
TCP Maintenance Working Group Y. Cheng
Internet-Draft N. Cardwell
Intended status: Standards Track N. Dukkipati
Expires: February 23, 2021 P. Jha
 Google, Inc
 August 22, 2020

The RACK-TLP loss detection algorithm for TCP
draft-ietf-tcpm-rack-10

Abstract

 This document presents the RACK-TLP loss detection algorithm for TCP.
 RACK-TLP uses per-segment transmit timestamps and selective
 acknowledgements (SACK) [RFC2018] and has two parts: RACK ("Recent
 ACKnowledgment") starts fast recovery quickly using time-based
 inferences derived from ACK feedback. TLP ("Tail Loss Probe")
 leverages RACK and sends a probe packet to trigger ACK feedback to
 avoid retransmission timeout (RTO) events. Compared to the widely
 used DUPACK threshold approach, RACK-TLP detects losses more
 efficiently when there are application-limited flights of data, lost
 retransmissions, or data packet reordering events. It is intended to
 be an alternative to the DUPACK threshold approach in
 [RFC5681][RFC6675].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 23, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Cheng, et al. Expires February 23, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft RACK August 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. In this document, these words will appear
 with that interpretation only when in UPPER CASE. Lower case uses of
 these words are not to be interpreted as carrying [RFC2119]
 significance.

2. Introduction

 This document presents RACK-TLP, a TCP loss detection algorithm that
 improves upon the widely implemented DUPACK counting approach in
 [RFC5681][RFC6675], and that is RECOMMENDED to be used as an
 alternative to that earlier approach. RACK-TLP has two parts: RACK
 ("Recent ACKnowledgment") detects losses quickly using time-based
 inferences derived from ACK feedback. TLP ("Tail Loss Probe")
 triggers ACK feedback by quickly sending a probe segment, to avoid
 retransmission timeout (RTO) events.

2.1. Background

 In traditional TCP loss recovery algorithms [RFC5681][RFC6675], a
 sender starts fast recovery when the number of DUPACKs received
 exceeds a threshold (DupThresh) that defaults to 3 (this approach is
 referred to as DUPACK-counting in the rest of the document). The
 sender also halves the congestion window during the recovery. The
 rationale behind the partial window reduction is that congestion does
 not seem severe since ACK clocking is still maintained. The time
 elapsed in fast recovery can be just one round-trip, e.g. if the
 sender uses SACK-based recovery [RFC6675] and the number of lost
 segments is small.

 If fast recovery is not triggered, or triggers but fails to repair
 all the losses, then the sender resorts to RTO recovery. The RTO
 timer interval is conservatively the smoothed RTT (SRTT) plus four

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires February 23, 2021 [Page 2]

Internet-Draft RACK August 2020

 times the RTT variation, and is lower bounded to 1 second [RFC6298].
 Upon RTO timer expiration, the sender retransmits the first
 unacknowledged segment and resets the congestion window to the LOSS
 WINDOW value (by default 1 full-size segment [RFC5681]). The
 rationale behind the congestion window reset is that an entire flight
 of data was lost, and the ACK clock was lost, so this deserves a
 cautious response. The sender then retransmits the rest of the data
 following the slow start algorithm [RFC5681]. The time elapsed in
 RTO recovery is one RTO interval plus the number of round-trips
 needed to repair all the losses.

2.2. Motivation

 Fast Recovery is the preferred form of loss recovery because it can
 potentially recover all losses in the time scale of a single round
 trip, with only a fractional congestion window reduction. RTO
 recovery and congestion window reset should ideally be the last
 resort, only used when the entire flight is lost. However, in
 addition to losing an entire flight of data, the following situations
 can unnecessarily resort to RTO recovery with traditional TCP loss
 recovery algorithms [RFC5681][RFC6675]:

 1. Packet drops for short flows or at the end of an application data
 flight. When the sender is limited by the application (e.g.
 structured request/response traffic), segments lost at the end of
 the application data transfer often can only be recovered by RTO.
 Consider an example of losing only the last segment in a flight
 of 100 segments. Lacking any DUPACK, the sender RTO expires and
 reduces the congestion window to 1, and raises the congestion
 window to just 2 after the loss repair is acknowledged. In
 contrast, any single segment loss occurring between the first and
 the 97th segment would result in fast recovery, which would only
 cut the window in half.

 1. Lost retransmissions. Heavy congestion or traffic policers can
 cause retransmissions to be lost. Lost retransmissions cause a
 resort to RTO recovery, since DUPACK-counting does not detect the
 loss of the retransmissions. Then the slow start after RTO
 recovery could cause burst losses again that severely degrades
 performance [POLICER16].

 2. Packet reordering. Link-layer protocols (e.g., 802.11 block
 ACK), link bonding, or routers' internal load-balancing (e.g.,
 ECMP) can deliver TCP segments out of order. The degree of such
 reordering is usually within the order of the path round trip
 time. If the reordering degree is beyond DupThresh, the DUPACK-
 counting can cause a spurious fast recovery and unnecessary
 congestion window reduction. To mitigate the issue, [RFC4653]

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc4653

Cheng, et al. Expires February 23, 2021 [Page 3]

Internet-Draft RACK August 2020

 adjusts DupThresh to half of the inflight size to tolerate the
 higher degree of reordering. However if more than half of the
 inflight is lost, then the sender has to resort to RTO recovery.

3. RACK-TLP high-level design

 RACK-TLP allows senders to recover losses more effectively in all
 three scenarios described in the previous section. There are two
 design principles behind RACK-TLP. The first principle is to detect
 losses via ACK events as much as possible, to repair losses at round-
 trip time-scales. The second principle is to gently probe the
 network to solicit additional ACK feedback, to avoid RTO expiration
 and subsequent congestion window reset. At a high level, the two
 principles are implemented in RACK and TLP, respectively.

3.1. RACK: time-based loss inferences from ACKs

 The rationale behind RACK is that if a segment is delivered out of
 order, then the segments sent chronologically before that were either
 lost or reordered. This concept is not fundamentally different from
 [RFC5681][RFC6675][FACK]. RACK's key innovation is using per-segment
 transmission timestamps and widely-deployed SACK [RFC2018] options to
 conduct time-based inferences, instead of inferring losses by
 counting ACKs or SACKed sequences. Time-based inferences are more
 robust than DUPACK-counting approaches because they have no
 dependence on flight size, and thus are effective for application-
 limited traffic.

 Conceptually, RACK puts a virtual timer for every data segment sent
 (including retransmissions). Each timer expires dynamically based on
 the latest RTT measurements plus an additional delay budget to
 accommodate potential packet reordering (called the reordering
 window). When a segment's timer expires, RACK marks the
 corresponding segment lost for retransmission.

 In reality, as an algorithm, RACK does not arm a timer for every
 segment sent because it's not necessary. Instead the sender records
 the most recent transmission time of every data segment sent,
 including retransmissions. For each ACK received, the sender
 calculates the latest RTT measurement (if eligible) and adjusts the
 expiration time of every segment sent but not yet delivered. If a
 segment has expired, RACK marks it lost.

 Since the time-based logic of RACK applies equally to retransmissions
 and original transmissions, it can detect lost retransmissions as
 well. If a segment has been retransmitted but its most recent
 (re)transmission timestamp has expired, then after a reordering
 window it's marked lost.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2018

Cheng, et al. Expires February 23, 2021 [Page 4]

Internet-Draft RACK August 2020

3.2. TLP: sending one segment to probe losses quickly with RACK

 RACK infers losses from ACK feedback; however, in some cases ACKs are
 sparse, particularly when the inflight is small or when the losses
 are high. In some challenging cases the last few segments in a
 flight are lost. With [RFC5681] or [RFC6675] the sender's RTO would
 expire and reset the congestion window, when in reality most of the
 flight has been delivered.

 Consider an example where a sender with a large congestion window
 transmits 100 new data segments after an application write, and only
 the last three segments are lost. Without RACK-TLP, the RTO expires,
 the sender retransmits the first unacknowledged segment, and the
 congestion window slow-starts from 1. After all the retransmits are
 acknowledged the congestion window has been increased to 4. The
 total delivery time for this application transfer is three RTTs plus
 one RTO, a steep cost given that only a tiny fraction of the flight
 was lost. If instead the losses had occurred three segments sooner
 in the flight, then fast recovery would have recovered all losses
 within one round-trip and would have avoided resetting the congestion
 window.

 Fast Recovery would be preferable in such scenarios; TLP is designed
 to trigger the feedback RACK needed to enable that. After the last
 (100th) segment was originally sent, TLP sends the next available
 (new) segment or retransmits the last (highest-sequenced) segment in
 two round-trips to probe the network, hence the name "Tail Loss
 Probe". The successful delivery of the probe would solicit an ACK.
 RACK uses this ACK to detect that the 98th and 99th segments were
 lost, trigger fast recovery, and retransmit both successfully. The
 total recovery time is four RTTs, and the congestion window is only
 partially reduced instead of being fully reset. If the probe was
 also lost then the sender would invoke RTO recovery resetting the
 congestion window.

3.3. RACK-TLP: reordering resilience with a time threshold

3.3.1. Reordering design rationale

 Upon receiving an ACK indicating an out-of-order data delivery, a
 sender cannot tell immediately whether that out-of-order delivery was
 a result of reordering or loss. It can only distinguish between the
 two in hindsight if the missing sequence ranges are filled in later
 without retransmission. Thus a loss detection algorithm needs to
 budget some wait time -- a reordering window -- to try to
 disambiguate packet reordering from packet loss.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires February 23, 2021 [Page 5]

Internet-Draft RACK August 2020

 The reordering window in the DUPACK-counting approach is implicitly
 defined as the elapsed time to receive acknowledgements for
 DupThresh-worth of out-of-order deliveries. This approach is
 effective if the network reordering degree (in sequence distance) is
 smaller than DupThresh and at least DupThresh segments after the loss
 are acknowledged. For cases where the reordering degree is larger
 than the default DupThresh of 3 packets, one alternative is to
 dynamically adapt DupThresh based on the FlightSize (e.g., the sender
 adjusts the DUPTRESH to half of the FlightSize). However, this does
 not work well with the following two types of reordering:

 1. Application-limited flights where the last non-full-sized segment
 is delivered first and then the remaining full-sized segments in
 the flight are delivered in order. This reordering pattern can
 occur when segments traverse parallel forwarding paths. In such
 scenarios the degree of reordering in packet distance is one
 segment less than the flight size.

 2. A flight of segments that are delivered partially out of order.
 One cause for this pattern is wireless link-layer retransmissions
 with an inadequate reordering buffer at the receiver. In such
 scenarios, the wireless sender sends the data packets in order
 initially, but some are lost and then recovered by link-layer
 retransmissions; the wireless receiver delivers the TCP data
 packets in the order they are received, due to the inadequate
 reordering buffer. The random wireless transmission errors in
 such scenarios cause the reordering degree, expressed in packet
 distance, to have highly variable values up to the flight size.

 In the above two cases the degree of reordering in packet distance is
 highly variable, making DUPACK-counting approach ineffective
 including dynamic adaptation variants like [RFC4653]. Instead the
 degree of reordering in time difference in such cases is usually
 within a single round-trip time. This is because the packets either
 traverse slightly disjoint paths with similar propagation delays or
 are repaired quickly by the local access technology. Hence, using a
 time threshold instead of packet threshold strikes a middle ground,
 allowing a bounded degree of reordering resilience while still
 allowing fast recovery. This is the rationale behind the RACK-TLP
 reordering resilience design.

 Specifically, RACK-TLP introduces a new dynamic reordering window
 parameter in time units, and the sender considers a data segment S
 lost if both conditions are met:

 1. Another data segment sent later than S has been delivered

https://datatracker.ietf.org/doc/html/rfc4653

Cheng, et al. Expires February 23, 2021 [Page 6]

Internet-Draft RACK August 2020

 2. S has not been delivered after the estimated round-trip time plus
 the reordering window

 Note that condition (1) implies at least one round-trip of time has
 elapsed since S has been sent.

3.3.2. Reordering window adaptation

 The RACK reordering window adapts to the measured duration of
 reordering events, within reasonable and specific bounds to
 disincentivize excessive reordering. More specifically, the sender
 sets the reordering window as follows:

 1. The reordering window SHOULD be set to zero if no reordering has
 been observed on the connection so far, and either (a) three
 segments have been delivered out of order since the last recovery
 or (b) the sender is already in fast or RTO recovery. Otherwise,
 the reordering window SHOULD start from a small fraction of the
 round trip time, or zero if no round trip time estimate is
 available.

 2. The RACK reordering window SHOULD adaptively increase (using the
 algorithm in "Step 4: Update RACK reordering window", below) if
 the sender receives a Duplicate Selective Acknowledgement (DSACK)
 option [RFC2883]. Receiving a DSACK suggests the sender made a
 spurious retransmission, which may have been due to the
 reordering window being too small.

 3. The RACK reordering window MUST be bounded and this bound SHOULD
 be SRTT.

 Rules 2 and 3 are required to adapt to reordering caused by dynamics
 such as the prolonged link-layer loss recovery episodes described
 earlier. Each increase in the reordering window requires a new round
 trip where the sender receives a DSACK; thus, depending on the extent
 of reordering, it may take multiple round trips to fully adapt.

 For short flows, the low initial reordering window helps recover
 losses quickly, at the risk of spurious retransmissions. The
 rationale is that spurious retransmissions for short flows are not
 expected to produce excessive additional network traffic. For long
 flows the design tolerates reordering within a round trip. This
 handles reordering in small time scales (reordering within the round-
 trip time of the shortest path).

 However, the fact that the initial reordering window is low, and the
 reordering window's adaptive growth is bounded, means that there will

https://datatracker.ietf.org/doc/html/rfc2883

Cheng, et al. Expires February 23, 2021 [Page 7]

Internet-Draft RACK August 2020

 continue to be a cost to reordering that disincentivizes excessive
 reordering.

3.4. An Example of RACK-TLP in Action: fast recovery

 The following example in figure 1 illustrates the RACK-TLP algorithm
 in action:

 Event TCP DATA SENDER TCP DATA RECEIVER
 _____ __
 1. Send P0, P1, P2, P3 -->
 [P1, P2, P3 dropped by network]

 2. <-- Receive P0, ACK P0

 3a. 2RTTs after (2), TLP timer fires
 3b. TLP: retransmits P3 -->

 4. <-- Receive P3, SACK P3

 5a. Receive SACK for P3
 5b. RACK: marks P1, P2 lost
 5c. Retransmit P1, P2 -->
 [P1 retransmission dropped by network]

 6. <-- Receive P2, SACK P2 & P3

 7a. RACK: marks P1 retransmission lost
 7b. Retransmit P1 -->

 8. <-- Receive P1, ACK P3

 Figure 1. RACK-TLP protocol example

 Figure 1, above, illustrates a sender sending four segments (P1, P2,
 P3, P4) and losing the last three segments. After two round-trips,
 TLP sends a loss probe, retransmitting the last segment, P3, to
 solicit SACK feedback and restore the ACK clock (event 3). The
 delivery of P3 enables RACK to infer (event 5b) that P1 and P2 were
 likely lost, because they were sent before P3. The sender then
 retransmits P1 and P2. Unfortunately, the retransmission of P1 is
 lost again. However, the delivery of the retransmission of P2 allows
 RACK to infer that the retransmission of P1 was likely lost (event
 7a), and hence P1 should be retransmitted (event 7b).

Cheng, et al. Expires February 23, 2021 [Page 8]

Internet-Draft RACK August 2020

3.5. An Example of RACK-TLP in Action: RTO

 In addition to enhancing fast recovery, RACK improves the accuracy of
 RTO recovery by reducing spurious retransmissions.

 Without RACK, upon RTO timer expiration the sender marks all the
 unacknowledged segments lost. This approach can lead to spurious
 retransmissions. For example, consider a simple case where one
 segment was sent with an RTO of 1 second, and then the application
 writes more data, causing a second and third segment to be sent right
 before the RTO of the first segment expires. Suppose only the first
 segment is lost. Without RACK, upon RTO expiration the sender marks
 all three segments as lost and retransmits the first segment. When
 the sender receives the ACK that selectively acknowledges the second
 segment, the sender spuriously retransmits the third segment.

 With RACK, upon RTO timer expiration the only segment automatically
 marked lost is the first segment (since it was sent an RTO ago); for
 all the other segments RACK only marks the segment lost if at least
 one round trip has elapsed since the segment was transmitted.
 Consider the previous example scenario, this time with RACK. With
 RACK, when the RTO expires the sender only marks the first segment as
 lost, and retransmits that segment. The other two very recently sent
 segments are not marked lost, because they were sent less than one
 round trip ago and there were no ACKs providing evidence that they
 were lost. When the sender receives the ACK that selectively
 acknowledges the second segment, the sender would not retransmit the
 third segment but rather would send any new segments (if allowed by
 congestion window and receive window).

 In the above example, if the sender were to send a large burst of
 segments instead of two segments right before RTO, without RACK the
 sender may spuriously retransmit almost the entire flight [RACK-
 TCPM97]. Note that the Eifel protocol [RFC3522] cannot prevent this
 issue because it can only detect spurious RTO episodes. In this
 example the RTO itself was not spurious.

3.6. Design Summary

 To summarize, RACK-TLP aims to adapt to small time-varying degrees of
 reordering, quickly recover most losses within one to two round
 trips, and avoid costly RTO recoveries. In the presence of
 reordering, the adaptation algorithm can impose sometimes-needless
 delays when it waits to disambiguate loss from reordering, but the
 penalty for waiting is bounded to one round trip and such delays are
 confined to flows long enough to have observed reordering.

https://datatracker.ietf.org/doc/html/rfc3522

Cheng, et al. Expires February 23, 2021 [Page 9]

Internet-Draft RACK August 2020

4. Requirements

 The reader is expected to be familiar with the definitions given in
 the TCP congestion control [RFC5681] and selective acknowledgment
 [RFC2018][RFC6675] RFCs. RACK-TLP has the following requirements:

 1. The connection MUST use selective acknowledgment (SACK) options
 [RFC2018], and the sender MUST keep SACK scoreboard information
 on a per-connection basis ("SACK scoreboard" has the same meaning
 here as in [RFC6675] section 3).

 2. For each data segment sent, the sender MUST store its most recent
 transmission time with a timestamp whose granularity that is
 finer than 1/4 of the minimum RTT of the connection. At the time
 of writing, microsecond resolution is suitable for intra-
 datacenter traffic and millisecond granularity or finer is
 suitable for the Internet. Note that RACK-TLP can be implemented
 with TSO (TCP Segmentation Offload) support by having multiple
 segments in a TSO aggregate share the same timestamp.

 3. RACK DSACK-based reordering window adaptation is RECOMMENDED but
 is not required.

 4. TLP requires RACK.

5. Definitions

 The reader is expected to be familiar with the variables of SND.UNA,
 SND.NXT, SEG.ACK, and SEG.SEQ in [RFC793], SMSS, FlightSize in
 [RFC5681], DupThresh in [RFC6675], RTO and SRTT in [RFC6298]. A
 RACK-TLP implementation needs to store new per-segment and per-
 connection state, described below.

5.1. Per-segment variables

 Theses variables indicate the status of the most recent transmission
 of a data segment:

 "Segment.lost" is true if the most recent (re)transmission of the
 segment has been marked lost and needs to be retransmitted. False
 otherwise.

 "Segment.retransmitted" is true if it was retransmitted in the most
 recent transmission. False otherwise.

 "Segment.xmit_ts" is the time of the last transmission of a data
 segment, including retransmissions, if any, with a clock granularity
 specified in the Requirements section.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675#section-3
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6298

Cheng, et al. Expires February 23, 2021 [Page 10]

Internet-Draft RACK August 2020

 "Segment.end_seq" is the next sequence number after the last sequence
 number of the data segment.

5.2. Per-connection variables

 "RACK.segment". Among all the segments that have been either
 selectively or cumulatively acknowledged, RACK.segment is the one
 that was sent most recently (including retransmissions).

 "RACK.xmit_ts" is the latest transmission timestamp of RACK.segment.

 "RACK.end_seq" is the Segment.end_seq of RACK.segment.

 "RACK.ack_ts" is the time when the full sequence range of
 RACK.segment was selectively or cumulatively acknowledged.

 "RACK.segs_sacked" returns the total number of segments selectively
 acknowledged in the SACK scoreboard.

 "RACK.fack" is the highest selectively or cumulatively acknowledged
 sequence (i.e. forward acknowledgement).

 "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
 connection.

 "RACK.rtt" is the RTT of the most recently delivered segment on the
 connection (either cumulatively acknowledged or selectively
 acknowledged) that was not marked invalid as a possible spurious
 retransmission.

 "RACK.reordering_seen" indicates whether the sender has detected data
 segment reordering event(s).

 "RACK.reo_wnd" is a reordering window computed in the unit of time
 used for recording segment transmission times. It is used to defer
 the moment at which RACK marks a segment lost.

 "RACK.dsack" indicates if a DSACK option has been received since the
 last RACK.reo_wnd change.

 "RACK.reo_wnd_mult" is the multiplier applied to adjust RACK.reo_wnd.

 "RACK.reo_wnd_persist" is the number of loss recoveries before
 resetting RACK.reo_wnd.

 "RACK.rtt_seq" is the SND.NXT when RACK.rtt is updated.

Cheng, et al. Expires February 23, 2021 [Page 11]

Internet-Draft RACK August 2020

 "TLP.is_retrans": a boolean indicating whether there is an
 unacknowledged TLP retransmission.

 "TLP.end_seq": the value of SND.NXT at the time of sending a TLP
 retransmission.

 "TLP.max_ack_delay": sender's maximum delayed ACK timer budget.

 Per-connection timers

 "RACK reordering timer": a timer that allows RACK to wait for
 reordering to resolve, to try to disambiguate reordering from loss,
 when some out-of-order segments are marked as SACKed.

 "TLP PTO": a timer event indicating that an ACK is overdue and the
 sender should transmit a TLP segment, to solicit SACK or ACK
 feedback.

 These timers augment the existing timers maintained by a sender,
 including the RTO timer [RFC6298]. A RACK-TLP sender arms one of
 these three timers -- RACK reordering timer, TLP PTO timer, or RTO
 timer -- when it has unacknowledged segments in flight. The
 implementation can simplify managing all three timers by multiplexing
 a single timer among them with an additional variable to indicate the
 event to invoke upon the next timer expiration.

6. RACK Algorithm Details

6.1. Upon transmitting a data segment

 Upon transmitting a new segment or retransmitting an old segment,
 record the time in Segment.xmit_ts and set Segment.lost to FALSE.
 Upon retransmitting a segment, set Segment.retransmitted to TRUE.

 RACK_transmit_data(Segment):
 Segment.xmit_ts = Now()
 Segment.lost = FALSE

 RACK_retransmit_data(Segment):
 Segment.retransmitted = TRUE
 RACK_transmit_data(Segment)

6.2. Upon receiving an ACK

 Step 1: Update RACK.min_RTT.

 Use the RTT measurements obtained via [RFC6298] or [RFC7323] to
 update the estimated minimum RTT in RACK.min_RTT. The sender SHOULD

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323

Cheng, et al. Expires February 23, 2021 [Page 12]

Internet-Draft RACK August 2020

 track a windowed min-filtered estimate of recent RTT measurements
 that can adapt when migrating to significantly longer paths, rather
 than a simple global minimum of all RTT measurements.

 Step 2: Update state for most recently sent segment that has been
 delivered

 In this step, RACK updates the states that track the most recently
 sent segment that has been delivered: RACK.segment; RACK maintains
 its latest transmission timestamp in RACK.xmit_ts and its highest
 sequence number in RACK.end_seq. These two variables are used, in
 later steps, to estimate if some segments not yet delivered were
 likely lost. Given the information provided in an ACK, each segment
 cumulatively ACKed or SACKed is marked as delivered in the
 scoreboard. Since an ACK can also acknowledge retransmitted data
 segments, and retransmissions can be spurious, the sender needs to
 take care to avoid spurious inferences. For example, if the sender
 were to use timing information from a spurious retransmission, the
 RACK.rtt could be vastly underestimated.

 To avoid spurious inferences, ignore a segment as invalid if any of
 its sequence range has been retransmitted before and either of two
 conditions is true:

 1. The Timestamp Echo Reply field (TSecr) of the ACK's timestamp
 option [RFC7323], if available, indicates the ACK was not
 acknowledging the last retransmission of the segment.

 2. The segment was last retransmitted less than RACK.min_rtt ago.

 The second check is a heuristic when the TCP Timestamp option is not
 available, or when the round trip time is less than the TCP Timestamp
 clock granularity.

 Among all the segments newly ACKed or SACKed by this ACK that pass
 the checks above, update the RACK.rtt to be the RTT sample calculated
 using this ACK. Furthermore, record the most recent Segment.xmit_ts
 in RACK.xmit_ts if it is ahead of RACK.xmit_ts. If Segment.xmit_ts
 equals RACK.xmit_ts (e.g. due to clock granularity limits) then
 compare Segment.end_seq and RACK.end_seq to break the tie.

 Step 2 may be summarized in pseudocode as:

https://datatracker.ietf.org/doc/html/rfc7323

Cheng, et al. Expires February 23, 2021 [Page 13]

Internet-Draft RACK August 2020

 RACK_sent_after(t1, seq1, t2, seq2):
 If t1 > t2:
 Return true
 Else if t1 == t2 AND seq1 > seq2:
 Return true
 Else:
 Return false

 RACK_update():
 For each Segment newly acknowledged cumulatively or selectively:
 rtt = Now() - Segment.xmit_ts
 If Segment.retransmitted is TRUE:
 If ACK.ts_option.echo_reply < Segment.xmit_ts:
 Return
 If rtt < RACK.min_rtt:
 Return

 RACK.rtt = rtt
 If RACK_sent_after(Segment.xmit_ts, Segment.end_seq
 RACK.xmit_ts, RACK.end_seq):
 RACK.xmit_ts = Segment.xmit_ts

 Step 3: Detect data segment reordering

 To detect reordering, the sender looks for original data segments
 being delivered out of order. To detect such cases, the sender
 tracks the highest sequence selectively or cumulatively acknowledged
 in the RACK.fack variable. The name "fack" stands for the most
 "Forward ACK" (this term is adopted from [FACK]). If a never-
 retransmitted segment that's below RACK.fack is (selectively or
 cumulatively) acknowledged, it has been delivered out of order. The
 sender sets RACK.reordering_seen to TRUE if such segment is
 identified.

 RACK_detect_reordering():
 For each Segment newly acknowledged cumulatively or selectively:
 If Segment.end_seq > RACK.fack:
 RACK.fack = Segment.end_seq
 Else if Segment.end_seq < RACK.fack AND
 Segment.retransmitted is FALSE:
 RACK.reordering_seen = TRUE

 Step 4: Update RACK reordering window

 The RACK reordering window, RACK.reo_wnd, serves as an adaptive
 allowance for settling time before marking a segment lost. This step
 documents a detailed algorithm that follows the principles outlined
 in the ``Reordering window adaptation'' section.

Cheng, et al. Expires February 23, 2021 [Page 14]

Internet-Draft RACK August 2020

 If the sender has not yet observed any reordering based on the
 previous step, then RACK prioritizes quick loss recovery by using
 setting RACK.reo_wnd to 0 when the number of SACKed segments exceeds
 DupThresh, or during loss recovery.

 Aside from those special conditions, RACK starts with a conservative
 reordering window of RACK.min_RTT/4. This value was chosen because
 Linux TCP used the same factor in its implementation to delay Early
 Retransmit [RFC5827] to reduce spurious loss detections in the
 presence of reordering, and experience showed this worked reasonably
 well [DMCG11].

 However, the reordering detection in the previous step, Step 3, has a
 self-reinforcing drawback when the reordering window is too small to
 cope with the actual reordering. When that happens, RACK could
 spuriously mark reordered segments lost, causing them to be
 retransmitted. In turn, the retransmissions can prevent the
 necessary conditions for Step 3 to detect reordering, since this
 mechanism requires ACKs or SACKs for only segments that have never
 been retransmitted. In some cases such scenarios can persist,
 causing RACK to continue to spuriously mark segments lost without
 realizing the reordering window is too small.

 To avoid the issue above, RACK dynamically adapts to higher degrees
 of reordering using DSACK options from the receiver. Receiving an
 ACK with a DSACK option indicates a spurious retransmission,
 suggesting that RACK.reo_wnd may be too small. The RACK.reo_wnd
 increases linearly for every round trip in which the sender receives
 some DSACK option, so that after N distinct round trips in which a
 DSACK is received, the RACK.reo_wnd becomes (N+1) * min_RTT / 4, with
 an upper-bound of SRTT.

 If the reordering is temporary then a large adapted reordering window
 would unnecessarily delay loss recovery later. Therefore, RACK
 persists using the inflated RACK.reo_wnd for up to 16 loss
 recoveries, after which it resets RACK.reo_wnd to its starting value,
 min_RTT / 4. The downside of resetting the reordering window is the
 risk of triggering spurious fast recovery episodes if the reordering
 remains high. The rationale for this approach is to bound such
 spurious recoveries to approximately once every 16 recoveries (less
 than 7%).

 To track the linear scaling factor for the adaptive reordering
 window, RACK uses the variable RACK.reo_wnd_mult, which is
 initialized to 1 and adapts with the following pseudocode, which
 implements the above algorithm:

https://datatracker.ietf.org/doc/html/rfc5827

Cheng, et al. Expires February 23, 2021 [Page 15]

Internet-Draft RACK August 2020

 RACK_update_reo_wnd():

 /* DSACK-based reordering window adaptation */
 If RACK.dsack_round is not None AND
 SND.UNA >= RACK.dsack_round:
 RACK.dsack_round = None
 /* Grow the reordering window per round that sees DSACK.
 Reset the window after 16 DSACK-free recoveries */
 If RACK.dsack_round is None AND
 any DSACK option is present on latest received ACK:
 RACK.dsack_round = SND.NXT
 RACK.reo_wnd_mult += 1
 RACK.reo_wnd_persist = 16
 Else if exiting Fast or RTO recovery:
 RACK.reo_wnd_persist -= 1
 If RACK.reo_wnd_persist <= 0:
 RACK.reo_wnd_mult = 1

 If RACK.reordering_seen is FALSE:
 If in Fast or RTO recovery:
 Return 0
 Else if RACK.segs_sacked >= DupThresh:
 Return 0
 Return min(RACK.min_RTT / 4 * RACK.reo_wnd_mult, SRTT)

 Step 5: Detect losses.

 For each segment that has not been SACKed, RACK considers that
 segment lost if another segment that was sent later has been
 delivered, and the reordering window has passed. RACK considers the
 reordering window to have passed if the RACK.segment was sent
 sufficiently after the segment in question, or a sufficient time has
 elapsed since the RACK.segment was S/ACKed, or some combination of
 the two. More precisely, RACK marks a segment lost if:

 RACK.xmit_ts >= Segment.xmit_ts
 AND
 (RACK.xmit_ts - Segment.xmit_ts) + (now - RACK.ack_ts) >= RACK.reo_wnd

 Solving this second condition for "now", the moment at which a
 segment is marked lost, yields:

 now >= Segment.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

 Then (RACK.ack_ts - RACK.xmit_ts) is the round trip time of the most
 recently (re)transmitted segment that's been delivered. When
 segments are delivered in order, the most recently (re)transmitted
 segment that's been delivered is also the most recently delivered,

Cheng, et al. Expires February 23, 2021 [Page 16]

Internet-Draft RACK August 2020

 hence RACK.rtt == RACK.ack_ts - RACK.xmit_ts. But if segments were
 reordered, then the segment delivered most recently was sent before
 the most recently (re)transmitted segment. Hence RACK.rtt >
 (RACK.ack_ts - RACK.xmit_ts).

 Since RACK.RTT >= (RACK.ack_ts - RACK.xmit_ts), the previous equation
 reduces to saying that the sender can declare a segment lost when:

 now >= Segment.xmit_ts + RACK.reo_wnd + RACK.rtt

 In turn, that is equivalent to stating that a RACK sender should
 declare a segment lost when:

 Segment.xmit_ts + RACK.rtt + RACK.reo_wnd - now <= 0

 Note that if the value on the left hand side is positive, it
 represents the remaining wait time before the segment is deemed lost.
 But this risks a timeout (RTO) if no more ACKs come back (e.g., due
 to losses or application-limited transmissions) to trigger the
 marking. For timely loss detection, the sender is RECOMMENDED to
 install a reordering timer. This timer expires at the earliest
 moment when RACK would conclude that all the unacknowledged segments
 within the reordering window were lost.

 The following pseudocode implements the algorithm above. When an ACK
 is received or the RACK reordering timer expires, call
 RACK_detect_loss_and_arm_timer(). The algorithm breaks timestamp
 ties by using the TCP sequence space, since high-speed networks often
 have multiple segments with identical timestamps.

Cheng, et al. Expires February 23, 2021 [Page 17]

Internet-Draft RACK August 2020

 RACK_detect_loss():
 timeout = 0
 RACK.reo_wnd = RACK_update_reo_wnd()
 For each segment, Segment, not acknowledged yet:
 If Segment.lost is TRUE AND Segment.retransmitted is FALSE:
 Continue /* Segment lost but not yet retransmitted */

 If RACK_sent_after(RACK.xmit_ts, RACK.end_seq,
 Segment.xmit_ts, Segment.end_seq):
 remaining = Segment.xmit_ts + RACK.rtt +
 RACK.reo_wnd - Now()
 If remaining <= 0:
 Segment.lost = TRUE
 Else:
 timeout = max(remaining, timeout)
 Return timeout

 RACK_detect_loss_and_arm_timer():
 timeout = RACK_detect_loss()
 If timeout != 0
 Arm the RACK timer to call
 RACK_detect_loss_and_arm_timer() after timeout

 As an optimization, an implementation can choose to check only
 segments that have been sent before RACK.xmit_ts. This can be more
 efficient than scanning the entire SACK scoreboard, especially when
 there are many segments in flight. The implementation can use a
 separate doubly-linked list ordered by Segment.xmit_ts and inserts a
 segment at the tail of the list when it is (re)transmitted, and
 removes a segment from the list when it is delivered or marked lost.
 In Linux TCP this optimization improved CPU usage by orders of
 magnitude during some fast recovery episodes on high-speed WAN
 networks.

6.3. Upon RTO expiration

 Upon RTO timer expiration, RACK marks the first outstanding segment
 as lost (since it was sent an RTO ago); for all the other segments
 RACK only marks the segment lost if the time elapsed since the
 segment was transmitted is at least the sum of the recent RTT and the
 reordering window.

 RACK_mark_losses_on_RTO():
 For each segment, Segment, not acknowledged yet:
 If SEG.SEQ == SND.UNA OR
 Segment.xmit_ts + RACK.rtt + RACK.reo_wnd - Now() <= 0:
 Segment.lost = TRUE

Cheng, et al. Expires February 23, 2021 [Page 18]

Internet-Draft RACK August 2020

7. TLP Algorithm Details

7.1. Initializing state

 Reset TLP.is_retrans and TLP.end_seq when initiating a connection,
 fast recovery, or RTO recovery.

 TLP_init():
 TLP.end_seq = None
 TLP.is_retrans = false

7.2. Scheduling a loss probe

 The sender schedules a loss probe timeout (PTO) to transmit a segment
 during the normal transmission process. The sender SHOULD start or
 restart a loss probe PTO timer after transmitting new data (that was
 not itself a loss probe) or upon receiving an ACK that cumulatively
 acknowledges new data, unless it is already in fast recovery, RTO
 recovery, or the sender has segments delivered out-of-order (i.e.
 RACK.segs_sacked is not zero). These conditions are excluded because
 they are addressed by similar mechanisms, like Limited Transmit
 [RFC3042], the RACK reordering timer, and F-RTO [RFC5682].

 The sender calculates the PTO interval by taking into account a
 number of factors.

 First, the default PTO interval is 2*SRTT. By that time, it is
 prudent to declare that an ACK is overdue, since under normal
 circumstances, i.e. no losses, an ACK typically arrives in one SRTT.
 Choosing PTO to be exactly an SRTT would risk causing spurious
 probes, given that network and end-host delay variance can cause an
 ACK to be delayed beyond SRTT. Hence the PTO is conservatively
 chosen to be the next integral multiple of SRTT.

 Second, when there is no SRTT estimate available, the PTO SHOULD be 1
 second. This conservative value corresponds to the RTO value when no
 SRTT is available, per [RFC6298].

 Third, when FlightSize is one segment, the sender MAY inflate PTO by
 TLP.max_ack_delay to accommodate a potential delayed acknowledgment
 and reduce the risk of spurious retransmissions. The actual value of
 TLP.max_ack_delay is implementation-specific.

 Finally, if the time at which an RTO would fire (here denoted
 "TCP_RTO_expiration()") is sooner than the computed time for the PTO,
 then the sender schedules a TLP to be sent at that RTO time.

https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc6298

Cheng, et al. Expires February 23, 2021 [Page 19]

Internet-Draft RACK August 2020

 Summarizing these considerations in pseudocode form, a sender SHOULD
 use the following logic to select the duration of a PTO:

 TLP_calc_PTO():
 If SRTT is available:
 PTO = 2 * SRTT
 If FlightSize is one segment:
 PTO += TLP.max_ack_delay
 Else:
 PTO = 1 sec

 If Now() + PTO > TCP_RTO_expiration():
 PTO = TCP_RTO_expiration() - Now()

7.3. Sending a loss probe upon PTO expiration

 When the PTO timer expires, the sender SHOULD transmit a previously
 unsent data segment, if the receive window allows, and increment the
 FlightSize accordingly. Note that FlightSize could be one packet
 greater than the congestion window temporarily until the next ACK
 arrives.

 If such a segment is not available, then the sender SHOULD retransmit
 the highest-sequence segment sent so far and set TLP.is_retrans to
 true. This segment is chosen to deal with the retransmission
 ambiguity problem in TCP. Suppose a sender sends N segments, and
 then retransmits the last segment (segment N) as a loss probe, and
 then the sender receives a SACK for segment N. As long as the sender
 waits for the RACK reordering window to expire, it doesn't matter if
 that SACK was for the original transmission of segment N or the TLP
 retransmission; in either case the arrival of the SACK for segment N
 provides evidence that the N-1 segments preceding segment N were
 likely lost.

 In the case where there is only one original outstanding segment of
 data (N=1), the same logic (trivially) applies: an ACK for a single
 outstanding segment tells the sender the N-1=0 segments preceding
 that segment were lost. Furthermore, whether there are N>1 or N=1
 outstanding segments, there is a question about whether the original
 last segment or its TLP retransmission were lost; the sender
 estimates whether there was such a loss using TLP recovery detection
 (see below).

 The sender MUST follow the RACK transmission procedures in the ''Upon
 Transmitting a Data Segment'' section (see above) upon sending either
 a retransmission or new data loss probe. This is critical for
 detecting losses using the ACK for the loss probe. Furthermore,
 prior to sending a loss probe, the sender MUST check that there is no

Cheng, et al. Expires February 23, 2021 [Page 20]

Internet-Draft RACK August 2020

 other previous loss probe still in flight. This ensures that at any
 given time the sender has at most one additional packet in flight
 beyond the congestion window limit. This invariant is maintained
 using the state variable TLP.end_seq, which indicates the latest
 unacknowledged TLP loss probe's ending sequence. It is reset when
 the loss probe has been acknowledged or is deemed lost or irrelevant.
 After attempting to send a loss probe, regardless of whether a loss
 probe was sent, the sender MUST re-arm the RTO timer, not the PTO
 timer, if FlightSize is not zero. This ensures RTO recovery remains
 the last resort if TLP fails. The following pseudo code summarizes
 the operations.

 TLP_send_probe():

 If TLP.end_seq is None:
 TLP.is_retrans = false
 Segment = send buffer segment starting at SND.NXT
 If Segment exists and fits the peer receive window limit:
 /* Transmit the lowest-sequence unsent Segment */
 Transmit Segment
 RACK_transmit_data(Segment)
 TLP.end_seq = SND.NXT
 Increase FlightSize by Segment length
 Else:
 /* Retransmit the highest-sequence Segment sent */
 Segment = send buffer segment ending at SND.NXT
 Transmit Segment
 RACK_retransmit_data(Segment)
 TLP.end_seq = SND.NXT

7.4. Detecting losses by the ACK of the loss probe

 When there is packet loss in a flight ending with a loss probe, the
 feedback solicited by a loss probe will reveal one of two scenarios,
 depending on the pattern of losses.

7.4.1. General case: detecting packet losses using RACK

 If the loss probe and the ACK that acknowledges the probe are
 delivered successfully, RACK-TLP uses this ACK -- just as it would
 with any other ACK -- to detect if any segments sent prior to the
 probe were dropped. RACK would typically infer that any
 unacknowledged data segments sent before the loss probe were lost,
 since they were sent sufficiently far in the past (at least one PTO
 has elapsed, plus one round-trip for the loss probe to be ACKed).
 More specifically, RACK_detect_loss() (step 5) would mark those
 earlier segments as lost. Then the sender would trigger a fast
 recovery to recover those losses.

Cheng, et al. Expires February 23, 2021 [Page 21]

Internet-Draft RACK August 2020

7.4.2. Special case: detecting a single loss repaired by the loss probe

 If the TLP retransmission repairs all the lost in-flight sequence
 ranges (i.e. only the last segment in the flight was lost), the ACK
 for the loss probe appears to be a regular cumulative ACK, which
 would not normally trigger the congestion control response to this
 packet loss event. The following TLP recovery detection mechanism
 examines ACKs to detect this special case to make congestion control
 respond properly [RFC5681].

 After a TLP retransmission, the sender checks for this special case
 of a single loss that is recovered by the loss probe itself. To
 accomplish this, the sender checks for a duplicate ACK or DSACK
 indicating that both the original segment and TLP retransmission
 arrived at the receiver, meaning there was no loss. If the TLP
 sender does not receive such an indication, then it MUST assume that
 either the original data segment, the TLP retransmission, or a
 corresponding ACK were lost, for congestion control purposes.

 If the TLP retransmission is spurious, a receiver that uses DSACK
 would return an ACK that covers TLP.end_seq with a DSACK option (Case
 1). If the receiver does not support DSACK, it would return a DUPACK
 without any SACK option (Case 2). If the sender receives an ACK
 matching either case, then the sender estimates that the receiver
 received both the original data segment and the TLP probe
 retransmission, and so the sender considers the TLP episode to be
 done, and records that fact by setting TLP.end_seq to None.

 Upon receiving an ACK that covers some sequence number after
 TLP.end_seq, the sender should have received any ACKs for the
 original segment and TLP probe retransmission segment. At that time,
 if the TLP.end_seq is still set, and thus indicates that the TLP
 probe retransmission remains unacknowledged, then the sender should
 presume that at least one of its data segments was lost. The sender
 then SHOULD invoke a congestion control response equivalent to a fast
 recovery.

 More precisely, on each ACK the sender executes the following:

https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et al. Expires February 23, 2021 [Page 22]

Internet-Draft RACK August 2020

 TLP_process_ack(ACK):
 If TLP.end_seq is not None AND ACK.seq >= TLP.end_seq:
 If not TLP.is_retrans:
 TLP.end_seq = None /* TLP of new data delivered */
 Else if ACK has a DSACK option matching TLP.end_seq:
 TLP.end_seq = None /* Case 1, above */
 Else If SEG.ACK > TLP.end_seq:
 TLP.end_seq = None /* Repaired the single loss */
 (Invoke congestion control to react to
 the loss event the probe has repaired)
 Else If ACK is a DUPACK without any SACK option:
 TLP.end_seq = None /* Case 2, above */

8. Managing RACK-TLP timers

 The RACK reordering, the TLP PTO timer, the RTO and Zero window probe
 (ZWP) timer [RFC793] are mutually exclusive and used in different
 scenarios. When arming a RACK reordering timer or TLP PTO timer, the
 sender SHOULD cancel any other pending timer(s). An implementation
 is to have one timer with an additional state variable indicating the
 type of the timer.

9. Discussion

9.1. Advantages and disadvantages

 The biggest advantage of RACK-TLP is that every data segment, whether
 it is an original data transmission or a retransmission, can be used
 to detect losses of the segments sent chronologically prior to it.
 This enables RACK-TLP to use fast recovery in cases with application-
 limited flights of data, lost retransmissions, or data segment
 reordering events. Consider the following examples:

 1. Packet drops at the end of an application data flight: Consider a
 sender that transmits an application-limited flight of three data
 segments (P1, P2, P3), and P1 and P3 are lost. Suppose the
 transmission of each segment is at least RACK.reo_wnd after the
 transmission of the previous segment. RACK will mark P1 as lost
 when the SACK of P2 is received, and this will trigger the
 retransmission of P1 as R1. When R1 is cumulatively
 acknowledged, RACK will mark P3 as lost and the sender will
 retransmit P3 as R3. This example illustrates how RACK is able
 to repair certain drops at the tail of a transaction without an
 RTO recovery. Notice that neither the conventional duplicate ACK
 threshold [RFC5681], nor [RFC6675], nor the Forward
 Acknowledgment [FACK] algorithm can detect such losses, because
 of the required segment or sequence count.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires February 23, 2021 [Page 23]

Internet-Draft RACK August 2020

 2. Lost retransmission: Consider a flight of three data segments
 (P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the
 transmission of each segment is at least RACK.reo_wnd after the
 transmission of the previous segment. When P3 is SACKed, RACK
 will mark P1 and P2 lost and they will be retransmitted as R1 and
 R2. Suppose R1 is lost again but R2 is SACKed; RACK will mark R1
 lost and trigger retransmission again. Again, neither the
 conventional three duplicate ACK threshold approach, nor
 [RFC6675], nor the Forward Acknowledgment [FACK] algorithm can
 detect such losses. And such a lost retransmission can happen
 when TCP is being rate-limited, particularly by token bucket
 policers with large bucket depth and low rate limit; in such
 cases retransmissions are often lost repeatedly because standard
 congestion control requires multiple round trips to reduce the
 rate below the policed rate.

 3. Packet reordering: Consider a simple reordering event where a
 flight of segments are sent as (P1, P2, P3). P1 and P2 carry a
 full payload of MSS octets, but P3 has only a 1-octet payload.
 Suppose the sender has detected reordering previously and thus
 RACK.reo_wnd is min_RTT/4. Now P3 is reordered and delivered
 first, before P1 and P2. As long as P1 and P2 are delivered
 within min_RTT/4, RACK will not consider P1 and P2 lost. But if
 P1 and P2 are delivered outside the reordering window, then RACK
 will still spuriously mark P1 and P2 lost.

 The examples above show that RACK-TLP is particularly useful when the
 sender is limited by the application, which can happen with
 interactive or request/response traffic. Similarly, RACK still works
 when the sender is limited by the receive window, which can happen
 with applications that use the receive window to throttle the sender.

 RACK-TLP works more efficiently with TCP Segmentation Offload (TSO)
 compared to DUPACK-counting. RACK always marks the entire TSO
 aggregate lost because the segments in the same TSO aggregate have
 the same transmission timestamp. By contrast, the algorithms based
 on sequence counting (e.g., [RFC6675][RFC5681]) may mark only a
 subset of segments in the TSO aggregate lost, forcing the stack to
 perform expensive fragmentation of the TSO aggregate, or to
 selectively tag individual segments lost in the scoreboard.

 The main drawback of RACK-TLP is the additional states required
 compared to DUPACK-counting. RACK requires the sender to record the
 transmission time of each segment sent at a clock granularity that is
 finer than 1/4 of the minimum RTT of the connection. TCP
 implementations that record this already for RTT estimation do not
 require any new per-packet state. But implementations that are not
 yet recording segment transmission times will need to add per-packet

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires February 23, 2021 [Page 24]

Internet-Draft RACK August 2020

 internal state (expected to be either 4 or 8 octets per segment or
 TSO aggregate) to track transmission times. In contrast, [RFC6675]
 loss detection approach does not require any per-packet state beyond
 the SACK scoreboard; this is particularly useful on ultra-low RTT
 networks where the RTT may be less than the sender TCP clock
 granularity (e.g. inside data-centers). Another disadvantage is the
 reordering timer may expire prematurely (like any other
 retransmission timer) to cause higher spurious retransmission
 especially if DSACK is not supported.

9.2. Relationships with other loss recovery algorithms

 The primary motivation of RACK-TLP is to provide a general
 alternative to some of the standard loss recovery algorithms
 [RFC5681][RFC6675][RFC5827][RFC4653]. [RFC5827][RFC4653] dynamically
 adjusts the duplicate ACK threshold based on the current or previous
 flight sizes. RACK-TLP takes a different approach by using a time-
 based reordering window. RACK-TLP can be seen as an extended Early
 Retransmit [RFC5827] without a FlightSize limit but with an
 additional reordering window. [FACK] considers an original segment
 to be lost when its sequence range is sufficiently far below the
 highest SACKed sequence. In some sense RACK-TLP can be seen as a
 generalized form of FACK that operates in time space instead of
 sequence space, enabling it to better handle reordering, application-
 limited traffic, and lost retransmissions.

 RACK-TLP is compatible with the standard RTO [RFC6298], RTO-restart
 [RFC7765], F-RTO [RFC5682] and Eifel algorithms [RFC3522]. This is
 because RACK-TLP only detects loss by using ACK events. It neither
 changes the RTO timer calculation nor detects spurious RTO.

9.3. Interaction with congestion control

 RACK-TLP intentionally decouples loss detection from congestion
 control. RACK-TLP only detects losses; it does not modify the
 congestion control algorithm [RFC5681][RFC6937]. A segment marked
 lost by RACK-TLP MUST NOT be retransmitted until congestion control
 deems this appropriate.

 The only exception -- the only way in which RACK-TLP modulates the
 congestion control algorithm -- is that one outstanding loss probe
 can be sent even if the congestion window is fully used. However,
 this temporary over-commit is accounted for and credited in the in-
 flight data tracked for congestion control, so that congestion
 control will erase the over-commit upon the next ACK.

 If packet losses happen after the reordering window has been
 increased by DSACK, RACK-TLP may take longer to detect losses than

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7765
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et al. Expires February 23, 2021 [Page 25]

Internet-Draft RACK August 2020

 the pure DUPACK-counting approach. In this case TCP may continue to
 increase the congestion window upon receiving ACKs during this time,
 making the sender more aggressive.

 The following simple example compares how RACK-TLP and non-RACK-TLP
 loss detection interacts with congestion control: suppose a sender
 has a congestion window (cwnd) of 20 segments on a SACK-enabled
 connection. It sends 10 data segments and all of them are lost.

 Without RACK-TLP, the sender would time out, reset cwnd to 1, and
 retransmit the first segment. It would take four round trips (1 + 2
 + 4 + 3 = 10) to retransmit all the 10 lost segments using slow
 start. The recovery latency would be RTO + 4*RTT, with an ending
 cwnd of 4 segments due to congestion window validation.

 With RACK-TLP, a sender would send the TLP after 2*RTT and get a
 DUPACK, enabling RACK to detect the losses and trigger fast recovery.
 If the sender implements Proportional Rate Reduction [RFC6937] it
 would slow start to retransmit the remaining 9 lost segments since
 the number of segments in flight (0) is lower than the slow start
 threshold (10). The slow start would again take four round trips (1
 + 2 + 4 + 3 = 10) to retransmit all the lost segments. The recovery
 latency would be 2*RTT + 4*RTT, with an ending cwnd set to the slow
 start threshold of 10 segments.

 The difference in recovery latency (RTO + 4*RTT vs 6*RTT) can be
 significant if the RTT is much smaller than the minimum RTO (1 second
 in [RFC6298]) or if the RTT is large. The former case can happen in
 local area networks, data-center networks, or content distribution
 networks with deep deployments. The latter case can happen in
 developing regions with highly congested and/or high-latency
 networks.

9.4. TLP recovery detection with delayed ACKs

 Delayed or stretched ACKs complicate the detection of repairs done by
 TLP, since with such ACKs the sender takes longer time to receive
 fewer ACKs than would normally be expected. To mitigate this
 complication, before sending a TLP loss probe retransmission, the
 sender should attempt to wait long enough that the receiver has sent
 any delayed ACKs that it is withholding. The sender algorithm
 described above features such a delay, in the form of
 TLP.max_ack_delay. Furthermore, if the receiver supports DSACK then
 in the case of a delayed ACK the sender's TLP recovery detection
 mechanism (see above) can use the DSACK information to infer that the
 original and TLP retransmission both arrived at the receiver.

https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc6298

Cheng, et al. Expires February 23, 2021 [Page 26]

Internet-Draft RACK August 2020

 If there is ACK loss or a delayed ACK without a DSACK, then this
 algorithm is conservative, because the sender will reduce the
 congestion window when in fact there was no packet loss. In practice
 this is acceptable, and potentially even desirable: if there is
 reverse path congestion then reducing the congestion window can be
 prudent.

9.5. RACK for other transport protocols

 RACK can be implemented in other transport protocols (e.g., [QUIC-
 LR]). The [Sprout] loss detection algorithm was also independently
 designed to use a 10ms reordering window to improve its loss
 detection.

10. Security Considerations

 RACK-TLP algorithm behavior is based on information conveyed in SACK
 options, so it has security considerations similar to those described
 in the Security Considerations section of [RFC6675].

 Additionally, RACK-TLP has a lower risk profile than [RFC6675]
 because it is not vulnerable to ACK-splitting attacks [SCWA99]: for
 an MSS-size segment sent, the receiver or the attacker might send MSS
 ACKs that SACK or acknowledge one additional byte per ACK. This
 would not fool RACK. In such a scenario, RACK.xmit_ts would not
 advance, because all the sequence ranges within the segment were
 transmitted at the same time, and thus carry the same transmission
 timestamp. In other words, SACKing only one byte of a segment or
 SACKing the segment in entirety have the same effect with RACK.

11. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

12. Acknowledgments

 The authors thank Matt Mathis for his insights in FACK and Michael
 Welzl for his per-packet timer idea that inspired this work. Eric
 Dumazet, Randy Stewart, Van Jacobson, Ian Swett, Rick Jones, Jana
 Iyengar, Hiren Panchasara, Praveen Balasubramanian, Yoshifumi
 Nishida, Bob Briscoe, Felix Weinrank, Michael Tuexen, Martin Duke,
 Ilpo Jarvinen, Theresa Enghardt, Mirja Kuehlewind, Gorry Fairhurst,
 and Yi Huang contributed to the draft or the implementations in
 Linux, FreeBSD, Windows, and QUIC.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires February 23, 2021 [Page 27]

Internet-Draft RACK August 2020

13. References

13.1. Normative References

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298, June
 2011.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, August 2012.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance",
 September 2014.

 [RFC793] Postel, J., "Transmission Control Protocol", September
 1981.

13.2. Informative References

 [FACK] Mathis, M. and M. Jamshid, "Forward acknowledgement:
 refining TCP congestion control", ACM SIGCOMM Computer
 Communication Review, Volume 26, Issue 4, Oct. 1996. ,
 1996.

 [POLICER16]
 Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng,
 Y., Karim, T., Katz-Bassett, E., and R. Govindan, "An
 Analysis of Traffic Policing in the Web", ACM SIGCOMM ,
 2016.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires February 23, 2021 [Page 28]

Internet-Draft RACK August 2020

 [QUIC-LR] Iyengar, J. and I. Swett, "QUIC Loss Recovery And
 Congestion Control", draft-ietf-quic-recovery-latest (work
 in progress), March 2020.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", August 2006.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC5827] Allman, M., Ayesta, U., Wang, L., Blanton, J., and P.
 Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, April 2010.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", May 2013.

 [RFC7765] Hurtig, P., Brunstrom, A., Petlund, A., and M. Welzl, "TCP
 and SCTP RTO Restart", February 2016.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control With a Misbehaving Receiver", ACM
 Computer Communication Review, 29(5) , 1999.

 [Sprout] Winstein, K., Sivaraman, A., and H. Balakrishnan,
 "Stochastic Forecasts Achieve High Throughput and Low
 Delay over Cellular Networks", USENIX Symposium on
 Networked Systems Design and Implementation (NSDI) , 2013.

Authors' Addresses

 Yuchung Cheng
 Google, Inc

 Email: ycheng@google.com

 Neal Cardwell
 Google, Inc

 Email: ncardwell@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-latest
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827

Cheng, et al. Expires February 23, 2021 [Page 29]

Internet-Draft RACK August 2020

 Nandita Dukkipati
 Google, Inc

 Email: nanditad@google.com

 Priyaranjan Jha
 Google, Inc

 Email: priyarjha@google.com

Cheng, et al. Expires February 23, 2021 [Page 30]

