losses
   earlier or later than the conventional duplicate ACK threshold
   approach does.  A packet marked lost by RACK SHOULD NOT be
   retransmitted until congestion control deems this appropriate.
   Specifically, Proportional Rate Reduction [RFC6937] SHOULD be used
   when using RACK.

   RACK is applicable for both fast recovery and recovery after a
   retransmission timeout (RTO) in [RFC5681].  RACK applies equally to
   fast recovery and RTO recovery because RACK is purely based on the
   transmission time order of packets.  When a packet retransmitted by
   RTO is acknowledged, RACK will mark any unacked packet sent
   sufficiently prior to the RTO as lost, because at least one RTT has
   elapsed since these packets were sent.

   The following simple example compares how RACK and non-RACK loss
   detection interacts with congestion control: suppose a TCP sender has
   a congestion window (cwnd) of 20 packets on a SACK-enabled
   connection.  It sends 10 data packets and all of them are lost.

   Without RACK, the sender would time out, reset cwnd to 1, and
   retransmit the first packet.  It would take four round trips (1 + 2 +
   4 + 3 = 10) to retransmit all the 10 lost packets using slow start.
   The recovery latency would be RTO + 4*RTT, with an ending cwnd of 4
   packets due to congestion window validation.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7765
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   With RACK, a sender would send the TLP after 2*RTT and get a DUPACK.
   If the sender implements Proportional Rate Reduction [RFC6937] it
   would slow start to retransmit the remaining 9 lost packets since the
   number of packets in flight (0) is lower than the slow start
   threshold (10).  The slow start would again take four round trips (1
   + 2 + 4 + 3 = 10).  The recovery latency would be 2*RTT + 4*RTT, with
   an ending cwnd set to the slow start threshold of 10 packets.

   In both cases, the sender after the recovery would be in congestion
   avoidance.  The difference in recovery latency (RTO + 4*RTT vs 6*RTT)
   can be significant if the RTT is much smaller than the minimum RTO (1
   second in RFC6298) or if the RTT is large.  The former case is common
   in local area networks, data-center networks, or content distribution
   networks with deep deployments.  The latter case is more common in
   developing regions with highly congested and/or high-latency
   networks.  The ending congestion window after recovery also impacts
   subsequent data transfer.

7.6.  TLP recovery detection with delayed ACKs

   Delayed ACKs complicate the detection of repairs done by TLP, since
   with a delayed ACK the sender receives one fewer ACK than would
   normally be expected.  To mitigate this complication, before sending
   a TLP loss probe retransmission, the sender should attempt to wait
   long enough that the receiver has sent any delayed ACKs that it is
   withholding.  The sender algorithm described above features such a
   delay, in the form of WCDelAckT.  Furthermore, if the receiver
   supports duplicate selective acknowledgments (D-SACKs) [RFC2883] then
   in the case of a delayed ACK the sender's TLP recovery detection
   algorithm (see above) can use the D-SACK information to infer that
   the original and TLP retransmission both arrived at the receiver.

   If there is ACK loss or a delayed ACK without a D-SACK, then this
   algorithm is conservative, because the sender will reduce cwnd when
   in fact there was no packet loss.  In practice this is acceptable,
   and potentially even desirable: if there is reverse path congestion
   then reducing cwnd can be prudent.

7.7.  RACK for other transport protocols

   RACK can be implemented in other transport protocols.  The algorithm
   can be simplified by skipping step 3 if the protocol can support a
   unique transmission or packet identifier (e.g.  TCP timestamp options
   [RFC7323]).  For example, the QUIC protocol implements RACK [QUIC-
   LR].

https://datatracker.ietf.org/doc/html/rfc6937
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8.  Experiments and Performance Evaluations

   RACK and TLP have been deployed at Google, for both connections to
   users in the Internet and internally.  We conducted a performance
   evaluation experiment for RACK and TLP on a small set of Google Web
   servers in Western Europe that serve mostly European and some African
   countries.  The experiment lasted three days in March 2017.  The
   servers were divided evenly into four groups of roughly 5.3 million
   flows each:

   Group 1 (control): RACK off, TLP off, RFC 6675 on

   Group 2: RACK on, TLP off, RFC 6675 on

   Group 3: RACK on, TLP on, RFC 6675 on

   Group 4: RACK on, TLP on, RFC 6675 off

   All groups used Linux with CUBIC congestion control, an initial
   congestion window of 10 packets, and the fq/pacing qdisc.  In terms
   of specific recovery features, all groups enabled RFC5682 (F-RTO) but
   disabled FACK because it is not an IETF RFC.  FACK was excluded
   because the goal of this setup is to compare RACK and TLP to RFC-
   based loss recoveries.  Since TLP depends on either FACK or RACK, we
   could not run another group that enables TLP only (with both RACK and
   FACK disabled).  Group 4 is to test whether RACK plus TLP can
   completely replace the DupThresh-based [RFC6675].

   The servers sit behind a load balancer that distributes the
   connections evenly across the four groups.

   Each group handles a similar number of connections and sends and
   receives similar amounts of data.  We compare total time spent in
   loss recovery across groups.  The recovery time is measured from when
   the recovery and retransmission starts, until the remote host has
   acknowledged the highest sequence (SND.NXT) at the time the recovery
   started.  Therefore the recovery includes both fast recoveries and
   timeout recoveries.

   Our data shows that Group 2 recovery latency is only 0.3% lower than
   the Group 1 recovery latency.  But Group 3 recovery latency is 25%
   lower than Group 1 due to a 40% reduction in RTO-triggered
   recoveries!  Therefore it is important to implement both TLP and RACK
   for performance.  Group 4's total recovery latency is 0.02% lower
   than Group 3's, indicating that RACK plus TLP can successfully
   replace RFC6675 as a standalone recovery mechanism.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
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   We want to emphasize that the current experiment is limited in terms
   of network coverage.  The connectivity in Western Europe is fairly
   good, therefore loss recovery is not a major performance bottleneck.
   We plan to expand our experiments to regions with worse connectivity,
   in particular on networks with strong traffic policing.

9.  Security Considerations

   RACK does not change the risk profile for TCP.

   An interesting scenario is ACK-splitting attacks [SCWA99]: for an
   MSS-size packet sent, the receiver or the attacker might send MSS
   ACKs that SACK or acknowledge one additional byte per ACK.  This
   would not fool RACK.  RACK.xmit_ts would not advance because all the
   sequences of the packet are transmitted at the same time (carry the
   same transmission timestamp).  In other words, SACKing only one byte
   of a packet or SACKing the packet in entirety have the same effect on
   RACK.

10.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.
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