
Network Working Group M. Allman
Internet-Draft V. Paxson
Expires: October 2008 ICSI
 E. Blanton
 Purdue University
 April 2008

TCP Congestion Control
draft-ietf-tcpm-rfc2581bis-04.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document defines TCP's four intertwined congestion control
 algorithms: slow start, congestion avoidance, fast retransmit, and
 fast recovery. In addition, the document specifies how TCP should
 begin transmission after a relatively long idle period, as well as
 discussing various acknowledgment generation methods.

1. Introduction

 This document specifies four TCP [RFC793] congestion control
 algorithms: slow start, congestion avoidance, fast retransmit and
 fast recovery. These algorithms were devised in [Jac88] and
 [Jac90]. Their use with TCP is standardized in [RFC1122].
 Additional early work in additive-increase, multiplicative-decrease
 congestion control is given in [CJ89].

 This document obsoletes [RFC2581] which in turned obsoleted

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2581

 [RFC2001].

 In addition to specifying the congestion control algorithms, this

Expires: October 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2001

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 document specifies what TCP connections should do after a relatively
 long idle period, as well as specifying and clarifying some of the
 issues pertaining to TCP ACK generation.

 Note that [Ste94] provides examples of these algorithms in action
 and [WS95] provides an explanation of the source code for the BSD
 implementation of these algorithms.

 This document is organized as follows. Section 2 provides various
 definitions which will be used throughout the document. Section 3
 provides a specification of the congestion control
 algorithms. Section 4 outlines concerns related to the congestion
 control algorithms and finally, section 5 outlines security
 considerations.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Definitions

 This section provides the definition of several terms that will be
 used throughout the remainder of this document.

 SEGMENT: A segment is ANY TCP/IP data or acknowledgment packet (or
 both).

 SENDER MAXIMUM SEGMENT SIZE (SMSS): The SMSS is the size of the
 largest segment that the sender can transmit. This value can be
 based on the maximum transmission unit of the network, the path
 MTU discovery [RFC1191,RFC4821] algorithm, RMSS (see next item),
 or other factors. The size does not include the TCP/IP headers
 and options.

 RECEIVER MAXIMUM SEGMENT SIZE (RMSS): The RMSS is the size of the
 largest segment the receiver is willing to accept. This is the
 value specified in the MSS option sent by the receiver during
 connection startup. Or, if the MSS option is not used, 536
 bytes [RFC1122]. The size does not include the TCP/IP headers
 and options.

 FULL-SIZED SEGMENT: A segment that contains the maximum number of
 data bytes permitted (i.e., a segment containing SMSS bytes of
 data).

 RECEIVER WINDOW (rwnd): The most recently advertised receiver
 window.

 CONGESTION WINDOW (cwnd): A TCP state variable that limits the
 amount of data a TCP can send. At any given time, a TCP MUST

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc1122

 NOT send data with a sequence number higher than the sum of the
 highest acknowledged sequence number and the minimum of cwnd and
 rwnd.

Expires: October 2008 [Page 2]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 INITIAL WINDOW (IW): The initial window is the size of the sender's
 congestion window after the three-way handshake is completed.

 LOSS WINDOW (LW): The loss window is the size of the congestion
 window after a TCP sender detects loss using its retransmission
 timer.

 RESTART WINDOW (RW): The restart window is the size of the
 congestion window after a TCP restarts transmission after an
 idle period (if the slow start algorithm is used; see section

4.1 for more discussion).

 FLIGHT SIZE: The amount of data that has been sent but not yet
 cumulatively acknowledged.

 DUPLICATE ACKNOWLEDGMENT: An acknowledgment is considered a
 "duplicate" in the following algorithms when (a) the receiver of
 the ACK has outstanding data, (b) the incoming acknowledgment
 carries no data, (c) the SYN and FIN bits are both off, (d) the
 acknowledgment number is equal to the greatest acknowledgment
 received on the given connection (TCP.UNA from [RFC793]) and (e)
 the advertised window in the incoming acknowledgment equals the
 advertised window in the last incoming acknowledgment.

 Alternatively, a TCP that utilizes selective acknowledgments
 [RFC2018,RFC2883] can leverage the SACK information to determine
 when an incoming ACK is a "duplicate" (e.g., if the ACK contains
 previously unknown SACK information).

3. Congestion Control Algorithms

 This section defines the four congestion control algorithms: slow
 start, congestion avoidance, fast retransmit and fast recovery,
 developed in [Jac88] and [Jac90]. In some situations it may be
 beneficial for a TCP sender to be more conservative than the
 algorithms allow, however a TCP MUST NOT be more aggressive than the
 following algorithms allow (that is, MUST NOT send data when the
 value of cwnd computed by the following algorithms would not allow
 the data to be sent).

 Also note that the algorithms specified in this document work in
 terms of using loss as the signal of congestion. Explicit
 Congestion Notification (ECN) could also be used as specified in
 [RFC3168].

3.1 Slow Start and Congestion Avoidance

 The slow start and congestion avoidance algorithms MUST be used by a
 TCP sender to control the amount of outstanding data being injected
 into the network. To implement these algorithms, two variables are

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc3168

 added to the TCP per-connection state. The congestion window (cwnd)
 is a sender-side limit on the amount of data the sender can transmit
 into the network before receiving an acknowledgment (ACK), while the
 receiver's advertised window (rwnd) is a receiver-side limit on the

Expires: October 2008 [Page 3]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 amount of outstanding data. The minimum of cwnd and rwnd governs
 data transmission.

 Another state variable, the slow start threshold (ssthresh), is used
 to determine whether the slow start or congestion avoidance
 algorithm is used to control data transmission, as discussed below.

 Beginning transmission into a network with unknown conditions
 requires TCP to slowly probe the network to determine the available
 capacity, in order to avoid congesting the network with an
 inappropriately large burst of data. The slow start algorithm is
 used for this purpose at the beginning of a transfer, or after
 repairing loss detected by the retransmission timer. Slow start
 additionally serves to start the "ACK clock" used by the TCP sender
 to release data into the network in the slow start, congestion
 avoidance, and loss recovery algorithms.

 IW, the initial value of cwnd, MUST be set using the following
 guidelines as an upper bound.

 If SMSS > 2190 bytes:
 IW = 2 * SMSS bytes and MUST NOT be more than 2 segments
 If (SMSS > 1095 bytes) and (SMSS <= 2190 bytes):
 IW = 3 * SMSS bytes and MUST NOT be more than 3 segments
 if SMSS <= 1095 bytes:
 IW = 4 * SMSS bytes and MUST NOT be more than 4 segments

 As specified in [RFC3390], the SYN/ACK and the acknowledgment of the
 SYN/ACK MUST NOT increase the size of the congestion window.
 Further, if the SYN or SYN/ACK is lost, the initial window used by a
 sender after a correctly transmitted SYN MUST be one segment
 consisting of at most SMSS bytes.

 A detailed rationale and discussion of the IW setting is provided in
 [RFC3390].

 When initial congestion windows of more than one segment are
 implemented along with Path MTU Discovery [RFC1191], and the MSS
 being used is found to be too large, the congestion window cwnd
 SHOULD be reduced to prevent large bursts of smaller segments.
 Specifically, cwnd SHOULD be reduced by the ratio of the old segment
 size to the new segment size.

 The initial value of ssthresh SHOULD be set arbitrarily high (e.g.,
 to the size of the largest possible advertised window), but ssthresh
 MUST be reduced in response to congestion. Setting ssthresh as high
 as possible allows the network conditions, rather than some
 arbitrary host limit, to dictate the sending rate. In cases where
 the end systems have a solid understanding of the network path, more

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc1191

 carefully setting the initial ssthresh value may have merit (e.g.,
 such that the end host does not create congestion along the path).

 The slow start algorithm is used when cwnd < ssthresh, while the
 congestion avoidance algorithm is used when cwnd > ssthresh. When

Expires: October 2008 [Page 4]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 cwnd and ssthresh are equal the sender may use either slow start or
 congestion avoidance.

 During slow start, a TCP increments cwnd by at most SMSS bytes for
 each ACK received that cumulatively acknowledges new data. Slow
 start ends when cwnd exceeds ssthresh (or, optionally, when it
 reaches it, as noted above) or when congestion is observed. While
 traditionally TCP implementations have increased cwnd by precisely
 SMSS bytes upon receipt of an ACK covering new data, we RECOMMEND
 that TCP implementations increase cwnd, per:

 cwnd += min (N, SMSS) (2)

 where N is the number of previously unacknowledged bytes
 acknowledged in the incoming ACK. This adjustment is part of
 Appropriate Byte Counting [RFC3465] and provides robustness against
 misbehaving receivers which may attempt to induce a sender to
 artificially inflate cwnd using a mechanism known as "ACK Division"
 [SCWA99]. ACK Division consists of a receiver sending multiple ACKs
 for a single TCP data segment, each acknowledging only a portion of
 its data. A TCP that increments cwnd by SMSS for each such ACK will
 inappropriately inflate the amount of data injected into the
 network.

 During congestion avoidance, cwnd is incremented by roughly 1
 full-sized segment per round-trip time (RTT). Congestion avoidance
 continues until congestion is detected. The basic guidelines for
 incrementing cwnd during congestion avoidance are:

 * MAY increment cwnd by SMSS bytes

 * SHOULD increment cwnd per equation (2) once per RTT

 * MUST NOT increment cwnd by more than SMSS bytes

 We note that [RFC3465] allows for cwnd increases of more than SMSS
 bytes for incoming acknowledgments during slow start on an
 experimental basis, however such behavior is not allowed as part of
 the standard.

 The RECOMMENDED way to increase cwnd during congestion avoidance is
 to count the number of bytes that have been acknowledged by ACKs for
 new data. (A drawback of this implementation is that it requires
 maintaining an additional state variable.) When the number of bytes
 acknowledged reaches cwnd, then cwnd can be incremented by up to
 SMSS bytes. Note that during congestion avoidance, cwnd MUST NOT be
 increased by more than SMSS bytes per RTT. This method both allows
 TCPs to increase cwnd by one segment per RTT in the face of delayed
 ACKs and provides robustness against ACK Division attacks.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3465

 Another common formula that a TCP MAY use to update cwnd during
 congestion avoidance is given in equation 3:

 cwnd += SMSS*SMSS/cwnd (3)

Expires: October 2008 [Page 5]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 This adjustment is executed on every incoming ACK that acknowledges
 new data. Equation (3) provides an acceptable approximation to the
 underlying principle of increasing cwnd by 1 full-sized segment per
 RTT. (Note that for a connection in which the receiver is
 acknowledging every-other packet, (3) is less aggressive than
 allowed -- roughly increasing cwnd every second RTT.)

 Implementation Note: Since integer arithmetic is usually used in TCP
 implementations, the formula given in equation 3 can fail to
 increase cwnd when the congestion window is larger than SMSS*SMSS.
 If the above formula yields 0, the result SHOULD be rounded up to 1
 byte.

 Implementation Note: Older implementations have an additional
 additive constant on the right-hand side of equation (3). This is
 incorrect and can actually lead to diminished performance [RFC2525].

 Implementation Note: Some implementations maintain cwnd in units of
 bytes, while others in units of full-sized segments. The latter
 will find equation (3) difficult to use, and may prefer to use the
 counting approach discussed in the previous paragraph.

 When a TCP sender detects segment loss using the retransmission
 timer and the given segment has not yet been retransmitted, the
 value of ssthresh MUST be set to no more than the value given in
 equation 4:

 ssthresh = max (FlightSize / 2, 2*SMSS) (4)

 where, as discussed above, FlightSize is the amount of outstanding
 data in the network.

 On the other hand, when a TCP sender detects segment loss using the
 retransmission timer and the given segment has already been
 retransmitted by way of the retransmission timer at least once, the
 value of ssthresh is held constant.

 Implementation Note: An easy mistake to make is to simply use cwnd,
 rather than FlightSize, which in some implementations may
 incidentally increase well beyond rwnd.

 Furthermore, upon a timeout (as specified in [RFC2988]) cwnd MUST be
 set to no more than the loss window, LW, which equals 1 full-sized
 segment (regardless of the value of IW). Therefore, after
 retransmitting the dropped segment the TCP sender uses the slow
 start algorithm to increase the window from 1 full-sized segment to
 the new value of ssthresh, at which point congestion avoidance again
 takes over.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc2525
https://datatracker.ietf.org/doc/html/rfc2988

 As shown in [FF96,RFC3782], slow start-based loss recovery after a
 timeout can cause spurious retransmissions that trigger duplicate
 acknowledgments. The reaction to the arrival of these duplicate
 ACKs in TCP implementations varies widely. This document does not

Expires: October 2008 [Page 6]

https://datatracker.ietf.org/doc/html/rfc3782

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 specify how to treat such acknowledgments, but does note this as an
 area that may benefit from additional attention, experimentation and
 specification.

3.2 Fast Retransmit/Fast Recovery

 A TCP receiver SHOULD send an immediate duplicate ACK when an out-
 of-order segment arrives. The purpose of this ACK is to inform the
 sender that a segment was received out-of-order and which sequence
 number is expected. From the sender's perspective, duplicate ACKs
 can be caused by a number of network problems. First, they can be
 caused by dropped segments. In this case, all segments after the
 dropped segment will trigger duplicate ACKs until the loss is
 repaired. Second, duplicate ACKs can be caused by the re-ordering
 of data segments by the network (not a rare event along some network
 paths [Pax97]). Finally, duplicate ACKs can be caused by
 replication of ACK or data segments by the network. In addition, a
 TCP receiver SHOULD send an immediate ACK when the incoming segment
 fills in all or part of a gap in the sequence space. This will
 generate more timely information for a sender recovering from a loss
 through a retransmission timeout, a fast retransmit, or an advanced
 loss recovery algorithm, as outlined in section 4.3.

 The TCP sender SHOULD use the "fast retransmit" algorithm to detect
 and repair loss, based on incoming duplicate ACKs. The fast
 retransmit algorithm uses the arrival of 3 duplicate ACKs (as
 defined in section 2, without any intervening ACKs which move
 SND.UNA) as an indication that a segment has been lost. After
 receiving 3 duplicate ACKs, TCP performs a retransmission of what
 appears to be the missing segment, without waiting for the
 retransmission timer to expire.

 After the fast retransmit algorithm sends what appears to be the
 missing segment, the "fast recovery" algorithm governs the
 transmission of new data until a non-duplicate ACK arrives. The
 reason for not performing slow start is that the receipt of the
 duplicate ACKs not only indicates that a segment has been lost, but
 also that segments are most likely leaving the network (although a
 massive segment duplication by the network can invalidate this
 conclusion). In other words, since the receiver can only generate a
 duplicate ACK when a segment has arrived, that segment has left the
 network and is in the receiver's buffer, so we know it is no longer
 consuming network resources. Furthermore, since the ACK "clock"
 [Jac88] is preserved, the TCP sender can continue to transmit new
 segments (although transmission must continue using a reduced cwnd,
 since loss is an indication of congestion).

 The fast retransmit and fast recovery algorithms are implemented
 together as follows.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt

 1. On the first and second duplicate ACKs received at a sender, a
 TCP SHOULD send a segment of previously unsent data per
 [RFC3042] provided that the receiver's advertised window allows,
 the total FlightSize would remain less than or equal to cwnd

Expires: October 2008 [Page 7]

https://datatracker.ietf.org/doc/html/rfc3042

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 plus 2*SMSS, and that new data is available for transmission.
 Further, the TCP sender MUST NOT change cwnd to reflect these
 two segments [RFC3042]. Note that a sender using SACK [RFC2018]
 MUST NOT send new data unless the incoming duplicate
 acknowledgment contains new SACK information.

 2. When the third duplicate ACK is received, a TCP MUST set
 ssthresh to no more than the value given in equation 4. When
 [RFC3042] is in use, additional data sent in limited transmit
 MUST NOT be included in this calculation.

 3. The lost segment starting at SND.UNA MUST be retransmitted and
 cwnd set to ssthresh plus 3*SMSS. This artificially "inflates"
 the congestion window by the number of segments (three) that
 have left the network and which the receiver has buffered.

 4. For each additional duplicate ACK received (after the third),
 cwnd MUST be incremented by SMSS. This artificially inflates
 the congestion window in order to reflect the additional segment
 that has left the network.

 Note: [SCWA99] discusses a receiver-based attack whereby many
 bogus duplicate ACKs are sent to the data sender in order to
 artificially inflate cwnd and cause a higher than appropriate
 sending rate to be used. A TCP MAY therefore limit the number
 of times cwnd is artificially inflated during loss recovery
 to the number of outstanding segments (or, an approximation
 thereof).

 5. When previously unsent data is available and the new value of
 cwnd and the receiver's advertised window allow, a TCP SHOULD
 send 1*SMSS bytes of previously unsent data.

 6. When the next ACK arrives that acknowledges previously
 unacknowledged data, a TCP MUST set cwnd to ssthresh (the value
 set in step 2). This is termed "deflating" the window.

 This ACK should be the acknowledgment elicited by the
 retransmission from step 3, one RTT after the retransmission
 (though it may arrive sooner in the presence of significant out-
 of-order delivery of data segments at the receiver).
 Additionally, this ACK should acknowledge all the intermediate
 segments sent between the lost segment and the receipt of the
 third duplicate ACK, if none of these were lost.

 Note: This algorithm is known to generally not recover efficiently
 from multiple losses in a single flight of packets [FF96]. Section

4.3 below addresses such cases.

4. Additional Considerations

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3042

4.1 Re-starting Idle Connections

 A known problem with the TCP congestion control algorithms described

Expires: October 2008 [Page 8]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 above is that they allow a potentially inappropriate burst of
 traffic to be transmitted after TCP has been idle for a relatively
 long period of time. After an idle period, TCP cannot use the ACK
 clock to strobe new segments into the network, as all the ACKs have
 drained from the network. Therefore, as specified above, TCP can
 potentially send a cwnd-size line-rate burst into the network after
 an idle period. In addition, changing network conditions may have
 rendered TCP's notion of the available end-to-end network capacity
 between two endpoints, as estimated by cwnd, inaccurate during the
 course of a long idle period.

 [Jac88] recommends that a TCP use slow start to restart
 transmission after a relatively long idle period. Slow start
 serves to restart the ACK clock, just as it does at the beginning
 of a transfer. This mechanism has been widely deployed in the
 following manner. When TCP has not received a segment for more
 than one retransmission timeout, cwnd is reduced to the value of
 the restart window (RW) before transmission begins.

 For the purposes of this standard, we define RW = min(IW,cwnd).

 Using the last time a segment was received to determine whether or
 not to decrease cwnd can fail to deflate cwnd in the common case of
 persistent HTTP connections [HTH98]. In this case, a Web server
 receives a request before transmitting data to the Web client. The
 reception of the request makes the test for an idle connection fail,
 and allows the TCP to begin transmission with a possibly
 inappropriately large cwnd.

 Therefore, a TCP SHOULD set cwnd to no more than RW before beginning
 transmission if the TCP has not sent data in an interval exceeding
 the retransmission timeout.

4.2 Generating Acknowledgments

 The delayed ACK algorithm specified in [RFC1122] SHOULD be used by a
 TCP receiver. When using delayed ACKs, a TCP receiver MUST NOT
 excessively delay acknowledgments. Specifically, an ACK SHOULD be
 generated for at least every second full-sized segment, and MUST be
 generated within 500 ms of the arrival of the first unacknowledged
 packet.

 The requirement that an ACK "SHOULD" be generated for at least every
 second full-sized segment is listed in [RFC1122] in one place as a
 SHOULD and another as a MUST. Here we unambiguously state it is a
 SHOULD. We also emphasize that this is a SHOULD, meaning that an
 implementor should indeed only deviate from this requirement after
 careful consideration of the implications. See the discussion of
 "Stretch ACK violation" in [RFC2525] and the references therein for

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2525

 a discussion of the possible performance problems with generating
 ACKs less frequently than every second full-sized segment.

 In some cases, the sender and receiver may not agree on what
 constitutes a full-sized segment. An implementation is deemed to

Expires: October 2008 [Page 9]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 comply with this requirement if it sends at least one acknowledgment
 every time it receives 2*RMSS bytes of new data from the sender,
 where RMSS is the Maximum Segment Size specified by the receiver to
 the sender (or the default value of 536 bytes, per [RFC1122], if the
 receiver does not specify an MSS option during connection
 establishment). The sender may be forced to use a segment size less
 than RMSS due to the maximum transmission unit (MTU), the path MTU
 discovery algorithm or other factors. For instance, consider the
 case when the receiver announces an RMSS of X bytes but the sender
 ends up using a segment size of Y bytes (Y < X) due to path MTU
 discovery (or the sender's MTU size). The receiver will generate
 stretch ACKs if it waits for 2*X bytes to arrive before an ACK is
 sent. Clearly this will take more than 2 segments of size Y bytes.
 Therefore, while a specific algorithm is not defined, it is
 desirable for receivers to attempt to prevent this situation, for
 example by acknowledging at least every second segment, regardless
 of size. Finally, we repeat that an ACK MUST NOT be delayed for
 more than 500 ms waiting on a second full-sized segment to arrive.

 Out-of-order data segments SHOULD be acknowledged immediately, in
 order to accelerate loss recovery. To trigger the fast retransmit
 algorithm, the receiver SHOULD send an immediate duplicate ACK when
 it receives a data segment above a gap in the sequence space. To
 provide feedback to senders recovering from losses, the receiver
 SHOULD send an immediate ACK when it receives a data segment that
 fills in all or part of a gap in the sequence space.

 A TCP receiver MUST NOT generate more than one ACK for every
 incoming segment, other than to update the offered window as the
 receiving application consumes new data [page 42, RFC793][RFC813].

4.3 Loss Recovery Mechanisms

 A number of loss recovery algorithms that augment fast retransmit
 and fast recovery have been suggested by TCP researchers and
 specified in the RFC series. While some of these algorithms are
 based on the TCP selective acknowledgment (SACK) option [RFC2018],
 such as [FF96,MM96a,MM96b,RFC3517], others do not require SACKs
 [Hoe96,FF96,RFC3782]. The non-SACK algorithms use "partial
 acknowledgments" (ACKs which cover previously unacknowledged data,
 but not all the data outstanding when loss was detected) to trigger
 retransmissions. While this document does not standardize any of
 the specific algorithms that may improve fast retransmit/fast
 recovery, these enhanced algorithms are implicitly allowed, as long
 as they follow the general principles of the basic four algorithms
 outlined above.

 That is, when the first loss in a window of data is detected,
 ssthresh MUST be set to no more than the value given by equation

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc813
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782

 (4). Second, until all lost segments in the window of data in
 question are repaired, the number of segments transmitted in each
 RTT MUST be no more than half the number of outstanding segments
 when the loss was detected. Finally, after all loss in the given
 window of segments has been successfully retransmitted, cwnd MUST be

Expires: October 2008 [Page 10]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 set to no more than ssthresh and congestion avoidance MUST be used
 to further increase cwnd. Loss in two successive windows of data,
 or the loss of a retransmission, should be taken as two indications
 of congestion and, therefore, cwnd (and ssthresh) MUST be lowered
 twice in this case.

 We RECOMMEND that TCP implementers employ some form of advanced loss
 recovery that can cope with multiple losses in a window of data.
 The algorithms detailed in [RFC3782] and [RFC3517] conform to the
 general principles outlined above. We note that while these are not
 the only two algorithms that conform to the above general principles
 these two algorithms have been vetted by the community and are
 currently on the standards track.

5. Security Considerations

 This document requires a TCP to diminish its sending rate in the
 presence of retransmission timeouts and the arrival of duplicate
 acknowledgments. An attacker can therefore impair the performance
 of a TCP connection by either causing data packets or their
 acknowledgments to be lost, or by forging excessive duplicate
 acknowledgments. Causing two congestion control events back-to-back
 will often cut ssthresh to its minimum value of 2*SMSS, causing the
 connection to immediately enter the slower-performing congestion
 avoidance phase.

 In response to the ACK division attack outlined in [SCWA99] this
 document RECOMMENDS increasing the congestion window based on the
 number of bytes newly acknowledged in each arriving ACK rather than
 by a particular constant on each arriving ACK (as outlined in

section 3.1).

 The Internet to a considerable degree relies on the correct
 implementation of these algorithms in order to preserve network
 stability and avoid congestion collapse. An attacker could cause
 TCP endpoints to respond more aggressively in the face of congestion
 by forging excessive duplicate acknowledgments or excessive
 acknowledgments for new data. Conceivably, such an attack could
 drive a portion of the network into congestion collapse.

6. Changes Between RFC 2001 and RFC 2581

 [RFC2001] has been extensively rewritten editorially and it is not
 feasible to itemize the list of changes between [RFC2001] and
 [RFC2581]. The intention of [RFC2581] is to not change any of the
 recommendations given in [RFC2001], but to further clarify cases
 that were not discussed in detail in [RFC2001]. Specifically,
 [RFC2581] suggests what TCP connections should do after a relatively
 long idle period, as well as specifying and clarifying some of the

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2581

 issues pertaining to TCP ACK generation. Finally, the allowable
 upper bound for the initial congestion window has also been raised
 from one to two segments.

7. Changes Relative to RFC 2581

Expires: October 2008 [Page 11]

https://datatracker.ietf.org/doc/html/rfc2581

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 A specific definition for "duplicate acknowledgment" has been
 added, based on the definition used by BSD TCP.

 The document now notes that what to do with duplicate ACKs after the
 retransmission timer has fired is future work and explicitly
 unspecified in this document.

 The initial window requirements were changed to allow Larger
 Initial Windows as standardized in [RFC3390]. Additionally, the
 steps to take when an initial window is discovered to be too large
 due to Path MTU Discovery [RFC1191] are detailed.

 The recommended initial value for ssthresh has been changed to say
 that it SHOULD be arbitrarily high, where it was previously MAY.
 This is to provide additional guidance to implementors on the
 matter.

 During slow start, the usage of Appropriate Byte Counting [RFC3465]
 with L=1*SMSS is explicitly recommended. The method of increasing
 cwnd given in [RFC2581] is still explicitly allowed. Byte counting
 during congestion avoidance is also recommended, while the method
 from [RFC2581] and other safe methods are still allowed.

 The treatment of ssthresh on retransmission timeout was clarified.
 In particular, ssthresh must be set to half the FlightSize on the
 first retransmission of a given segment and then is held constant on
 subsequent retransmissions of the same segment.

 The description of fast retransmit and fast recovery has been
 clarified, and the use of Limited Transmit [RFC3042] is now
 recommended.

 TCPs now MAY limit the number of duplicate ACKs that artificially
 inflate cwnd during loss recovery to the number of segments
 outstanding to avoid the duplicate ACK spoofing attack described in
 [SCWA99].

 The restart window has been changed to min(IW,cwnd) from IW. This
 behavior was described as "experimental" in [RFC2581].

 It is now recommended that TCP implementors implement an advanced
 loss recovery algorithm conforming to the principles outlined in
 this document.

 The security considerations have been updated to discuss ACK
 division and recommend byte counting as a counter to this attack.

8. IANA Considerations

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2581

 This document contains no IANA considerations, but apparently an
 Internet *Draft* can no longer be published without this section.

Acknowledgments

Expires: October 2008 [Page 12]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 The core algorithms we describe were developed by Van Jacobson
 [Jac88, Jac90]. In addition, Limited Transmit [RFC3042] was
 developed in conjunction with Hari Balakrishnan and Sally Floyd.
 The initial congestion window size specified in this document is a
 result of work with Sally Floyd and Craig Partridge
 [RFC2414,RFC3390].

 W. Richard ("Rich") Stevens wrote the first version of this document
 [RFC2001] and co-authored the second version [RFC2581]. This
 present version much benefits from his clarity and thoughtfulness of
 description, and we are grateful for Rich's contributions in
 elucidating TCP congestion control, as well as in more broadly
 helping us understand numerous issues relating to networking.

 We wish to emphasize that the shortcomings and mistakes of this
 document are solely the responsibility of the current authors.

 Some of the text from this document is taken from "TCP/IP
 Illustrated, Volume 1: The Protocols" by W. Richard Stevens
 (Addison-Wesley, 1994) and "TCP/IP Illustrated, Volume 2: The
 Implementation" by Gary R. Wright and W. Richard Stevens (Addison-
 Wesley, 1995). This material is used with the permission of
 Addison-Wesley.

 Anil Agarwal, Steve Arden, Neal Cardwell, Noritoshi Demizu, Gorry
 Fairhurst, Kevin Fall, John Heffner, Alfred Hoenes, Sally Floyd,
 Reiner Ludwig, Matt Mathis, Craig Partridge and Joe Touch
 contributed a number of helpful suggestions.

Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts --
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191,
 November 1990.

Informative References

 [CJ89] Chiu, D. and R. Jain, "Analysis of the Increase/Decrease
 Algorithms for Congestion Avoidance in Computer Networks",
 Journal of Computer Networks and ISDN Systems, vol. 17, no. 1,
 pp. 1-14, June 1989.

 [FF96] Fall, K. and S. Floyd, "Simulation-based Comparisons of
 Tahoe, Reno and SACK TCP", Computer Communication Review, July

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191

 1996. ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z.

 [Flo94] Floyd, S., "TCP and Successive Fast Retransmits. Technical
 report", October 1994.

Expires: October 2008 [Page 13]

ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

 [Hoe96] Hoe, J., "Improving the Start-up Behavior of a Congestion
 Control Scheme for TCP", In ACM SIGCOMM, August 1996.

 [HTH98] Hughes, A., Touch, J. and J. Heidemann, "Issues in TCP
 Slow-Start Restart After Idle", Work in Progress.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", Computer
 Communication Review, vol. 18, no. 4, pp. 314-329, Aug. 1988.

ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

 [Jac90] Jacobson, V., "Modified TCP Congestion Avoidance Algorithm",
 end2end-interest mailing list, April 30, 1990.

ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.

 [MM96a] Mathis, M. and J. Mahdavi, "Forward Acknowledgment: Refining
 TCP Congestion Control", Proceedings of SIGCOMM'96, August,
 1996, Stanford, CA. Available
 from http://www.psc.edu/networking/papers/papers.html

 [MM96b] Mathis, M. and J. Mahdavi, "TCP Rate-Halving with Bounding
 Parameters", Technical report. Available from

http://www.psc.edu/networking/papers/FACKnotes/current.

 [Pax97] Paxson, V., "End-to-End Internet Packet Dynamics",
 Proceedings of SIGCOMM '97, Cannes, France, Sep. 1997.

 [RFC813] Clark, D., "Window and Acknowledgment Strategy in TCP", RFC
813, July 1982.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", RFC 2001, January
 1997.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2414] Allman, M., Floyd, S. and C. Partridge, "Increasing TCP's
 Initial Window Size", RFC 2414, September 1998.

 [RFC2525] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner,
 J., Heavens, I., Lahey, K., Semke, J. and B. Volz, "Known TCP
 Implementation Problems", RFC 2525, March 1999.

 [RFC2581] Allman, M., Paxson, V., W. Stevens, TCP Congestion
 Control, RFC 2581, April 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail
http://www.psc.edu/networking/papers/papers.html
http://www.psc.edu/networking/papers/FACKnotes/current
https://datatracker.ietf.org/doc/html/rfc813
https://datatracker.ietf.org/doc/html/rfc813
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc2525
https://datatracker.ietf.org/doc/html/rfc2581

 [RFC2883] Floyd, S., J. Mahdavi, M. Mathis, M. Podolsky, An
 Extension to the Selective Acknowledgement (SACK) Option for
 TCP, RFC 2883, July 2000.

Expires: October 2008 [Page 14]

https://datatracker.ietf.org/doc/html/rfc2883

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 [RFC2988] V. Paxson and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3042] Allman, M., Balakrishnan, H. and S. Floyd, "Enhancing
 TCP's Loss Recovery Using Limited Transmit", RFC 3042, January
 2001.

 [RFC3168] K. Ramakrishnan, S. Floyd, D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [RFC3390] Allman, M., Floyd, S., C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [RFC3465] Mark Allman, TCP Congestion Control with Appropriate Byte
 Counting (ABC), RFC 3465, February 2003.

 [RFC3517] Ethan Blanton, Mark Allman, Kevin Fall, Lili Wang, A
 Conservative Selective Acknowledgment (SACK)-based Loss Recovery
 Algorithm for TCP, RFC 3517, April 2003.

 [RFC3782] Sally Floyd, Tom Henderson, Andrei Gurtov, The NewReno
 Modification to TCP's Fast Recovery Algorithm, RFC 3782, April
 2004.

 [RFC4821] Matt Mathis, John Heffner, Packetization Layer Path MTU
 Discovery, RFC 4821, March 2007.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control With a Misbehaving Receiver", ACM
 Computer Communication Review, 29(5), October 1999.

 [Ste94] Stevens, W., "TCP/IP Illustrated, Volume 1: The Protocols",
 Addison-Wesley, 1994.

 [WS95] Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2: The
 Implementation", Addison-Wesley, 1995.

Authors' Addresses

 Mark Allman
 International Computer Science Institute (ICSI)
 1947 Center Street
 Suite 600
 Berkeley, CA 94704-1198
 Phone: +1 440 235 1792
 EMail: mallman@icir.org

http://www.icir.org/mallman/

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc4821
http://www.icir.org/mallman/

 Vern Paxson
 International Computer Science Institute (ICSI)
 1947 Center Street

Expires: October 2008 [Page 15]

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

 Suite 600
 Berkeley, CA 94704-1198
 Phone: +1 510/642-4274 x302
 EMail: vern@icir.org

http://www.icir.org/vern/

 Ethan Blanton
 Purdue University Computer Sciences
 1398 Computer Science Building
 West Lafayette, IN 47907
 EMail: eblanton@cs.purdue.edu

http://www.cs.purdue.edu/homes/eblanton/

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided
 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Copyright Statement

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt
http://www.icir.org/vern/
http://www.cs.purdue.edu/homes/eblanton/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

 Copyright (C) The IETF Trust (2008). This document is subject to
 the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Expires: October 2008 [Page 16]

https://datatracker.ietf.org/doc/html/bcp78

draft-ietf-tcpm-rfc2581bis-04.txt April 2008

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-04.txt

Expires: October 2008 [Page 17]

