
Internet Engineering Task Force W. Eddy, Ed.
Internet-Draft MTI Systems
Obsoletes: 793, 879, 2873, 6093, 6429, May 3, 2021

6528, 6691 (if approved)
Updates: 5961, 1122 (if approved)
Intended status: Standards Track
Expires: November 4, 2021

Transmission Control Protocol (TCP) Specification
draft-ietf-tcpm-rfc793bis-21

Abstract

 This document specifies the Transmission Control Protocol (TCP). TCP
 is an important transport layer protocol in the Internet protocol
 stack, and has continuously evolved over decades of use and growth of
 the Internet. Over this time, a number of changes have been made to
 TCP as it was specified in RFC 793, though these have only been
 documented in a piecemeal fashion. This document collects and brings
 those changes together with the protocol specification from RFC 793.
 This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093,
 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFC

1122, and should be considered as a replacement for the portions of
 that document dealing with TCP requirements. It also updates RFC

5961 by adding a small clarification in reset handling while in the
 SYN-RECEIVED state. The TCP header control bits from RFC 793 have
 also been updated based on RFC 3168.

 RFC EDITOR NOTE: If approved for publication as an RFC, this should
 be marked additionally as "STD: 7" and replace RFC 793 in that role.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 4, 2021.

Eddy Expires November 4, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc879
https://datatracker.ietf.org/doc/html/rfc2873
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc6429
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Specification May 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Purpose and Scope . 3
2. Introduction . 4
2.1. Requirements Language 5
2.2. Key TCP Concepts . 5

3. Functional Specification 6
3.1. Header Format . 6
3.2. Specific Option Definitions 11
3.2.1. Other Common Options 13
3.2.2. Experimental TCP Options 13

3.3. TCP Terminology Overview 13
3.3.1. Key Connection State Variables 13
3.3.2. State Machine Overview 15

3.4. Sequence Numbers . 18
3.5. Establishing a connection 25
3.6. Closing a Connection 32
3.6.1. Half-Closed Connections 34

3.7. Segmentation . 35
3.7.1. Maximum Segment Size Option 36
3.7.2. Path MTU Discovery 38

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Eddy Expires November 4, 2021 [Page 2]

Internet-Draft TCP Specification May 2021

3.7.3. Interfaces with Variable MTU Values 38
3.7.4. Nagle Algorithm 39
3.7.5. IPv6 Jumbograms 39

3.8. Data Communication 39
3.8.1. Retransmission Timeout 40
3.8.2. TCP Congestion Control 41
3.8.3. TCP Connection Failures 41
3.8.4. TCP Keep-Alives 42
3.8.5. The Communication of Urgent Information 43
3.8.6. Managing the Window 44

3.9. Interfaces . 49
3.9.1. User/TCP Interface 49
3.9.2. TCP/Lower-Level Interface 58

3.10. Event Processing . 60
3.11. Glossary . 85

4. Changes from RFC 793 . 90
5. IANA Considerations . 95
6. Security and Privacy Considerations 96
7. Acknowledgements . 98
8. References . 98
8.1. Normative References 99
8.2. Informative References 100

Appendix A. Other Implementation Notes 105
A.1. IP Security Compartment and Precedence 105
A.1.1. Precedence . 105
A.1.2. MLS Systems . 106

A.2. Sequence Number Validation 106
A.3. Nagle Modification 107
A.4. Low Water Mark Settings 107

Appendix B. TCP Requirement Summary 107
 Author's Address . 111

1. Purpose and Scope

 In 1981, RFC 793 [16] was released, documenting the Transmission
 Control Protocol (TCP), and replacing earlier specifications for TCP
 that had been published in the past.

 Since then, TCP has been widely implemented, and has been used as a
 transport protocol for numerous applications on the Internet.

 For several decades, RFC 793 plus a number of other documents have
 combined to serve as the core specification for TCP [48]. Over time,
 a number of errata have been filed against RFC 793, as well as
 deficiencies in security, performance, and many other aspects. The
 number of enhancements has grown over time across many separate
 documents. These were never accumulated together into a
 comprehensive update to the base specification.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires November 4, 2021 [Page 3]

Internet-Draft TCP Specification May 2021

 The purpose of this document is to bring together all of the IETF
 Standards Track changes that have been made to the base TCP
 functional specification and unify them into an update of RFC 793.

 Some companion documents are referenced for important algorithms that
 are used by TCP (e.g. for congestion control), but have not been
 completely included in this document. This is a conscious choice, as
 this base specification can be used with multiple additional
 algorithms that are developed and incorporated separately. This
 document focuses on the common basis all TCP implementations must
 support in order to interoperate. Since some additional TCP features
 have become quite complicated themselves (e.g. advanced loss recovery
 and congestion control), future companion documents may attempt to
 similarly bring these together.

 In addition to the protocol specification that describes the TCP
 segment format, generation, and processing rules that are to be
 implemented in code, RFC 793 and other updates also contain
 informative and descriptive text for readers to understand aspects of
 the protocol design and operation. This document does not attempt to
 alter or update this informative text, and is focused only on
 updating the normative protocol specification. This document
 preserves references to the documentation containing the important
 explanations and rationale, where appropriate.

 This document is intended to be useful both in checking existing TCP
 implementations for conformance purposes, as well as in writing new
 implementations.

2. Introduction

RFC 793 contains a discussion of the TCP design goals and provides
 examples of its operation, including examples of connection
 establishment, connection termination, packet retransmission to
 repair losses.

 This document describes the basic functionality expected in modern
 TCP implementations, and replaces the protocol specification in RFC

793. It does not replicate or attempt to update the introduction and
 philosophy content in Sections 1 and 2 of RFC 793. Other documents
 are referenced to provide explanation of the theory of operation,
 rationale, and detailed discussion of design decisions. This
 document only focuses on the normative behavior of the protocol.

 The "TCP Roadmap" [48] provides a more extensive guide to the RFCs
 that define TCP and describe various important algorithms. The TCP
 Roadmap contains sections on strongly encouraged enhancements that
 improve performance and other aspects of TCP beyond the basic

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires November 4, 2021 [Page 4]

Internet-Draft TCP Specification May 2021

 operation specified in this document. As one example, implementing
 congestion control (e.g. [34]) is a TCP requirement, but is a complex
 topic on its own, and not described in detail in this document, as
 there are many options and possibilities that do not impact basic
 interoperability. Similarly, most TCP implementations today include
 the high-performance extensions in [46], but these are not strictly
 required or discussed in this document. Multipath considerations for
 TCP are also specified separately in [54].

 A list of changes from RFC 793 is contained in Section 4.

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [4][13] when, and only when, they appear in all capitals, as shown
 here.

 Each use of RFC 2119 keywords in the document is individually labeled
 and referenced in Appendix B that summarizes implementation
 requirements.

 Sentences using "MUST" are labeled as "MUST-X" with X being a numeric
 identifier enabling the requirement to be located easily when
 referenced from Appendix B.

 Similarly, sentences using "SHOULD" are labeled with "SHLD-X", "MAY"
 with "MAY-X", and "RECOMMENDED" with "REC-X".

 For the purposes of this labeling, "SHOULD NOT" and "MUST NOT" are
 labeled the same as "SHOULD" and "MUST" instances.

2.2. Key TCP Concepts

 TCP provides a reliable, in-order, byte-stream service to
 applications.

 The application byte-stream is conveyed over the network via TCP
 segments, with each TCP segment sent as an Internet Protocol (IP)
 datagram.

 TCP reliability consists of detecting packet losses (via sequence
 numbers) and errors (via per-segment checksums), as well as
 correction via retransmission.

 TCP supports unicast delivery of data. Anycast applications exist
 that successfully use TCP without modifications, though there is some

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Eddy Expires November 4, 2021 [Page 5]

Internet-Draft TCP Specification May 2021

 risk of instability due to changes of lower-layer forwarding behavior
 [45].

 TCP is connection-oriented, though does not inherently include a
 liveness detection capability.

 Data flow is supported bidirectionally over TCP connections, though
 applications are free to send data only unidirectionally, if they so
 choose.

 TCP uses port numbers to identify application services and to
 multiplex distinct flows between hosts.

 A more detailed description of TCP features compared to other
 transport protocols can be found in Section 3.1 of [51]. Further
 description of the motivations for developing TCP and its role in the
 Internet protocol stack can be found in Section 2 of [16] and earlier
 versions of the TCP specification.

3. Functional Specification

3.1. Header Format

 TCP segments are sent as internet datagrams. The Internet Protocol
 (IP) header carries several information fields, including the source
 and destination host addresses [1] [14]. A TCP header follows the IP
 headers, supplying information specific to the TCP protocol. This
 division allows for the existence of host level protocols other than
 TCP. In early development of the Internet suite of protocols, the IP
 header fields had been a part of TCP.

 This document describes the TCP protocol. The TCP protocol uses TCP
 Headers.

 A TCP Header is formatted as follows, using the style from [61]:

Eddy Expires November 4, 2021 [Page 6]

Internet-Draft TCP Specification May 2021

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | Data | |C|E|U|A|P|R|S|F| |
 | Offset| Rsrvd |W|C|R|C|S|S|Y|I| Window |
 | | |R|E|G|K|H|T|N|N| |
 +-+
 | Checksum | Urgent Pointer |
 +-+
 | [Options] |
 +-+
 | :
 : Data :
 : |
 +-+

 Note that one tick mark represents one bit position.

 Figure 1: TCP Header Format

 where:

 Source Port: 16 bits.

 The source port number.

 Destination Port: 16 bits.

 The destination port number.

 Sequence Number: 32 bits.

 The sequence number of the first data octet in this segment (except
 when the SYN flag is set). If SYN is set the sequence number is
 the initial sequence number (ISN) and the first data octet is
 ISN+1.

 Acknowledgment Number: 32 bits.

 If the ACK control bit is set, this field contains the value of the
 next sequence number the sender of the segment is expecting to
 receive. Once a connection is established, this is always sent.

Eddy Expires November 4, 2021 [Page 7]

Internet-Draft TCP Specification May 2021

 Data Offset (DOffset): 4 bits.

 The number of 32 bit words in the TCP Header. This indicates where
 the data begins. The TCP header (even one including options) is an
 integral number of 32 bits long.

 Reserved (Rsrvd): 4 bits.

 A set of control bits reserved for future use. Must be zero in
 generated segments and must be ignored in received segments, if
 corresponding future features are unimplemented by the sending or
 receiving host.

 The control bits are also know as "flags". Assignment is managed
 by IANA from the "TCP Header Flags" registry [56]. The currently
 assigned control bits are CWR, ECE, URG, ACK, PSH, RST, SYN, and
 FIN.

 CWR: 1 bit.

 Congestion Window Reduced (see [9]).

 ECE: 1 bit.

 ECN-Echo (see [9]).

 URG: 1 bit.

 Urgent Pointer field significant.

 ACK: 1 bit.

 Acknowledgment field significant.

 PSH: 1 bit.

 Push Function (see the Send Call description in Section 3.9.1).

 RST: 1 bit.

 Reset the connection.

 SYN: 1 bit.

 Synchronize sequence numbers.

 FIN: 1 bit.

Eddy Expires November 4, 2021 [Page 8]

Internet-Draft TCP Specification May 2021

 No more data from sender.

 Window: 16 bits.

 The number of data octets beginning with the one indicated in the
 acknowledgment field that the sender of this segment is willing to
 accept.

 The window size MUST be treated as an unsigned number, or else
 large window sizes will appear like negative windows and TCP will
 not work (MUST-1). It is RECOMMENDED that implementations will
 reserve 32-bit fields for the send and receive window sizes in the
 connection record and do all window computations with 32 bits (REC-
 1).

 Checksum: 16 bits.

 The checksum field is the 16 bit one's complement of the one's
 complement sum of all 16 bit words in the header and text. The
 checksum computation needs to ensure the 16-bit alignment of the
 data being summed. If a segment contains an odd number of header
 and text octets, alignment can be achieved by padding the last
 octet with zeros on its right to form a 16 bit word for checksum
 purposes. The pad is not transmitted as part of the segment.
 While computing the checksum, the checksum field itself is replaced
 with zeros.

 The checksum also covers a pseudo header (Figure 2) conceptually
 prefixed to the TCP header. The pseudo header is 96 bits for IPv4
 and 320 bits for IPv6. Including the pseudo header in the checksum
 gives the TCP connection protection against misrouted segments.
 This information is carried in IP headers and is transferred across
 the TCP/Network interface in the arguments or results of calls by
 the TCP implementation on the IP layer.

 +--------+--------+--------+--------+
 | Source Address |
 +--------+--------+--------+--------+
 | Destination Address |
 +--------+--------+--------+--------+
 | zero | PTCL | TCP Length |
 +--------+--------+--------+--------+

 Figure 2: IPv4 Pseudo Header

 Pseudo header components:

Eddy Expires November 4, 2021 [Page 9]

Internet-Draft TCP Specification May 2021

 Source Address: the IPv4 source address in network byte order

 Destination Address: the IPv4 destination address in network
 byte order

 zero: bits set to zero

 PTCL: the protocol number from the IP header

 TCP Length: the TCP header length plus the data length in
 octets (this is not an explicitly transmitted quantity, but is
 computed), and it does not count the 12 octets of the pseudo
 header.

 For IPv6, the pseudo header is defined in Section 8.1 of RFC 8200
 [14], and contains the IPv6 Source Address and Destination
 Address, an Upper Layer Packet Length (a 32-bit value otherwise
 equivalent to TCP Length in the IPv4 pseudo header), three bytes
 of zero-padding, and a Next Header value (differing from the IPv6
 header value in the case of extension headers present in between
 IPv6 and TCP).

 The TCP checksum is never optional. The sender MUST generate it
 (MUST-2) and the receiver MUST check it (MUST-3).

 Urgent Pointer: 16 bits.

 This field communicates the current value of the urgent pointer as
 a positive offset from the sequence number in this segment. The
 urgent pointer points to the sequence number of the octet following
 the urgent data. This field is only be interpreted in segments
 with the URG control bit set.

 Options: [TCP Option]; Options#Size == (DOffset-5)*32; present only
 when DOffset > 5.

 Options may occupy space at the end of the TCP header and are a
 multiple of 8 bits in length. All options are included in the
 checksum. An option may begin on any octet boundary. There are two
 cases for the format of an option:

 Case 1: A single octet of option-kind.

 Case 2: An octet of option-kind (Kind), an octet of option-
 length, and the actual option-data octets.

 The option-length counts the two octets of option-kind and option-
 length as well as the option-data octets.

https://datatracker.ietf.org/doc/html/rfc8200#section-8.1

Eddy Expires November 4, 2021 [Page 10]

Internet-Draft TCP Specification May 2021

 Note that the list of options may be shorter than the data offset
 field might imply. The content of the header beyond the End-of-
 Option option must be header padding (i.e., zero).

 The list of all currently defined options is managed by IANA [55],
 and each option is defined in other RFCs, as indicated there. That
 set includes experimental options that can be extended to support
 multiple concurrent usages [44].

 A given TCP implementation can support any currently defined
 options, but the following options MUST be supported (MUST-4 - note
 Maximum Segment Size option support is also part of MUST-19 in

Section 3.7.2):

 Kind Length Meaning
 ---- ------ -------
 0 - End of option list.
 1 - No-Operation.
 2 4 Maximum Segment Size.

 These options are specified in detail in Section 3.2.

 A TCP implementation MUST be able to receive a TCP option in any
 segment (MUST-5).

 A TCP implementation MUST (MUST-6) ignore without error any TCP
 option it does not implement, assuming that the option has a length
 field. All TCP options except End of option list and No-Operation
 MUST have length fields, including all future options (MUST-68).
 TCP implementations MUST be prepared to handle an illegal option
 length (e.g., zero); a suggested procedure is to reset the
 connection and log the error cause (MUST-7).

 Note: There is ongoing work to extend the space available for TCP
 options, such as [60].

 Data: variable length.

 User data carried by the TCP segment.

3.2. Specific Option Definitions

 A TCP Option is one of: an End of Option List Option, a No-Operation
 Option, or a Maximum Segment Size Option.

 An End of Option List Option is formatted as follows:

Eddy Expires November 4, 2021 [Page 11]

Internet-Draft TCP Specification May 2021

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | 0 |
 +-+-+-+-+-+-+-+-+

 where:

 Kind: 1 byte; Kind == 0.

 This option code indicates the end of the option list. This might
 not coincide with the end of the TCP header according to the Data
 Offset field. This is used at the end of all options, not the end
 of each option, and need only be used if the end of the options
 would not otherwise coincide with the end of the TCP header.

 A No-Operation Option is formatted as follows:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | 1 |
 +-+-+-+-+-+-+-+-+

 where:

 Kind: 1 byte; Kind == 1.

 This option code can be used between options, for example, to align
 the beginning of a subsequent option on a word boundary. There is
 no guarantee that senders will use this option, so receivers MUST
 be prepared to process options even if they do not begin on a word
 boundary (MUST-64).

 A Maximum Segment Size Option is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | Length | Maximum Segment Size (MSS) |
 +-+

 where:

 Kind: 1 byte; Kind == 2.

 If this option is present, then it communicates the maximum receive
 segment size at the TCP endpoint that sends this segment. This

Eddy Expires November 4, 2021 [Page 12]

Internet-Draft TCP Specification May 2021

 value is limited by the IP reassembly limit. This field may be
 sent in the initial connection request (i.e., in segments with the
 SYN control bit set) and MUST NOT be sent in other segments (MUST-
 65). If this option is not used, any segment size is allowed. A
 more complete description of this option is provided in

Section 3.7.1.

 Length: 1 byte; Length == 4.

 Length of the option in bytes.

 Maximum Segment Size (MSS): 2 bytes.

 The maximum receive segment size at the TCP endpoint that sends
 this segment.

3.2.1. Other Common Options

 Additional RFCs define some other commonly used options that are
 recommended to implement for high performance, but not necessary for
 basic TCP interoperability. These are the TCP Selective
 Acknowledgement (SACK) option [21][24], TCP Timestamp (TS) option
 [46], and TCP Window Scaling (WS) option [46].

3.2.2. Experimental TCP Options

 Experimental TCP option values are defined in [27], and [44]
 describes the current recommended usage for these experimental
 values.

3.3. TCP Terminology Overview

 This section includes an overview of key terms needed to understand
 the detailed protocol operation in the rest of the document. There
 is a traditional glossary of terms in Section 3.11.

3.3.1. Key Connection State Variables

 Before we can discuss very much about the operation of the TCP
 implementation we need to introduce some detailed terminology. The
 maintenance of a TCP connection requires the remembering of several
 variables. We conceive of these variables being stored in a
 connection record called a Transmission Control Block or TCB. Among
 the variables stored in the TCB are the local and remote IP addresses
 and port numbers, the IP security level and compartment of the
 connection (see Appendix A.1), pointers to the user's send and
 receive buffers, pointers to the retransmit queue and to the current

Eddy Expires November 4, 2021 [Page 13]

Internet-Draft TCP Specification May 2021

 segment. In addition several variables relating to the send and
 receive sequence numbers are stored in the TCB.

 Send Sequence Variables:

 SND.UNA - send unacknowledged
 SND.NXT - send next
 SND.WND - send window
 SND.UP - send urgent pointer
 SND.WL1 - segment sequence number used for last window update
 SND.WL2 - segment acknowledgment number used for last window
 update
 ISS - initial send sequence number

 Receive Sequence Variables:

 RCV.NXT - receive next
 RCV.WND - receive window
 RCV.UP - receive urgent pointer
 IRS - initial receive sequence number

 The following diagrams may help to relate some of these variables to
 the sequence space.

 1 2 3 4
 ----------|----------|----------|----------
 SND.UNA SND.NXT SND.UNA
 +SND.WND

 1 - old sequence numbers that have been acknowledged
 2 - sequence numbers of unacknowledged data
 3 - sequence numbers allowed for new data transmission
 4 - future sequence numbers that are not yet allowed

 Figure 3: Send Sequence Space

 The send window is the portion of the sequence space labeled 3 in
 Figure 3.

Eddy Expires November 4, 2021 [Page 14]

Internet-Draft TCP Specification May 2021

 1 2 3
 ----------|----------|----------
 RCV.NXT RCV.NXT
 +RCV.WND

 1 - old sequence numbers that have been acknowledged
 2 - sequence numbers allowed for new reception
 3 - future sequence numbers that are not yet allowed

 Figure 4: Receive Sequence Space

 The receive window is the portion of the sequence space labeled 2 in
 Figure 4.

 There are also some variables used frequently in the discussion that
 take their values from the fields of the current segment.

 Current Segment Variables:

 SEG.SEQ - segment sequence number
 SEG.ACK - segment acknowledgment number
 SEG.LEN - segment length
 SEG.WND - segment window
 SEG.UP - segment urgent pointer

3.3.2. State Machine Overview

 A connection progresses through a series of states during its
 lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
 ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
 TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
 because it represents the state when there is no TCB, and therefore,
 no connection. Briefly the meanings of the states are:

 LISTEN - represents waiting for a connection request from any
 remote TCP peer and port.

 SYN-SENT - represents waiting for a matching connection request
 after having sent a connection request.

 SYN-RECEIVED - represents waiting for a confirming connection
 request acknowledgment after having both received and sent a
 connection request.

 ESTABLISHED - represents an open connection, data received can be
 delivered to the user. The normal state for the data transfer
 phase of the connection.

Eddy Expires November 4, 2021 [Page 15]

Internet-Draft TCP Specification May 2021

 FIN-WAIT-1 - represents waiting for a connection termination
 request from the remote TCP peer, or an acknowledgment of the
 connection termination request previously sent.

 FIN-WAIT-2 - represents waiting for a connection termination
 request from the remote TCP peer.

 CLOSE-WAIT - represents waiting for a connection termination
 request from the local user.

 CLOSING - represents waiting for a connection termination request
 acknowledgment from the remote TCP peer.

 LAST-ACK - represents waiting for an acknowledgment of the
 connection termination request previously sent to the remote TCP
 peer (this termination request sent to the remote TCP peer already
 included an acknowledgment of the termination request sent from
 the remote TCP peer).

 TIME-WAIT - represents waiting for enough time to pass to be sure
 the remote TCP peer received the acknowledgment of its connection
 termination request, and to avoid new connections being impacted
 by delayed segments from previous connections.

 CLOSED - represents no connection state at all.

 A TCP connection progresses from one state to another in response to
 events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
 ABORT, and STATUS; the incoming segments, particularly those
 containing the SYN, ACK, RST and FIN flags; and timeouts.

 The state diagram in Figure 5 illustrates only state changes,
 together with the causing events and resulting actions, but addresses
 neither error conditions nor actions that are not connected with
 state changes. In a later section, more detail is offered with
 respect to the reaction of the TCP implementation to events. Some
 state names are abbreviated or hyphenated differently in the diagram
 from how they appear elsewhere in the document.

 NOTA BENE: This diagram is only a summary and must not be taken as
 the total specification. Many details are not included.

Eddy Expires November 4, 2021 [Page 16]

Internet-Draft TCP Specification May 2021

 +---------+ ---------\ active OPEN
 | CLOSED | \ -----------
 +---------+<---------\ \ create TCB
 | ^ \ \ snd SYN
 passive OPEN | | CLOSE \ \
 ------------ | | ---------- \ \
 create TCB | | delete TCB \ \
 V | \ \
 rcv RST (note 1) +---------+ CLOSE | \
 -------------------->| LISTEN | ---------- | |
 / +---------+ delete TCB | |
 / rcv SYN | | SEND | |
 / ----------- | | ------- | V
 +--------+ snd SYN,ACK / \ snd SYN +--------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd SYN,ACK	
	------------------ -------------------	
 +--------+ rcv ACK of SYN \ / rcv SYN,ACK +--------+
 | -------------- | | -----------
 | x | | snd ACK
 | V V
 | CLOSE +---------+
 | ------- | ESTAB |
 | snd FIN +---------+
 | CLOSE | | rcv FIN
 V ------- | | -------
 +---------+ snd FIN / \ snd ACK +---------+
 | FIN |<---------------- ------------------>| CLOSE |
 | WAIT-1 |------------------ | WAIT |
 +---------+ rcv FIN \ +---------+
 | rcv ACK of FIN ------- | CLOSE |
 | -------------- snd ACK | ------- |
 V x V snd FIN V
 +---------+ +---------+ +---------+
 |FINWAIT-2| | CLOSING | | LAST-ACK|
 +---------+ +---------+ +---------+
 | rcv ACK of FIN | rcv ACK of FIN |
 | rcv FIN -------------- | Timeout=2MSL -------------- |
 | ------- x V ------------ x V
 \ snd ACK +---------+delete TCB +---------+
 -------------------->|TIME-WAIT|------------------->| CLOSED |
 +---------+ +---------+

 Figure 5: TCP Connection State Diagram

 The following notes apply to Figure 5:

Eddy Expires November 4, 2021 [Page 17]

Internet-Draft TCP Specification May 2021

 Note 1: The transition from SYN-RECEIVED to LISTEN on receiving a
 RST is conditional on having reached SYN-RECEIVED after a passive
 open.

 Note 2: An unshown transition exists from FIN-WAIT-1 to TIME-WAIT
 if a FIN is received and the local FIN is also acknowledged.

 Note 3: A RST can be sent from any state with a corresponding
 transition to TIME-WAIT (see [64] for rationale). These
 transitions are not not explicitly shown, otherwise the diagram
 would become very difficult to read. Similarly, receipt of a RST
 from any state results in a transition to LISTEN or CLOSED, though
 this is also omitted from the diagram for legibility.

3.4. Sequence Numbers

 A fundamental notion in the design is that every octet of data sent
 over a TCP connection has a sequence number. Since every octet is
 sequenced, each of them can be acknowledged. The acknowledgment
 mechanism employed is cumulative so that an acknowledgment of
 sequence number X indicates that all octets up to but not including X
 have been received. This mechanism allows for straight-forward
 duplicate detection in the presence of retransmission. Numbering of
 octets within a segment is that the first data octet immediately
 following the header is the lowest numbered, and the following octets
 are numbered consecutively.

 It is essential to remember that the actual sequence number space is
 finite, though very large. This space ranges from 0 to 2**32 - 1.
 Since the space is finite, all arithmetic dealing with sequence
 numbers must be performed modulo 2**32. This unsigned arithmetic
 preserves the relationship of sequence numbers as they cycle from
 2**32 - 1 to 0 again. There are some subtleties to computer modulo
 arithmetic, so great care should be taken in programming the
 comparison of such values. The symbol "=<" means "less than or
 equal" (modulo 2**32).

 The typical kinds of sequence number comparisons that the TCP
 implementation must perform include:

 (a) Determining that an acknowledgment refers to some sequence
 number sent but not yet acknowledged.

 (b) Determining that all sequence numbers occupied by a segment
 have been acknowledged (e.g., to remove the segment from a
 retransmission queue).

Eddy Expires November 4, 2021 [Page 18]

Internet-Draft TCP Specification May 2021

 (c) Determining that an incoming segment contains sequence numbers
 that are expected (i.e., that the segment "overlaps" the receive
 window).

 In response to sending data the TCP endpoint will receive
 acknowledgments. The following comparisons are needed to process the
 acknowledgments.

 SND.UNA = oldest unacknowledged sequence number

 SND.NXT = next sequence number to be sent

 SEG.ACK = acknowledgment from the receiving TCP peer (next
 sequence number expected by the receiving TCP peer)

 SEG.SEQ = first sequence number of a segment

 SEG.LEN = the number of octets occupied by the data in the segment
 (counting SYN and FIN)

 SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

 A new acknowledgment (called an "acceptable ack"), is one for which
 the inequality below holds:

 SND.UNA < SEG.ACK =< SND.NXT

 A segment on the retransmission queue is fully acknowledged if the
 sum of its sequence number and length is less or equal than the
 acknowledgment value in the incoming segment.

 When data is received the following comparisons are needed:

 RCV.NXT = next sequence number expected on an incoming segments,
 and is the left or lower edge of the receive window

 RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
 segment, and is the right or upper edge of the receive window

 SEG.SEQ = first sequence number occupied by the incoming segment

 SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming
 segment

 A segment is judged to occupy a portion of valid receive sequence
 space if

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

Eddy Expires November 4, 2021 [Page 19]

Internet-Draft TCP Specification May 2021

 or

 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 The first part of this test checks to see if the beginning of the
 segment falls in the window, the second part of the test checks to
 see if the end of the segment falls in the window; if the segment
 passes either part of the test it contains data in the window.

 Actually, it is a little more complicated than this. Due to zero
 windows and zero length segments, we have four cases for the
 acceptability of an incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 Note that when the receive window is zero no segments should be
 acceptable except ACK segments. Thus, it is possible for a TCP
 implementation to maintain a zero receive window while transmitting
 data and receiving ACKs. A TCP receiver MUST process the RST and URG
 fields of all incoming segments, even when the receive window is zero
 (MUST-66).

 We have taken advantage of the numbering scheme to protect certain
 control information as well. This is achieved by implicitly
 including some control flags in the sequence space so they can be
 retransmitted and acknowledged without confusion (i.e., one and only
 one copy of the control will be acted upon). Control information is
 not physically carried in the segment data space. Consequently, we
 must adopt rules for implicitly assigning sequence numbers to
 control. The SYN and FIN are the only controls requiring this
 protection, and these controls are used only at connection opening
 and closing. For sequence number purposes, the SYN is considered to
 occur before the first actual data octet of the segment in which it
 occurs, while the FIN is considered to occur after the last actual
 data octet in a segment in which it occurs. The segment length
 (SEG.LEN) includes both data and sequence space occupying controls.
 When a SYN is present then SEG.SEQ is the sequence number of the SYN.

Eddy Expires November 4, 2021 [Page 20]

Internet-Draft TCP Specification May 2021

 Initial Sequence Number Selection

 A connection is defined by a pair of sockets. Connections can be
 reused. New instances of a connection will be referred to as
 incarnations of the connection. The problem that arises from this is
 -- "how does the TCP implementation identify duplicate segments from
 previous incarnations of the connection?" This problem becomes
 apparent if the connection is being opened and closed in quick
 succession, or if the connection breaks with loss of memory and is
 then reestablished. To support this, the TIME-WAIT state limits the
 rate of connection reuse, while the initial sequence number selection
 described below further protects against ambiguity about what
 incarnation of a connection an incoming packet corresponds to.

 To avoid confusion we must prevent segments from one incarnation of a
 connection from being used while the same sequence numbers may still
 be present in the network from an earlier incarnation. We want to
 assure this, even if a TCP endpoint loses all knowledge of the
 sequence numbers it has been using. When new connections are
 created, an initial sequence number (ISN) generator is employed that
 selects a new 32 bit ISN. There are security issues that result if
 an off-path attacker is able to predict or guess ISN values.

 TCP Initial Sequence Numbers are generated from a number sequence
 that monotonically increases until it wraps, known loosely as a
 "clock". This clock is a 32-bit counter that typically increments at
 least once every roughly 4 microseconds, although it is neither
 assumed to be realtime nor precise, and need not persist across
 reboots. The clock component is intended to insure that with a
 Maximum Segment Lifetime (MSL), generated ISNs will be unique, since
 it cycles approximately every 4.55 hours, which is much longer than
 the MSL.

 A TCP implementation MUST use the above type of "clock" for clock-
 driven selection of initial sequence numbers (MUST-8), and SHOULD
 generate its Initial Sequence Numbers with the expression:

 ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

 where M is the 4 microsecond timer, and F() is a pseudorandom
 function (PRF) of the connection's identifying parameters ("localip,
 localport, remoteip, remoteport") and a secret key ("secretkey")
 (SHLD-1). F() MUST NOT be computable from the outside (MUST-9), or
 an attacker could still guess at sequence numbers from the ISN used
 for some other connection. The PRF could be implemented as a
 cryptographic hash of the concatenation of the TCP connection
 parameters and some secret data. For discussion of the selection of

Eddy Expires November 4, 2021 [Page 21]

Internet-Draft TCP Specification May 2021

 a specific hash algorithm and management of the secret key data,
 please see Section 3 of [41].

 For each connection there is a send sequence number and a receive
 sequence number. The initial send sequence number (ISS) is chosen by
 the data sending TCP peer, and the initial receive sequence number
 (IRS) is learned during the connection establishing procedure.

 For a connection to be established or initialized, the two TCP peers
 must synchronize on each other's initial sequence numbers. This is
 done in an exchange of connection establishing segments carrying a
 control bit called "SYN" (for synchronize) and the initial sequence
 numbers. As a shorthand, segments carrying the SYN bit are also
 called "SYNs". Hence, the solution requires a suitable mechanism for
 picking an initial sequence number and a slightly involved handshake
 to exchange the ISNs.

 The synchronization requires each side to send its own initial
 sequence number and to receive a confirmation of it in acknowledgment
 from the remote TCP peer. Each side must also receive the remote
 peer's initial sequence number and send a confirming acknowledgment.

 1) A --> B SYN my sequence number is X
 2) A <-- B ACK your sequence number is X
 3) A <-- B SYN my sequence number is Y
 4) A --> B ACK your sequence number is Y

 Because steps 2 and 3 can be combined in a single message this is
 called the three-way (or three message) handshake (3WHS).

 A 3WHS is necessary because sequence numbers are not tied to a global
 clock in the network, and TCP implementations may have different
 mechanisms for picking the ISNs. The receiver of the first SYN has
 no way of knowing whether the segment was an old delayed one or not,
 unless it remembers the last sequence number used on the connection
 (which is not always possible), and so it must ask the sender to
 verify this SYN. The three way handshake and the advantages of a
 clock-driven scheme are discussed in [63].

 Knowing When to Keep Quiet

 A theoretical problem exists where data could be corrupted due to
 confusion between old segments in the network and new ones after a
 host reboots, if the same port numbers and sequence space are reused.
 The "Quiet Time" concept discussed below addresses this and the
 discussion of it is included for situations where it might be
 relevant, although it is not felt to be necessary in most current
 implementations. The problem was more relevant earlier in the

Eddy Expires November 4, 2021 [Page 22]

Internet-Draft TCP Specification May 2021

 history of TCP. In practical use on the Internet today, the error-
 prone conditions are sufficiently unlikely that it is felt safe to
 ignore. Reasons why it is now negligible include: (a) ISS and
 ephemeral port randomization have reduced likelihood of reuse of port
 numbers and sequence numbers after reboots, (b) the effective MSL of
 the Internet has declined as links have become faster, and (c)
 reboots often taking longer than an MSL anyways.

 To be sure that a TCP implementation does not create a segment
 carrying a sequence number that may be duplicated by an old segment
 remaining in the network, the TCP endpoint must keep quiet for an MSL
 before assigning any sequence numbers upon starting up or recovering
 from a situation where memory of sequence numbers in use was lost.
 For this specification the MSL is taken to be 2 minutes. This is an
 engineering choice, and may be changed if experience indicates it is
 desirable to do so. Note that if a TCP endpoint is reinitialized in
 some sense, yet retains its memory of sequence numbers in use, then
 it need not wait at all; it must only be sure to use sequence numbers
 larger than those recently used.

 The TCP Quiet Time Concept

 Hosts that for any reason lose knowledge of the last sequence numbers
 transmitted on each active (i.e., not closed) connection shall delay
 emitting any TCP segments for at least the agreed MSL in the internet
 system that the host is a part of. In the paragraphs below, an
 explanation for this specification is given. TCP implementors may
 violate the "quiet time" restriction, but only at the risk of causing
 some old data to be accepted as new or new data rejected as old
 duplicated by some receivers in the internet system.

 TCP endpoints consume sequence number space each time a segment is
 formed and entered into the network output queue at a source host.
 The duplicate detection and sequencing algorithm in the TCP protocol
 relies on the unique binding of segment data to sequence space to the
 extent that sequence numbers will not cycle through all 2**32 values
 before the segment data bound to those sequence numbers has been
 delivered and acknowledged by the receiver and all duplicate copies
 of the segments have "drained" from the internet. Without such an
 assumption, two distinct TCP segments could conceivably be assigned
 the same or overlapping sequence numbers, causing confusion at the
 receiver as to which data is new and which is old. Remember that
 each segment is bound to as many consecutive sequence numbers as
 there are octets of data and SYN or FIN flags in the segment.

 Under normal conditions, TCP implementations keep track of the next
 sequence number to emit and the oldest awaiting acknowledgment so as
 to avoid mistakenly using a sequence number over before its first use

Eddy Expires November 4, 2021 [Page 23]

Internet-Draft TCP Specification May 2021

 has been acknowledged. This alone does not guarantee that old
 duplicate data is drained from the net, so the sequence space has
 been made very large to reduce the probability that a wandering
 duplicate will cause trouble upon arrival. At 2 megabits/sec. it
 takes 4.5 hours to use up 2**32 octets of sequence space. Since the
 maximum segment lifetime in the net is not likely to exceed a few
 tens of seconds, this is deemed ample protection for foreseeable
 nets, even if data rates escalate to l0's of megabits/sec. At 100
 megabits/sec, the cycle time is 5.4 minutes, which may be a little
 short, but still within reason.

 The basic duplicate detection and sequencing algorithm in TCP can be
 defeated, however, if a source TCP endpoint does not have any memory
 of the sequence numbers it last used on a given connection. For
 example, if the TCP implementation were to start all connections with
 sequence number 0, then upon the host rebooting, a TCP peer might re-
 form an earlier connection (possibly after half-open connection
 resolution) and emit packets with sequence numbers identical to or
 overlapping with packets still in the network, which were emitted on
 an earlier incarnation of the same connection. In the absence of
 knowledge about the sequence numbers used on a particular connection,
 the TCP specification recommends that the source delay for MSL
 seconds before emitting segments on the connection, to allow time for
 segments from the earlier connection incarnation to drain from the
 system.

 Even hosts that can remember the time of day and used it to select
 initial sequence number values are not immune from this problem
 (i.e., even if time of day is used to select an initial sequence
 number for each new connection incarnation).

 Suppose, for example, that a connection is opened starting with
 sequence number S. Suppose that this connection is not used much and
 that eventually the initial sequence number function (ISN(t)) takes
 on a value equal to the sequence number, say S1, of the last segment
 sent by this TCP endpoint on a particular connection. Now suppose,
 at this instant, the host reboots and establishes a new incarnation
 of the connection. The initial sequence number chosen is S1 = ISN(t)
 -- last used sequence number on old incarnation of connection! If
 the recovery occurs quickly enough, any old duplicates in the net
 bearing sequence numbers in the neighborhood of S1 may arrive and be
 treated as new packets by the receiver of the new incarnation of the
 connection.

 The problem is that the recovering host may not know for how long it
 was down between rebooting nor does it know whether there are still
 old duplicates in the system from earlier connection incarnations.

Eddy Expires November 4, 2021 [Page 24]

Internet-Draft TCP Specification May 2021

 One way to deal with this problem is to deliberately delay emitting
 segments for one MSL after recovery from a reboot - this is the
 "quiet time" specification. Hosts that prefer to avoid waiting are
 willing to risk possible confusion of old and new packets at a given
 destination may choose not to wait for the "quiet time".
 Implementors may provide TCP users with the ability to select on a
 connection by connection basis whether to wait after a reboot, or may
 informally implement the "quiet time" for all connections.
 Obviously, even where a user selects to "wait," this is not necessary
 after the host has been "up" for at least MSL seconds.

 To summarize: every segment emitted occupies one or more sequence
 numbers in the sequence space, the numbers occupied by a segment are
 "busy" or "in use" until MSL seconds have passed, upon rebooting a
 block of space-time is occupied by the octets and SYN or FIN flags of
 the last emitted segment, if a new connection is started too soon and
 uses any of the sequence numbers in the space-time footprint of the
 last segment of the previous connection incarnation, there is a
 potential sequence number overlap area that could cause confusion at
 the receiver.

3.5. Establishing a connection

 The "three-way handshake" is the procedure used to establish a
 connection. This procedure normally is initiated by one TCP peer and
 responded to by another TCP peer. The procedure also works if two
 TCP peers simultaneously initiate the procedure. When simultaneous
 open occurs, each TCP peer receives a "SYN" segment that carries no
 acknowledgment after it has sent a "SYN". Of course, the arrival of
 an old duplicate "SYN" segment can potentially make it appear, to the
 recipient, that a simultaneous connection initiation is in progress.
 Proper use of "reset" segments can disambiguate these cases.

 Several examples of connection initiation follow. Although these
 examples do not show connection synchronization using data-carrying
 segments, this is perfectly legitimate, so long as the receiving TCP
 endpoint doesn't deliver the data to the user until it is clear the
 data is valid (e.g., the data is buffered at the receiver until the
 connection reaches the ESTABLISHED state, given that the three-way
 handshake reduces the possibility of false connections). It is the
 implementation of a trade-off between memory and messages to provide
 information for this checking.

 The simplest 3WHS is shown in Figure 6. The figures should be
 interpreted in the following way. Each line is numbered for
 reference purposes. Right arrows (-->) indicate departure of a TCP
 segment from TCP peer A to TCP peer B, or arrival of a segment at B
 from A. Left arrows (<--), indicate the reverse. Ellipsis (...)

Eddy Expires November 4, 2021 [Page 25]

Internet-Draft TCP Specification May 2021

 indicates a segment that is still in the network (delayed). Comments
 appear in parentheses. TCP connection states represent the state
 AFTER the departure or arrival of the segment (whose contents are
 shown in the center of each line). Segment contents are shown in
 abbreviated form, with sequence number, control flags, and ACK field.
 Other fields such as window, addresses, lengths, and text have been
 left out in the interest of clarity.

 TCP Peer A TCP Peer B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

 Figure 6: Basic 3-Way Handshake for Connection Synchronization

 In line 2 of Figure 6, TCP Peer A begins by sending a SYN segment
 indicating that it will use sequence numbers starting with sequence
 number 100. In line 3, TCP Peer B sends a SYN and acknowledges the
 SYN it received from TCP Peer A. Note that the acknowledgment field
 indicates TCP Peer B is now expecting to hear sequence 101,
 acknowledging the SYN that occupied sequence 100.

 At line 4, TCP Peer A responds with an empty segment containing an
 ACK for TCP Peer B's SYN; and in line 5, TCP Peer A sends some data.
 Note that the sequence number of the segment in line 5 is the same as
 in line 4 because the ACK does not occupy sequence number space (if
 it did, we would wind up ACKing ACKs!).

 Simultaneous initiation is only slightly more complex, as is shown in
 Figure 7. Each TCP peer's connection state cycles from CLOSED to
 SYN-SENT to SYN-RECEIVED to ESTABLISHED.

Eddy Expires November 4, 2021 [Page 26]

Internet-Draft TCP Specification May 2021

 TCP Peer A TCP Peer B

 1. CLOSED CLOSED

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

 4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 5. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 7. ... <SEQ=100><ACK=301><CTL=SYN,ACK> --> ESTABLISHED

 Figure 7: Simultaneous Connection Synchronization

 A TCP implementation MUST support simultaneous open attempts (MUST-
 10).

 Note that a TCP implementation MUST keep track of whether a
 connection has reached SYN-RECEIVED state as the result of a passive
 OPEN or an active OPEN (MUST-11).

 The principal reason for the three-way handshake is to prevent old
 duplicate connection initiations from causing confusion. To deal
 with this, a special control message, reset, is specified. If the
 receiving TCP peer is in a non-synchronized state (i.e., SYN-SENT,
 SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
 If the TCP peer is in one of the synchronized states (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
 aborts the connection and informs its user. We discuss this latter
 case under "half-open" connections below.

Eddy Expires November 4, 2021 [Page 27]

Internet-Draft TCP Specification May 2021

 TCP Peer A TCP Peer B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN-RECEIVED

 4. SYN-SENT <-- <SEQ=300><ACK=91><CTL=SYN,ACK> <-- SYN-RECEIVED

 5. SYN-SENT --> <SEQ=91><CTL=RST> --> LISTEN

 6. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 7. ESTABLISHED <-- <SEQ=400><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 8. ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK> --> ESTABLISHED

 Figure 8: Recovery from Old Duplicate SYN

 As a simple example of recovery from old duplicates, consider
 Figure 8. At line 3, an old duplicate SYN arrives at TCP Peer B.
 TCP Peer B cannot tell that this is an old duplicate, so it responds
 normally (line 4). TCP Peer A detects that the ACK field is
 incorrect and returns a RST (reset) with its SEQ field selected to
 make the segment believable. TCP Peer B, on receiving the RST,
 returns to the LISTEN state. When the original SYN finally arrives
 at line 6, the synchronization proceeds normally. If the SYN at line
 6 had arrived before the RST, a more complex exchange might have
 occurred with RST's sent in both directions.

 Half-Open Connections and Other Anomalies

 An established connection is said to be "half-open" if one of the TCP
 peers has closed or aborted the connection at its end without the
 knowledge of the other, or if the two ends of the connection have
 become desynchronized owing to a failure or reboot that resulted in
 loss of memory. Such connections will automatically become reset if
 an attempt is made to send data in either direction. However, half-
 open connections are expected to be unusual.

 If at site A the connection no longer exists, then an attempt by the
 user at site B to send any data on it will result in the site B TCP
 endpoint receiving a reset control message. Such a message indicates
 to the site B TCP endpoint that something is wrong, and it is
 expected to abort the connection.

Eddy Expires November 4, 2021 [Page 28]

Internet-Draft TCP Specification May 2021

 Assume that two user processes A and B are communicating with one
 another when a failure or reboot occurs causing loss of memory to A's
 TCP implementation. Depending on the operating system supporting A's
 TCP implementation, it is likely that some error recovery mechanism
 exists. When the TCP endpoint is up again, A is likely to start
 again from the beginning or from a recovery point. As a result, A
 will probably try to OPEN the connection again or try to SEND on the
 connection it believes open. In the latter case, it receives the
 error message "connection not open" from the local (A's) TCP
 implementation. In an attempt to establish the connection, A's TCP
 implementation will send a segment containing SYN. This scenario
 leads to the example shown in Figure 9. After TCP Peer A reboots,
 the user attempts to re-open the connection. TCP Peer B, in the
 meantime, thinks the connection is open.

 TCP Peer A TCP Peer B

 1. (REBOOT) (send 300,receive 100)

 2. CLOSED ESTABLISHED

 3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (??)

 4. (!!) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLISHED

 5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)

 6. SYN-SENT CLOSED

 7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

 Figure 9: Half-Open Connection Discovery

 When the SYN arrives at line 3, TCP Peer B, being in a synchronized
 state, and the incoming segment outside the window, responds with an
 acknowledgment indicating what sequence it next expects to hear (ACK
 100). TCP Peer A sees that this segment does not acknowledge
 anything it sent and, being unsynchronized, sends a reset (RST)
 because it has detected a half-open connection. TCP Peer B aborts at
 line 5. TCP Peer A will continue to try to establish the connection;
 the problem is now reduced to the basic 3-way handshake of Figure 6.

 An interesting alternative case occurs when TCP Peer A reboots and
 TCP Peer B tries to send data on what it thinks is a synchronized
 connection. This is illustrated in Figure 10. In this case, the
 data arriving at TCP Peer A from TCP Peer B (line 2) is unacceptable
 because no such connection exists, so TCP Peer A sends a RST. The

Eddy Expires November 4, 2021 [Page 29]

Internet-Draft TCP Specification May 2021

 RST is acceptable so TCP Peer B processes it and aborts the
 connection.

 TCP Peer A TCP Peer B

 1. (REBOOT) (send 300,receive 100)

 2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED

 3. --> <SEQ=100><CTL=RST> --> (ABORT!!)

 Figure 10: Active Side Causes Half-Open Connection Discovery

 In Figure 11, two TCP Peers A and B with passive connections waiting
 for SYN are depicted. An old duplicate arriving at TCP Peer B (line
 2) stirs B into action. A SYN-ACK is returned (line 3) and causes
 TCP A to generate a RST (the ACK in line 3 is not acceptable). TCP
 Peer B accepts the reset and returns to its passive LISTEN state.

 TCP Peer A TCP Peer B

 1. LISTEN LISTEN

 2. ... <SEQ=Z><CTL=SYN> --> SYN-RECEIVED

 3. (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN!)

 5. LISTEN LISTEN

 Figure 11: Old Duplicate SYN Initiates a Reset on two Passive Sockets

 A variety of other cases are possible, all of which are accounted for
 by the following rules for RST generation and processing.

 Reset Generation

 A TCP user or application can issue a reset on a connection at any
 time, though reset events are also generated by the protocol itself
 when various error conditions occur, as described below. The side of
 a connection issuing a reset should enter the TIME-WAIT state, as
 this generally helps to reduce the load on busy servers for reasons
 described in [64].

Eddy Expires November 4, 2021 [Page 30]

Internet-Draft TCP Specification May 2021

 As a general rule, reset (RST) is sent whenever a segment arrives
 that apparently is not intended for the current connection. A reset
 must not be sent if it is not clear that this is the case.

 There are three groups of states:

 1. If the connection does not exist (CLOSED) then a reset is sent
 in response to any incoming segment except another reset. A SYN
 segment that does not match an existing connection is rejected by
 this means.

 If the incoming segment has the ACK bit set, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the CLOSED state.

 2. If the connection is in any non-synchronized state (LISTEN,
 SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
 something not yet sent (the segment carries an unacceptable ACK),
 or if an incoming segment has a security level or compartment that
 does not exactly match the level and compartment requested for the
 connection, a reset is sent.

 If the incoming segment has an ACK field, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the same state.

 3. If the connection is in a synchronized state (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
 any unacceptable segment (out of window sequence number or
 unacceptable acknowledgment number) must be responded to with an
 empty acknowledgment segment (without any user data) containing
 the current send-sequence number and an acknowledgment indicating
 the next sequence number expected to be received, and the
 connection remains in the same state.

 If an incoming segment has a security level, or compartment that
 does not exactly match the level and compartment requested for the
 connection, a reset is sent and the connection goes to the CLOSED
 state. The reset takes its sequence number from the ACK field of
 the incoming segment.

 Reset Processing

Eddy Expires November 4, 2021 [Page 31]

Internet-Draft TCP Specification May 2021

 In all states except SYN-SENT, all reset (RST) segments are validated
 by checking their SEQ-fields. A reset is valid if its sequence
 number is in the window. In the SYN-SENT state (a RST received in
 response to an initial SYN), the RST is acceptable if the ACK field
 acknowledges the SYN.

 The receiver of a RST first validates it, then changes state. If the
 receiver was in the LISTEN state, it ignores it. If the receiver was
 in SYN-RECEIVED state and had previously been in the LISTEN state,
 then the receiver returns to the LISTEN state, otherwise the receiver
 aborts the connection and goes to the CLOSED state. If the receiver
 was in any other state, it aborts the connection and advises the user
 and goes to the CLOSED state.

 TCP implementations SHOULD allow a received RST segment to include
 data (SHLD-2).

3.6. Closing a Connection

 CLOSE is an operation meaning "I have no more data to send." The
 notion of closing a full-duplex connection is subject to ambiguous
 interpretation, of course, since it may not be obvious how to treat
 the receiving side of the connection. We have chosen to treat CLOSE
 in a simplex fashion. The user who CLOSEs may continue to RECEIVE
 until the TCP receiver is told that the remote peer has CLOSED also.
 Thus, a program could initiate several SENDs followed by a CLOSE, and
 then continue to RECEIVE until signaled that a RECEIVE failed because
 the remote peer has CLOSED. The TCP implementation will signal a
 user, even if no RECEIVEs are outstanding, that the remote peer has
 closed, so the user can terminate his side gracefully. A TCP
 implementation will reliably deliver all buffers SENT before the
 connection was CLOSED so a user who expects no data in return need
 only wait to hear the connection was CLOSED successfully to know that
 all their data was received at the destination TCP endpoint. Users
 must keep reading connections they close for sending until the TCP
 implementation indicates there is no more data.

 There are essentially three cases:

 1) The user initiates by telling the TCP implementation to CLOSE
 the connection (TCP Peer A in Figure 12).

 2) The remote TCP endpoint initiates by sending a FIN control
 signal (TCP Peer B in Figure 12).

 3) Both users CLOSE simultaneously (Figure 13).

 Case 1: Local user initiates the close

Eddy Expires November 4, 2021 [Page 32]

Internet-Draft TCP Specification May 2021

 In this case, a FIN segment can be constructed and placed on the
 outgoing segment queue. No further SENDs from the user will be
 accepted by the TCP implementation, and it enters the FIN-WAIT-1
 state. RECEIVEs are allowed in this state. All segments
 preceding and including FIN will be retransmitted until
 acknowledged. When the other TCP peer has both acknowledged the
 FIN and sent a FIN of its own, the first TCP peer can ACK this
 FIN. Note that a TCP endpoint receiving a FIN will ACK but not
 send its own FIN until its user has CLOSED the connection also.

 Case 2: TCP endpoint receives a FIN from the network

 If an unsolicited FIN arrives from the network, the receiving TCP
 endpoint can ACK it and tell the user that the connection is
 closing. The user will respond with a CLOSE, upon which the TCP
 endpoint can send a FIN to the other TCP peer after sending any
 remaining data. The TCP endpoint then waits until its own FIN is
 acknowledged whereupon it deletes the connection. If an ACK is
 not forthcoming, after the user timeout the connection is aborted
 and the user is told.

 Case 3: Both users close simultaneously

 A simultaneous CLOSE by users at both ends of a connection causes
 FIN segments to be exchanged (Figure 13). When all segments
 preceding the FINs have been processed and acknowledged, each TCP
 peer can ACK the FIN it has received. Both will, upon receiving
 these ACKs, delete the connection.

 TCP Peer A TCP Peer B

 1. ESTABLISHED ESTABLISHED

 2. (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSE-WAIT

 3. FIN-WAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT

 4. (Close)
 TIME-WAIT <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <-- LAST-ACK

 5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED

 6. (2 MSL)
 CLOSED

 Figure 12: Normal Close Sequence

Eddy Expires November 4, 2021 [Page 33]

Internet-Draft TCP Specification May 2021

 TCP Peer A TCP Peer B

 1. ESTABLISHED ESTABLISHED

 2. (Close) (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> ... FIN-WAIT-1
 <-- <SEQ=300><ACK=100><CTL=FIN,ACK> <--
 ... <SEQ=100><ACK=300><CTL=FIN,ACK> -->

 3. CLOSING --> <SEQ=101><ACK=301><CTL=ACK> ... CLOSING
 <-- <SEQ=301><ACK=101><CTL=ACK> <--
 ... <SEQ=101><ACK=301><CTL=ACK> -->

 4. TIME-WAIT TIME-WAIT
 (2 MSL) (2 MSL)
 CLOSED CLOSED

 Figure 13: Simultaneous Close Sequence

 A TCP connection may terminate in two ways: (1) the normal TCP close
 sequence using a FIN handshake (Figure 12), and (2) an "abort" in
 which one or more RST segments are sent and the connection state is
 immediately discarded. If the local TCP connection is closed by the
 remote side due to a FIN or RST received from the remote side, then
 the local application MUST be informed whether it closed normally or
 was aborted (MUST-12).

3.6.1. Half-Closed Connections

 The normal TCP close sequence delivers buffered data reliably in both
 directions. Since the two directions of a TCP connection are closed
 independently, it is possible for a connection to be "half closed,"
 i.e., closed in only one direction, and a host is permitted to
 continue sending data in the open direction on a half-closed
 connection.

 A host MAY implement a "half-duplex" TCP close sequence, so that an
 application that has called CLOSE cannot continue to read data from
 the connection (MAY-1). If such a host issues a CLOSE call while
 received data is still pending in the TCP connection, or if new data
 is received after CLOSE is called, its TCP implementation SHOULD send
 a RST to show that data was lost (SHLD-3). See [22] section 2.17 for
 discussion.

 When a connection is closed actively, it MUST linger in the TIME-WAIT
 state for a time 2xMSL (Maximum Segment Lifetime) (MUST-13).
 However, it MAY accept a new SYN from the remote TCP endpoint to
 reopen the connection directly from TIME-WAIT state (MAY-2), if it:

Eddy Expires November 4, 2021 [Page 34]

Internet-Draft TCP Specification May 2021

 (1) assigns its initial sequence number for the new connection to
 be larger than the largest sequence number it used on the previous
 connection incarnation, and

 (2) returns to TIME-WAIT state if the SYN turns out to be an old
 duplicate.

 When the TCP Timestamp options are available, an improved algorithm
 is described in [39] in order to support higher connection
 establishment rates. This algorithm for reducing TIME-WAIT is a Best
 Current Practice that SHOULD be implemented, since timestamp options
 are commonly used, and using them to reduce TIME-WAIT provides
 benefits for busy Internet servers (SHLD-4).

3.7. Segmentation

 The term "segmentation" refers to the activity TCP performs when
 ingesting a stream of bytes from a sending application and
 packetizing that stream of bytes into TCP segments. Individual TCP
 segments often do not correspond one-for-one to individual send (or
 socket write) calls from the application. Applications may perform
 writes at the granularity of messages in the upper layer protocol,
 but TCP guarantees no boundary coherence between the TCP segments
 sent and received versus user application data read or write buffer
 boundaries. In some specific protocols, such as Remote Direct Memory
 Access (RDMA) using Direct Data Placement (DDP) and Marker PDU
 Aligned Framing (MPA) [31], there are performance optimizations
 possible when the relation between TCP segments and application data
 units can be controlled, and MPA includes a specific mechanism for
 detecting and verifying this relationship between TCP segments and
 application message data structures, but this is specific to
 applications like RDMA. In general, multiple goals influence the
 sizing of TCP segments created by a TCP implementation.

 Goals driving the sending of larger segments include:

 o Reducing the number of packets in flight within the network.

 o Increasing processing efficiency and potential performance by
 enabling a smaller number of interrupts and inter-layer
 interactions.

 o Limiting the overhead of TCP headers.

 Note that the performance benefits of sending larger segments may
 decrease as the size increases, and there may be boundaries where
 advantages are reversed. For instance, on some implementation
 architectures, 1025 bytes within a segment could lead to worse

Eddy Expires November 4, 2021 [Page 35]

Internet-Draft TCP Specification May 2021

 performance than 1024 bytes, due purely to data alignment on copy
 operations.

 Goals driving the sending of smaller segments include:

 o Avoiding sending a TCP segment that would result in an IP datagram
 larger than the smallest MTU along an IP network path, because
 this results in either packet loss or packet fragmentation.
 Making matters worse, some firewalls or middleboxes may drop
 fragmented packets or ICMP messages related to fragmentation.

 o Preventing delays to the application data stream, especially when
 TCP is waiting on the application to generate more data, or when
 the application is waiting on an event or input from its peer in
 order to generate more data.

 o Enabling "fate sharing" between TCP segments and lower-layer data
 units (e.g. below IP, for links with cell or frame sizes smaller
 than the IP MTU).

 Towards meeting these competing sets of goals, TCP includes several
 mechanisms, including the Maximum Segment Size option, Path MTU
 Discovery, the Nagle algorithm, and support for IPv6 Jumbograms, as
 discussed in the following subsections.

3.7.1. Maximum Segment Size Option

 TCP endpoints MUST implement both sending and receiving the MSS
 option (MUST-14).

 TCP implementations SHOULD send an MSS option in every SYN segment
 when its receive MSS differs from the default 536 for IPv4 or 1220
 for IPv6 (SHLD-5), and MAY send it always (MAY-3).

 If an MSS option is not received at connection setup, TCP
 implementations MUST assume a default send MSS of 536 (576-40) for
 IPv4 or 1220 (1280 - 60) for IPv6 (MUST-15).

 The maximum size of a segment that TCP endpoint really sends, the
 "effective send MSS," MUST be the smaller (MUST-16) of the send MSS
 (that reflects the available reassembly buffer size at the remote
 host, the EMTU_R [18]) and the largest transmission size permitted by
 the IP layer (EMTU_S [18]):

 Eff.snd.MSS =

 min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize

Eddy Expires November 4, 2021 [Page 36]

Internet-Draft TCP Specification May 2021

 where:

 o SendMSS is the MSS value received from the remote host, or the
 default 536 for IPv4 or 1220 for IPv6, if no MSS option is
 received.

 o MMS_S is the maximum size for a transport-layer message that TCP
 may send.

 o TCPhdrsize is the size of the fixed TCP header and any options.
 This is 20 in the (rare) case that no options are present, but may
 be larger if TCP options are to be sent. Note that some options
 may not be included on all segments, but that for each segment
 sent, the sender should adjust the data length accordingly, within
 the Eff.snd.MSS.

 o IPoptionsize is the size of any IP options associated with a TCP
 connection. Note that some options may not be included on all
 packets, but that for each segment sent, the sender should adjust
 the data length accordingly, within the Eff.snd.MSS.

 The MSS value to be sent in an MSS option should be equal to the
 effective MTU minus the fixed IP and TCP headers. By ignoring both
 IP and TCP options when calculating the value for the MSS option, if
 there are any IP or TCP options to be sent in a packet, then the
 sender must decrease the size of the TCP data accordingly. RFC 6691
 [42] discusses this in greater detail.

 The MSS value to be sent in an MSS option must be less than or equal
 to:

 MMS_R - 20

 where MMS_R is the maximum size for a transport-layer message that
 can be received (and reassembled at the IP layer) (MUST-67). TCP
 obtains MMS_R and MMS_S from the IP layer; see the generic call
 GET_MAXSIZES in Section 3.4 of RFC 1122. These are defined in terms
 of their IP MTU equivalents, EMTU_R and EMTU_S [18].

 When TCP is used in a situation where either the IP or TCP headers
 are not fixed, the sender must reduce the amount of TCP data in any
 given packet by the number of octets used by the IP and TCP options.
 This has been a point of confusion historically, as explained in RFC

6691, Section 3.1.

https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc1122#section-3.4
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc6691

Eddy Expires November 4, 2021 [Page 37]

Internet-Draft TCP Specification May 2021

3.7.2. Path MTU Discovery

 A TCP implementation may be aware of the MTU on directly connected
 links, but will rarely have insight about MTUs across an entire
 network path. For IPv4, RFC 1122 recommends an IP-layer default
 effective MTU of less than or equal to 576 for destinations not
 directly connected. For IPv6, this would be 1280. In all cases,
 however, implementation of Path MTU Discovery (PMTUD) and
 Packetization Layer Path MTU Discovery (PLPMTUD) is strongly
 recommended in order for TCP to improve segmentation decisions. Both
 PMTUD and PLPMTUD help TCP choose segment sizes that avoid both on-
 path (for IPv4) and source fragmentation (IPv4 and IPv6).

 PMTUD for IPv4 [2] or IPv6 [3] is implemented in conjunction between
 TCP, IP, and ICMP protocols. It relies both on avoiding source
 fragmentation and setting the IPv4 DF (don't fragment) flag, the
 latter to inhibit on-path fragmentation. It relies on ICMP errors
 from routers along the path, whenever a segment is too large to
 traverse a link. Several adjustments to a TCP implementation with
 PMTUD are described in RFC 2923 in order to deal with problems
 experienced in practice [8]. PLPMTUD [28] is a Standards Track
 improvement to PMTUD that relaxes the requirement for ICMP support
 across a path, and improves performance in cases where ICMP is not
 consistently conveyed, but still tries to avoid source fragmentation.
 The mechanisms in all four of these RFCs are recommended to be
 included in TCP implementations.

 The TCP MSS option specifies an upper bound for the size of packets
 that can be received. Hence, setting the value in the MSS option too
 small can impact the ability for PMTUD or PLPMTUD to find a larger
 path MTU. RFC 1191 discusses this implication of many older TCP
 implementations setting MSS to 536 for non-local destinations, rather
 than deriving it from the MTUs of connected interfaces as
 recommended.

3.7.3. Interfaces with Variable MTU Values

 The effective MTU can sometimes vary, as when used with variable
 compression, e.g., RObust Header Compression (ROHC) [35]. It is
 tempting for a TCP implementation to advertise the largest possible
 MSS, to support the most efficient use of compressed payloads.
 Unfortunately, some compression schemes occasionally need to transmit
 full headers (and thus smaller payloads) to resynchronize state at
 their endpoint compressors/decompressors. If the largest MTU is used
 to calculate the value to advertise in the MSS option, TCP
 retransmission may interfere with compressor resynchronization.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc1191

Eddy Expires November 4, 2021 [Page 38]

Internet-Draft TCP Specification May 2021

 As a result, when the effective MTU of an interface varies packet-to-
 packet, TCP implementations SHOULD use the smallest effective MTU of
 the interface to calculate the value to advertise in the MSS option
 (SHLD-6).

3.7.4. Nagle Algorithm

 The "Nagle algorithm" was described in RFC 896 [17] and was
 recommended in RFC 1122 [18] for mitigation of an early problem of
 too many small packets being generated. It has been implemented in
 most current TCP code bases, sometimes with minor variations (see

Appendix A.3).

 If there is unacknowledged data (i.e., SND.NXT > SND.UNA), then the
 sending TCP endpoint buffers all user data (regardless of the PSH
 bit), until the outstanding data has been acknowledged or until the
 TCP endpoint can send a full-sized segment (Eff.snd.MSS bytes).

 A TCP implementation SHOULD implement the Nagle Algorithm to coalesce
 short segments (SHLD-7). However, there MUST be a way for an
 application to disable the Nagle algorithm on an individual
 connection (MUST-17). In all cases, sending data is also subject to
 the limitation imposed by the Slow Start algorithm [34].

 Since there can be problematic interactions between the Nagle
 Algorithm and delayed acknowledgements, some implementations use
 minor variations of the Nagle algorithm, such as the one described in

Appendix A.3.

3.7.5. IPv6 Jumbograms

 In order to support TCP over IPv6 Jumbograms, implementations need to
 be able to send TCP segments larger than the 64KB limit that the MSS
 option can convey. RFC 2675 [6] defines that an MSS value of 65,535
 bytes is to be treated as infinity, and Path MTU Discovery [3] is
 used to determine the actual MSS.

 The Jumbo Payload option need not be implemented or understood by
 IPv6 nodes that do not support attachment to links with a MTU greater
 than 65,575 [6], and the present IPv6 Node Requirements does not
 include support for Jumbograms [53].

3.8. Data Communication

 Once the connection is established data is communicated by the
 exchange of segments. Because segments may be lost due to errors
 (checksum test failure), or network congestion, TCP uses
 retransmission to ensure delivery of every segment. Duplicate

https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2675

Eddy Expires November 4, 2021 [Page 39]

Internet-Draft TCP Specification May 2021

 segments may arrive due to network or TCP retransmission. As
 discussed in the section on sequence numbers the TCP implementation
 performs certain tests on the sequence and acknowledgment numbers in
 the segments to verify their acceptability.

 The sender of data keeps track of the next sequence number to use in
 the variable SND.NXT. The receiver of data keeps track of the next
 sequence number to expect in the variable RCV.NXT. The sender of
 data keeps track of the oldest unacknowledged sequence number in the
 variable SND.UNA. If the data flow is momentarily idle and all data
 sent has been acknowledged then the three variables will be equal.

 When the sender creates a segment and transmits it the sender
 advances SND.NXT. When the receiver accepts a segment it advances
 RCV.NXT and sends an acknowledgment. When the data sender receives
 an acknowledgment it advances SND.UNA. The extent to which the
 values of these variables differ is a measure of the delay in the
 communication. The amount by which the variables are advanced is the
 length of the data and SYN or FIN flags in the segment. Note that
 once in the ESTABLISHED state all segments must carry current
 acknowledgment information.

 The CLOSE user call implies a push function, as does the FIN control
 flag in an incoming segment.

3.8.1. Retransmission Timeout

 Because of the variability of the networks that compose an
 internetwork system and the wide range of uses of TCP connections the
 retransmission timeout (RTO) must be dynamically determined.

 The RTO MUST be computed according to the algorithm in [11],
 including Karn's algorithm for taking RTT samples (MUST-18).

RFC 793 contains an early example procedure for computing the RTO.
 This was then replaced by the algorithm described in RFC 1122, and
 subsequently updated in RFC 2988, and then again in RFC 6298.

RFC 1122 allows that if a retransmitted packet is identical to the
 original packet (which implies not only that the data boundaries have
 not changed, but also that none of the headers have changed), then
 the same IPv4 Identification field MAY be used (see Section 3.2.1.5
 of RFC 1122) (MAY-4). The same IP identification field may be reused
 anyways, since it is only meaningful when a datagram is fragmented
 [43]. TCP implementations should not rely on or typically interact
 with this IPv4 header field in any way. It is not a reasonable way
 to either indicate duplicate sent segments, nor to identify duplicate
 received segments.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-3.2.1.5
https://datatracker.ietf.org/doc/html/rfc1122#section-3.2.1.5

Eddy Expires November 4, 2021 [Page 40]

Internet-Draft TCP Specification May 2021

3.8.2. TCP Congestion Control

RFC 2914 [7] explains the importance of congestion control for the
 Internet.

RFC 1122 required implementation of Van Jacobson's congestion control
 algorithms slow start and congestion avoidance together with
 exponential back-off for successive RTO values for the same segment.

RFC 2581 provided IETF Standards Track description of slow start and
 congestion avoidance, along with fast retransmit and fast recovery.

RFC 5681 is the current description of these algorithms and is the
 current Standards Track specification providing guidelines for TCP
 congestion control. RFC 6298 describes exponential back-off of RTO
 values, including keeping the backed-off value until a subsequent
 segment with new data has been sent and acknowledged without
 retransmission.

 A TCP endpoint MUST implement the basic congestion control algorithms
 slow start, congestion avoidance, and exponential back-off of RTO to
 avoid creating congestion collapse conditions (MUST-19). RFC 5681
 and RFC 6298 describe the basic algorithms on the IETF Standards
 Track that are broadly applicable. Multiple other suitable
 algorithms exist and have been widely used. Many TCP implementations
 support a set of alternative algorithms that can be configured for
 use on the endpoint. An endpoint may implement such alternative
 algorithms provided that the algorithms are conformant with the TCP
 specifications from the IETF Standards Track as described in RFC

2914, RFC 5033 [10], and RFC 8961 [15] (MAY-18).

 Explicit Congestion Notification (ECN) was defined in RFC 3168 and is
 an IETF Standards Track enhancement that has many benefits [50].

 A TCP endpoint SHOULD implement ECN as described in RFC 3168 (SHLD-
 8).

3.8.3. TCP Connection Failures

 Excessive retransmission of the same segment by a TCP endpoint
 indicates some failure of the remote host or the Internet path. This
 failure may be of short or long duration. The following procedure
 MUST be used to handle excessive retransmissions of data segments
 (MUST-20):

 (a) There are two thresholds R1 and R2 measuring the amount of
 retransmission that has occurred for the same segment. R1 and R2
 might be measured in time units or as a count of retransmissions.

https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc8961
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Eddy Expires November 4, 2021 [Page 41]

Internet-Draft TCP Specification May 2021

 (b) When the number of transmissions of the same segment reaches
 or exceeds threshold R1, pass negative advice (see Section 3.3.1.4
 of [18]) to the IP layer, to trigger dead-gateway diagnosis.

 (c) When the number of transmissions of the same segment reaches a
 threshold R2 greater than R1, close the connection.

 (d) An application MUST (MUST-21) be able to set the value for R2
 for a particular connection. For example, an interactive
 application might set R2 to "infinity," giving the user control
 over when to disconnect.

 (e) TCP implementations SHOULD inform the application of the
 delivery problem (unless such information has been disabled by the
 application; see Asynchronous Reports section), when R1 is reached
 and before R2 (SHLD-9). This will allow a remote login (User
 Telnet) application program to inform the user, for example.

 The value of R1 SHOULD correspond to at least 3 retransmissions, at
 the current RTO (SHLD-10). The value of R2 SHOULD correspond to at
 least 100 seconds (SHLD-11).

 An attempt to open a TCP connection could fail with excessive
 retransmissions of the SYN segment or by receipt of a RST segment or
 an ICMP Port Unreachable. SYN retransmissions MUST be handled in the
 general way just described for data retransmissions, including
 notification of the application layer.

 However, the values of R1 and R2 may be different for SYN and data
 segments. In particular, R2 for a SYN segment MUST be set large
 enough to provide retransmission of the segment for at least 3
 minutes (MUST-23). The application can close the connection (i.e.,
 give up on the open attempt) sooner, of course.

3.8.4. TCP Keep-Alives

 A TCP connection is said to be "idle" if for some long amount of time
 there have been no incoming segments received and there is no new or
 unacknowledged data to be sent.

 Implementors MAY include "keep-alives" in their TCP implementations
 (MAY-5), although this practice is not universally accepted. Some
 TCP implementations, however, have included a keep-alive mechanism.
 To confirm that an idle connection is still active, these
 implementations send a probe segment designed to elicit a response
 from the TCP peer. Such a segment generally contains SEG.SEQ =
 SND.NXT-1 and may or may not contain one garbage octet of data. If
 keep-alives are included, the application MUST be able to turn them

Eddy Expires November 4, 2021 [Page 42]

Internet-Draft TCP Specification May 2021

 on or off for each TCP connection (MUST-24), and they MUST default to
 off (MUST-25).

 Keep-alive packets MUST only be sent when no sent data is
 outstanding, and no data or acknowledgement packets have been
 received for the connection within an interval (MUST-26). This
 interval MUST be configurable (MUST-27) and MUST default to no less
 than two hours (MUST-28).

 It is extremely important to remember that ACK segments that contain
 no data are not reliably transmitted by TCP. Consequently, if a
 keep-alive mechanism is implemented it MUST NOT interpret failure to
 respond to any specific probe as a dead connection (MUST-29).

 An implementation SHOULD send a keep-alive segment with no data
 (SHLD-12); however, it MAY be configurable to send a keep-alive
 segment containing one garbage octet (MAY-6), for compatibility with
 erroneous TCP implementations.

3.8.5. The Communication of Urgent Information

 As a result of implementation differences and middlebox interactions,
 new applications SHOULD NOT employ the TCP urgent mechanism (SHLD-
 13). However, TCP implementations MUST still include support for the
 urgent mechanism (MUST-30). Details can be found in RFC 6093 [38].

 The objective of the TCP urgent mechanism is to allow the sending
 user to stimulate the receiving user to accept some urgent data and
 to permit the receiving TCP endpoint to indicate to the receiving
 user when all the currently known urgent data has been received by
 the user.

 This mechanism permits a point in the data stream to be designated as
 the end of urgent information. Whenever this point is in advance of
 the receive sequence number (RCV.NXT) at the receiving TCP endpoint,
 that TCP must tell the user to go into "urgent mode"; when the
 receive sequence number catches up to the urgent pointer, the TCP
 implementation must tell user to go into "normal mode". If the
 urgent pointer is updated while the user is in "urgent mode", the
 update will be invisible to the user.

 The method employs an urgent field that is carried in all segments
 transmitted. The URG control flag indicates that the urgent field is
 meaningful and must be added to the segment sequence number to yield
 the urgent pointer. The absence of this flag indicates that there is
 no urgent data outstanding.

https://datatracker.ietf.org/doc/html/rfc6093

Eddy Expires November 4, 2021 [Page 43]

Internet-Draft TCP Specification May 2021

 To send an urgent indication the user must also send at least one
 data octet. If the sending user also indicates a push, timely
 delivery of the urgent information to the destination process is
 enhanced.

 A TCP implementation MUST support a sequence of urgent data of any
 length (MUST-31). [18]

 The urgent pointer MUST point to the sequence number of the octet
 following the urgent data (MUST-62).

 A TCP implementation MUST (MUST-32) inform the application layer
 asynchronously whenever it receives an Urgent pointer and there was
 previously no pending urgent data, or whenever the Urgent pointer
 advances in the data stream. The TCP implementation MUST (MUST-33)
 provide a way for the application to learn how much urgent data
 remains to be read from the connection, or at least to determine
 whether or not more urgent data remains to be read [18].

3.8.6. Managing the Window

 The window sent in each segment indicates the range of sequence
 numbers the sender of the window (the data receiver) is currently
 prepared to accept. There is an assumption that this is related to
 the currently available data buffer space available for this
 connection.

 The sending TCP endpoint packages the data to be transmitted into
 segments that fit the current window, and may repackage segments on
 the retransmission queue. Such repackaging is not required, but may
 be helpful.

 In a connection with a one-way data flow, the window information will
 be carried in acknowledgment segments that all have the same sequence
 number so there will be no way to reorder them if they arrive out of
 order. This is not a serious problem, but it will allow the window
 information to be on occasion temporarily based on old reports from
 the data receiver. A refinement to avoid this problem is to act on
 the window information from segments that carry the highest
 acknowledgment number (that is segments with acknowledgment number
 equal or greater than the highest previously received).

 Indicating a large window encourages transmissions. If more data
 arrives than can be accepted, it will be discarded. This will result
 in excessive retransmissions, adding unnecessarily to the load on the
 network and the TCP endpoints. Indicating a small window may
 restrict the transmission of data to the point of introducing a round
 trip delay between each new segment transmitted.

Eddy Expires November 4, 2021 [Page 44]

Internet-Draft TCP Specification May 2021

 The mechanisms provided allow a TCP endpoint to advertise a large
 window and to subsequently advertise a much smaller window without
 having accepted that much data. This, so called "shrinking the
 window," is strongly discouraged. The robustness principle [18]
 dictates that TCP peers will not shrink the window themselves, but
 will be prepared for such behavior on the part of other TCP peers.

 A TCP receiver SHOULD NOT shrink the window, i.e., move the right
 window edge to the left (SHLD-14). However, a sending TCP peer MUST
 be robust against window shrinking, which may cause the "usable
 window" (see Section 3.8.6.2.1) to become negative (MUST-34).

 If this happens, the sender SHOULD NOT send new data (SHLD-15), but
 SHOULD retransmit normally the old unacknowledged data between
 SND.UNA and SND.UNA+SND.WND (SHLD-16). The sender MAY also
 retransmit old data beyond SND.UNA+SND.WND (MAY-7), but SHOULD NOT
 time out the connection if data beyond the right window edge is not
 acknowledged (SHLD-17). If the window shrinks to zero, the TCP
 implementation MUST probe it in the standard way (described below)
 (MUST-35).

3.8.6.1. Zero Window Probing

 The sending TCP peer must be prepared to accept from the user and
 send at least one octet of new data even if the send window is zero.
 The sending TCP peer must regularly retransmit to the receiving TCP
 peer even when the window is zero, in order to "probe" the window.
 Two minutes is recommended for the retransmission interval when the
 window is zero. This retransmission is essential to guarantee that
 when either TCP peer has a zero window the re-opening of the window
 will be reliably reported to the other. This is referred to as Zero-
 Window Probing (ZWP) in other documents.

 Probing of zero (offered) windows MUST be supported (MUST-36).

 A TCP implementation MAY keep its offered receive window closed
 indefinitely (MAY-8). As long as the receiving TCP peer continues to
 send acknowledgments in response to the probe segments, the sending
 TCP peer MUST allow the connection to stay open (MUST-37). This
 enables TCP to function in scenarios such as the "printer ran out of
 paper" situation described in Section 4.2.2.17 of RFC1122. The
 behavior is subject to the implementation's resource management
 concerns, as noted in [40].

 When the receiving TCP peer has a zero window and a segment arrives
 it must still send an acknowledgment showing its next expected
 sequence number and current window (zero).

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.17

Eddy Expires November 4, 2021 [Page 45]

Internet-Draft TCP Specification May 2021

 The transmitting host SHOULD send the first zero-window probe when a
 zero window has existed for the retransmission timeout period (SHLD-
 29) (Section 3.8.1), and SHOULD increase exponentially the interval
 between successive probes (SHLD-30).

3.8.6.2. Silly Window Syndrome Avoidance

 The "Silly Window Syndrome" (SWS) is a stable pattern of small
 incremental window movements resulting in extremely poor TCP
 performance. Algorithms to avoid SWS are described below for both
 the sending side and the receiving side. RFC 1122 contains more
 detailed discussion of the SWS problem. Note that the Nagle
 algorithm and the sender SWS avoidance algorithm play complementary
 roles in improving performance. The Nagle algorithm discourages
 sending tiny segments when the data to be sent increases in small
 increments, while the SWS avoidance algorithm discourages small
 segments resulting from the right window edge advancing in small
 increments.

3.8.6.2.1. Sender's Algorithm - When to Send Data

 A TCP implementation MUST include a SWS avoidance algorithm in the
 sender (MUST-38).

 The Nagle algorithm from Section 3.7.4 additionally describes how to
 coalesce short segments.

 The sender's SWS avoidance algorithm is more difficult than the
 receivers's, because the sender does not know (directly) the
 receiver's total buffer space RCV.BUFF. An approach that has been
 found to work well is for the sender to calculate Max(SND.WND), the
 maximum send window it has seen so far on the connection, and to use
 this value as an estimate of RCV.BUFF. Unfortunately, this can only
 be an estimate; the receiver may at any time reduce the size of
 RCV.BUFF. To avoid a resulting deadlock, it is necessary to have a
 timeout to force transmission of data, overriding the SWS avoidance
 algorithm. In practice, this timeout should seldom occur.

 The "usable window" is:

 U = SND.UNA + SND.WND - SND.NXT

 i.e., the offered window less the amount of data sent but not
 acknowledged. If D is the amount of data queued in the sending TCP
 endpoint but not yet sent, then the following set of rules is
 recommended.

 Send data:

https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires November 4, 2021 [Page 46]

Internet-Draft TCP Specification May 2021

 (1) if a maximum-sized segment can be sent, i.e, if:

 min(D,U) >= Eff.snd.MSS;

 (2) or if the data is pushed and all queued data can be sent now,
 i.e., if:

 [SND.NXT = SND.UNA and] PUSHED and D <= U

 (the bracketed condition is imposed by the Nagle algorithm);

 (3) or if at least a fraction Fs of the maximum window can be sent,
 i.e., if:

 [SND.NXT = SND.UNA and]

 min(D.U) >= Fs * Max(SND.WND);

 (4) or if data is PUSHed and the override timeout occurs.

 Here Fs is a fraction whose recommended value is 1/2. The override
 timeout should be in the range 0.1 - 1.0 seconds. It may be
 convenient to combine this timer with the timer used to probe zero
 windows (Section 3.8.6.1).

3.8.6.2.2. Receiver's Algorithm - When to Send a Window Update

 A TCP implementation MUST include a SWS avoidance algorithm in the
 receiver (MUST-39).

 The receiver's SWS avoidance algorithm determines when the right
 window edge may be advanced; this is customarily known as "updating
 the window". This algorithm combines with the delayed ACK algorithm
 (Section 3.8.6.3) to determine when an ACK segment containing the
 current window will really be sent to the receiver.

 The solution to receiver SWS is to avoid advancing the right window
 edge RCV.NXT+RCV.WND in small increments, even if data is received
 from the network in small segments.

 Suppose the total receive buffer space is RCV.BUFF. At any given
 moment, RCV.USER octets of this total may be tied up with data that
 has been received and acknowledged but that the user process has not
 yet consumed. When the connection is quiescent, RCV.WND = RCV.BUFF
 and RCV.USER = 0.

 Keeping the right window edge fixed as data arrives and is
 acknowledged requires that the receiver offer less than its full

Eddy Expires November 4, 2021 [Page 47]

Internet-Draft TCP Specification May 2021

 buffer space, i.e., the receiver must specify a RCV.WND that keeps
 RCV.NXT+RCV.WND constant as RCV.NXT increases. Thus, the total
 buffer space RCV.BUFF is generally divided into three parts:

 |<------- RCV.BUFF ---------------->|
 1 2 3
 ----|---------|------------------|------|----
 RCV.NXT ^
 (Fixed)

 1 - RCV.USER = data received but not yet consumed;
 2 - RCV.WND = space advertised to sender;
 3 - Reduction = space available but not yet
 advertised.

 The suggested SWS avoidance algorithm for the receiver is to keep
 RCV.NXT+RCV.WND fixed until the reduction satisfies:

 RCV.BUFF - RCV.USER - RCV.WND >=

 min(Fr * RCV.BUFF, Eff.snd.MSS)

 where Fr is a fraction whose recommended value is 1/2, and
 Eff.snd.MSS is the effective send MSS for the connection (see

Section 3.7.1). When the inequality is satisfied, RCV.WND is set to
 RCV.BUFF-RCV.USER.

 Note that the general effect of this algorithm is to advance RCV.WND
 in increments of Eff.snd.MSS (for realistic receive buffers:
 Eff.snd.MSS < RCV.BUFF/2). Note also that the receiver must use its
 own Eff.snd.MSS, assuming it is the same as the sender's.

3.8.6.3. Delayed Acknowledgements - When to Send an ACK Segment

 A host that is receiving a stream of TCP data segments can increase
 efficiency in both the Internet and the hosts by sending fewer than
 one ACK (acknowledgment) segment per data segment received; this is
 known as a "delayed ACK".

 A TCP endpoint SHOULD implement a delayed ACK (SHLD-18), but an ACK
 should not be excessively delayed; in particular, the delay MUST be
 less than 0.5 seconds (MUST-40), and in a stream of full-sized
 segments there SHOULD be an ACK for at least every second segment
 (SHLD-19). Excessive delays on ACKs can disturb the round-trip
 timing and packet "clocking" algorithms. More complete discussion of
 delayed ACK behavior is in Section 4.2 of RFC 5681 [34], including

https://datatracker.ietf.org/doc/html/rfc5681#section-4.2

Eddy Expires November 4, 2021 [Page 48]

Internet-Draft TCP Specification May 2021

 rules for streams of segments that are not full-sized. Note that
 there are several current practices that further lead to a reduced
 number of ACKs, including generic receive offload (GRO), ACK
 compression, and ACK decimation [25].

3.9. Interfaces

 There are of course two interfaces of concern: the user/TCP interface
 and the TCP/lower-level interface. We have a fairly elaborate model
 of the user/TCP interface, but the interface to the lower level
 protocol module is left unspecified here, since it will be specified
 in detail by the specification of the lower level protocol. For the
 case that the lower level is IP we note some of the parameter values
 that TCP implementations might use.

3.9.1. User/TCP Interface

 The following functional description of user commands to the TCP
 implementation is, at best, fictional, since every operating system
 will have different facilities. Consequently, we must warn readers
 that different TCP implementations may have different user
 interfaces. However, all TCP implementations must provide a certain
 minimum set of services to guarantee that all TCP implementations can
 support the same protocol hierarchy. This section specifies the
 functional interfaces required of all TCP implementations.

 Section 3.1 of [52] also identifies primitives provided by TCP, and
 could be used as an additional reference for implementers.

 TCP User Commands

 The following sections functionally characterize a USER/TCP
 interface. The notation used is similar to most procedure or
 function calls in high level languages, but this usage is not
 meant to rule out trap type service calls.

 The user commands described below specify the basic functions the
 TCP implementation must perform to support interprocess
 communication. Individual implementations must define their own
 exact format, and may provide combinations or subsets of the basic
 functions in single calls. In particular, some implementations
 may wish to automatically OPEN a connection on the first SEND or
 RECEIVE issued by the user for a given connection.

 In providing interprocess communication facilities, the TCP
 implementation must not only accept commands, but must also return
 information to the processes it serves. The latter consists of:

Eddy Expires November 4, 2021 [Page 49]

Internet-Draft TCP Specification May 2021

 (a) general information about a connection (e.g., interrupts,
 remote close, binding of unspecified remote socket).

 (b) replies to specific user commands indicating success or
 various types of failure.

 Open

 Format: OPEN (local port, remote socket, active/passive [,
 timeout] [, DiffServ field] [, security/compartment] [local IP
 address,] [, options]) -> local connection name

 If the active/passive flag is set to passive, then this is a
 call to LISTEN for an incoming connection. A passive open may
 have either a fully specified remote socket to wait for a
 particular connection or an unspecified remote socket to wait
 for any call. A fully specified passive call can be made
 active by the subsequent execution of a SEND.

 A transmission control block (TCB) is created and partially
 filled in with data from the OPEN command parameters.

 Every passive OPEN call either creates a new connection record
 in LISTEN state, or it returns an error; it MUST NOT affect any
 previously created connection record (MUST-41).

 A TCP implementation that supports multiple concurrent
 connections MUST provide an OPEN call that will functionally
 allow an application to LISTEN on a port while a connection
 block with the same local port is in SYN-SENT or SYN-RECEIVED
 state (MUST-42).

 On an active OPEN command, the TCP endpoint will begin the
 procedure to synchronize (i.e., establish) the connection at
 once.

 The timeout, if present, permits the caller to set up a timeout
 for all data submitted to TCP. If data is not successfully
 delivered to the destination within the timeout period, the TCP
 endpoint will abort the connection. The present global default
 is five minutes.

 The TCP implementation or some component of the operating
 system will verify the users authority to open a connection
 with the specified DiffServ field value or security/
 compartment. The absence of a DiffServ field value or
 security/compartment specification in the OPEN call indicates
 the default values must be used.

Eddy Expires November 4, 2021 [Page 50]

Internet-Draft TCP Specification May 2021

 TCP will accept incoming requests as matching only if the
 security/compartment information is exactly the same as that
 requested in the OPEN call.

 The DiffServ field value indicated by the user only impacts
 outgoing packets, may be altered en route through the network,
 and has no direct bearing or relation to received packets.

 A local connection name will be returned to the user by the TCP
 implementation. The local connection name can then be used as
 a short hand term for the connection defined by the <local
 socket, remote socket> pair.

 The optional "local IP address" parameter MUST be supported to
 allow the specification of the local IP address (MUST-43).
 This enables applications that need to select the local IP
 address used when multihoming is present.

 A passive OPEN call with a specified "local IP address"
 parameter will await an incoming connection request to that
 address. If the parameter is unspecified, a passive OPEN will
 await an incoming connection request to any local IP address,
 and then bind the local IP address of the connection to the
 particular address that is used.

 For an active OPEN call, a specified "local IP address"
 parameter will be used for opening the connection. If the
 parameter is unspecified, the host will choose an appropriate
 local IP address (see RFC 1122 section 3.3.4.2).

 If an application on a multihomed host does not specify the
 local IP address when actively opening a TCP connection, then
 the TCP implementation MUST ask the IP layer to select a local
 IP address before sending the (first) SYN (MUST-44). See the
 function GET_SRCADDR() in Section 3.4 of RFC 1122.

 At all other times, a previous segment has either been sent or
 received on this connection, and TCP implementations MUST use
 the same local address is used that was used in those previous
 segments (MUST-45).

 A TCP implementation MUST reject as an error a local OPEN call
 for an invalid remote IP address (e.g., a broadcast or
 multicast address) (MUST-46).

 Send

https://datatracker.ietf.org/doc/html/rfc1122#section-3.3.4.2
https://datatracker.ietf.org/doc/html/rfc1122#section-3.4

Eddy Expires November 4, 2021 [Page 51]

Internet-Draft TCP Specification May 2021

 Format: SEND (local connection name, buffer address, byte
 count, PUSH flag (optional), URGENT flag [,timeout])

 This call causes the data contained in the indicated user
 buffer to be sent on the indicated connection. If the
 connection has not been opened, the SEND is considered an
 error. Some implementations may allow users to SEND first; in
 which case, an automatic OPEN would be done. For example, this
 might be one way for application data to be included in SYN
 segments. If the calling process is not authorized to use this
 connection, an error is returned.

 A TCP endpoint MAY implement PUSH flags on SEND calls (MAY-15).
 If PUSH flags are not implemented, then the sending TCP peer:
 (1) MUST NOT buffer data indefinitely (MUST-60), and (2) MUST
 set the PSH bit in the last buffered segment (i.e., when there
 is no more queued data to be sent) (MUST-61). The remaining
 description below assumes the PUSH flag is supported on SEND
 calls.

 If the PUSH flag is set, the application intends the data to be
 transmitted promptly to the receiver, and the PUSH bit will be
 set in the last TCP segment created from the buffer. When an
 application issues a series of SEND calls without setting the
 PUSH flag, the TCP implementation MAY aggregate the data
 internally without sending it (MAY-16).

 The PSH bit is not a record marker and is independent of
 segment boundaries. The transmitter SHOULD collapse successive
 bits when it packetizes data, to send the largest possible
 segment (SHLD-27).

 If the PUSH flag is not set, the data may be combined with data
 from subsequent SENDs for transmission efficiency. Note that
 when the Nagle algorithm is in use, TCP implementations may
 buffer the data before sending, without regard to the PUSH flag
 (see Section 3.7.4).

 An application program is logically required to set the PUSH
 flag in a SEND call whenever it needs to force delivery of the
 data to avoid a communication deadlock. However, a TCP
 implementation SHOULD send a maximum-sized segment whenever
 possible (SHLD-28), to improve performance (see

Section 3.8.6.2.1).

 New applications SHOULD NOT set the URGENT flag [38] due to
 implementation differences and middlebox issues (SHLD-13).

Eddy Expires November 4, 2021 [Page 52]

Internet-Draft TCP Specification May 2021

 If the URGENT flag is set, segments sent to the destination TCP
 peer will have the urgent pointer set. The receiving TCP peer
 will signal the urgent condition to the receiving process if
 the urgent pointer indicates that data preceding the urgent
 pointer has not been consumed by the receiving process. The
 purpose of urgent is to stimulate the receiver to process the
 urgent data and to indicate to the receiver when all the
 currently known urgent data has been received. The number of
 times the sending user's TCP implementation signals urgent will
 not necessarily be equal to the number of times the receiving
 user will be notified of the presence of urgent data.

 If no remote socket was specified in the OPEN, but the
 connection is established (e.g., because a LISTENing connection
 has become specific due to a remote segment arriving for the
 local socket), then the designated buffer is sent to the
 implied remote socket. Users who make use of OPEN with an
 unspecified remote socket can make use of SEND without ever
 explicitly knowing the remote socket address.

 However, if a SEND is attempted before the remote socket
 becomes specified, an error will be returned. Users can use
 the STATUS call to determine the status of the connection.
 Some TCP implementations may notify the user when an
 unspecified socket is bound.

 If a timeout is specified, the current user timeout for this
 connection is changed to the new one.

 In the simplest implementation, SEND would not return control
 to the sending process until either the transmission was
 complete or the timeout had been exceeded. However, this
 simple method is both subject to deadlocks (for example, both
 sides of the connection might try to do SENDs before doing any
 RECEIVEs) and offers poor performance, so it is not
 recommended. A more sophisticated implementation would return
 immediately to allow the process to run concurrently with
 network I/O, and, furthermore, to allow multiple SENDs to be in
 progress. Multiple SENDs are served in first come, first
 served order, so the TCP endpoint will queue those it cannot
 service immediately.

 We have implicitly assumed an asynchronous user interface in
 which a SEND later elicits some kind of SIGNAL or pseudo-
 interrupt from the serving TCP endpoint. An alternative is to
 return a response immediately. For instance, SENDs might
 return immediate local acknowledgment, even if the segment sent
 had not been acknowledged by the distant TCP endpoint. We

Eddy Expires November 4, 2021 [Page 53]

Internet-Draft TCP Specification May 2021

 could optimistically assume eventual success. If we are wrong,
 the connection will close anyway due to the timeout. In
 implementations of this kind (synchronous), there will still be
 some asynchronous signals, but these will deal with the
 connection itself, and not with specific segments or buffers.

 In order for the process to distinguish among error or success
 indications for different SENDs, it might be appropriate for
 the buffer address to be returned along with the coded response
 to the SEND request. TCP-to-user signals are discussed below,
 indicating the information that should be returned to the
 calling process.

 Receive

 Format: RECEIVE (local connection name, buffer address, byte
 count) -> byte count, urgent flag, push flag (optional)

 This command allocates a receiving buffer associated with the
 specified connection. If no OPEN precedes this command or the
 calling process is not authorized to use this connection, an
 error is returned.

 In the simplest implementation, control would not return to the
 calling program until either the buffer was filled, or some
 error occurred, but this scheme is highly subject to deadlocks.
 A more sophisticated implementation would permit several
 RECEIVEs to be outstanding at once. These would be filled as
 segments arrive. This strategy permits increased throughput at
 the cost of a more elaborate scheme (possibly asynchronous) to
 notify the calling program that a PUSH has been seen or a
 buffer filled.

 A TCP receiver MAY pass a received PSH flag to the application
 layer via the PUSH flag in the interface (MAY-17), but it is
 not required (this was clarified in RFC 1122 section 4.2.2.2).
 The remainder of text describing the RECEIVE call below assumes
 that passing the PUSH indication is supported.

 If enough data arrive to fill the buffer before a PUSH is seen,
 the PUSH flag will not be set in the response to the RECEIVE.
 The buffer will be filled with as much data as it can hold. If
 a PUSH is seen before the buffer is filled the buffer will be
 returned partially filled and PUSH indicated.

 If there is urgent data the user will have been informed as
 soon as it arrived via a TCP-to-user signal. The receiving
 user should thus be in "urgent mode". If the URGENT flag is

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.2

Eddy Expires November 4, 2021 [Page 54]

Internet-Draft TCP Specification May 2021

 on, additional urgent data remains. If the URGENT flag is off,
 this call to RECEIVE has returned all the urgent data, and the
 user may now leave "urgent mode". Note that data following the
 urgent pointer (non-urgent data) cannot be delivered to the
 user in the same buffer with preceding urgent data unless the
 boundary is clearly marked for the user.

 To distinguish among several outstanding RECEIVEs and to take
 care of the case that a buffer is not completely filled, the
 return code is accompanied by both a buffer pointer and a byte
 count indicating the actual length of the data received.

 Alternative implementations of RECEIVE might have the TCP
 endpoint allocate buffer storage, or the TCP endpoint might
 share a ring buffer with the user.

 Close

 Format: CLOSE (local connection name)

 This command causes the connection specified to be closed. If
 the connection is not open or the calling process is not
 authorized to use this connection, an error is returned.
 Closing connections is intended to be a graceful operation in
 the sense that outstanding SENDs will be transmitted (and
 retransmitted), as flow control permits, until all have been
 serviced. Thus, it should be acceptable to make several SEND
 calls, followed by a CLOSE, and expect all the data to be sent
 to the destination. It should also be clear that users should
 continue to RECEIVE on CLOSING connections, since the remote
 peer may be trying to transmit the last of its data. Thus,
 CLOSE means "I have no more to send" but does not mean "I will
 not receive any more." It may happen (if the user level
 protocol is not well thought out) that the closing side is
 unable to get rid of all its data before timing out. In this
 event, CLOSE turns into ABORT, and the closing TCP peer gives
 up.

 The user may CLOSE the connection at any time on their own
 initiative, or in response to various prompts from the TCP
 implementation (e.g., remote close executed, transmission
 timeout exceeded, destination inaccessible).

 Because closing a connection requires communication with the
 remote TCP peer, connections may remain in the closing state
 for a short time. Attempts to reopen the connection before the
 TCP peer replies to the CLOSE command will result in error
 responses.

Eddy Expires November 4, 2021 [Page 55]

Internet-Draft TCP Specification May 2021

 Close also implies push function.

 Status

 Format: STATUS (local connection name) -> status data

 This is an implementation dependent user command and could be
 excluded without adverse effect. Information returned would
 typically come from the TCB associated with the connection.

 This command returns a data block containing the following
 information:

 local socket,
 remote socket,
 local connection name,
 receive window,
 send window,
 connection state,
 number of buffers awaiting acknowledgment,
 number of buffers pending receipt,
 urgent state,
 DiffServ field value,
 security/compartment,
 and transmission timeout.

 Depending on the state of the connection, or on the
 implementation itself, some of this information may not be
 available or meaningful. If the calling process is not
 authorized to use this connection, an error is returned. This
 prevents unauthorized processes from gaining information about
 a connection.

 Abort

 Format: ABORT (local connection name)

 This command causes all pending SENDs and RECEIVES to be
 aborted, the TCB to be removed, and a special RESET message to
 be sent to the remote TCP peer of the connection. Depending on
 the implementation, users may receive abort indications for
 each outstanding SEND or RECEIVE, or may simply receive an
 ABORT-acknowledgment.

 Flush

 Some TCP implementations have included a FLUSH call, which will
 empty the TCP send queue of any data that the user has issued

Eddy Expires November 4, 2021 [Page 56]

Internet-Draft TCP Specification May 2021

 SEND calls but is still to the right of the current send
 window. That is, it flushes as much queued send data as
 possible without losing sequence number synchronization. The
 FLUSH call MAY be implemented (MAY-14).

 Asynchronous Reports

 There MUST be a mechanism for reporting soft TCP error
 conditions to the application (MUST-47). Generically, we
 assume this takes the form of an application-supplied
 ERROR_REPORT routine that may be upcalled asynchronously from
 the transport layer:

 ERROR_REPORT(local connection name, reason, subreason)

 The precise encoding of the reason and subreason parameters is
 not specified here. However, the conditions that are reported
 asynchronously to the application MUST include:

 * ICMP error message arrived (see Section 3.9.2.2 for
 description of handling each ICMP message type, since some
 message types need to be suppressed from generating reports
 to the application)

 * Excessive retransmissions (see Section 3.8.3)

 * Urgent pointer advance (see Section 3.8.5)

 However, an application program that does not want to receive
 such ERROR_REPORT calls SHOULD be able to effectively disable
 these calls (SHLD-20).

 Set Differentiated Services Field (IPv4 TOS or IPv6 Traffic Class)

 The application layer MUST be able to specify the
 Differentiated Services field for segments that are sent on a
 connection (MUST-48). The Differentiated Services field
 includes the 6-bit Differentiated Services Code Point (DSCP)
 value. It is not required, but the application SHOULD be able
 to change the Differentiated Services field during the
 connection lifetime (SHLD-21). TCP implementations SHOULD pass
 the current Differentiated Services field value without change
 to the IP layer, when it sends segments on the connection
 (SHLD-22).

 The Differentiated Services field will be specified
 independently in each direction on the connection, so that the

Eddy Expires November 4, 2021 [Page 57]

Internet-Draft TCP Specification May 2021

 receiver application will specify the Differentiated Services
 field used for ACK segments.

 TCP implementations MAY pass the most recently received
 Differentiated Services field up to the application (MAY-9).

3.9.2. TCP/Lower-Level Interface

 The TCP endpoint calls on a lower level protocol module to actually
 send and receive information over a network. The two current
 standard Internet Protocol (IP) versions layered below TCP are IPv4
 [1] and IPv6 [14].

 If the lower level protocol is IPv4 it provides arguments for a type
 of service (used within the Differentiated Services field) and for a
 time to live. TCP uses the following settings for these parameters:

 DiffServ field: The IP header value for the DiffServ field is
 given by the user. This includes the bits of the DiffServ Code
 Point (DSCP).

 Time to Live (TTL): The TTL value used to send TCP segments MUST
 be configurable (MUST-49).

 Note that RFC 793 specified one minute (60 seconds) as a
 constant for the TTL, because the assumed maximum segment
 lifetime was two minutes. This was intended to explicitly ask
 that a segment be destroyed if it cannot be delivered by the
 internet system within one minute. RFC 1122 changed this
 specification to require that the TTL be configurable.

 Note that the DiffServ field is permitted to change during a
 connection (Section 4.2.4.2 of RFC 1122). However, the
 application interface might not support this ability, and the
 application does not have knowledge about individual TCP
 segments, so this can only be done on a coarse granularity, at
 best. This limitation is further discussed in RFC 7657 (sec
 5.1, 5.3, and 6) [49]. Generally, an application SHOULD NOT
 change the DiffServ field value during the course of a
 connection (SHLD-23).

 Any lower level protocol will have to provide the source address,
 destination address, and protocol fields, and some way to determine
 the "TCP length", both to provide the functional equivalent service
 of IP and to be used in the TCP checksum.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.2
https://datatracker.ietf.org/doc/html/rfc7657

Eddy Expires November 4, 2021 [Page 58]

Internet-Draft TCP Specification May 2021

 When received options are passed up to TCP from the IP layer, TCP
 implementations MUST ignore options that it does not understand
 (MUST-50).

 A TCP implementation MAY support the Time Stamp (MAY-10) and Record
 Route (MAY-11) options.

3.9.2.1. Source Routing

 If the lower level is IP (or other protocol that provides this
 feature) and source routing is used, the interface must allow the
 route information to be communicated. This is especially important
 so that the source and destination addresses used in the TCP checksum
 be the originating source and ultimate destination. It is also
 important to preserve the return route to answer connection requests.

 An application MUST be able to specify a source route when it
 actively opens a TCP connection (MUST-51), and this MUST take
 precedence over a source route received in a datagram (MUST-52).

 When a TCP connection is OPENed passively and a packet arrives with a
 completed IP Source Route option (containing a return route), TCP
 implementations MUST save the return route and use it for all
 segments sent on this connection (MUST-53). If a different source
 route arrives in a later segment, the later definition SHOULD
 override the earlier one (SHLD-24).

3.9.2.2. ICMP Messages

 TCP implementations MUST act on an ICMP error message passed up from
 the IP layer, directing it to the connection that created the error
 (MUST-54). The necessary demultiplexing information can be found in
 the IP header contained within the ICMP message.

 This applies to ICMPv6 in addition to IPv4 ICMP.

 [32] contains discussion of specific ICMP and ICMPv6 messages
 classified as either "soft" or "hard" errors that may bear different
 responses. Treatment for classes of ICMP messages is described
 below:

 Source Quench
 TCP implementations MUST silently discard any received ICMP Source
 Quench messages (MUST-55). See [12] for discussion.

 Soft Errors
 For ICMP these include: Destination Unreachable -- codes 0, 1, 5,
 Time Exceeded -- codes 0, 1, and Parameter Problem.

Eddy Expires November 4, 2021 [Page 59]

Internet-Draft TCP Specification May 2021

 For ICMPv6 these include: Destination Unreachable -- codes 0 and 3,
 Time Exceeded -- codes 0, 1, and Parameter Problem -- codes 0, 1, 2
 Since these Unreachable messages indicate soft error conditions,
 TCP implementations MUST NOT abort the connection (MUST-56), and it
 SHOULD make the information available to the application (SHLD-25).

 Hard Errors
 For ICMP these include Destination Unreachable -- codes 2-4">
 These are hard error conditions, so TCP implementations SHOULD
 abort the connection (SHLD-26). [32] notes that some
 implementations do not abort connections when an ICMP hard error is
 received for a connection that is in any of the synchronized
 states.

 Note that [32] section 4 describes widespread implementation behavior
 that treats soft errors as hard errors during connection
 establishment.

3.9.2.3. Source Address Validation

RFC 1122 requires addresses to be validated in incoming SYN packets:

 An incoming SYN with an invalid source address MUST be ignored
 either by TCP or by the IP layer (MUST-63) (Section 3.2.1.3 of
 [18]).

 A TCP implementation MUST silently discard an incoming SYN segment
 that is addressed to a broadcast or multicast address (MUST-57).

 This prevents connection state and replies from being erroneously
 generated, and implementers should note that this guidance is
 applicable to all incoming segments, not just SYNs, as specifically
 indicated in RFC 1122.

3.10. Event Processing

 The processing depicted in this section is an example of one possible
 implementation. Other implementations may have slightly different
 processing sequences, but they should differ from those in this
 section only in detail, not in substance.

 The activity of the TCP endpoint can be characterized as responding
 to events. The events that occur can be cast into three categories:
 user calls, arriving segments, and timeouts. This section describes
 the processing the TCP endpoint does in response to each of the
 events. In many cases the processing required depends on the state
 of the connection.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires November 4, 2021 [Page 60]

Internet-Draft TCP Specification May 2021

 Events that occur:

 User Calls

 OPEN
 SEND
 RECEIVE
 CLOSE
 ABORT
 STATUS

 Arriving Segments

 SEGMENT ARRIVES

 Timeouts

 USER TIMEOUT
 RETRANSMISSION TIMEOUT
 TIME-WAIT TIMEOUT

 The model of the TCP/user interface is that user commands receive an
 immediate return and possibly a delayed response via an event or
 pseudo interrupt. In the following descriptions, the term "signal"
 means cause a delayed response.

 Error responses in this document are identified by character strings.
 For example, user commands referencing connections that do not exist
 receive "error: connection not open".

 Please note in the following that all arithmetic on sequence numbers,
 acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
 of the sequence number space. Also note that "=<" means less than or
 equal to (modulo 2**32).

 A natural way to think about processing incoming segments is to
 imagine that they are first tested for proper sequence number (i.e.,
 that their contents lie in the range of the expected "receive window"
 in the sequence number space) and then that they are generally queued
 and processed in sequence number order.

 When a segment overlaps other already received segments we
 reconstruct the segment to contain just the new data, and adjust the
 header fields to be consistent.

 Note that if no state change is mentioned the TCP connection stays in
 the same state.

Eddy Expires November 4, 2021 [Page 61]

Internet-Draft TCP Specification May 2021

 OPEN Call

 CLOSED STATE (i.e., TCB does not exist)

 Create a new transmission control block (TCB) to hold
 connection state information. Fill in local socket identifier,
 remote socket, DiffServ field, security/compartment, and user
 timeout information. Note that some parts of the remote socket
 may be unspecified in a passive OPEN and are to be filled in by
 the parameters of the incoming SYN segment. Verify the
 security and DiffServ value requested are allowed for this
 user, if not return "error: precedence not allowed" or "error:
 security/compartment not allowed." If passive enter the LISTEN
 state and return. If active and the remote socket is
 unspecified, return "error: remote socket unspecified"; if
 active and the remote socket is specified, issue a SYN segment.
 An initial send sequence number (ISS) is selected. A SYN
 segment of the form <SEQ=ISS><CTL=SYN> is sent. Set SND.UNA to
 ISS, SND.NXT to ISS+1, enter SYN-SENT state, and return.

 If the caller does not have access to the local socket
 specified, return "error: connection illegal for this process".
 If there is no room to create a new connection, return "error:
 insufficient resources".

 LISTEN STATE

 If active and the remote socket is specified, then change the
 connection from passive to active, select an ISS. Send a SYN
 segment, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
 state. Data associated with SEND may be sent with SYN segment
 or queued for transmission after entering ESTABLISHED state.
 The urgent bit if requested in the command must be sent with
 the data segments sent as a result of this command. If there
 is no room to queue the request, respond with "error:
 insufficient resources". If Foreign socket was not specified,
 then return "error: remote socket unspecified".

Eddy Expires November 4, 2021 [Page 62]

Internet-Draft TCP Specification May 2021

 SYN-SENT STATE
 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection already exists".

Eddy Expires November 4, 2021 [Page 63]

Internet-Draft TCP Specification May 2021

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, then
 return "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 If the remote socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment, set
 SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
 associated with SEND may be sent with SYN segment or queued for
 transmission after entering ESTABLISHED state. The urgent bit
 if requested in the command must be sent with the data segments
 sent as a result of this command. If there is no room to queue
 the request, respond with "error: insufficient resources". If
 Foreign socket was not specified, then return "error: remote
 socket unspecified".

 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue the data for transmission after entering ESTABLISHED
 state. If no space to queue, respond with "error: insufficient
 resources".

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). If there is
 insufficient space to remember this buffer, simply return
 "error: insufficient resources".

 If the urgent flag is set, then SND.UP <- SND.NXT and set the
 urgent pointer in the outgoing segments.

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection closing" and do not service request.

Eddy Expires November 4, 2021 [Page 64]

Internet-Draft TCP Specification May 2021

 RECEIVE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE
 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue for processing after entering ESTABLISHED state. If
 there is no room to queue this request, respond with "error:
 insufficient resources".

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If insufficient incoming segments are queued to satisfy the
 request, queue the request. If there is no queue space to
 remember the RECEIVE, respond with "error: insufficient
 resources".

 Reassemble queued incoming segments into receive buffer and
 return to user. Mark "push seen" (PUSH) if this is the case.

 If RCV.UP is in advance of the data currently being passed to
 the user notify the user of the presence of urgent data.

 When the TCP endpoint takes responsibility for delivering data
 to the user that fact must be communicated to the sender via an
 acknowledgment. The formation of such an acknowledgment is
 described below in the discussion of processing an incoming
 segment.

 CLOSE-WAIT STATE

 Since the remote side has already sent FIN, RECEIVEs must be
 satisfied by text already on hand, but not yet delivered to the
 user. If no text is awaiting delivery, the RECEIVE will get a
 "error: connection closing" response. Otherwise, any remaining
 text can be used to satisfy the RECEIVE.

 CLOSING STATE
 LAST-ACK STATE

Eddy Expires November 4, 2021 [Page 65]

Internet-Draft TCP Specification May 2021

 TIME-WAIT STATE

 Return "error: connection closing".

Eddy Expires November 4, 2021 [Page 66]

Internet-Draft TCP Specification May 2021

 CLOSE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs are returned with "error: closing"
 responses. Delete TCB, enter CLOSED state, and return.

 SYN-SENT STATE

 Delete the TCB and return "error: closing" responses to any
 queued SENDs, or RECEIVEs.

 SYN-RECEIVED STATE

 If no SENDs have been issued and there is no pending data to
 send, then form a FIN segment and send it, and enter FIN-WAIT-1
 state; otherwise queue for processing after entering
 ESTABLISHED state.

 ESTABLISHED STATE

 Queue this until all preceding SENDs have been segmentized,
 then form a FIN segment and send it. In any case, enter FIN-
 WAIT-1 state.

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Strictly speaking, this is an error and should receive a
 "error: connection closing" response. An "ok" response would
 be acceptable, too, as long as a second FIN is not emitted (the
 first FIN may be retransmitted though).

 CLOSE-WAIT STATE

 Queue this request until all preceding SENDs have been
 segmentized; then send a FIN segment, enter LAST-ACK state.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

Eddy Expires November 4, 2021 [Page 67]

Internet-Draft TCP Specification May 2021

 Respond with "error: connection closing".

Eddy Expires November 4, 2021 [Page 68]

Internet-Draft TCP Specification May 2021

 ABORT Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs should be returned with "error:
 connection reset" responses. Delete TCB, enter CLOSED state,
 and return.

 SYN-SENT STATE

 All queued SENDs and RECEIVEs should be given "connection
 reset" notification, delete the TCB, enter CLOSED state, and
 return.

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE

 Send a reset segment:

 <SEQ=SND.NXT><CTL=RST>

 All queued SENDs and RECEIVEs should be given "connection
 reset" notification; all segments queued for transmission
 (except for the RST formed above) or retransmission should be
 flushed, delete the TCB, enter CLOSED state, and return.

 CLOSING STATE LAST-ACK STATE TIME-WAIT STATE

 Respond with "ok" and delete the TCB, enter CLOSED state, and
 return.

Eddy Expires November 4, 2021 [Page 69]

Internet-Draft TCP Specification May 2021

 STATUS Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Return "state = LISTEN", and the TCB pointer.

 SYN-SENT STATE

 Return "state = SYN-SENT", and the TCB pointer.

 SYN-RECEIVED STATE

 Return "state = SYN-RECEIVED", and the TCB pointer.

 ESTABLISHED STATE

 Return "state = ESTABLISHED", and the TCB pointer.

 FIN-WAIT-1 STATE

 Return "state = FIN-WAIT-1", and the TCB pointer.

 FIN-WAIT-2 STATE

 Return "state = FIN-WAIT-2", and the TCB pointer.

 CLOSE-WAIT STATE

 Return "state = CLOSE-WAIT", and the TCB pointer.

 CLOSING STATE

 Return "state = CLOSING", and the TCB pointer.

 LAST-ACK STATE

 Return "state = LAST-ACK", and the TCB pointer.

 TIME-WAIT STATE

 Return "state = TIME-WAIT", and the TCB pointer.

Eddy Expires November 4, 2021 [Page 70]

Internet-Draft TCP Specification May 2021

 SEGMENT ARRIVES

 If the state is CLOSED (i.e., TCB does not exist) then

 all data in the incoming segment is discarded. An incoming
 segment containing a RST is discarded. An incoming segment not
 containing a RST causes a RST to be sent in response. The
 acknowledgment and sequence field values are selected to make
 the reset sequence acceptable to the TCP endpoint that sent the
 offending segment.

 If the ACK bit is off, sequence number zero is used,

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the ACK bit is on,

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 If the state is LISTEN then

 first check for an RST

 An incoming RST should be ignored. Return.

 second check for an ACK

 Any acknowledgment is bad if it arrives on a connection
 still in the LISTEN state. An acceptable reset segment
 should be formed for any arriving ACK-bearing segment. The
 RST should be formatted as follows:

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 third check for a SYN

 If the SYN bit is set, check the security. If the security/
 compartment on the incoming segment does not exactly match
 the security/compartment in the TCB then send a reset and
 return.

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

Eddy Expires November 4, 2021 [Page 71]

Internet-Draft TCP Specification May 2021

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any
 other control or text should be queued for processing later.
 ISS should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any
 other incoming control or data (combined with SYN) will be
 processed in the SYN-RECEIVED state, but processing of SYN
 and ACK should not be repeated. If the listen was not fully
 specified (i.e., the remote socket was not fully specified),
 then the unspecified fields should be filled in now.

 fourth other text or control

 Any other control or text-bearing segment (not containing
 SYN) must have an ACK and thus would be discarded by the ACK
 processing. An incoming RST segment could not be valid,
 since it could not have been sent in response to anything
 sent by this incarnation of the connection. So, if this
 unlikely condition is reached, the correct behavior is to
 drop the segment and return.

 If the state is SYN-SENT then

 first check the ACK bit

 If the ACK bit is set

 If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset
 (unless the RST bit is set, if so drop the segment and
 return)

 <SEQ=SEG.ACK><CTL=RST>

 and discard the segment. Return.

 If SND.UNA < SEG.ACK =< SND.NXT then the ACK is
 acceptable. Some deployed TCP code has used the check
 SEG.ACK == SND.NXT (using "==" rather than "=<", but this
 is not appropriate when the stack is capable of sending
 data on the SYN, because the TCP peer may not accept and
 acknowledge all of the data on the SYN.

 second check the RST bit

 If the RST bit is set

Eddy Expires November 4, 2021 [Page 72]

Internet-Draft TCP Specification May 2021

 A potential blind reset attack is described in RFC 5961
 [37]. The mitigation described in that document has
 specific applicability explained therein, and is not a
 substitute for cryptographic protection (e.g. IPsec or
 TCP-AO). A TCP implementation that supports the RFC 5961
 mitigation SHOULD first check that the sequence number
 exactly matches RCV.NXT prior to executing the action in
 the next paragraph.

 If the ACK was acceptable then signal the user "error:
 connection reset", drop the segment, enter CLOSED state,
 delete TCB, and return. Otherwise (no ACK) drop the
 segment and return.

 third check the security

 If the security/compartment in the segment does not exactly
 match the security/compartment in the TCB, send a reset

 If there is an ACK

 <SEQ=SEG.ACK><CTL=RST>

 Otherwise

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If a reset was sent, discard the segment and return.

 fourth check the SYN bit

 This step should be reached only if the ACK is ok, or there
 is no ACK, and it the segment did not contain a RST.

 If the SYN bit is on and the security/compartment is
 acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
 SEG.SEQ. SND.UNA should be advanced to equal SEG.ACK (if
 there is an ACK), and any segments on the retransmission
 queue that are thereby acknowledged should be removed.

 If SND.UNA > ISS (our SYN has been ACKed), change the
 connection state to ESTABLISHED, form an ACK segment

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. Data or controls that were queued for
 transmission MAY be included. Some TCP implementations
 suppress sending this segment when the received segment

https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961

Eddy Expires November 4, 2021 [Page 73]

Internet-Draft TCP Specification May 2021

 contains data that will anyways generate an acknowledgement
 in the later processing steps, saving this extra
 acknowledgement of the SYN from being sent. If there are
 other controls or text in the segment then continue
 processing at the sixth step below where the URG bit is
 checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. Set the variables:

 SND.WND <- SEG.WND
 SND.WL1 <- SEG.SEQ
 SND.WL2 <- SEG.ACK

 If there are other controls or text in the segment, queue
 them for processing after the ESTABLISHED state has been
 reached, return.

 Note that it is legal to send and receive application data
 on SYN segments (this is the "text in the segment" mentioned
 above. There has been significant misinformation and
 misunderstanding of this topic historically. Some firewalls
 and security devices consider this suspicious. However, the
 capability was used in T/TCP [20] and is used in TCP Fast
 Open (TFO) [47], so is important for implementations and
 network devices to permit.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

 Otherwise,

 first check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on
 arrival are used to discard old duplicates, but further

Eddy Expires November 4, 2021 [Page 74]

Internet-Draft TCP Specification May 2021

 processing is done in SEG.SEQ order. If a segment's
 contents straddle the boundary between old and new, only the
 new parts should be processed.

 In general, the processing of received segments MUST be
 implemented to aggregate ACK segments whenever possible
 (MUST-58). For example, if the TCP endpoint is processing a
 series of queued segments, it MUST process them all before
 sending any ACK segments (MUST-59).

 There are four cases for the acceptability test for an
 incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 In implementing sequence number validation as described
 here, please note Appendix A.2.

 If the RCV.WND is zero, no segments will be acceptable, but
 special allowance should be made to accept valid ACKs, URGs
 and RSTs.

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so
 drop the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable
 segment and return.

 Note that for the TIME-WAIT state, there is an improved
 algorithm described in [39] for handling incoming SYN
 segments, that utilizes timestamps rather than relying on
 the sequence number check described here. When the improved

Eddy Expires November 4, 2021 [Page 75]

Internet-Draft TCP Specification May 2021

 algorithm is implemented, the logic above is not applicable
 for incoming SYN segments with timestamp options, received
 on a connection in the TIME-WAIT state.

 In the following it is assumed that the segment is the
 idealized segment that begins at RCV.NXT and does not exceed
 the window. One could tailor actual segments to fit this
 assumption by trimming off any portions that lie outside the
 window (including SYN and FIN), and only processing further
 if the segment then begins at RCV.NXT. Segments with higher
 beginning sequence numbers SHOULD be held for later
 processing (SHLD-31).

 second check the RST bit,

RFC 5961 [37] section 3 describes a potential blind reset
 attack and optional mitigation approach. This does not
 provide a cryptographic protection (e.g. as in IPsec or TCP-
 AO), but can be applicable in situations described in RFC

5961. For stacks implementing the RFC 5961 protection, the
 three checks below apply, otherwise processing for these
 states is indicated further below.

 1) If the RST bit is set and the sequence number is
 outside the current receive window, silently drop the
 segment.

 2) If the RST bit is set and the sequence number exactly
 matches the next expected sequence number (RCV.NXT), then
 TCP endpoints MUST reset the connection in the manner
 prescribed below according to the connection state.

 3) If the RST bit is set and the sequence number does not
 exactly match the next expected sequence value, yet is
 within the current receive window, TCP endpoints MUST
 send an acknowledgement (challenge ACK):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the challenge ACK, TCP endpoints MUST drop
 the unacceptable segment and stop processing the incoming
 packet further. Note that RFC 5961 and Errata ID 4772
 contain additional considerations for ACK throttling in
 an implementation.

 SYN-RECEIVED STATE

 If the RST bit is set

https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961

Eddy Expires November 4, 2021 [Page 76]

Internet-Draft TCP Specification May 2021

 If this connection was initiated with a passive OPEN
 (i.e., came from the LISTEN state), then return this
 connection to LISTEN state and return. The user need
 not be informed. If this connection was initiated
 with an active OPEN (i.e., came from SYN-SENT state)
 then the connection was refused, signal the user
 "connection refused". In either case, all segments on
 the retransmission queue should be removed. And in
 the active OPEN case, enter the CLOSED state and
 delete the TCB, and return.

 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 CLOSE-WAIT

 If the RST bit is set then, any outstanding RECEIVEs and
 SEND should receive "reset" responses. All segment
 queues should be flushed. Users should also receive an
 unsolicited general "connection reset" signal. Enter the
 CLOSED state, delete the TCB, and return.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 If the RST bit is set then, enter the CLOSED state,
 delete the TCB, and return.

 third check security

 SYN-RECEIVED

 If the security/compartment in the segment does not
 exactly match the security/compartment in the TCB then
 send a reset, and return.

 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 CLOSE-WAIT
 CLOSING
 LAST-ACK
 TIME-WAIT

 If the security/compartment in the segment does not
 exactly match the security/compartment in the TCB then

Eddy Expires November 4, 2021 [Page 77]

Internet-Draft TCP Specification May 2021

 send a reset, any outstanding RECEIVEs and SEND should
 receive "reset" responses. All segment queues should be
 flushed. Users should also receive an unsolicited
 general "connection reset" signal. Enter the CLOSED
 state, delete the TCB, and return.

 Note this check is placed following the sequence check to
 prevent a segment from an old connection between these port
 numbers with a different security from causing an abort of
 the current connection.

 fourth, check the SYN bit,

 SYN-RECEIVED

 If the connection was initiated with a passive OPEN, then
 return this connection to the LISTEN state and return.
 Otherwise, handle per the directions for synchronized
 states below.

 ESTABLISHED STATE
 FIN-WAIT STATE-1
 FIN-WAIT STATE-2
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 If the SYN bit is set in these synchronized states, it
 may be either a legitimate new connection attempt (e.g.
 in the case of TIME-WAIT), an error where the connection
 should be reset, or the result of an attack attempt, as
 described in RFC 5961 [37]. For the TIME-WAIT state, new
 connections can be accepted if the timestamp option is
 used and meets expectations (per [39]). For all other
 cases, RFC 5961 provides a mitigation with applicability
 to some situations, though there are also alternatives
 that offer cryptographic protection (see Section 6). RFC

5961 recommends that in these synchronized states, if the
 SYN bit is set, irrespective of the sequence number, TCP
 endpoints MUST send a "challenge ACK" to the remote peer:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgement, TCP implementations
 MUST drop the unacceptable segment and stop processing

https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961

Eddy Expires November 4, 2021 [Page 78]

Internet-Draft TCP Specification May 2021

 further. Note that RFC 5961 and Errata ID 4772 contain
 additional ACK throttling notes for an implementation.

 For implementations that do not follow RFC 5961, the
 original RFC 793 behavior follows in this paragraph. If
 the SYN is in the window it is an error, send a reset,
 any outstanding RECEIVEs and SEND should receive "reset"
 responses, all segment queues should be flushed, the user
 should also receive an unsolicited general "connection
 reset" signal, enter the CLOSED state, delete the TCB,
 and return.

 If the SYN is not in the window this step would not be
 reached and an ACK would have been sent in the first step
 (sequence number check).

 fifth check the ACK field,

 if the ACK bit is off drop the segment and return

 if the ACK bit is on

RFC 5961 [37] section 5 describes a potential blind data
 injection attack, and mitigation that implementations MAY
 choose to include (MAY-12). TCP stacks that implement

RFC 5961 MUST add an input check that the ACK value is
 acceptable only if it is in the range of ((SND.UNA -
 MAX.SND.WND) =< SEG.ACK =< SND.NXT). All incoming
 segments whose ACK value doesn't satisfy the above
 condition MUST be discarded and an ACK sent back. The
 new state variable MAX.SND.WND is defined as the largest
 window that the local sender has ever received from its
 peer (subject to window scaling) or may be hard-coded to
 a maximum permissible window value. When the ACK value
 is acceptable, the processing per-state below applies:

 SYN-RECEIVED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then enter ESTABLISHED
 state and continue processing with variables below set
 to:

 SND.WND <- SEG.WND
 SND.WL1 <- SEG.SEQ
 SND.WL2 <- SEG.ACK

 If the segment acknowledgment is not acceptable,
 form a reset segment,

https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc5961

Eddy Expires November 4, 2021 [Page 79]

Internet-Draft TCP Specification May 2021

 <SEQ=SEG.ACK><CTL=RST>

 and send it.

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <-
 SEG.ACK. Any segments on the retransmission queue
 that are thereby entirely acknowledged are removed.
 Users should receive positive acknowledgments for
 buffers that have been SENT and fully acknowledged
 (i.e., SEND buffer should be returned with "ok"
 response). If the ACK is a duplicate (SEG.ACK =<
 SND.UNA), it can be ignored. If the ACK acks
 something not yet sent (SEG.ACK > SND.NXT) then send
 an ACK, drop the segment, and return.

 If SND.UNA =< SEG.ACK =< SND.NXT, the send window
 should be updated. If (SND.WL1 < SEG.SEQ or (SND.WL1
 = SEG.SEQ and SND.WL2 =< SEG.ACK)), set SND.WND <-
 SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <-
 SEG.ACK.

 Note that SND.WND is an offset from SND.UNA, that
 SND.WL1 records the sequence number of the last
 segment used to update SND.WND, and that SND.WL2
 records the acknowledgment number of the last segment
 used to update SND.WND. The check here prevents using
 old segments to update the window.

 FIN-WAIT-1 STATE

 In addition to the processing for the ESTABLISHED
 state, if the FIN segment is now acknowledged then
 enter FIN-WAIT-2 and continue processing in that
 state.

 FIN-WAIT-2 STATE

 In addition to the processing for the ESTABLISHED
 state, if the retransmission queue is empty, the
 user's CLOSE can be acknowledged ("ok") but do not
 delete the TCB.

 CLOSE-WAIT STATE

 Do the same processing as for the ESTABLISHED state.

Eddy Expires November 4, 2021 [Page 80]

Internet-Draft TCP Specification May 2021

 CLOSING STATE

 In addition to the processing for the ESTABLISHED
 state, if the ACK acknowledges our FIN then enter the
 TIME-WAIT state, otherwise ignore the segment.

 LAST-ACK STATE

 The only thing that can arrive in this state is an
 acknowledgment of our FIN. If our FIN is now
 acknowledged, delete the TCB, enter the CLOSED state,
 and return.

 TIME-WAIT STATE

 The only thing that can arrive in this state is a
 retransmission of the remote FIN. Acknowledge it, and
 restart the 2 MSL timeout.

 sixth, check the URG bit,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and
 signal the user that the remote side has urgent data if
 the urgent pointer (RCV.UP) is in advance of the data
 consumed. If the user has already been signaled (or is
 still in the "urgent mode") for this continuous sequence
 of urgent data, do not signal the user again.

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 This should not occur, since a FIN has been received from
 the remote side. Ignore the URG.

 seventh, process the segment text,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Once in the ESTABLISHED state, it is possible to deliver
 segment text to user RECEIVE buffers. Text from segments

Eddy Expires November 4, 2021 [Page 81]

Internet-Draft TCP Specification May 2021

 can be moved into buffers until either the buffer is full
 or the segment is empty. If the segment empties and
 carries a PUSH flag, then the user is informed, when the
 buffer is returned, that a PUSH has been received.

 When the TCP endpoint takes responsibility for delivering
 the data to the user it must also acknowledge the receipt
 of the data.

 Once the TCP endpoint takes responsibility for the data
 it advances RCV.NXT over the data accepted, and adjusts
 RCV.WND as appropriate to the current buffer
 availability. The total of RCV.NXT and RCV.WND should
 not be reduced.

 A TCP implementation MAY send an ACK segment
 acknowledging RCV.NXT when a valid segment arrives that
 is in the window but not at the left window edge (MAY-
 13).

 Please note the window management suggestions in
Section 3.8.

 Send an acknowledgment of the form:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 This acknowledgment should be piggybacked on a segment
 being transmitted if possible without incurring undue
 delay.

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 This should not occur, since a FIN has been received from
 the remote side. Ignore the segment text.

 eighth, check the FIN bit,

 Do not process the FIN if the state is CLOSED, LISTEN or
 SYN-SENT since the SEG.SEQ cannot be validated; drop the
 segment and return.

 If the FIN bit is set, signal the user "connection closing"
 and return any pending RECEIVEs with same message, advance
 RCV.NXT over the FIN, and send an acknowledgment for the

Eddy Expires November 4, 2021 [Page 82]

Internet-Draft TCP Specification May 2021

 FIN. Note that FIN implies PUSH for any segment text not
 yet delivered to the user.

 SYN-RECEIVED STATE
 ESTABLISHED STATE

 Enter the CLOSE-WAIT state.

 FIN-WAIT-1 STATE

 If our FIN has been ACKed (perhaps in this segment),
 then enter TIME-WAIT, start the time-wait timer, turn
 off the other timers; otherwise enter the CLOSING
 state.

 FIN-WAIT-2 STATE

 Enter the TIME-WAIT state. Start the time-wait timer,
 turn off the other timers.

 CLOSE-WAIT STATE

 Remain in the CLOSE-WAIT state.

 CLOSING STATE

 Remain in the CLOSING state.

 LAST-ACK STATE

 Remain in the LAST-ACK state.

 TIME-WAIT STATE

 Remain in the TIME-WAIT state. Restart the 2 MSL
 time-wait timeout.

 and return.

Eddy Expires November 4, 2021 [Page 83]

Internet-Draft TCP Specification May 2021

 USER TIMEOUT

 USER TIMEOUT

 For any state if the user timeout expires, flush all queues,
 signal the user "error: connection aborted due to user timeout"
 in general and for any outstanding calls, delete the TCB, enter
 the CLOSED state and return.

 RETRANSMISSION TIMEOUT

 For any state if the retransmission timeout expires on a
 segment in the retransmission queue, send the segment at the
 front of the retransmission queue again, reinitialize the
 retransmission timer, and return.

 TIME-WAIT TIMEOUT

 If the time-wait timeout expires on a connection delete the
 TCB, enter the CLOSED state and return.

Eddy Expires November 4, 2021 [Page 84]

Internet-Draft TCP Specification May 2021

3.11. Glossary

 ACK
 A control bit (acknowledge) occupying no sequence space,
 which indicates that the acknowledgment field of this segment
 specifies the next sequence number the sender of this segment
 is expecting to receive, hence acknowledging receipt of all
 previous sequence numbers.

 connection
 A logical communication path identified by a pair of sockets.

 datagram
 A message sent in a packet switched computer communications
 network.

 Destination Address
 The network layer address of the remote endpoint.

 FIN
 A control bit (finis) occupying one sequence number, which
 indicates that the sender will send no more data or control
 occupying sequence space.

 fragment
 A portion of a logical unit of data, in particular an
 internet fragment is a portion of an internet datagram.

 header
 Control information at the beginning of a message, segment,
 fragment, packet or block of data.

 host
 A computer. In particular a source or destination of
 messages from the point of view of the communication network.

 Identification
 An Internet Protocol field. This identifying value assigned
 by the sender aids in assembling the fragments of a datagram.

 internet address
 A network layer address.

 internet datagram
 The unit of data exchanged between an internet module and the
 higher level protocol together with the internet header.

 internet fragment

Eddy Expires November 4, 2021 [Page 85]

Internet-Draft TCP Specification May 2021

 A portion of the data of an internet datagram with an
 internet header.

 IP
 Internet Protocol. See [1] and [14].

 IRS
 The Initial Receive Sequence number. The first sequence
 number used by the sender on a connection.

 ISN
 The Initial Sequence Number. The first sequence number used
 on a connection, (either ISS or IRS). Selected in a way that
 is unique within a given period of time and is unpredictable
 to attackers.

 ISS
 The Initial Send Sequence number. The first sequence number
 used by the sender on a connection.

 left sequence
 This is the next sequence number to be acknowledged by the
 data receiving TCP endpoint (or the lowest currently
 unacknowledged sequence number) and is sometimes referred to
 as the left edge of the send window.

 module
 An implementation, usually in software, of a protocol or
 other procedure.

 MSL
 Maximum Segment Lifetime, the time a TCP segment can exist in
 the internetwork system. Arbitrarily defined to be 2
 minutes.

 octet
 An eight bit byte.

 Options
 An Option field may contain several options, and each option
 may be several octets in length.

 packet
 A package of data with a header that may or may not be
 logically complete. More often a physical packaging than a
 logical packaging of data.

 port

Eddy Expires November 4, 2021 [Page 86]

Internet-Draft TCP Specification May 2021

 The portion of a connection identifier used for
 demultiplexing connections at an endpoint.

 process
 A program in execution. A source or destination of data from
 the point of view of the TCP endpoint or other host-to-host
 protocol.

 PUSH
 A control bit occupying no sequence space, indicating that
 this segment contains data that must be pushed through to the
 receiving user.

 RCV.NXT
 receive next sequence number

 RCV.UP
 receive urgent pointer

 RCV.WND
 receive window

 receive next sequence number
 This is the next sequence number the local TCP endpoint is
 expecting to receive.

 receive window
 This represents the sequence numbers the local (receiving)
 TCP endpoint is willing to receive. Thus, the local TCP
 endpoint considers that segments overlapping the range
 RCV.NXT to RCV.NXT + RCV.WND - 1 carry acceptable data or
 control. Segments containing sequence numbers entirely
 outside of this range are considered duplicates and
 discarded.

 RST
 A control bit (reset), occupying no sequence space,
 indicating that the receiver should delete the connection
 without further interaction. The receiver can determine,
 based on the sequence number and acknowledgment fields of the
 incoming segment, whether it should honor the reset command
 or ignore it. In no case does receipt of a segment
 containing RST give rise to a RST in response.

 SEG.ACK
 segment acknowledgment

 SEG.LEN

Eddy Expires November 4, 2021 [Page 87]

Internet-Draft TCP Specification May 2021

 segment length

 SEG.SEQ
 segment sequence

 SEG.UP
 segment urgent pointer field

 SEG.WND
 segment window field

 segment
 A logical unit of data, in particular a TCP segment is the
 unit of data transferred between a pair of TCP modules.

 segment acknowledgment
 The sequence number in the acknowledgment field of the
 arriving segment.

 segment length
 The amount of sequence number space occupied by a segment,
 including any controls that occupy sequence space.

 segment sequence
 The number in the sequence field of the arriving segment.

 send sequence
 This is the next sequence number the local (sending) TCP
 endpoint will use on the connection. It is initially
 selected from an initial sequence number curve (ISN) and is
 incremented for each octet of data or sequenced control
 transmitted.

 send window
 This represents the sequence numbers that the remote
 (receiving) TCP endpoint is willing to receive. It is the
 value of the window field specified in segments from the
 remote (data receiving) TCP endpoint. The range of new
 sequence numbers that may be emitted by a TCP implementation
 lies between SND.NXT and SND.UNA + SND.WND - 1.
 (Retransmissions of sequence numbers between SND.UNA and
 SND.NXT are expected, of course.)

 SND.NXT
 send sequence

 SND.UNA
 left sequence

Eddy Expires November 4, 2021 [Page 88]

Internet-Draft TCP Specification May 2021

 SND.UP
 send urgent pointer

 SND.WL1
 segment sequence number at last window update

 SND.WL2
 segment acknowledgment number at last window update

 SND.WND
 send window

 socket (or socket number, or socket address, or socket identifier)
 An address that specifically includes a port identifier, that
 is, the concatenation of an Internet Address with a TCP port.

 Source Address
 The network layer address of the sending endpoint.

 SYN
 A control bit in the incoming segment, occupying one sequence
 number, used at the initiation of a connection, to indicate
 where the sequence numbering will start.

 TCB
 Transmission control block, the data structure that records
 the state of a connection.

 TCP
 Transmission Control Protocol: A host-to-host protocol for
 reliable communication in internetwork environments.

 TOS
 Type of Service, an obsoleted IPv4 field. The same header
 bits currently are used for the Differentiated Services field
 [5] containing the Differentiated Services Code Point (DSCP)
 value and the 2-bit ECN codepoint [9].

 Type of Service
 An Internet Protocol field that indicates the type of service
 for this internet fragment.

 URG
 A control bit (urgent), occupying no sequence space, used to
 indicate that the receiving user should be notified to do
 urgent processing as long as there is data to be consumed
 with sequence numbers less than the value indicated in the
 urgent pointer.

Eddy Expires November 4, 2021 [Page 89]

Internet-Draft TCP Specification May 2021

 urgent pointer
 A control field meaningful only when the URG bit is on. This
 field communicates the value of the urgent pointer that
 indicates the data octet associated with the sending user's
 urgent call.

4. Changes from RFC 793

 This document obsoletes RFC 793 as well as RFC 6093 and 6528, which
 updated 793. In all cases, only the normative protocol specification
 and requirements have been incorporated into this document, and some
 informational text with background and rationale may not have been
 carried in. The informational content of those documents is still
 valuable in learning about and understanding TCP, and they are valid
 Informational references, even though their normative content has
 been incorporated into this document.

 The main body of this document was adapted from RFC 793's Section 3,
 titled "FUNCTIONAL SPECIFICATION", with an attempt to keep formatting
 and layout as close as possible.

 The collection of applicable RFC Errata that have been reported and
 either accepted or held for an update to RFC 793 were incorporated
 (Errata IDs: 573, 574, 700, 701, 1283, 1561, 1562, 1564, 1565, 1571,
 1572, 2296, 2297, 2298, 2748, 2749, 2934, 3213, 3300, 3301, 6222).
 Some errata were not applicable due to other changes (Errata IDs:
 572, 575, 1569, 3305, 3602).

 Changes to the specification of the Urgent Pointer described in RFC
1122 and 6093 were incorporated. See RFC 6093 for detailed

 discussion of why these changes were necessary.

 The discussion of the RTO from RFC 793 was updated to refer to RFC
6298. The RFC 1122 text on the RTO originally replaced the 793 text,

 however, RFC 2988 should have updated 1122, and has subsequently been
 obsoleted by 6298.

RFC 1122 contains a collection of other changes and clarifications to
RFC 793. The normative items impacting the protocol have been

 incorporated here, though some historically useful implementation
 advice and informative discussion from RFC 1122 is not included here.

RFC 1122 contains more than just TCP requirements, so this document
 can't obsolete RFC 1122 entirely. It is only marked as "updating"
 1122, however, it should be understood to effectively obsolete all of
 the RFC 1122 material on TCP.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires November 4, 2021 [Page 90]

Internet-Draft TCP Specification May 2021

 The more secure Initial Sequence Number generation algorithm from RFC
6528 was incorporated. See RFC 6528 for discussion of the attacks

 that this mitigates, as well as advice on selecting PRF algorithms
 and managing secret key data.

 A note based on RFC 6429 was added to explicitly clarify that system
 resource management concerns allow connection resources to be
 reclaimed. RFC 6429 is obsoleted in the sense that this
 clarification has been reflected in this update to the base TCP
 specification now.

 The description of congestion control implementation was added, based
 on the set of documents that are IETF BCP or Standards Track on the
 topic, and the current state of common implementations.

 RFC EDITOR'S NOTE: the content below is for detailed change tracking
 and planning, and not to be included with the final revision of the
 document.

 This document started as draft-eddy-rfc793bis-00, that was merely a
 proposal and rough plan for updating RFC 793.

 The -01 revision of this draft-eddy-rfc793bis incorporates the
 content of RFC 793 Section 3 titled "FUNCTIONAL SPECIFICATION".
 Other content from RFC 793 has not been incorporated. The -01
 revision of this document makes some minor formatting changes to the

RFC 793 content in order to convert the content into XML2RFC format
 and account for left-out parts of RFC 793. For instance, figure
 numbering differs and some indentation is not exactly the same.

 The -02 revision of draft-eddy-rfc793bis incorporates errata that
 have been verified:

 Errata ID 573: Reported by Bob Braden (note: This errata basically
 is just a reminder that RFC 1122 updates 793. Some of the
 associated changes are left pending to a separate revision that
 incorporates 1122. Bob's mention of PUSH in 793 section 2.8 was
 not applicable here because that section was not part of the
 "functional specification". Also the 1122 text on the
 retransmission timeout also has been updated by subsequent RFCs,
 so the change here deviates from Bob's suggestion to apply the
 1122 text.)
 Errata ID 574: Reported by Yin Shuming
 Errata ID 700: Reported by Yin Shuming
 Errata ID 701: Reported by Yin Shuming
 Errata ID 1283: Reported by Pei-chun Cheng
 Errata ID 1561: Reported by Constantin Hagemeier
 Errata ID 1562: Reported by Constantin Hagemeier

https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6429
https://datatracker.ietf.org/doc/html/rfc6429
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis-00
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis
https://datatracker.ietf.org/doc/html/rfc793#section-3
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis
https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires November 4, 2021 [Page 91]

Internet-Draft TCP Specification May 2021

 Errata ID 1564: Reported by Constantin Hagemeier
 Errata ID 1565: Reported by Constantin Hagemeier
 Errata ID 1571: Reported by Constantin Hagemeier
 Errata ID 1572: Reported by Constantin Hagemeier
 Errata ID 2296: Reported by Vishwas Manral
 Errata ID 2297: Reported by Vishwas Manral
 Errata ID 2298: Reported by Vishwas Manral
 Errata ID 2748: Reported by Mykyta Yevstifeyev
 Errata ID 2749: Reported by Mykyta Yevstifeyev
 Errata ID 2934: Reported by Constantin Hagemeier
 Errata ID 3213: Reported by EugnJun Yi
 Errata ID 3300: Reported by Botong Huang
 Errata ID 3301: Reported by Botong Huang
 Errata ID 3305: Reported by Botong Huang
 Note: Some verified errata were not used in this update, as they
 relate to sections of RFC 793 elided from this document. These
 include Errata ID 572, 575, and 1569.
 Note: Errata ID 3602 was not applied in this revision as it is
 duplicative of the 1122 corrections.

 Not related to RFC 793 content, this revision also makes small tweaks
 to the introductory text, fixes indentation of the pseudo header
 diagram, and notes that the Security Considerations should also
 include privacy, when this section is written.

 The -03 revision of draft-eddy-rfc793bis revises all discussion of
 the urgent pointer in order to comply with RFC 6093, 1122, and 1011.
 Since 1122 held requirements on the urgent pointer, the full list of
 requirements was brought into an appendix of this document, so that
 it can be updated as-needed.

 The -04 revision of draft-eddy-rfc793bis includes the ISN generation
 changes from RFC 6528.

 The -05 revision of draft-eddy-rfc793bis incorporates MSS
 requirements and definitions from RFC 879, 1122, and 6691, as well as
 option-handling requirements from RFC 1122.

 The -00 revision of draft-ietf-tcpm-rfc793bis incorporates several
 additional clarifications and updates to the section on segmentation,
 many of which are based on feedback from Joe Touch improving from the
 initial text on this in the previous revision.

 The -01 revision incorporates the change to Reserved bits due to ECN,
 as well as many other changes that come from RFC 1122.

 The -02 revision has small formatting modifications in order to
 address xml2rfc warnings about long lines. It was a quick update to

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis
https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/draft-eddy-rfc793bis
https://datatracker.ietf.org/doc/html/rfc879
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis
https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires November 4, 2021 [Page 92]

Internet-Draft TCP Specification May 2021

 avoid document expiration. TCPM working group discussion in 2015
 also indicated that that we should not try to add sections on
 implementation advice or similar non-normative information.

 The -03 revision incorporates more content from RFC 1122: Passive
 OPEN Calls, Time-To-Live, Multihoming, IP Options, ICMP messages,
 Data Communications, When to Send Data, When to Send a Window Update,
 Managing the Window, Probing Zero Windows, When to Send an ACK
 Segment. The section on data communications was re-organized into
 clearer subsections (previously headings were embedded in the 793
 text), and windows management advice from 793 was removed (as
 reviewed by TCPM working group) in favor of the 1122 additions on
 SWS, ZWP, and related topics.

 The -04 revision includes reference to RFC 6429 on the ZWP condition,
RFC1122 material on TCP Connection Failures, TCP Keep-Alives,

 Acknowledging Queued Segments, and Remote Address Validation. RTO
 computation is referenced from RFC 6298 rather than RFC 1122.

 The -05 revision includes the requirement to implement TCP congestion
 control with recommendation to implement ECN, the RFC 6633 update to
 1122, which changed the requirement on responding to source quench
 ICMP messages, and discussion of ICMP (and ICMPv6) soft and hard
 errors per RFC 5461 (ICMPv6 handling for TCP doesn't seem to be
 mentioned elsewhere in standards track).

 The -06 revision includes an appendix on "Other Implementation Notes"
 to capture widely-deployed fundamental features that are not
 contained in the RFC series yet. It also added mention of RFC 6994
 and the IANA TCP parameters registry as a reference. It includes
 references to RFC 5961 in appropriate places. The references to TOS
 were changed to DiffServ field, based on reflecting RFC 2474 as well
 as the IPv6 presence of traffic class (carrying DiffServ field)
 rather than TOS.

 The -07 revision includes reference to RFC 6191, updated security
 considerations, discussion of additional implementation
 considerations, and clarification of data on the SYN.

 The -08 revision includes changes based on:

 describing treatment of reserved bits (following TCPM mailing list
 thread from July 2014 on "793bis item - reserved bit behavior"
 addition a brief TCP key concepts section to make up for not
 including the outdated section 2 of RFC 793
 changed "TCP" to "host" to resolve conflict between 1122 wording
 on whether TCP or the network layer chooses an address when
 multihomed

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6429
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6633
https://datatracker.ietf.org/doc/html/rfc5461
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc6191
https://datatracker.ietf.org/doc/html/rfc793#section-2

Eddy Expires November 4, 2021 [Page 93]

Internet-Draft TCP Specification May 2021

 fixed/updated definition of options in glossary
 moved note on aggregating ACKs from 1122 to a more appropriate
 location
 resolved notes on IP precedence and security/compartment
 added implementation note on sequence number validation
 added note that PUSH does not apply when Nagle is active
 added 1122 content on asynchronous reports to replace 793 section
 on TCP to user messages

 The -09 revision fixes section numbering problems.

 The -10 revision includes additions to the security considerations
 based on comments from Joe Touch, and suggested edits on RST/FIN
 notification, RFC 2525 reference, and other edits suggested by
 Yuchung Cheng, as well as modifications to DiffServ text from Yuchung
 Cheng and Gorry Fairhurst.

 The -11 revision includes a start at identifying all of the
 requirements text and referencing each instance in the common table
 at the end of the document.

 The -12 revision completes the requirement language indexing started
 in -11 and adds necessary description of the PUSH functionality that
 was missing.

 The -13 revision contains only changes in the inline editor notes.

 The -14 revision includes updates with regard to several comments
 from the mailing list, including editorial fixes, adding IANA
 considerations for the header flags, improving figure title
 placement, and breaking up the "Terminology" section into more
 appropriately titled subsections.

 The -15 revision has many technical and editorial corrections from
 Gorry Fairhurst's review, and subsequent discussion on the TCPM list,
 as well as some other collected clarifications and improvements from
 mailing list discussion.

 The -16 revision addresses several discussions that rose from
 additional reviews and follow-up on some of Gorry Fairhurst's
 comments from revision 14.

 The -17 revision includes errata 6222 from Charles Deng, update to
 the key words boilerplate, updated description of the header flags
 registry changes, and clarification about connections rather than
 users in the discussion of OPEN calls.

https://datatracker.ietf.org/doc/html/rfc2525

Eddy Expires November 4, 2021 [Page 94]

Internet-Draft TCP Specification May 2021

 The -18 revision includes editorial changes to the IANA
 considerations, based on comments from Richard Scheffenegger at the
 IETF 108 TCPM virtual meeting.

 The -19 revision includes editorial changes from Errata 6281 and 6282
 reported by Merlin Buge. It also includes WGLC changes noted by
 Mohamed Boucadair, Rahul Jadhav, Praveen Balasubramanian, Matt Olson,
 Yi Huang, Joe Touch, and Juhamatti Kuusisaari.

 The -20 revision includes text on congestion control based on mailing
 list and meeting discussion, put together in its final form by Markku
 Kojo. It also clarifies that SACK, WS, and TS options are
 recommended for high performance, but not needed for basic
 interoperability. It also clarifies that the length field is
 required for new TCP options.

 The -21 revision includes slight changes to the header diagram for
 compatibility with tooling, from Stephen McQuistin, clarification on
 the meaning of idle connections from Yuchung Cheng, Neal Cardwell,
 Michael Scharf, and Richard Scheffenegger, editorial improvements
 from Markku Kojo, notes that some stacks suppress extra
 acknowledgments of the SYN when SYN-ACK carries data from Richard
 Scheffenegger, and adds MAY-18 numbering based on note from Jonathan
 Morton.

 Some other suggested changes that will not be incorporated in this
 793 update unless TCPM consensus changes with regard to scope are:

 1. Tony Sabatini's suggestion for describing DO field
 2. Per discussion with Joe Touch (TAPS list, 6/20/2015), the
 description of the API could be revisited
 3. Reducing the R2 value for SYNs has been suggested as a possible
 topic for future consideration.

 Early in the process of updating RFC 793, Scott Brim mentioned that
 this should include a PERPASS/privacy review. This may be something
 for the chairs or AD to request during WGLC or IETF LC.

5. IANA Considerations

 In the "Transmission Control Protocol (TCP) Header Flags" registry,
 IANA is asked to make several changes described in this section.

RFC 3168 originally created this registry, but only populated it with
 the new bits defined in RFC 3168, neglecting the other bits that had
 previously been described in RFC 793 and other documents. Bit 7 has
 since also been updated by RFC 8311.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc8311

Eddy Expires November 4, 2021 [Page 95]

Internet-Draft TCP Specification May 2021

 The "Bit" column is renamed below as the "Bit Offset" column, since
 it references each header flag's offset within the 16-bit aligned
 view of the TCP header in Figure 1. The bits in offsets 0 through 4
 are the TCP segment Data Offset field, and not header flags.

 IANA should add a column for "Assignment Notes".

 IANA should assign values indicated below.

 TCP Header Flags

 Bit Name Reference Assignment
Notes
 Offset
 --- ---- ---------

 4 Reserved for future use (this document)
 5 Reserved for future use (this document)
 6 Reserved for future use (this document)
 7 Reserved for future use [RFC8311] Previously
used by Historic [RFC3540] as NS (Nonce Sum)
 8 CWR (Congestion Window Reduced) [RFC3168]
 9 ECE (ECN-Echo) [RFC3168]
 10 Urgent Pointer field significant (URG) (this document)
 11 Acknowledgment field significant (ACK) (this document)
 12 Push Function (PSH) (this document)
 13 Reset the connection (RST) (this document)
 14 Synchronize sequence numbers (SYN) (this document)
 15 No more data from sender (FIN) (this document)

 This TCP Header Flags registry should also be moved to a sub-registry
 under the global "Transmission Control Protocol (TCP) Parameters
 registry (https://www.iana.org/assignments/tcp-parameters/tcp-

parameters.xhtml).

 The registry's Registration Procedure should remain Standards Action,
 but the Reference can be updated to this document, and the Note
 removed.

6. Security and Privacy Considerations

 The TCP design includes only rudimentary security features that
 improve the robustness and reliability of connections and application
 data transfer, but there are no built-in cryptographic capabilities
 to support any form of privacy, authentication, or other typical
 security functions. Non-cryptographic enhancements (e.g. [37]) have
 been developed to improve robustness of TCP connections to particular
 types of attacks, but the applicability and protections of non-
 cryptographic enhancements are limited (e.g. see section 1.1 of

https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml

 [37]). Applications typically utilize lower-layer (e.g. IPsec) and
 upper-layer (e.g. TLS) protocols to provide security and privacy for

Eddy Expires November 4, 2021 [Page 96]

Internet-Draft TCP Specification May 2021

 TCP connections and application data carried in TCP. Methods based
 on TCP options have been developed as well, to support some security
 capabilities.

 In order to fully protect TCP connections (including their control
 flags) IPsec or the TCP Authentication Option (TCP-AO) [36] are the
 only current effective methods. Other methods discussed in this
 section may protect the payload, but either only a subset of the
 fields (e.g. tcpcrypt [59]) or none at all (e.g. TLS). Other
 security features that have been added to TCP (e.g. ISN generation,
 sequence number checks, and others) are only capable of partially
 hindering attacks.

 Applications using long-lived TCP flows have been vulnerable to
 attacks that exploit the processing of control flags described in
 earlier TCP specifications [30]. TCP-MD5 was a commonly implemented
 TCP option to support authentication for some of these connections,
 but had flaws and is now deprecated. TCP-AO provides a capability to
 protect long-lived TCP connections from attacks, and has superior
 properties to TCP-MD5. It does not provide any privacy for
 application data, nor for the TCP headers.

 The "tcpcrypt" [59] Experimental extension to TCP provides the
 ability to cryptographically protect connection data. Metadata
 aspects of the TCP flow are still visible, but the application stream
 is well-protected. Within the TCP header, only the urgent pointer
 and FIN flag are protected through tcpcrypt.

 The TCP Roadmap [48] includes notes about several RFCs related to TCP
 security. Many of the enhancements provided by these RFCs have been
 integrated into the present document, including ISN generation,
 mitigating blind in-window attacks, and improving handling of soft
 errors and ICMP packets. These are all discussed in greater detail
 in the referenced RFCs that originally described the changes needed
 to earlier TCP specifications. Additionally, see RFC 6093 [38] for
 discussion of security considerations related to the urgent pointer
 field, that has been deprecated.

 Since TCP is often used for bulk transfer flows, some attacks are
 possible that abuse the TCP congestion control logic. An example is
 "ACK-division" attacks. Updates that have been made to the TCP
 congestion control specifications include mechanisms like Appropriate
 Byte Counting (ABC) [26] that act as mitigations to these attacks.

 Other attacks are focused on exhausting the resources of a TCP
 server. Examples include SYN flooding [29] or wasting resources on
 non-progressing connections [40]. Operating systems commonly
 implement mitigations for these attacks. Some common defenses also

https://datatracker.ietf.org/doc/html/rfc6093

Eddy Expires November 4, 2021 [Page 97]

Internet-Draft TCP Specification May 2021

 utilize proxies, stateful firewalls, and other technologies outside
 of the end-host TCP implementation.

7. Acknowledgements

 This document is largely a revision of RFC 793, which Jon Postel was
 the editor of. Due to his excellent work, it was able to last for
 three decades before we felt the need to revise it.

 Andre Oppermann was a contributor and helped to edit the first
 revision of this document.

 We are thankful for the assistance of the IETF TCPM working group
 chairs, over the course of work on this document:

 Michael Scharf
 Yoshifumi Nishida
 Pasi Sarolahti
 Michael Tuexen

 During the discussions of this work on the TCPM mailing list and in
 working group meetings, helpful comments, critiques, and reviews were
 received from (listed alphabetically by last name): Praveen
 Balasubramanian, David Borman, Mohamed Boucadair, Bob Briscoe, Neal
 Cardwell, Yuchung Cheng, Martin Duke, Ted Faber, Gorry Fairhurst,
 Fernando Gont, Rodney Grimes, Yi Huang, Rahul Jadhav, Markku Kojo,
 Mike Kosek, Juhamatti Kuusisaari, Kevin Lahey, Kevin Mason, Matt
 Mathis, Stephen McQuistin, Jonathan Morton, Matt Olson, Tommy Pauly,
 Tom Petch, Hagen Paul Pfeifer, Anthony Sabatini, Michael Scharf, Greg
 Skinner, Joe Touch, Michael Tuexen, Reji Varghese, Tim Wicinski,
 Lloyd Wood, and Alex Zimmermann.

 Joe Touch provided additional help in clarifying the description of
 segment size parameters and PMTUD/PLPMTUD recommendations. Markku
 Kojo helped put together the text in the section on TCP Congestion
 Control.

 This document includes content from errata that were reported by
 (listed chronologically): Yin Shuming, Bob Braden, Morris M. Keesan,
 Pei-chun Cheng, Constantin Hagemeier, Vishwas Manral, Mykyta
 Yevstifeyev, EungJun Yi, Botong Huang, Charles Deng, Merlin Buge.

8. References

https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires November 4, 2021 [Page 98]

Internet-Draft TCP Specification May 2021

8.1. Normative References

 [1] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [2] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [3] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <https://www.rfc-editor.org/info/rfc1981>.

 [4] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [5] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [6] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, DOI 10.17487/RFC2675, August 1999,

 <https://www.rfc-editor.org/info/rfc2675>.

 [7] Floyd, S., "Congestion Control Principles", BCP 41,
RFC 2914, DOI 10.17487/RFC2914, September 2000,

 <https://www.rfc-editor.org/info/rfc2914>.

 [8] Lahey, K., "TCP Problems with Path MTU Discovery",
RFC 2923, DOI 10.17487/RFC2923, September 2000,

 <https://www.rfc-editor.org/info/rfc2923>.

 [9] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [10] Floyd, S. and M. Allman, "Specifying New Congestion
 Control Algorithms", BCP 133, RFC 5033,
 DOI 10.17487/RFC5033, August 2007,
 <https://www.rfc-editor.org/info/rfc5033>.

https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/rfc2675
https://www.rfc-editor.org/info/rfc2675
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://www.rfc-editor.org/info/rfc2914
https://datatracker.ietf.org/doc/html/rfc2923
https://www.rfc-editor.org/info/rfc2923
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/bcp133
https://datatracker.ietf.org/doc/html/rfc5033
https://www.rfc-editor.org/info/rfc5033

Eddy Expires November 4, 2021 [Page 99]

Internet-Draft TCP Specification May 2021

 [11] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [12] Gont, F., "Deprecation of ICMP Source Quench Messages",
RFC 6633, DOI 10.17487/RFC6633, May 2012,

 <https://www.rfc-editor.org/info/rfc6633>.

 [13] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [14] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [15] Allman, M., "Requirements for Time-Based Loss Detection",
BCP 233, RFC 8961, DOI 10.17487/RFC8961, November 2020,

 <https://www.rfc-editor.org/info/rfc8961>.

8.2. Informative References

 [16] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [17] Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, DOI 10.17487/RFC0896, January 1984,

 <https://www.rfc-editor.org/info/rfc896>.

 [18] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [19] Almquist, P., "Type of Service in the Internet Protocol
 Suite", RFC 1349, DOI 10.17487/RFC1349, July 1992,
 <https://www.rfc-editor.org/info/rfc1349>.

 [20] Braden, R., "T/TCP -- TCP Extensions for Transactions
 Functional Specification", RFC 1644, DOI 10.17487/RFC1644,
 July 1994, <https://www.rfc-editor.org/info/rfc1644>.

https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6633
https://www.rfc-editor.org/info/rfc6633
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/bcp233
https://datatracker.ietf.org/doc/html/rfc8961
https://www.rfc-editor.org/info/rfc8961
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc896
https://www.rfc-editor.org/info/rfc896
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc1349
https://www.rfc-editor.org/info/rfc1349
https://datatracker.ietf.org/doc/html/rfc1644
https://www.rfc-editor.org/info/rfc1644

Eddy Expires November 4, 2021 [Page 100]

Internet-Draft TCP Specification May 2021

 [21] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [22] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner,
 J., Heavens, I., Lahey, K., Semke, J., and B. Volz, "Known
 TCP Implementation Problems", RFC 2525,
 DOI 10.17487/RFC2525, March 1999,
 <https://www.rfc-editor.org/info/rfc2525>.

 [23] Xiao, X., Hannan, A., Paxson, V., and E. Crabbe, "TCP
 Processing of the IPv4 Precedence Field", RFC 2873,
 DOI 10.17487/RFC2873, June 2000,
 <https://www.rfc-editor.org/info/rfc2873>.

 [24] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, DOI 10.17487/RFC2883, July 2000,
 <https://www.rfc-editor.org/info/rfc2883>.

 [25] Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.
 Sooriyabandara, "TCP Performance Implications of Network
 Path Asymmetry", BCP 69, RFC 3449, DOI 10.17487/RFC3449,
 December 2002, <https://www.rfc-editor.org/info/rfc3449>.

 [26] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, DOI 10.17487/RFC3465, February
 2003, <https://www.rfc-editor.org/info/rfc3465>.

 [27] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727,
 DOI 10.17487/RFC4727, November 2006,
 <https://www.rfc-editor.org/info/rfc4727>.

 [28] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [29] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [30] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, DOI 10.17487/RFC4953, July 2007,

 <https://www.rfc-editor.org/info/rfc4953>.

https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/rfc2525
https://www.rfc-editor.org/info/rfc2525
https://datatracker.ietf.org/doc/html/rfc2873
https://www.rfc-editor.org/info/rfc2873
https://datatracker.ietf.org/doc/html/rfc2883
https://www.rfc-editor.org/info/rfc2883
https://datatracker.ietf.org/doc/html/bcp69
https://datatracker.ietf.org/doc/html/rfc3449
https://www.rfc-editor.org/info/rfc3449
https://datatracker.ietf.org/doc/html/rfc3465
https://www.rfc-editor.org/info/rfc3465
https://datatracker.ietf.org/doc/html/rfc4727
https://www.rfc-editor.org/info/rfc4727
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc4953
https://www.rfc-editor.org/info/rfc4953

Eddy Expires November 4, 2021 [Page 101]

Internet-Draft TCP Specification May 2021

 [31] Culley, P., Elzur, U., Recio, R., Bailey, S., and J.
 Carrier, "Marker PDU Aligned Framing for TCP
 Specification", RFC 5044, DOI 10.17487/RFC5044, October
 2007, <https://www.rfc-editor.org/info/rfc5044>.

 [32] Gont, F., "TCP's Reaction to Soft Errors", RFC 5461,
 DOI 10.17487/RFC5461, February 2009,
 <https://www.rfc-editor.org/info/rfc5461>.

 [33] StJohns, M., Atkinson, R., and G. Thomas, "Common
 Architecture Label IPv6 Security Option (CALIPSO)",

RFC 5570, DOI 10.17487/RFC5570, July 2009,
 <https://www.rfc-editor.org/info/rfc5570>.

 [34] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [35] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
 Header Compression (ROHC) Framework", RFC 5795,
 DOI 10.17487/RFC5795, March 2010,
 <https://www.rfc-editor.org/info/rfc5795>.

 [36] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [37] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
 Robustness to Blind In-Window Attacks", RFC 5961,
 DOI 10.17487/RFC5961, August 2010,
 <https://www.rfc-editor.org/info/rfc5961>.

 [38] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <https://www.rfc-editor.org/info/rfc6093>.

 [39] Gont, F., "Reducing the TIME-WAIT State Using TCP
 Timestamps", BCP 159, RFC 6191, DOI 10.17487/RFC6191,
 April 2011, <https://www.rfc-editor.org/info/rfc6191>.

 [40] Bashyam, M., Jethanandani, M., and A. Ramaiah, "TCP Sender
 Clarification for Persist Condition", RFC 6429,
 DOI 10.17487/RFC6429, December 2011,
 <https://www.rfc-editor.org/info/rfc6429>.

 [41] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <https://www.rfc-editor.org/info/rfc6528>.

https://datatracker.ietf.org/doc/html/rfc5044
https://www.rfc-editor.org/info/rfc5044
https://datatracker.ietf.org/doc/html/rfc5461
https://www.rfc-editor.org/info/rfc5461
https://datatracker.ietf.org/doc/html/rfc5570
https://www.rfc-editor.org/info/rfc5570
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5795
https://www.rfc-editor.org/info/rfc5795
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc5961
https://www.rfc-editor.org/info/rfc5961
https://datatracker.ietf.org/doc/html/rfc6093
https://www.rfc-editor.org/info/rfc6093
https://datatracker.ietf.org/doc/html/bcp159
https://datatracker.ietf.org/doc/html/rfc6191
https://www.rfc-editor.org/info/rfc6191
https://datatracker.ietf.org/doc/html/rfc6429
https://www.rfc-editor.org/info/rfc6429
https://datatracker.ietf.org/doc/html/rfc6528
https://www.rfc-editor.org/info/rfc6528

Eddy Expires November 4, 2021 [Page 102]

Internet-Draft TCP Specification May 2021

 [42] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, DOI 10.17487/RFC6691, July 2012,

 <https://www.rfc-editor.org/info/rfc6691>.

 [43] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, DOI 10.17487/RFC6864, February 2013,

 <https://www.rfc-editor.org/info/rfc6864>.

 [44] Touch, J., "Shared Use of Experimental TCP Options",
RFC 6994, DOI 10.17487/RFC6994, August 2013,

 <https://www.rfc-editor.org/info/rfc6994>.

 [45] McPherson, D., Oran, D., Thaler, D., and E. Osterweil,
 "Architectural Considerations of IP Anycast", RFC 7094,
 DOI 10.17487/RFC7094, January 2014,
 <https://www.rfc-editor.org/info/rfc7094>.

 [46] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [47] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [48] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <https://www.rfc-editor.org/info/rfc7414>.

 [49] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

 [50] Fairhurst, G. and M. Welzl, "The Benefits of Using
 Explicit Congestion Notification (ECN)", RFC 8087,
 DOI 10.17487/RFC8087, March 2017,
 <https://www.rfc-editor.org/info/rfc8087>.

 [51] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

https://datatracker.ietf.org/doc/html/rfc6691
https://www.rfc-editor.org/info/rfc6691
https://datatracker.ietf.org/doc/html/rfc6864
https://www.rfc-editor.org/info/rfc6864
https://datatracker.ietf.org/doc/html/rfc6994
https://www.rfc-editor.org/info/rfc6994
https://datatracker.ietf.org/doc/html/rfc7094
https://www.rfc-editor.org/info/rfc7094
https://datatracker.ietf.org/doc/html/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7414
https://www.rfc-editor.org/info/rfc7414
https://datatracker.ietf.org/doc/html/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://datatracker.ietf.org/doc/html/rfc8087
https://www.rfc-editor.org/info/rfc8087
https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095

Eddy Expires November 4, 2021 [Page 103]

Internet-Draft TCP Specification May 2021

 [52] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",

RFC 8303, DOI 10.17487/RFC8303, February 2018,
 <https://www.rfc-editor.org/info/rfc8303>.

 [53] Chown, T., Loughney, J., and T. Winters, "IPv6 Node
 Requirements", BCP 220, RFC 8504, DOI 10.17487/RFC8504,
 January 2019, <https://www.rfc-editor.org/info/rfc8504>.

 [54] Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
 Paasch, "TCP Extensions for Multipath Operation with
 Multiple Addresses", RFC 8684, DOI 10.17487/RFC8684, March
 2020, <https://www.rfc-editor.org/info/rfc8684>.

 [55] IANA, "Transmission Control Protocol (TCP) Parameters,
https://www.iana.org/assignments/tcp-parameters/tcp-
parameters.xhtml", 2019.

 [56] IANA, "Transmission Control Protocol (TCP) Header Flags,
https://www.iana.org/assignments/tcp-header-flags/tcp-
header-flags.xhtml", 2019.

 [57] Gont, F., "Processing of IP Security/Compartment and
 Precedence Information by TCP", draft-gont-tcpm-tcp-

seccomp-prec-00 (work in progress), March 2012.

 [58] Gont, F. and D. Borman, "On the Validation of TCP Sequence
 Numbers", draft-gont-tcpm-tcp-seq-validation-02 (work in
 progress), March 2015.

 [59] Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,
 Q., and E. Smith, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-ietf-tcpinc-tcpcrypt-09 (work in
 progress), November 2017.

 [60] Touch, J. and W. Eddy, "TCP Extended Data Offset Option",
draft-ietf-tcpm-tcp-edo-10 (work in progress), July 2018.

 [61] McQuistin, S., Band, V., Jacob, D., and C. Perkins,
 "Describing Protocol Data Units with Augmented Packet
 Header Diagrams", draft-mcquistin-augmented-ascii-

diagrams-07 (work in progress), November 2020.

 [62] Minshall, G., "A Proposed Modification to Nagle's
 Algorithm", draft-minshall-nagle-01 (work in progress),
 June 1999.

https://datatracker.ietf.org/doc/html/rfc8303
https://www.rfc-editor.org/info/rfc8303
https://datatracker.ietf.org/doc/html/bcp220
https://datatracker.ietf.org/doc/html/rfc8504
https://www.rfc-editor.org/info/rfc8504
https://datatracker.ietf.org/doc/html/rfc8684
https://www.rfc-editor.org/info/rfc8684
https://www.iana.org/assignments/tcp-parameters/tcp-parameters
https://www.iana.org/assignments/tcp-parameters/tcp-parameters
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags
https://www.iana.org/assignments/tcp-header-flags/tcp-header-flags
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seccomp-prec-00
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seccomp-prec-00
https://datatracker.ietf.org/doc/html/draft-gont-tcpm-tcp-seq-validation-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-09
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-edo-10
https://datatracker.ietf.org/doc/html/draft-mcquistin-augmented-ascii-diagrams-07
https://datatracker.ietf.org/doc/html/draft-mcquistin-augmented-ascii-diagrams-07
https://datatracker.ietf.org/doc/html/draft-minshall-nagle-01

Eddy Expires November 4, 2021 [Page 104]

Internet-Draft TCP Specification May 2021

 [63] Dalal, Y. and C. Sunshine, "Connection Management in
 Transport Protocols", Computer Networks Vol. 2, No. 6, pp.
 454-473, December 1978.

 [64] Faber, T., Touch, J., and W. Yui, "The TIME-WAIT state in
 TCP and Its Effect on Busy Servers", Proceedings of IEEE
 INFOCOM pp. 1573-1583, March 1999.

Appendix A. Other Implementation Notes

 This section includes additional notes and references on TCP
 implementation decisions that are currently not a part of the RFC
 series or included within the TCP standard. These items can be
 considered by implementers, but there was not yet a consensus to
 include them in the standard.

A.1. IP Security Compartment and Precedence

 The IPv4 specification [1] includes a precedence value in the (now
 obsoleted) Type of Service field (TOS) field. It was modified in
 [19], and then obsoleted by the definition of Differentiated Services
 (DiffServ) [5]. Setting and conveying TOS between the network layer,
 TCP implementation, and applications is obsolete, and replaced by
 DiffServ in the current TCP specification.

RFC 793 requires checking the IP security compartment and precedence
 on incoming TCP segments for consistency within a connection, and
 with application requests. Each of these aspects of IP have become
 outdated, without specific updates to RFC 793. The issues with
 precedence were fixed by [23], which is Standards Track, and so this
 present TCP specification includes those changes. However, the state
 of IP security options that may be used by MLS systems is not as
 clean.

 Resetting connections when incoming packets do not meet expected
 security compartment or precedence expectations has been recognized
 as a possible attack vector [57], and there has been discussion about
 amending the TCP specification to prevent connections from being
 aborted due to non-matching IP security compartment and DiffServ
 codepoint values.

A.1.1. Precedence

 In DiffServ the former precedence values are treated as Class
 Selector codepoints, and methods for compatible treatment are
 described in the DiffServ architecture. The RFC 793/1122 TCP
 specification includes logic intending to have connections use the
 highest precedence requested by either endpoint application, and to

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires November 4, 2021 [Page 105]

Internet-Draft TCP Specification May 2021

 keep the precedence consistent throughout a connection. This logic
 from the obsolete TOS is not applicable for DiffServ, and should not
 be included in TCP implementations, though changes to DiffServ values
 within a connection are discouraged. For discussion of this, see RFC

7657 (sec 5.1, 5.3, and 6) [49].

 The obsoleted TOS processing rules in TCP assumed bidirectional (or
 symmetric) precedence values used on a connection, but the DiffServ
 architecture is asymmetric. Problems with the old TCP logic in this
 regard were described in [23] and the solution described is to ignore
 IP precedence in TCP. Since RFC 2873 is a Standards Track document
 (although not marked as updating RFC 793), current implementations
 are expected to be robust to these conditions. Note that the
 DiffServ field value used in each direction is a part of the
 interface between TCP and the network layer, and values in use can be
 indicated both ways between TCP and the application.

A.1.2. MLS Systems

 The IP security option (IPSO) and compartment defined in [1] was
 refined in RFC 1038 that was later obsoleted by RFC 1108. The
 Commercial IP Security Option (CIPSO) is defined in FIPS-188, and is
 supported by some vendors and operating systems. RFC 1108 is now
 Historic, though RFC 791 itself has not been updated to remove the IP
 security option. For IPv6, a similar option (CALIPSO) has been
 defined [33]. RFC 793 includes logic that includes the IP security/
 compartment information in treatment of TCP segments. References to
 the IP "security/compartment" in this document may be relevant for
 Multi-Level Secure (MLS) system implementers, but can be ignored for
 non-MLS implementations, consistent with running code on the
 Internet. See Appendix A.1 for further discussion. Note that RFC

5570 describes some MLS networking scenarios where IPSO, CIPSO, or
 CALIPSO may be used. In these special cases, TCP implementers should
 see section 7.3.1 of RFC 5570, and follow the guidance in that
 document.

A.2. Sequence Number Validation

 There are cases where the TCP sequence number validation rules can
 prevent ACK fields from being processed. This can result in
 connection issues, as described in [58], which includes descriptions
 of potential problems in conditions of simultaneous open, self-
 connects, simultaneous close, and simultaneous window probes. The
 document also describes potential changes to the TCP specification to
 mitigate the issue by expanding the acceptable sequence numbers.

 In Internet usage of TCP, these conditions are rarely occurring.
 Common operating systems include different alternative mitigations,

https://datatracker.ietf.org/doc/html/rfc7657
https://datatracker.ietf.org/doc/html/rfc7657
https://datatracker.ietf.org/doc/html/rfc2873
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1038
https://datatracker.ietf.org/doc/html/rfc1108
https://datatracker.ietf.org/doc/html/rfc1108
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5570
https://datatracker.ietf.org/doc/html/rfc5570
https://datatracker.ietf.org/doc/html/rfc5570#section-7.3.1

Eddy Expires November 4, 2021 [Page 106]

Internet-Draft TCP Specification May 2021

 and the standard has not been updated yet to codify one of them, but
 implementers should consider the problems described in [58].

A.3. Nagle Modification

 In common operating systems, both the Nagle algorithm and delayed
 acknowledgements are implemented and enabled by default. TCP is used
 by many applications that have a request-response style of
 communication, where the combination of the Nagle algorithm and
 delayed acknowledgements can result in poor application performance.
 A modification to the Nagle algorithm is described in [62] that
 improves the situation for these applications.

 This modification is implemented in some common operating systems,
 and does not impact TCP interoperability. Additionally, many
 applications simply disable Nagle, since this is generally supported
 by a socket option. The TCP standard has not been updated to include
 this Nagle modification, but implementers may find it beneficial to
 consider.

A.4. Low Water Mark Settings

 Some operating system kernel TCP implementations include socket
 options that allow specifying the number of bytes in the buffer until
 the socket layer will pass sent data to TCP (SO_SNDLOWAT) or to the
 application on receiving (SO_RCVLOWAT).

 In addition, another socket option (TCP_NOTSENT_LOWAT) can be used to
 control the amount of unsent bytes in the write queue. This can help
 a sending TCP application to avoid creating large amounts of buffered
 data (and corresponding latency). As an example, this may be useful
 for applications that are multiplexing data from multiple upper level
 streams onto a connection, especially when streams may be a mix of
 interactive / real-time and bulk data transfer.

Appendix B. TCP Requirement Summary

 This section is adapted from RFC 1122.

 Note that there is no requirement related to PLPMTUD in this list,
 but that PLPMTUD is recommended.

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t

https://datatracker.ietf.org/doc/html/rfc1122

Eddy Expires November 4, 2021 [Page 107]

Internet-Draft TCP Specification May 2021

 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	ReqID				T	T	e
 | | | | | | |
 Push flag | | | | | | |
 Aggregate or queue un-pushed data | MAY-16 | | |x| | |
 Sender collapse successive PSH flags | SHLD-27| |x| | | |
 SEND call can specify PUSH | MAY-15 | | |x| | |
 If cannot: sender buffer indefinitely | MUST-60| | | | |x|
 If cannot: PSH last segment | MUST-61|x| | | | |
 Notify receiving ALP of PSH | MAY-17 | | |x| | |1
 Send max size segment when possible | SHLD-28| |x| | | |
 | | | | | | |
 Window | | | | | | |
 Treat as unsigned number | MUST-1 |x| | | | |
 Handle as 32-bit number | REC-1 | |x| | | |
 Shrink window from right | SHLD-14| | | |x| |
 - Send new data when window shrinks | SHLD-15| | | |x| |
 - Retransmit old unacked data within window | SHLD-16| |x| | | |
 - Time out conn for data past right edge | SHLD-17| | | |x| |
 Robust against shrinking window | MUST-34|x| | | | |
 Receiver's window closed indefinitely | MAY-8 | | |x| | |
 Use standard probing logic | MUST-35|x| | | | |
 Sender probe zero window | MUST-36|x| | | | |
 First probe after RTO | SHLD-29| |x| | | |
 Exponential backoff | SHLD-30| |x| | | |
 Allow window stay zero indefinitely | MUST-37|x| | | | |
 Retransmit old data beyond SND.UNA+SND.WND | MAY-7 | | |x| | |
 Process RST and URG even with zero window | MUST-66|x| | | | |
 | | | | | | |
 Urgent Data | | | | | | |
 Include support for urgent pointer | MUST-30|x| | | | |
 Pointer indicates first non-urgent octet | MUST-62|x| | | | |
 Arbitrary length urgent data sequence | MUST-31|x| | | | |
 Inform ALP asynchronously of urgent data | MUST-32|x| | | | |1
 ALP can learn if/how much urgent data Q'd | MUST-33|x| | | | |1
 ALP employ the urgent mechanism | SHLD-13| | | |x| |
 | | | | | | |
 TCP Options | | | | | | |
 Support the mandatory option set | MUST-4 |x| | | | |
 Receive TCP option in any segment | MUST-5 |x| | | | |
 Ignore unsupported options | MUST-6 |x| | | | |
 Include length for all options except EOL+NOP | MUST-68|x| | | | |
 Cope with illegal option length | MUST-7 |x| | | | |
 Process options regardless of word alignment | MUST-64|x| | | | |

Eddy Expires November 4, 2021 [Page 108]

Internet-Draft TCP Specification May 2021

 Implement sending & receiving MSS option | MUST-14|x| | | | |
 IPv4 Send MSS option unless 536 | SHLD-5 | |x| | | |
 IPv6 Send MSS option unless 1220 | SHLD-5 | |x| | | |
 Send MSS option always | MAY-3 | | |x| | |
 IPv4 Send-MSS default is 536 | MUST-15|x| | | | |
 IPv6 Send-MSS default is 1220 | MUST-15|x| | | | |
 Calculate effective send seg size | MUST-16|x| | | | |
 MSS accounts for varying MTU | SHLD-6 | |x| | | |
 MSS not sent on non-SYN segments | MUST-65| | | | |x|
 MSS value based on MMS_R | MUST-67|x| | | | |
 | | | | | | |
 TCP Checksums | | | | | | |
 Sender compute checksum | MUST-2 |x| | | | |
 Receiver check checksum | MUST-3 |x| | | | |
 | | | | | | |
 ISN Selection | | | | | | |
 Include a clock-driven ISN generator component | MUST-8 |x| | | | |
 Secure ISN generator with a PRF component | SHLD-1 | |x| | | |
 PRF computable from outside the host | MUST-9 | | | | |x|
 | | | | | | |
 Opening Connections | | | | | | |
 Support simultaneous open attempts | MUST-10|x| | | | |
 SYN-RECEIVED remembers last state | MUST-11|x| | | | |
 Passive Open call interfere with others | MUST-41| | | | |x|
 Function: simultan. LISTENs for same port | MUST-42|x| | | | |
 Ask IP for src address for SYN if necc. | MUST-44|x| | | | |
 Otherwise, use local addr of conn. | MUST-45|x| | | | |
 OPEN to broadcast/multicast IP Address | MUST-46| | | | |x|
 Silently discard seg to bcast/mcast addr | MUST-57|x| | | | |
 | | | | | | |
 Closing Connections | | | | | | |
 RST can contain data | SHLD-2 | |x| | | |
 Inform application of aborted conn | MUST-12|x| | | | |
 Half-duplex close connections | MAY-1 | | |x| | |
 Send RST to indicate data lost | SHLD-3 | |x| | | |
 In TIME-WAIT state for 2MSL seconds | MUST-13|x| | | | |
 Accept SYN from TIME-WAIT state | MAY-2 | | |x| | |
 Use Timestamps to reduce TIME-WAIT | SHLD-4 | |x| | | |
 | | | | | | |
 Retransmissions | | | | | | |
 Implement exponential backoff, slow start, and | MUST-19|x| | | | |
 congestion avoidance | | | | | | |
 Retransmit with same IP ident | MAY-4 | | |x| | |
 Karn's algorithm | MUST-18|x| | | | |
 | | | | | | |
 Generating ACKs: | | | | | | |
 Aggregate whenever possible | MUST-58|x| | | | |
 Queue out-of-order segments | SHLD-31| |x| | | |

Eddy Expires November 4, 2021 [Page 109]

Internet-Draft TCP Specification May 2021

 Process all Q'd before send ACK | MUST-59|x| | | | |
 Send ACK for out-of-order segment | MAY-13 | | |x| | |
 Delayed ACKs | SHLD-18| |x| | | |
 Delay < 0.5 seconds | MUST-40|x| | | | |
 Every 2nd full-sized segment ACK'd | SHLD-19|x| | | | |
 Receiver SWS-Avoidance Algorithm | MUST-39|x| | | | |
 | | | | | | |
 Sending data | | | | | | |
 Configurable TTL | MUST-49|x| | | | |
 Sender SWS-Avoidance Algorithm | MUST-38|x| | | | |
 Nagle algorithm | SHLD-7 | |x| | | |
 Application can disable Nagle algorithm | MUST-17|x| | | | |
 | | | | | | |
 Connection Failures: | | | | | | |
 Negative advice to IP on R1 retxs | MUST-20|x| | | | |
 Close connection on R2 retxs | MUST-20|x| | | | |
 ALP can set R2 | MUST-21|x| | | | |1
 Inform ALP of R1<=retxs<R2 | SHLD-9 | |x| | | |1
 Recommended value for R1 | SHLD-10| |x| | | |
 Recommended value for R2 | SHLD-11| |x| | | |
 Same mechanism for SYNs | MUST-22|x| | | | |
 R2 at least 3 minutes for SYN | MUST-23|x| | | | |
 | | | | | | |
 Send Keep-alive Packets: | MAY-5 | | |x| | |
 - Application can request | MUST-24|x| | | | |
 - Default is "off" | MUST-25|x| | | | |
 - Only send if idle for interval | MUST-26|x| | | | |
 - Interval configurable | MUST-27|x| | | | |
 - Default at least 2 hrs. | MUST-28|x| | | | |
 - Tolerant of lost ACKs | MUST-29|x| | | | |
 - Send with no data | SHLD-12| |x| | | |
 - Configurable to send garbage octet | MAY-6 | | |x| | |
 | | | | | | |
 IP Options | | | | | | |
 Ignore options TCP doesn't understand | MUST-50|x| | | | |
 Time Stamp support | MAY-10 | | |x| | |
 Record Route support | MAY-11 | | |x| | |
 Source Route: | | | | | | |
 ALP can specify | MUST-51|x| | | | |1
 Overrides src rt in datagram | MUST-52|x| | | | |
 Build return route from src rt | MUST-53|x| | | | |
 Later src route overrides | SHLD-24| |x| | | |
 | | | | | | |
 Receiving ICMP Messages from IP | MUST-54|x| | | | |
 Dest. Unreach (0,1,5) => inform ALP | SHLD-25| |x| | | |
 Dest. Unreach (0,1,5) => abort conn | MUST-56| | | | |x|
 Dest. Unreach (2-4) => abort conn | SHLD-26| |x| | | |
 Source Quench => silent discard | MUST-55|x| | | | |

Eddy Expires November 4, 2021 [Page 110]

Internet-Draft TCP Specification May 2021

 Time Exceeded => tell ALP, don't abort | MUST-56| | | | |x|
 Param Problem => tell ALP, don't abort | MUST-56| | | | |x|
 | | | | | | |
 Address Validation | | | | | | |
 Reject OPEN call to invalid IP address | MUST-46|x| | | | |
 Reject SYN from invalid IP address | MUST-63|x| | | | |
 Silently discard SYN to bcast/mcast addr | MUST-57|x| | | | |
 | | | | | | |
 TCP/ALP Interface Services | | | | | | |
 Error Report mechanism | MUST-47|x| | | | |
 ALP can disable Error Report Routine | SHLD-20| |x| | | |
 ALP can specify DiffServ field for sending | MUST-48|x| | | | |
 Passed unchanged to IP | SHLD-22| |x| | | |
 ALP can change DiffServ field during connection| SHLD-21| |x| | | |
 ALP generally changing DiffServ during conn. | SHLD-23| | | |x| |
 Pass received DiffServ field up to ALP | MAY-9 | | |x| | |
 FLUSH call | MAY-14 | | |x| | |
 Optional local IP addr parm. in OPEN | MUST-43|x| | | | |
 | | | | | | |
RFC 5961 Support: | | | | | | |
 Implement data injection protection | MAY-12 | | |x| | |
 | | | | | | |
 Explicit Congestion Notification: | | | | | | |
 Support ECN | SHLD-8 | |x| | | |
 | | | | | | |
 Alternative Congestion Control: | | | | | | |
 Implement alternative conformant algorithm(s) | MAY-18 | | |x| | |
 ---|--------|-|-|-|-|-|-

 FOOTNOTES: (1) "ALP" means Application-Layer Program.

Author's Address

 Wesley M. Eddy (editor)
 MTI Systems
 US

 Email: wes@mti-systems.com

https://datatracker.ietf.org/doc/html/rfc5961

Eddy Expires November 4, 2021 [Page 111]

