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Abstract

This document specifies the Transmission Control Protocol (TCP). TCP

is an important transport layer protocol in the Internet protocol

stack, and has continuously evolved over decades of use and growth

of the Internet. Over this time, a number of changes have been made

to TCP as it was specified in RFC 793, though these have only been

documented in a piecemeal fashion. This document collects and brings

those changes together with the protocol specification from RFC 793.

This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093,

6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs

1011 and 1122, and should be considered as a replacement for the

portions of those document dealing with TCP requirements. It also

updates RFC 5961 by adding a small clarification in reset handling

while in the SYN-RECEIVED state. The TCP header control bits from

RFC 793 have also been updated based on RFC 3168.

RFC EDITOR NOTE: If approved for publication as an RFC, this should

be marked additionally as "STD: 7" and replace RFC 793 in that role.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 August 2022.
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1. Purpose and Scope

In 1981, RFC 793 [16] was released, documenting the Transmission

Control Protocol (TCP), and replacing earlier specifications for TCP

that had been published in the past.

Since then, TCP has been widely implemented, and has been used as a

transport protocol for numerous applications on the Internet.

For several decades, RFC 793 plus a number of other documents have

combined to serve as the core specification for TCP [50]. Over time,

a number of errata have been filed against RFC 793. There have also

been deficiencies found and resolved in security, performance, and

many other aspects. The number of enhancements has grown over time

across many separate documents. These were never accumulated

together into a comprehensive update to the base specification.

The purpose of this document is to bring together all of the IETF

Standards Track changes and other clarifications that have been made

to the base TCP functional specification and unify them into an

updated version of RFC 793.

Some companion documents are referenced for important algorithms

that are used by TCP (e.g. for congestion control), but have not

been completely included in this document. This is a conscious

choice, as this base specification can be used with multiple

additional algorithms that are developed and incorporated

separately. This document focuses on the common basis all TCP

implementations must support in order to interoperate. Since some

additional TCP features have become quite complicated themselves

(e.g. advanced loss recovery and congestion control), future

companion documents may attempt to similarly bring these together.

In addition to the protocol specification that describes the TCP

segment format, generation, and processing rules that are to be

implemented in code, RFC 793 and other updates also contain

informative and descriptive text for readers to understand aspects

of the protocol design and operation. This document does not attempt

to alter or update this informative text, and is focused only on

updating the normative protocol specification. This document

preserves references to the documentation containing the important

explanations and rationale, where appropriate.

This document is intended to be useful both in checking existing TCP

implementations for conformance purposes, as well as in writing new

implementations.
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2. Introduction

RFC 793 contains a discussion of the TCP design goals and provides

examples of its operation, including examples of connection

establishment, connection termination, and packet retransmission to

repair losses.

This document describes the basic functionality expected in modern

TCP implementations, and replaces the protocol specification in RFC

793. It does not replicate or attempt to update the introduction and

philosophy content in Sections 1 and 2 of RFC 793. Other documents

are referenced to provide explanation of the theory of operation,

rationale, and detailed discussion of design decisions. This

document only focuses on the normative behavior of the protocol.

The "TCP Roadmap" [50] provides a more extensive guide to the RFCs

that define TCP and describe various important algorithms. The TCP

Roadmap contains sections on strongly encouraged enhancements that

improve performance and other aspects of TCP beyond the basic

operation specified in this document. As one example, implementing

congestion control (e.g. [8]) is a TCP requirement, but is a complex

topic on its own, and not described in detail in this document, as

there are many options and possibilities that do not impact basic

interoperability. Similarly, most TCP implementations today include

the high-performance extensions in [48], but these are not strictly

required or discussed in this document. Multipath considerations for

TCP are also specified separately in [59].

A list of changes from RFC 793 is contained in Section 5.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [3][12] when, and only when, they appear in all capitals, as

shown here.

Each use of RFC 2119 keywords in the document is individually

labeled and referenced in Appendix B that summarizes implementation

requirements.

Sentences using "MUST" are labeled as "MUST-X" with X being a

numeric identifier enabling the requirement to be located easily

when referenced from Appendix B.

Similarly, sentences using "SHOULD" are labeled with "SHLD-X", "MAY"

with "MAY-X", and "RECOMMENDED" with "REC-X".
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For the purposes of this labeling, "SHOULD NOT" and "MUST NOT" are

labeled the same as "SHOULD" and "MUST" instances.

2.2. Key TCP Concepts

TCP provides a reliable, in-order, byte-stream service to

applications.

The application byte-stream is conveyed over the network via TCP

segments, with each TCP segment sent as an Internet Protocol (IP)

datagram.

TCP reliability consists of detecting packet losses (via sequence

numbers) and errors (via per-segment checksums), as well as

correction via retransmission.

TCP supports unicast delivery of data. Anycast applications exist

that successfully use TCP without modifications, though there is

some risk of instability due to changes of lower-layer forwarding

behavior [47].

TCP is connection-oriented, though does not inherently include a

liveness detection capability.

Data flow is supported bidirectionally over TCP connections, though

applications are free to send data only unidirectionally, if they so

choose.

TCP uses port numbers to identify application services and to

multiplex distinct flows between hosts.

A more detailed description of TCP features compared to other

transport protocols can be found in Section 3.1 of [53]. Further

description of the motivations for developing TCP and its role in

the Internet protocol stack can be found in Section 2 of [16] and

earlier versions of the TCP specification.

3. Functional Specification

3.1. Header Format

TCP segments are sent as internet datagrams. The Internet Protocol

(IP) header carries several information fields, including the source

and destination host addresses [1] [13]. A TCP header follows the IP

headers, supplying information specific to the TCP protocol. This

division allows for the existence of host level protocols other than

TCP. In early development of the Internet suite of protocols, the IP

header fields had been a part of TCP.
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Source Port: 16 bits.

Destination Port: 16 bits.

Sequence Number: 32 bits.

Acknowledgment Number: 32 bits.

This document describes the TCP protocol. The TCP protocol uses TCP

Headers.

A TCP Header, followed by any user data in the segment, is formatted

as follows, using the style from [67]:

Figure 1: TCP Header Format

where:

The source port number.

The destination port number.

The sequence number of the first data octet in this segment

(except when the SYN flag is set). If SYN is set the sequence

number is the initial sequence number (ISN) and the first data

octet is ISN+1.

If the ACK control bit is set, this field contains the value of

the next sequence number the sender of the segment is expecting

¶

¶

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |          Source Port          |       Destination Port        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                        Sequence Number                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                    Acknowledgment Number                      |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |  Data |       |C|E|U|A|P|R|S|F|                               |

   | Offset| Rsrvd |W|C|R|C|S|S|Y|I|            Window             |

   |       |       |R|E|G|K|H|T|N|N|                               |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |           Checksum            |         Urgent Pointer        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                           [Options]                           |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                                                               :

   :                             Data                              :

   :                                                               |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Note that one tick mark represents one bit position.
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Data Offset (DOffset): 4 bits.

Reserved (Rsrvd): 4 bits.

CWR: 1 bit.

ECE: 1 bit.

URG: 1 bit.

ACK: 1 bit.

PSH: 1 bit.

RST: 1 bit.

SYN: 1 bit.

FIN: 1 bit.

Window: 16 bits.

to receive. Once a connection is established, this is always

sent.

The number of 32 bit words in the TCP Header. This indicates

where the data begins. The TCP header (even one including

options) is an integer multiple of 32 bits long.

A set of control bits reserved for future use. Must be zero in

generated segments and must be ignored in received segments, if

corresponding future features are unimplemented by the sending or

receiving host.

The control bits are also known as "flags". Assignment is managed

by IANA from the "TCP Header Flags" registry [63]. The currently

assigned control bits are CWR, ECE, URG, ACK, PSH, RST, SYN, and

FIN.

Congestion Window Reduced (see [6]).

ECN-Echo (see [6]).

Urgent Pointer field is significant.

Acknowledgment field is significant.

Push Function (see the Send Call description in Section 3.9.1).

Reset the connection.

Synchronize sequence numbers.

No more data from sender.

The number of data octets beginning with the one indicated in the

acknowledgment field that the sender of this segment is willing

to accept. The value is shifted when the Window Scaling extension

is used [48].
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Checksum: 16 bits.

Pseudo header components for IPv4:

The window size MUST be treated as an unsigned number, or else

large window sizes will appear like negative windows and TCP will

not work (MUST-1). It is RECOMMENDED that implementations will

reserve 32-bit fields for the send and receive window sizes in

the connection record and do all window computations with 32 bits

(REC-1).

The checksum field is the 16 bit ones' complement of the ones'

complement sum of all 16 bit words in the header and text. The

checksum computation needs to ensure the 16-bit alignment of the

data being summed. If a segment contains an odd number of header

and text octets, alignment can be achieved by padding the last

octet with zeros on its right to form a 16 bit word for checksum

purposes. The pad is not transmitted as part of the segment.

While computing the checksum, the checksum field itself is

replaced with zeros.

The checksum also covers a pseudo header (Figure 2) conceptually

prefixed to the TCP header. The pseudo header is 96 bits for IPv4

and 320 bits for IPv6. Including the pseudo header in the

checksum gives the TCP connection protection against misrouted

segments. This information is carried in IP headers and is

transferred across the TCP/Network interface in the arguments or

results of calls by the TCP implementation on the IP layer.

Figure 2: IPv4 Pseudo Header

Source Address: the IPv4 source address in network byte

order

Destination Address: the IPv4 destination address in

network byte order

zero: bits set to zero

PTCL: the protocol number from the IP header

TCP Length: the TCP header length plus the data length in

octets (this is not an explicitly transmitted quantity, but

¶

¶

¶

                +--------+--------+--------+--------+

                |           Source Address          |

                +--------+--------+--------+--------+

                |         Destination Address       |

                +--------+--------+--------+--------+

                |  zero  |  PTCL  |    TCP Length   |

                +--------+--------+--------+--------+

¶

¶

¶

¶



Urgent Pointer: 16 bits.

Options: [TCP Option]; size(Options) == (DOffset-5)*32; present only

when DOffset > 5. Note that this size expression also includes any

padding trailing the actual options present.

is computed), and it does not count the 12 octets of the

pseudo header.

For IPv6, the pseudo header is defined in Section 8.1 of RFC

8200 [13], and contains the IPv6 Source Address and

Destination Address, an Upper Layer Packet Length (a 32-bit

value otherwise equivalent to TCP Length in the IPv4 pseudo

header), three bytes of zero-padding, and a Next Header value

(differing from the IPv6 header value in the case of extension

headers present in between IPv6 and TCP).

The TCP checksum is never optional. The sender MUST generate

it (MUST-2) and the receiver MUST check it (MUST-3).

This field communicates the current value of the urgent pointer

as a positive offset from the sequence number in this segment.

The urgent pointer points to the sequence number of the octet

following the urgent data. This field is only to be interpreted

in segments with the URG control bit set.

Options may occupy space at the end of the TCP header and are a

multiple of 8 bits in length. All options are included in the

checksum. An option may begin on any octet boundary. There are

two cases for the format of an option:

Case 1: A single octet of option-kind.

Case 2: An octet of option-kind (Kind), an octet of option-

length, and the actual option-data octets.

The option-length counts the two octets of option-kind and

option-length as well as the option-data octets.

Note that the list of options may be shorter than the data offset

field might imply. The content of the header beyond the End-of-

Option option MUST be header padding of zeros (MUST-69).

The list of all currently defined options is managed by IANA 

[62], and each option is defined in other RFCs, as indicated

there. That set includes experimental options that can be

extended to support multiple concurrent usages [46].

A given TCP implementation can support any currently defined

options, but the following options MUST be supported (MUST-4 -
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Data: variable length.

Kind: 1 byte; Kind == 0.

note Maximum Segment Size option support is also part of MUST-19

in Section 3.7.2):

These options are specified in detail in Section 3.2.

A TCP implementation MUST be able to receive a TCP option in any

segment (MUST-5).

A TCP implementation MUST (MUST-6) ignore without error any TCP

option it does not implement, assuming that the option has a

length field. All TCP options except End of option list and No-

Operation MUST have length fields, including all future options

(MUST-68). TCP implementations MUST be prepared to handle an

illegal option length (e.g., zero); a suggested procedure is to

reset the connection and log the error cause (MUST-7).

Note: There is ongoing work to extend the space available for TCP

options, such as [66].

User data carried by the TCP segment.

3.2. Specific Option Definitions

A TCP Option, in the mandatory option set, is one of: an End of

Option List Option, a No-Operation Option, or a Maximum Segment Size

Option.

An End of Option List Option is formatted as follows:

where:

This option code indicates the end of the option list. This might

not coincide with the end of the TCP header according to the Data

Offset field. This is used at the end of all options, not the end

of each option, and need only be used if the end of the options

would not otherwise coincide with the end of the TCP header.

¶

      Kind     Length    Meaning

      ----     ------    -------

       0         -       End of option list.

       1         -       No-Operation.

       2         4       Maximum Segment Size.

¶
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    0

    0 1 2 3 4 5 6 7

   +-+-+-+-+-+-+-+-+

   |       0       |

   +-+-+-+-+-+-+-+-+
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Kind: 1 byte; Kind == 1.

Kind: 1 byte; Kind == 2.

Length: 1 byte; Length == 4.

Maximum Segment Size (MSS): 2 bytes.

A No-Operation Option is formatted as follows:

where:

This option code can be used between options, for example, to

align the beginning of a subsequent option on a word boundary.

There is no guarantee that senders will use this option, so

receivers MUST be prepared to process options even if they do not

begin on a word boundary (MUST-64).

A Maximum Segment Size Option is formatted as follows:

where:

If this option is present, then it communicates the maximum

receive segment size at the TCP endpoint that sends this segment.

This value is limited by the IP reassembly limit. This field may

be sent in the initial connection request (i.e., in segments with

the SYN control bit set) and MUST NOT be sent in other segments

(MUST-65). If this option is not used, any segment size is

allowed. A more complete description of this option is provided

in Section 3.7.1.

Length of the option in bytes.

The maximum receive segment size at the TCP endpoint that sends

this segment.

3.2.1. Other Common Options

Additional RFCs define some other commonly used options that are

recommended to implement for high performance, but not necessary for

basic TCP interoperability. These are the TCP Selective

¶

    0

    0 1 2 3 4 5 6 7

   +-+-+-+-+-+-+-+-+

   |       1       |

   +-+-+-+-+-+-+-+-+
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    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |       2       |     Length    |   Maximum Segment Size (MSS)  |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶
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Acknowledgement (SACK) option [23][27], TCP Timestamp (TS) option 

[48], and TCP Window Scaling (WS) option [48].

3.2.2. Experimental TCP Options

Experimental TCP option values are defined in [31], and [46]

describes the current recommended usage for these experimental

values.

3.3. TCP Terminology Overview

This section includes an overview of key terms needed to understand

the detailed protocol operation in the rest of the document. There

is a glossary of terms in Section 4.

3.3.1. Key Connection State Variables

Before we can discuss very much about the operation of the TCP

implementation we need to introduce some detailed terminology. The

maintenance of a TCP connection requires maintaining state for

several variables. We conceive of these variables being stored in a

connection record called a Transmission Control Block or TCB. Among

the variables stored in the TCB are the local and remote IP

addresses and port numbers, the IP security level and compartment of

the connection (see Appendix A.1), pointers to the user's send and

receive buffers, pointers to the retransmit queue and to the current

segment. In addition, several variables relating to the send and

receive sequence numbers are stored in the TCB.

The following diagrams may help to relate some of these variables to

the sequence space.

¶

¶

¶
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    Send Sequence Variables:

      SND.UNA - send unacknowledged

      SND.NXT - send next

      SND.WND - send window

      SND.UP  - send urgent pointer

      SND.WL1 - segment sequence number used for last window update

      SND.WL2 - segment acknowledgment number used for last window

                update

      ISS     - initial send sequence number

    Receive Sequence Variables:

      RCV.NXT - receive next

      RCV.WND - receive window

      RCV.UP  - receive urgent pointer

      IRS     - initial receive sequence number

¶
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Figure 3: Send Sequence Space

The send window is the portion of the sequence space labeled 3 in 

Figure 3.

Figure 4: Receive Sequence Space

The receive window is the portion of the sequence space labeled 2 in

Figure 4.

There are also some variables used frequently in the discussion that

take their values from the fields of the current segment.

Current Segment Variables:

3.3.2. State Machine Overview

A connection progresses through a series of states during its

lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,

ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,

TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional

                   1         2          3          4

              ----------|----------|----------|----------

                     SND.UNA    SND.NXT    SND.UNA

                                          +SND.WND

        1 - old sequence numbers that have been acknowledged

        2 - sequence numbers of unacknowledged data

        3 - sequence numbers allowed for new data transmission

        4 - future sequence numbers that are not yet allowed

¶

                       1          2          3

                   ----------|----------|----------

                          RCV.NXT    RCV.NXT

                                    +RCV.WND

        1 - old sequence numbers that have been acknowledged

        2 - sequence numbers allowed for new reception

        3 - future sequence numbers that are not yet allowed

¶

¶

¶

    SEG.SEQ - segment sequence number

    SEG.ACK - segment acknowledgment number

    SEG.LEN - segment length

    SEG.WND - segment window

    SEG.UP  - segment urgent pointer

¶



because it represents the state when there is no TCB, and therefore,

no connection. Briefly the meanings of the states are:

LISTEN - represents waiting for a connection request from any

remote TCP peer and port.

SYN-SENT - represents waiting for a matching connection request

after having sent a connection request.

SYN-RECEIVED - represents waiting for a confirming connection

request acknowledgment after having both received and sent a

connection request.

ESTABLISHED - represents an open connection, data received can be

delivered to the user. The normal state for the data transfer

phase of the connection.

FIN-WAIT-1 - represents waiting for a connection termination

request from the remote TCP peer, or an acknowledgment of the

connection termination request previously sent.

FIN-WAIT-2 - represents waiting for a connection termination

request from the remote TCP peer.

CLOSE-WAIT - represents waiting for a connection termination

request from the local user.

CLOSING - represents waiting for a connection termination request

acknowledgment from the remote TCP peer.

LAST-ACK - represents waiting for an acknowledgment of the

connection termination request previously sent to the remote TCP

peer (this termination request sent to the remote TCP peer

already included an acknowledgment of the termination request

sent from the remote TCP peer).

TIME-WAIT - represents waiting for enough time to pass to be sure

the remote TCP peer received the acknowledgment of its connection

termination request, and to avoid new connections being impacted

by delayed segments from previous connections.

CLOSED - represents no connection state at all.

A TCP connection progresses from one state to another in response to

events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,

ABORT, and STATUS; the incoming segments, particularly those

containing the SYN, ACK, RST and FIN flags; and timeouts.

The OPEN call specifies whether connection establishment is to be

actively pursued, or to be passively waited for.
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A passive OPEN request means that the process wants to accept

incoming connection requests, in contrast to an active OPEN

attempting to initiate a connection.

The state diagram in Figure 5 illustrates only state changes,

together with the causing events and resulting actions, but

addresses neither error conditions nor actions that are not

connected with state changes. In a later section, more detail is

offered with respect to the reaction of the TCP implementation to

events. Some state names are abbreviated or hyphenated differently

in the diagram from how they appear elsewhere in the document.

NOTA BENE: This diagram is only a summary and must not be taken as

the total specification. Many details are not included.
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Figure 5: TCP Connection State Diagram

                            +---------+ ---------\      active OPEN

                            |  CLOSED |            \    -----------

                            +---------+<---------\   \   create TCB

                              |     ^              \   \  snd SYN

                 passive OPEN |     |   CLOSE        \   \

                 ------------ |     | ----------       \   \

                  create TCB  |     | delete TCB         \   \

                              V     |                      \   \

          rcv RST (note 1)  +---------+            CLOSE    |    \

       -------------------->|  LISTEN |          ---------- |     |

      /                     +---------+          delete TCB |     |

     /           rcv SYN      |     |     SEND              |     |

    /           -----------   |     |    -------            |     V

+--------+      snd SYN,ACK  /       \   snd SYN          +--------+

|        |<-----------------           ------------------>|        |

|  SYN   |                    rcv SYN                     |  SYN   |

|  RCVD  |<-----------------------------------------------|  SENT  |

|        |                  snd SYN,ACK                   |        |

|        |------------------           -------------------|        |

+--------+   rcv ACK of SYN  \       /  rcv SYN,ACK       +--------+

   |         --------------   |     |   -----------

   |                x         |     |     snd ACK

   |                          V     V

   |  CLOSE                 +---------+

   | -------                |  ESTAB  |

   | snd FIN                +---------+

   |                 CLOSE    |     |    rcv FIN

   V                -------   |     |    -------

+---------+         snd FIN  /       \   snd ACK         +---------+

|  FIN    |<----------------          ------------------>|  CLOSE  |

| WAIT-1  |------------------                            |   WAIT  |

+---------+          rcv FIN  \                          +---------+

  | rcv ACK of FIN   -------   |                          CLOSE  |

  | --------------   snd ACK   |                         ------- |

  V        x                   V                         snd FIN V

+---------+               +---------+                    +---------+

|FINWAIT-2|               | CLOSING |                    | LAST-ACK|

+---------+               +---------+                    +---------+

  |              rcv ACK of FIN |                 rcv ACK of FIN |

  |  rcv FIN     -------------- |    Timeout=2MSL -------------- |

  |  -------            x       V    ------------        x       V

   \ snd ACK              +---------+delete TCB          +---------+

     -------------------->|TIME-WAIT|------------------->| CLOSED  |

                          +---------+                    +---------+



The following notes apply to Figure 5:

Note 1: The transition from SYN-RECEIVED to LISTEN on receiving a

RST is conditional on having reached SYN-RECEIVED after a passive

open.

Note 2: The figure omits a transition from FIN-WAIT-1 to TIME-

WAIT if a FIN is received and the local FIN is also acknowledged.

Note 3: A RST can be sent from any state with a corresponding

transition to TIME-WAIT (see [71] for rationale). These

transitions are not explicitly shown, otherwise the diagram would

become very difficult to read. Similarly, receipt of a RST from

any state results in a transition to LISTEN or CLOSED, though

this is also omitted from the diagram for legibility.

3.4. Sequence Numbers

A fundamental notion in the design is that every octet of data sent

over a TCP connection has a sequence number. Since every octet is

sequenced, each of them can be acknowledged. The acknowledgment

mechanism employed is cumulative so that an acknowledgment of

sequence number X indicates that all octets up to but not including

X have been received. This mechanism allows for straight-forward

duplicate detection in the presence of retransmission. Numbering of

octets within a segment is that the first data octet immediately

following the header is the lowest numbered, and the following

octets are numbered consecutively.

It is essential to remember that the actual sequence number space is

finite, though large. This space ranges from 0 to 2**32 - 1. Since

the space is finite, all arithmetic dealing with sequence numbers

must be performed modulo 2**32. This unsigned arithmetic preserves

the relationship of sequence numbers as they cycle from 2**32 - 1 to

0 again. There are some subtleties to computer modulo arithmetic, so

great care should be taken in programming the comparison of such

values. The symbol "=<" means "less than or equal" (modulo 2**32).

The typical kinds of sequence number comparisons that the TCP

implementation must perform include:

(a) Determining that an acknowledgment refers to some sequence

number sent but not yet acknowledged.

(b) Determining that all sequence numbers occupied by a segment

have been acknowledged (e.g., to remove the segment from a

retransmission queue).
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(c) Determining that an incoming segment contains sequence

numbers that are expected (i.e., that the segment "overlaps" the

receive window).

In response to sending data the TCP endpoint will receive

acknowledgments. The following comparisons are needed to process the

acknowledgments.

SND.UNA = oldest unacknowledged sequence number

SND.NXT = next sequence number to be sent

SEG.ACK = acknowledgment from the receiving TCP peer (next

sequence number expected by the receiving TCP peer)

SEG.SEQ = first sequence number of a segment

SEG.LEN = the number of octets occupied by the data in the

segment (counting SYN and FIN)

SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

A new acknowledgment (called an "acceptable ack"), is one for which

the inequality below holds:

SND.UNA < SEG.ACK =< SND.NXT

A segment on the retransmission queue is fully acknowledged if the

sum of its sequence number and length is less or equal than the

acknowledgment value in the incoming segment.

When data is received the following comparisons are needed:

RCV.NXT = next sequence number expected on an incoming segment,

and is the left or lower edge of the receive window

RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming

segment, and is the right or upper edge of the receive window

SEG.SEQ = first sequence number occupied by the incoming segment

SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming

segment

A segment is judged to occupy a portion of valid receive sequence

space if

RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
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or

RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

The first part of this test checks to see if the beginning of the

segment falls in the window, the second part of the test checks to

see if the end of the segment falls in the window; if the segment

passes either part of the test it contains data in the window.

Actually, it is a little more complicated than this. Due to zero

windows and zero length segments, we have four cases for the

acceptability of an incoming segment:

Note that when the receive window is zero no segments should be

acceptable except ACK segments. Thus, it is possible for a TCP

implementation to maintain a zero receive window while transmitting

data and receiving ACKs. A TCP receiver MUST process the RST and URG

fields of all incoming segments, even when the receive window is

zero (MUST-66).

We have taken advantage of the numbering scheme to protect certain

control information as well. This is achieved by implicitly

including some control flags in the sequence space so they can be

retransmitted and acknowledged without confusion (i.e., one and only

one copy of the control will be acted upon). Control information is

not physically carried in the segment data space. Consequently, we

must adopt rules for implicitly assigning sequence numbers to

control. The SYN and FIN are the only controls requiring this

protection, and these controls are used only at connection opening

and closing. For sequence number purposes, the SYN is considered to

occur before the first actual data octet of the segment in which it

occurs, while the FIN is considered to occur after the last actual

data octet in a segment in which it occurs. The segment length

(SEG.LEN) includes both data and sequence space-occupying controls.

When a SYN is present then SEG.SEQ is the sequence number of the

SYN.
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    Segment Receive  Test

    Length  Window

    ------- -------  -------------------------------------------

       0       0     SEG.SEQ = RCV.NXT

       0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

      >0       0     not acceptable

      >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

                  or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
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3.4.1. Initial Sequence Number Selection

A connection is defined by a pair of sockets. Connections can be

reused. New instances of a connection will be referred to as

incarnations of the connection. The problem that arises from this is

-- "how does the TCP implementation identify duplicate segments from

previous incarnations of the connection?" This problem becomes

apparent if the connection is being opened and closed in quick

succession, or if the connection breaks with loss of memory and is

then reestablished. To support this, the TIME-WAIT state limits the

rate of connection reuse, while the initial sequence number

selection described below further protects against ambiguity about

what incarnation of a connection an incoming packet corresponds to.

To avoid confusion we must prevent segments from one incarnation of

a connection from being used while the same sequence numbers may

still be present in the network from an earlier incarnation. We want

to assure this, even if a TCP endpoint loses all knowledge of the

sequence numbers it has been using. When new connections are

created, an initial sequence number (ISN) generator is employed that

selects a new 32 bit ISN. There are security issues that result if

an off-path attacker is able to predict or guess ISN values [43].

TCP Initial Sequence Numbers are generated from a number sequence

that monotonically increases until it wraps, known loosely as a

"clock". This clock is a 32-bit counter that typically increments at

least once every roughly 4 microseconds, although it is neither

assumed to be realtime nor precise, and need not persist across

reboots. The clock component is intended to ensure that with a

Maximum Segment Lifetime (MSL), generated ISNs will be unique, since

it cycles approximately every 4.55 hours, which is much longer than

the MSL.

A TCP implementation MUST use the above type of "clock" for clock-

driven selection of initial sequence numbers (MUST-8), and SHOULD

generate its Initial Sequence Numbers with the expression:

ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

where M is the 4 microsecond timer, and F() is a pseudorandom

function (PRF) of the connection's identifying parameters ("localip,

localport, remoteip, remoteport") and a secret key ("secretkey")

(SHLD-1). F() MUST NOT be computable from the outside (MUST-9), or

an attacker could still guess at sequence numbers from the ISN used

for some other connection. The PRF could be implemented as a

cryptographic hash of the concatenation of the TCP connection

parameters and some secret data. For discussion of the selection of

a specific hash algorithm and management of the secret key data,

please see Section 3 of [43].
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For each connection there is a send sequence number and a receive

sequence number. The initial send sequence number (ISS) is chosen by

the data sending TCP peer, and the initial receive sequence number

(IRS) is learned during the connection establishing procedure.

For a connection to be established or initialized, the two TCP peers

must synchronize on each other's initial sequence numbers. This is

done in an exchange of connection establishing segments carrying a

control bit called "SYN" (for synchronize) and the initial sequence

numbers. As a shorthand, segments carrying the SYN bit are also

called "SYNs". Hence, the solution requires a suitable mechanism for

picking an initial sequence number and a slightly involved handshake

to exchange the ISNs.

The synchronization requires each side to send its own initial

sequence number and to receive a confirmation of it in

acknowledgment from the remote TCP peer. Each side must also receive

the remote peer's initial sequence number and send a confirming

acknowledgment.

Because steps 2 and 3 can be combined in a single message this is

called the three-way (or three message) handshake (3WHS).

A 3WHS is necessary because sequence numbers are not tied to a

global clock in the network, and TCP implementations may have

different mechanisms for picking the ISNs. The receiver of the first

SYN has no way of knowing whether the segment was an old one or not,

unless it remembers the last sequence number used on the connection

(which is not always possible), and so it must ask the sender to

verify this SYN. The three-way handshake and the advantages of a

clock-driven scheme for ISN selection are discussed in [70].

3.4.2. Knowing When to Keep Quiet

A theoretical problem exists where data could be corrupted due to

confusion between old segments in the network and new ones after a

host reboots, if the same port numbers and sequence space are

reused. The "Quiet Time" concept discussed below addresses this and

the discussion of it is included for situations where it might be

relevant, although it is not felt to be necessary in most current

implementations. The problem was more relevant earlier in the

history of TCP. In practical use on the Internet today, the error-

prone conditions are sufficiently unlikely that it is felt safe to

ignore. Reasons why it is now negligible include: (a) ISS and

¶

¶

¶

    1) A --> B  SYN my sequence number is X

    2) A <-- B  ACK your sequence number is X

    3) A <-- B  SYN my sequence number is Y

    4) A --> B  ACK your sequence number is Y
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ephemeral port randomization have reduced likelihood of reuse of

port numbers and sequence numbers after reboots, (b) the effective

MSL of the Internet has declined as links have become faster, and

(c) reboots often taking longer than an MSL anyways.

To be sure that a TCP implementation does not create a segment

carrying a sequence number that may be duplicated by an old segment

remaining in the network, the TCP endpoint must keep quiet for an

MSL before assigning any sequence numbers upon starting up or

recovering from a situation where memory of sequence numbers in use

was lost. For this specification the MSL is taken to be 2 minutes.

This is an engineering choice, and may be changed if experience

indicates it is desirable to do so. Note that if a TCP endpoint is

reinitialized in some sense, yet retains its memory of sequence

numbers in use, then it need not wait at all; it must only be sure

to use sequence numbers larger than those recently used.

3.4.3. The TCP Quiet Time Concept

Hosts that for any reason lose knowledge of the last sequence

numbers transmitted on each active (i.e., not closed) connection

shall delay emitting any TCP segments for at least the agreed MSL in

the internet system that the host is a part of. In the paragraphs

below, an explanation for this specification is given. TCP

implementors may violate the "quiet time" restriction, but only at

the risk of causing some old data to be accepted as new or new data

rejected as old duplicated data by some receivers in the internet

system.

TCP endpoints consume sequence number space each time a segment is

formed and entered into the network output queue at a source host.

The duplicate detection and sequencing algorithm in the TCP protocol

relies on the unique binding of segment data to sequence space to

the extent that sequence numbers will not cycle through all 2**32

values before the segment data bound to those sequence numbers has

been delivered and acknowledged by the receiver and all duplicate

copies of the segments have "drained" from the internet. Without

such an assumption, two distinct TCP segments could conceivably be

assigned the same or overlapping sequence numbers, causing confusion

at the receiver as to which data is new and which is old. Remember

that each segment is bound to as many consecutive sequence numbers

as there are octets of data and SYN or FIN flags in the segment.

Under normal conditions, TCP implementations keep track of the next

sequence number to emit and the oldest awaiting acknowledgment so as

to avoid mistakenly using a sequence number over before its first

use has been acknowledged. This alone does not guarantee that old

duplicate data is drained from the net, so the sequence space has

been made large to reduce the probability that a wandering duplicate
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will cause trouble upon arrival. At 2 megabits/sec. it takes 4.5

hours to use up 2**32 octets of sequence space. Since the maximum

segment lifetime in the net is not likely to exceed a few tens of

seconds, this is deemed ample protection for foreseeable nets, even

if data rates escalate to 10s of megabits/sec. At 100 megabits/sec,

the cycle time is 5.4 minutes, which may be a little short, but

still within reason. Much higher data rates are possible today, with

implications described in the final paragraph of this subsection.

The basic duplicate detection and sequencing algorithm in TCP can be

defeated, however, if a source TCP endpoint does not have any memory

of the sequence numbers it last used on a given connection. For

example, if the TCP implementation were to start all connections

with sequence number 0, then upon the host rebooting, a TCP peer

might re-form an earlier connection (possibly after half-open

connection resolution) and emit packets with sequence numbers

identical to or overlapping with packets still in the network, which

were emitted on an earlier incarnation of the same connection. In

the absence of knowledge about the sequence numbers used on a

particular connection, the TCP specification recommends that the

source delay for MSL seconds before emitting segments on the

connection, to allow time for segments from the earlier connection

incarnation to drain from the system.

Even hosts that can remember the time of day and used it to select

initial sequence number values are not immune from this problem

(i.e., even if time of day is used to select an initial sequence

number for each new connection incarnation).

Suppose, for example, that a connection is opened starting with

sequence number S. Suppose that this connection is not used much and

that eventually the initial sequence number function (ISN(t)) takes

on a value equal to the sequence number, say S1, of the last segment

sent by this TCP endpoint on a particular connection. Now suppose,

at this instant, the host reboots and establishes a new incarnation

of the connection. The initial sequence number chosen is S1 = ISN(t)

-- last used sequence number on old incarnation of connection! If

the recovery occurs quickly enough, any old duplicates in the net

bearing sequence numbers in the neighborhood of S1 may arrive and be

treated as new packets by the receiver of the new incarnation of the

connection.

The problem is that the recovering host may not know for how long it

was down between rebooting nor does it know whether there are still

old duplicates in the system from earlier connection incarnations.

One way to deal with this problem is to deliberately delay emitting

segments for one MSL after recovery from a reboot - this is the

"quiet time" specification. Hosts that prefer to avoid waiting and
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are willing to risk possible confusion of old and new packets at a

given destination may choose not to wait for the "quiet time".

Implementors may provide TCP users with the ability to select on a

connection by connection basis whether to wait after a reboot, or

may informally implement the "quiet time" for all connections.

Obviously, even where a user selects to "wait," this is not

necessary after the host has been "up" for at least MSL seconds.

To summarize: every segment emitted occupies one or more sequence

numbers in the sequence space, the numbers occupied by a segment are

"busy" or "in use" until MSL seconds have passed, upon rebooting a

block of space-time is occupied by the octets and SYN or FIN flags

of any potentially still in-flight segments, and if a new connection

is started too soon and uses any of the sequence numbers in the

space-time footprint of those potentially still in-flight segments

of the previous connection incarnation, there is a potential

sequence number overlap area that could cause confusion at the

receiver.

High performance cases will have shorter cycle times than those in

the megabits per second that the base TCP design described above

considers. At 1 Gbps, the cycle time is 34 seconds, only 3 seconds

at 10 Gbps, and around a third of a second at 100 Gbps. In these

higher performance cases, TCP Timestamp options and Protection

Against Wrapped Sequences (PAWS) [48] provide the needed capability

to detect and discard old duplicates.

3.5. Establishing a connection

The "three-way handshake" is the procedure used to establish a

connection. This procedure normally is initiated by one TCP peer and

responded to by another TCP peer. The procedure also works if two

TCP peers simultaneously initiate the procedure. When simultaneous

open occurs, each TCP peer receives a "SYN" segment that carries no

acknowledgment after it has sent a "SYN". Of course, the arrival of

an old duplicate "SYN" segment can potentially make it appear, to

the recipient, that a simultaneous connection initiation is in

progress. Proper use of "reset" segments can disambiguate these

cases.

Several examples of connection initiation follow. Although these

examples do not show connection synchronization using data-carrying

segments, this is perfectly legitimate, so long as the receiving TCP

endpoint doesn't deliver the data to the user until it is clear the

data is valid (e.g., the data is buffered at the receiver until the

connection reaches the ESTABLISHED state, given that the three-way

handshake reduces the possibility of false connections). It is a

trade-off between memory and messages to provide information for

this checking.
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The simplest 3WHS is shown in Figure 6. The figures should be

interpreted in the following way. Each line is numbered for

reference purposes. Right arrows (-->) indicate departure of a TCP

segment from TCP peer A to TCP peer B, or arrival of a segment at B

from A. Left arrows (<--), indicate the reverse. Ellipsis (...)

indicates a segment that is still in the network (delayed). Comments

appear in parentheses. TCP connection states represent the state

AFTER the departure or arrival of the segment (whose contents are

shown in the center of each line). Segment contents are shown in

abbreviated form, with sequence number, control flags, and ACK

field. Other fields such as window, addresses, lengths, and text

have been left out in the interest of clarity.

Figure 6: Basic 3-Way Handshake for Connection Synchronization

In line 2 of Figure 6, TCP Peer A begins by sending a SYN segment

indicating that it will use sequence numbers starting with sequence

number 100. In line 3, TCP Peer B sends a SYN and acknowledges the

SYN it received from TCP Peer A. Note that the acknowledgment field

indicates TCP Peer B is now expecting to hear sequence 101,

acknowledging the SYN that occupied sequence 100.

At line 4, TCP Peer A responds with an empty segment containing an

ACK for TCP Peer B's SYN; and in line 5, TCP Peer A sends some data.

Note that the sequence number of the segment in line 5 is the same

as in line 4 because the ACK does not occupy sequence number space

(if it did, we would wind up ACKing ACKs!).

Simultaneous initiation is only slightly more complex, as is shown

in Figure 7. Each TCP peer's connection state cycles from CLOSED to

SYN-SENT to SYN-RECEIVED to ESTABLISHED.

¶

    TCP Peer A                                           TCP Peer B

1.  CLOSED                                               LISTEN

2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               --> SYN-RECEIVED

3.  ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED

4.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK>       --> ESTABLISHED

5.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED
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Figure 7: Simultaneous Connection Synchronization

A TCP implementation MUST support simultaneous open attempts

(MUST-10).

Note that a TCP implementation MUST keep track of whether a

connection has reached SYN-RECEIVED state as the result of a passive

OPEN or an active OPEN (MUST-11).

The principal reason for the three-way handshake is to prevent old

duplicate connection initiations from causing confusion. To deal

with this, a special control message, reset, is specified. If the

receiving TCP peer is in a non-synchronized state (i.e., SYN-SENT,

SYN-RECEIVED), it returns to LISTEN on receiving an acceptable

reset. If the TCP peer is in one of the synchronized states

(ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,

TIME-WAIT), it aborts the connection and informs its user. We

discuss this latter case under "half-open" connections below.

    TCP Peer A                                       TCP Peer B

1.  CLOSED                                           CLOSED

2.  SYN-SENT     --> <SEQ=100><CTL=SYN>              ...

3.  SYN-RECEIVED <-- <SEQ=300><CTL=SYN>              <-- SYN-SENT

4.               ... <SEQ=100><CTL=SYN>              --> SYN-RECEIVED

5.  SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

6.  ESTABLISHED  <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

7.               ... <SEQ=100><ACK=301><CTL=SYN,ACK> --> ESTABLISHED

¶

¶

¶



Figure 8: Recovery from Old Duplicate SYN

As a simple example of recovery from old duplicates, consider Figure

8. At line 3, an old duplicate SYN arrives at TCP Peer B. TCP Peer B

cannot tell that this is an old duplicate, so it responds normally

(line 4). TCP Peer A detects that the ACK field is incorrect and

returns a RST (reset) with its SEQ field selected to make the

segment believable. TCP Peer B, on receiving the RST, returns to the

LISTEN state. When the original SYN finally arrives at line 6, the

synchronization proceeds normally. If the SYN at line 6 had arrived

before the RST, a more complex exchange might have occurred with

RST's sent in both directions.

3.5.1. Half-Open Connections and Other Anomalies

An established connection is said to be "half-open" if one of the

TCP peers has closed or aborted the connection at its end without

the knowledge of the other, or if the two ends of the connection

have become desynchronized owing to a failure or reboot that

resulted in loss of memory. Such connections will automatically

become reset if an attempt is made to send data in either direction.

However, half-open connections are expected to be unusual.

If at site A the connection no longer exists, then an attempt by the

user at site B to send any data on it will result in the site B TCP

endpoint receiving a reset control message. Such a message indicates

to the site B TCP endpoint that something is wrong, and it is

expected to abort the connection.

Assume that two user processes A and B are communicating with one

another when a failure or reboot occurs causing loss of memory to

    TCP Peer A                                           TCP Peer B

1.  CLOSED                                               LISTEN

2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               ...

3.  (duplicate) ... <SEQ=90><CTL=SYN>               --> SYN-RECEIVED

4.  SYN-SENT    <-- <SEQ=300><ACK=91><CTL=SYN,ACK>  <-- SYN-RECEIVED

5.  SYN-SENT    --> <SEQ=91><CTL=RST>               --> LISTEN

6.              ... <SEQ=100><CTL=SYN>               --> SYN-RECEIVED

7.  ESTABLISHED <-- <SEQ=400><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED

8.  ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK>      --> ESTABLISHED
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A's TCP implementation. Depending on the operating system supporting

A's TCP implementation, it is likely that some error recovery

mechanism exists. When the TCP endpoint is up again, A is likely to

start again from the beginning or from a recovery point. As a

result, A will probably try to OPEN the connection again or try to

SEND on the connection it believes open. In the latter case, it

receives the error message "connection not open" from the local

(A's) TCP implementation. In an attempt to establish the connection,

A's TCP implementation will send a segment containing SYN. This

scenario leads to the example shown in Figure 9. After TCP Peer A

reboots, the user attempts to re-open the connection. TCP Peer B, in

the meantime, thinks the connection is open.

Figure 9: Half-Open Connection Discovery

When the SYN arrives at line 3, TCP Peer B, being in a synchronized

state, and the incoming segment outside the window, responds with an

acknowledgment indicating what sequence it next expects to hear (ACK

100). TCP Peer A sees that this segment does not acknowledge

anything it sent and, being unsynchronized, sends a reset (RST)

because it has detected a half-open connection. TCP Peer B aborts at

line 5. TCP Peer A will continue to try to establish the connection;

the problem is now reduced to the basic 3-way handshake of Figure 6.

An interesting alternative case occurs when TCP Peer A reboots and

TCP Peer B tries to send data on what it thinks is a synchronized

connection. This is illustrated in Figure 10. In this case, the data

arriving at TCP Peer A from TCP Peer B (line 2) is unacceptable

because no such connection exists, so TCP Peer A sends a RST. The

RST is acceptable so TCP Peer B processes it and aborts the

connection.

¶

      TCP Peer A                                      TCP Peer B

  1.  (REBOOT)                              (send 300,receive 100)

  2.  CLOSED                                           ESTABLISHED

  3.  SYN-SENT --> <SEQ=400><CTL=SYN>              --> (??)

  4.  (!!)     <-- <SEQ=300><ACK=100><CTL=ACK>     <-- ESTABLISHED

  5.  SYN-SENT --> <SEQ=100><CTL=RST>              --> (Abort!!)

  6.  SYN-SENT                                         CLOSED

  7.  SYN-SENT --> <SEQ=400><CTL=SYN>              -->

¶

¶



Figure 10: Active Side Causes Half-Open Connection Discovery

In Figure 11, two TCP Peers A and B with passive connections waiting

for SYN are depicted. An old duplicate arriving at TCP Peer B (line

2) stirs B into action. A SYN-ACK is returned (line 3) and causes

TCP A to generate a RST (the ACK in line 3 is not acceptable). TCP

Peer B accepts the reset and returns to its passive LISTEN state.

Figure 11: Old Duplicate SYN Initiates a Reset on two Passive Sockets

A variety of other cases are possible, all of which are accounted

for by the following rules for RST generation and processing.

3.5.2. Reset Generation

A TCP user or application can issue a reset on a connection at any

time, though reset events are also generated by the protocol itself

when various error conditions occur, as described below. The side of

a connection issuing a reset should enter the TIME-WAIT state, as

this generally helps to reduce the load on busy servers for reasons

described in [71].

As a general rule, reset (RST) is sent whenever a segment arrives

that apparently is not intended for the current connection. A reset

must not be sent if it is not clear that this is the case.

      TCP Peer A                                         TCP Peer B

1.  (REBOOT)                                  (send 300,receive 100)

2.  (??)    <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED

3.          --> <SEQ=100><CTL=RST>                   --> (ABORT!!)

¶

    TCP Peer A                                    TCP Peer B

1.  LISTEN                                        LISTEN

2.       ... <SEQ=Z><CTL=SYN>                -->  SYN-RECEIVED

3.  (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK>   <--  SYN-RECEIVED

4.       --> <SEQ=Z+1><CTL=RST>              -->  (return to LISTEN!)

5.  LISTEN                                        LISTEN
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There are three groups of states:

1. If the connection does not exist (CLOSED) then a reset is sent

in response to any incoming segment except another reset. A SYN

segment that does not match an existing connection is rejected by

this means.

If the incoming segment has the ACK bit set, the reset takes its

sequence number from the ACK field of the segment, otherwise the

reset has sequence number zero and the ACK field is set to the

sum of the sequence number and segment length of the incoming

segment. The connection remains in the CLOSED state.

2. If the connection is in any non-synchronized state (LISTEN,

SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges

something not yet sent (the segment carries an unacceptable ACK),

or if an incoming segment has a security level or compartment 

Appendix A.1 that does not exactly match the level and

compartment requested for the connection, a reset is sent.

If the incoming segment has an ACK field, the reset takes its

sequence number from the ACK field of the segment, otherwise the

reset has sequence number zero and the ACK field is set to the

sum of the sequence number and segment length of the incoming

segment. The connection remains in the same state.

3. If the connection is in a synchronized state (ESTABLISHED,

FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-

WAIT), any unacceptable segment (out of window sequence number or

unacceptable acknowledgment number) must be responded to with an

empty acknowledgment segment (without any user data) containing

the current send-sequence number and an acknowledgment indicating

the next sequence number expected to be received, and the

connection remains in the same state.

If an incoming segment has a security level or compartment that

does not exactly match the level and compartment requested for

the connection, a reset is sent and the connection goes to the

CLOSED state. The reset takes its sequence number from the ACK

field of the incoming segment.

3.5.3. Reset Processing

In all states except SYN-SENT, all reset (RST) segments are

validated by checking their SEQ-fields. A reset is valid if its

sequence number is in the window. In the SYN-SENT state (a RST

received in response to an initial SYN), the RST is acceptable if

the ACK field acknowledges the SYN.
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Case 1: Local user initiates the close

The receiver of a RST first validates it, then changes state. If the

receiver was in the LISTEN state, it ignores it. If the receiver was

in SYN-RECEIVED state and had previously been in the LISTEN state,

then the receiver returns to the LISTEN state, otherwise the

receiver aborts the connection and goes to the CLOSED state. If the

receiver was in any other state, it aborts the connection and

advises the user and goes to the CLOSED state.

TCP implementations SHOULD allow a received RST segment to include

data (SHLD-2). It has been suggested that a RST segment could

contain diagnostic data that explains the cause of the RST. No

standard has yet been established for such data.

3.6. Closing a Connection

CLOSE is an operation meaning "I have no more data to send." The

notion of closing a full-duplex connection is subject to ambiguous

interpretation, of course, since it may not be obvious how to treat

the receiving side of the connection. We have chosen to treat CLOSE

in a simplex fashion. The user who CLOSEs may continue to RECEIVE

until the TCP receiver is told that the remote peer has CLOSED also.

Thus, a program could initiate several SENDs followed by a CLOSE,

and then continue to RECEIVE until signaled that a RECEIVE failed

because the remote peer has CLOSED. The TCP implementation will

signal a user, even if no RECEIVEs are outstanding, that the remote

peer has closed, so the user can terminate their side gracefully. A

TCP implementation will reliably deliver all buffers SENT before the

connection was CLOSED so a user who expects no data in return need

only wait to hear the connection was CLOSED successfully to know

that all their data was received at the destination TCP endpoint.

Users must keep reading connections they close for sending until the

TCP implementation indicates there is no more data.

There are essentially three cases:

1) The user initiates by telling the TCP implementation to CLOSE

the connection (TCP Peer A in Figure 12).

2) The remote TCP endpoint initiates by sending a FIN control

signal (TCP Peer B in Figure 12).

3) Both users CLOSE simultaneously (Figure 13).

In this case, a FIN segment can be constructed and placed on the

outgoing segment queue. No further SENDs from the user will be

accepted by the TCP implementation, and it enters the FIN-WAIT-1

state. RECEIVEs are allowed in this state. All segments preceding

and including FIN will be retransmitted until acknowledged. When

the other TCP peer has both acknowledged the FIN and sent a FIN
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Case 2: TCP endpoint receives a FIN from the network

Case 3: Both users close simultaneously

of its own, the first TCP peer can ACK this FIN. Note that a TCP

endpoint receiving a FIN will ACK but not send its own FIN until

its user has CLOSED the connection also.

If an unsolicited FIN arrives from the network, the receiving TCP

endpoint can ACK it and tell the user that the connection is

closing. The user will respond with a CLOSE, upon which the TCP

endpoint can send a FIN to the other TCP peer after sending any

remaining data. The TCP endpoint then waits until its own FIN is

acknowledged whereupon it deletes the connection. If an ACK is

not forthcoming, after the user timeout the connection is aborted

and the user is told.

A simultaneous CLOSE by users at both ends of a connection causes

FIN segments to be exchanged (Figure 13). When all segments

preceding the FINs have been processed and acknowledged, each TCP

peer can ACK the FIN it has received. Both will, upon receiving

these ACKs, delete the connection.

Figure 12: Normal Close Sequence

¶

¶

¶

    TCP Peer A                                           TCP Peer B

1.  ESTABLISHED                                          ESTABLISHED

2.  (Close)

    FIN-WAIT-1  --> <SEQ=100><ACK=300><CTL=FIN,ACK>  --> CLOSE-WAIT

3.  FIN-WAIT-2  <-- <SEQ=300><ACK=101><CTL=ACK>      <-- CLOSE-WAIT

4.                                                       (Close)

    TIME-WAIT   <-- <SEQ=300><ACK=101><CTL=FIN,ACK>  <-- LAST-ACK

5.  TIME-WAIT   --> <SEQ=101><ACK=301><CTL=ACK>      --> CLOSED

6.  (2 MSL)

    CLOSED



Figure 13: Simultaneous Close Sequence

A TCP connection may terminate in two ways: (1) the normal TCP close

sequence using a FIN handshake (Figure 12), and (2) an "abort" in

which one or more RST segments are sent and the connection state is

immediately discarded. If the local TCP connection is closed by the

remote side due to a FIN or RST received from the remote side, then

the local application MUST be informed whether it closed normally or

was aborted (MUST-12).

3.6.1. Half-Closed Connections

The normal TCP close sequence delivers buffered data reliably in

both directions. Since the two directions of a TCP connection are

closed independently, it is possible for a connection to be "half

closed," i.e., closed in only one direction, and a host is permitted

to continue sending data in the open direction on a half-closed

connection.

A host MAY implement a "half-duplex" TCP close sequence, so that an

application that has called CLOSE cannot continue to read data from

the connection (MAY-1). If such a host issues a CLOSE call while

received data is still pending in the TCP connection, or if new data

is received after CLOSE is called, its TCP implementation SHOULD

send a RST to show that data was lost (SHLD-3). See [24] section

2.17 for discussion.

When a connection is closed actively, it MUST linger in the TIME-

WAIT state for a time 2xMSL (Maximum Segment Lifetime) (MUST-13).

    TCP Peer A                                           TCP Peer B

1.  ESTABLISHED                                          ESTABLISHED

2.  (Close)                                              (Close)

    FIN-WAIT-1  --> <SEQ=100><ACK=300><CTL=FIN,ACK>  ... FIN-WAIT-1

                <-- <SEQ=300><ACK=100><CTL=FIN,ACK>  <--

                ... <SEQ=100><ACK=300><CTL=FIN,ACK>  -->

3.  CLOSING     --> <SEQ=101><ACK=301><CTL=ACK>      ... CLOSING

                <-- <SEQ=301><ACK=101><CTL=ACK>      <--

                ... <SEQ=101><ACK=301><CTL=ACK>      -->

4.  TIME-WAIT                                            TIME-WAIT

    (2 MSL)                                              (2 MSL)

    CLOSED                                               CLOSED
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However, it MAY accept a new SYN from the remote TCP endpoint to

reopen the connection directly from TIME-WAIT state (MAY-2), if it:

(1) assigns its initial sequence number for the new connection to

be larger than the largest sequence number it used on the

previous connection incarnation, and

(2) returns to TIME-WAIT state if the SYN turns out to be an old

duplicate.

When the TCP Timestamp options are available, an improved algorithm

is described in [41] in order to support higher connection

establishment rates. This algorithm for reducing TIME-WAIT is a Best

Current Practice that SHOULD be implemented, since timestamp options

are commonly used, and using them to reduce TIME-WAIT provides

benefits for busy Internet servers (SHLD-4).

3.7. Segmentation

The term "segmentation" refers to the activity TCP performs when

ingesting a stream of bytes from a sending application and

packetizing that stream of bytes into TCP segments. Individual TCP

segments often do not correspond one-for-one to individual send (or

socket write) calls from the application. Applications may perform

writes at the granularity of messages in the upper layer protocol,

but TCP guarantees no boundary coherence between the TCP segments

sent and received versus user application data read or write buffer

boundaries. In some specific protocols, such as Remote Direct Memory

Access (RDMA) using Direct Data Placement (DDP) and Marker PDU

Aligned Framing (MPA) [35], there are performance optimizations

possible when the relation between TCP segments and application data

units can be controlled, and MPA includes a specific mechanism for

detecting and verifying this relationship between TCP segments and

application message data structures, but this is specific to

applications like RDMA. In general, multiple goals influence the

sizing of TCP segments created by a TCP implementation.

Goals driving the sending of larger segments include:

Reducing the number of packets in flight within the network.

Increasing processing efficiency and potential performance by

enabling a smaller number of interrupts and inter-layer

interactions.

Limiting the overhead of TCP headers.

Note that the performance benefits of sending larger segments may

decrease as the size increases, and there may be boundaries where

advantages are reversed. For instance, on some implementation
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architectures, 1025 bytes within a segment could lead to worse

performance than 1024 bytes, due purely to data alignment on copy

operations.

Goals driving the sending of smaller segments include:

Avoiding sending a TCP segment that would result in an IP

datagram larger than the smallest MTU along an IP network path,

because this results in either packet loss or packet

fragmentation. Making matters worse, some firewalls or

middleboxes may drop fragmented packets or ICMP messages related

to fragmentation.

Preventing delays to the application data stream, especially when

TCP is waiting on the application to generate more data, or when

the application is waiting on an event or input from its peer in

order to generate more data.

Enabling "fate sharing" between TCP segments and lower-layer data

units (e.g. below IP, for links with cell or frame sizes smaller

than the IP MTU).

Towards meeting these competing sets of goals, TCP includes several

mechanisms, including the Maximum Segment Size option, Path MTU

Discovery, the Nagle algorithm, and support for IPv6 Jumbograms, as

discussed in the following subsections.

3.7.1. Maximum Segment Size Option

TCP endpoints MUST implement both sending and receiving the MSS

option (MUST-14).

TCP implementations SHOULD send an MSS option in every SYN segment

when its receive MSS differs from the default 536 for IPv4 or 1220

for IPv6 (SHLD-5), and MAY send it always (MAY-3).

If an MSS option is not received at connection setup, TCP

implementations MUST assume a default send MSS of 536 (576 - 40) for

IPv4 or 1220 (1280 - 60) for IPv6 (MUST-15).

The maximum size of a segment that TCP endpoint really sends, the

"effective send MSS," MUST be the smaller (MUST-16) of the send MSS

(that reflects the available reassembly buffer size at the remote

host, the EMTU_R [20]) and the largest transmission size permitted

by the IP layer (EMTU_S [20]):

Eff.snd.MSS =

min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
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where:

SendMSS is the MSS value received from the remote host, or the

default 536 for IPv4 or 1220 for IPv6, if no MSS option is

received.

MMS_S is the maximum size for a transport-layer message that TCP

may send.

TCPhdrsize is the size of the fixed TCP header and any options.

This is 20 in the (rare) case that no options are present, but

may be larger if TCP options are to be sent. Note that some

options might not be included on all segments, but that for each

segment sent, the sender should adjust the data length

accordingly, within the Eff.snd.MSS.

IPoptionsize is the size of any IPv4 options or IPv6 extension

headers associated with a TCP connection. Note that some options

or extension headers might not be included on all packets, but

that for each segment sent, the sender should adjust the data

length accordingly, within the Eff.snd.MSS.

The MSS value to be sent in an MSS option should be equal to the

effective MTU minus the fixed IP and TCP headers. By ignoring both

IP and TCP options when calculating the value for the MSS option, if

there are any IP or TCP options to be sent in a packet, then the

sender must decrease the size of the TCP data accordingly. RFC 6691 

[44] discusses this in greater detail.

The MSS value to be sent in an MSS option must be less than or equal

to:

MMS_R - 20

where MMS_R is the maximum size for a transport-layer message that

can be received (and reassembled at the IP layer) (MUST-67). TCP

obtains MMS_R and MMS_S from the IP layer; see the generic call

GET_MAXSIZES in Section 3.4 of RFC 1122. These are defined in terms

of their IP MTU equivalents, EMTU_R and EMTU_S [20].

When TCP is used in a situation where either the IP or TCP headers

are not fixed, the sender must reduce the amount of TCP data in any

given packet by the number of octets used by the IP and TCP options.

This has been a point of confusion historically, as explained in RFC

6691, Section 3.1.

3.7.2. Path MTU Discovery

A TCP implementation may be aware of the MTU on directly connected

links, but will rarely have insight about MTUs across an entire
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network path. For IPv4, RFC 1122 recommends an IP-layer default

effective MTU of less than or equal to 576 for destinations not

directly connected, and for IPv6 this would be 1280. Using these

fixed values limits TCP connection performance and efficiency.

Instead, implementation of Path MTU Discovery (PMTUD) and

Packetization Layer Path MTU Discovery (PLPMTUD) is strongly

recommended in order for TCP to improve segmentation decisions. Both

PMTUD and PLPMTUD help TCP choose segment sizes that avoid both on-

path (for IPv4) and source fragmentation (IPv4 and IPv6).

PMTUD for IPv4 [2] or IPv6 [14] is implemented in conjunction

between TCP, IP, and ICMP protocols. It relies both on avoiding

source fragmentation and setting the IPv4 DF (don't fragment) flag,

the latter to inhibit on-path fragmentation. It relies on ICMP

errors from routers along the path, whenever a segment is too large

to traverse a link. Several adjustments to a TCP implementation with

PMTUD are described in RFC 2923 in order to deal with problems

experienced in practice [28]. PLPMTUD [32] is a Standards Track

improvement to PMTUD that relaxes the requirement for ICMP support

across a path, and improves performance in cases where ICMP is not

consistently conveyed, but still tries to avoid source

fragmentation. The mechanisms in all four of these RFCs are

recommended to be included in TCP implementations.

The TCP MSS option specifies an upper bound for the size of packets

that can be received (see [44]). Hence, setting the value in the MSS

option too small can impact the ability for PMTUD or PLPMTUD to find

a larger path MTU. RFC 1191 discusses this implication of many older

TCP implementations setting the TCP MSS to 536 (corresponding to the

IPv4 576 byte default MTU) for non-local destinations, rather than

deriving it from the MTUs of connected interfaces as recommended.

3.7.3. Interfaces with Variable MTU Values

The effective MTU can sometimes vary, as when used with variable

compression, e.g., RObust Header Compression (ROHC) [38]. It is

tempting for a TCP implementation to advertise the largest possible

MSS, to support the most efficient use of compressed payloads.

Unfortunately, some compression schemes occasionally need to

transmit full headers (and thus smaller payloads) to resynchronize

state at their endpoint compressors/decompressors. If the largest

MTU is used to calculate the value to advertise in the MSS option,

TCP retransmission may interfere with compressor resynchronization.

As a result, when the effective MTU of an interface varies packet-

to-packet, TCP implementations SHOULD use the smallest effective MTU

of the interface to calculate the value to advertise in the MSS

option (SHLD-6).
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3.7.4. Nagle Algorithm

The "Nagle algorithm" was described in RFC 896 [18] and was

recommended in RFC 1122 [20] for mitigation of an early problem of

too many small packets being generated. It has been implemented in

most current TCP code bases, sometimes with minor variations (see 

Appendix A.3).

If there is unacknowledged data (i.e., SND.NXT > SND.UNA), then the

sending TCP endpoint buffers all user data (regardless of the PSH

bit), until the outstanding data has been acknowledged or until the

TCP endpoint can send a full-sized segment (Eff.snd.MSS bytes).

A TCP implementation SHOULD implement the Nagle Algorithm to

coalesce short segments (SHLD-7). However, there MUST be a way for

an application to disable the Nagle algorithm on an individual

connection (MUST-17). In all cases, sending data is also subject to

the limitation imposed by the Slow Start algorithm [8].

Since there can be problematic interactions between the Nagle

Algorithm and delayed acknowledgements, some implementations use

minor variations of the Nagle algorithm, such as the one described

in Appendix A.3.

3.7.5. IPv6 Jumbograms

In order to support TCP over IPv6 Jumbograms, implementations need

to be able to send TCP segments larger than the 64KB limit that the

MSS option can convey. RFC 2675 [25] defines that an MSS value of

65,535 bytes is to be treated as infinity, and Path MTU Discovery 

[14] is used to determine the actual MSS.

The Jumbo Payload option need not be implemented or understood by

IPv6 nodes that do not support attachment to links with a MTU

greater than 65,575 [25], and the present IPv6 Node Requirements

does not include support for Jumbograms [55].

3.8. Data Communication

Once the connection is established data is communicated by the

exchange of segments. Because segments may be lost due to errors

(checksum test failure), or network congestion, TCP uses

retransmission to ensure delivery of every segment. Duplicate

segments may arrive due to network or TCP retransmission. As

discussed in the section on sequence numbers, the TCP implementation

performs certain tests on the sequence and acknowledgment numbers in

the segments to verify their acceptability.

The sender of data keeps track of the next sequence number to use in

the variable SND.NXT. The receiver of data keeps track of the next
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sequence number to expect in the variable RCV.NXT. The sender of

data keeps track of the oldest unacknowledged sequence number in the

variable SND.UNA. If the data flow is momentarily idle and all data

sent has been acknowledged then the three variables will be equal.

When the sender creates a segment and transmits it the sender

advances SND.NXT. When the receiver accepts a segment it advances

RCV.NXT and sends an acknowledgment. When the data sender receives

an acknowledgment it advances SND.UNA. The extent to which the

values of these variables differ is a measure of the delay in the

communication. The amount by which the variables are advanced is the

length of the data and SYN or FIN flags in the segment. Note that

once in the ESTABLISHED state all segments must carry current

acknowledgment information.

The CLOSE user call implies a push function (see Section 3.9.1), as

does the FIN control flag in an incoming segment.

3.8.1. Retransmission Timeout

Because of the variability of the networks that compose an

internetwork system and the wide range of uses of TCP connections

the retransmission timeout (RTO) must be dynamically determined.

The RTO MUST be computed according to the algorithm in [10],

including Karn's algorithm for taking RTT samples (MUST-18).

RFC 793 contains an early example procedure for computing the RTO,

based on work mentioned in IEN 177 [72]. This was then replaced by

the algorithm described in RFC 1122, and subsequently updated in RFC

2988, and then again in RFC 6298.

RFC 1122 allows that if a retransmitted packet is identical to the

original packet (which implies not only that the data boundaries

have not changed, but also that none of the headers have changed),

then the same IPv4 Identification field MAY be used (see Section

3.2.1.5 of RFC 1122) (MAY-4). The same IP identification field may

be reused anyways, since it is only meaningful when a datagram is

fragmented [45]. TCP implementations should not rely on or typically

interact with this IPv4 header field in any way. It is not a

reasonable way to either indicate duplicate sent segments, nor to

identify duplicate received segments.

3.8.2. TCP Congestion Control

RFC 2914 [5] explains the importance of congestion control for the

Internet.

RFC 1122 required implementation of Van Jacobson's congestion

control algorithms slow start and congestion avoidance together with
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exponential back-off for successive RTO values for the same segment.

RFC 2581 provided IETF Standards Track description of slow start and

congestion avoidance, along with fast retransmit and fast recovery.

RFC 5681 is the current description of these algorithms and is the

current Standards Track specification providing guidelines for TCP

congestion control. RFC 6298 describes exponential back-off of RTO

values, including keeping the backed-off value until a subsequent

segment with new data has been sent and acknowledged without

retransmission.

A TCP endpoint MUST implement the basic congestion control

algorithms slow start, congestion avoidance, and exponential back-

off of RTO to avoid creating congestion collapse conditions

(MUST-19). RFC 5681 and RFC 6298 describe the basic algorithms on

the IETF Standards Track that are broadly applicable. Multiple other

suitable algorithms exist and have been widely used. Many TCP

implementations support a set of alternative algorithms that can be

configured for use on the endpoint. An endpoint MAY implement such

alternative algorithms provided that the algorithms are conformant

with the TCP specifications from the IETF Standards Track as

described in RFC 2914, RFC 5033 [7], and RFC 8961 [15] (MAY-18).

Explicit Congestion Notification (ECN) was defined in RFC 3168 and

is an IETF Standards Track enhancement that has many benefits [52].

A TCP endpoint SHOULD implement ECN as described in RFC 3168

(SHLD-8).

3.8.3. TCP Connection Failures

Excessive retransmission of the same segment by a TCP endpoint

indicates some failure of the remote host or the Internet path. This

failure may be of short or long duration. The following procedure

MUST be used to handle excessive retransmissions of data segments

(MUST-20):

(a) There are two thresholds R1 and R2 measuring the amount of

retransmission that has occurred for the same segment. R1 and R2

might be measured in time units or as a count of retransmissions

(with the current RTO and corresponding backoffs as a conversion

factor, if needed).

(b) When the number of transmissions of the same segment reaches

or exceeds threshold R1, pass negative advice (see Section

3.3.1.4 of [20]) to the IP layer, to trigger dead-gateway

diagnosis.

(c) When the number of transmissions of the same segment reaches

a threshold R2 greater than R1, close the connection.
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(d) An application MUST (MUST-21) be able to set the value for R2

for a particular connection. For example, an interactive

application might set R2 to "infinity," giving the user control

over when to disconnect.

(e) TCP implementations SHOULD inform the application of the

delivery problem (unless such information has been disabled by

the application; see Asynchronous Reports section), when R1 is

reached and before R2 (SHLD-9). This will allow a remote login

application program to inform the user, for example.

The value of R1 SHOULD correspond to at least 3 retransmissions, at

the current RTO (SHLD-10). The value of R2 SHOULD correspond to at

least 100 seconds (SHLD-11).

An attempt to open a TCP connection could fail with excessive

retransmissions of the SYN segment or by receipt of a RST segment or

an ICMP Port Unreachable. SYN retransmissions MUST be handled in the

general way just described for data retransmissions, including

notification of the application layer.

However, the values of R1 and R2 may be different for SYN and data

segments. In particular, R2 for a SYN segment MUST be set large

enough to provide retransmission of the segment for at least 3

minutes (MUST-23). The application can close the connection (i.e.,

give up on the open attempt) sooner, of course.

3.8.4. TCP Keep-Alives

A TCP connection is said to be "idle" if for some long amount of

time there have been no incoming segments received and there is no

new or unacknowledged data to be sent.

Implementors MAY include "keep-alives" in their TCP implementations

(MAY-5), although this practice is not universally accepted. Some

TCP implementations, however, have included a keep-alive mechanism.

To confirm that an idle connection is still active, these

implementations send a probe segment designed to elicit a response

from the TCP peer. Such a segment generally contains SEG.SEQ =

SND.NXT-1 and may or may not contain one garbage octet of data. If

keep-alives are included, the application MUST be able to turn them

on or off for each TCP connection (MUST-24), and they MUST default

to off (MUST-25).

Keep-alive packets MUST only be sent when no sent data is

outstanding, and no data or acknowledgement packets have been

received for the connection within an interval (MUST-26). This

interval MUST be configurable (MUST-27) and MUST default to no less

than two hours (MUST-28).
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It is extremely important to remember that ACK segments that contain

no data are not reliably transmitted by TCP. Consequently, if a

keep-alive mechanism is implemented it MUST NOT interpret failure to

respond to any specific probe as a dead connection (MUST-29).

An implementation SHOULD send a keep-alive segment with no data

(SHLD-12); however, it MAY be configurable to send a keep-alive

segment containing one garbage octet (MAY-6), for compatibility with

erroneous TCP implementations.

3.8.5. The Communication of Urgent Information

As a result of implementation differences and middlebox

interactions, new applications SHOULD NOT employ the TCP urgent

mechanism (SHLD-13). However, TCP implementations MUST still include

support for the urgent mechanism (MUST-30). Information on how some

TCP implementations interpret the urgent pointer can be found in RFC

6093 [40].

The objective of the TCP urgent mechanism is to allow the sending

user to stimulate the receiving user to accept some urgent data and

to permit the receiving TCP endpoint to indicate to the receiving

user when all the currently known urgent data has been received by

the user.

This mechanism permits a point in the data stream to be designated

as the end of urgent information. Whenever this point is in advance

of the receive sequence number (RCV.NXT) at the receiving TCP

endpoint, that TCP must tell the user to go into "urgent mode"; when

the receive sequence number catches up to the urgent pointer, the

TCP implementation must tell user to go into "normal mode". If the

urgent pointer is updated while the user is in "urgent mode", the

update will be invisible to the user.

The method employs an urgent field that is carried in all segments

transmitted. The URG control flag indicates that the urgent field is

meaningful and must be added to the segment sequence number to yield

the urgent pointer. The absence of this flag indicates that there is

no urgent data outstanding.

To send an urgent indication the user must also send at least one

data octet. If the sending user also indicates a push, timely

delivery of the urgent information to the destination process is

enhanced. Note that because changes in the urgent pointer correspond

to data being written by a sending application, the urgent pointer

can not "recede" in the sequence space, but a TCP receiver should be

robust to invalid urgent pointer values.

A TCP implementation MUST support a sequence of urgent data of any

length (MUST-31). [20]
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The urgent pointer MUST point to the sequence number of the octet

following the urgent data (MUST-62).

A TCP implementation MUST (MUST-32) inform the application layer

asynchronously whenever it receives an Urgent pointer and there was

previously no pending urgent data, or whenever the Urgent pointer

advances in the data stream. The TCP implementation MUST (MUST-33)

provide a way for the application to learn how much urgent data

remains to be read from the connection, or at least to determine

whether more urgent data remains to be read [20].

3.8.6. Managing the Window

The window sent in each segment indicates the range of sequence

numbers the sender of the window (the data receiver) is currently

prepared to accept. There is an assumption that this is related to

the currently available data buffer space available for this

connection.

The sending TCP endpoint packages the data to be transmitted into

segments that fit the current window, and may repackage segments on

the retransmission queue. Such repackaging is not required, but may

be helpful.

In a connection with a one-way data flow, the window information

will be carried in acknowledgment segments that all have the same

sequence number, so there will be no way to reorder them if they

arrive out of order. This is not a serious problem, but it will

allow the window information to be on occasion temporarily based on

old reports from the data receiver. A refinement to avoid this

problem is to act on the window information from segments that carry

the highest acknowledgment number (that is segments with

acknowledgment number equal or greater than the highest previously

received).

Indicating a large window encourages transmissions. If more data

arrives than can be accepted, it will be discarded. This will result

in excessive retransmissions, adding unnecessarily to the load on

the network and the TCP endpoints. Indicating a small window may

restrict the transmission of data to the point of introducing a

round trip delay between each new segment transmitted.

The mechanisms provided allow a TCP endpoint to advertise a large

window and to subsequently advertise a much smaller window without

having accepted that much data. This, so-called "shrinking the

window," is strongly discouraged. The robustness principle [20]

dictates that TCP peers will not shrink the window themselves, but

will be prepared for such behavior on the part of other TCP peers.
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A TCP receiver SHOULD NOT shrink the window, i.e., move the right

window edge to the left (SHLD-14). However, a sending TCP peer MUST

be robust against window shrinking, which may cause the "usable

window" (see Section 3.8.6.2.1) to become negative (MUST-34).

If this happens, the sender SHOULD NOT send new data (SHLD-15), but

SHOULD retransmit normally the old unacknowledged data between

SND.UNA and SND.UNA+SND.WND (SHLD-16). The sender MAY also

retransmit old data beyond SND.UNA+SND.WND (MAY-7), but SHOULD NOT

time out the connection if data beyond the right window edge is not

acknowledged (SHLD-17). If the window shrinks to zero, the TCP

implementation MUST probe it in the standard way (described below)

(MUST-35).

3.8.6.1. Zero Window Probing

The sending TCP peer must regularly transmit at least one octet of

new data (if available) or retransmit to the receiving TCP peer even

if the send window is zero, in order to "probe" the window. This

retransmission is essential to guarantee that when either TCP peer

has a zero window the re-opening of the window will be reliably

reported to the other. This is referred to as Zero-Window Probing

(ZWP) in other documents.

Probing of zero (offered) windows MUST be supported (MUST-36).

A TCP implementation MAY keep its offered receive window closed

indefinitely (MAY-8). As long as the receiving TCP peer continues to

send acknowledgments in response to the probe segments, the sending

TCP peer MUST allow the connection to stay open (MUST-37). This

enables TCP to function in scenarios such as the "printer ran out of

paper" situation described in Section 4.2.2.17 of [20]. The behavior

is subject to the implementation's resource management concerns, as

noted in [42].

When the receiving TCP peer has a zero window and a segment arrives

it must still send an acknowledgment showing its next expected

sequence number and current window (zero).

The transmitting host SHOULD send the first zero-window probe when a

zero window has existed for the retransmission timeout period

(SHLD-29) (Section 3.8.1), and SHOULD increase exponentially the

interval between successive probes (SHLD-30).

3.8.6.2. Silly Window Syndrome Avoidance

The "Silly Window Syndrome" (SWS) is a stable pattern of small

incremental window movements resulting in extremely poor TCP

performance. Algorithms to avoid SWS are described below for both

the sending side and the receiving side. RFC 1122 contains more
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(1)

(2)

detailed discussion of the SWS problem. Note that the Nagle

algorithm and the sender SWS avoidance algorithm play complementary

roles in improving performance. The Nagle algorithm discourages

sending tiny segments when the data to be sent increases in small

increments, while the SWS avoidance algorithm discourages small

segments resulting from the right window edge advancing in small

increments.

3.8.6.2.1. Sender's Algorithm - When to Send Data

A TCP implementation MUST include a SWS avoidance algorithm in the

sender (MUST-38).

The Nagle algorithm from Section 3.7.4 additionally describes how to

coalesce short segments.

The sender's SWS avoidance algorithm is more difficult than the

receiver's, because the sender does not know (directly) the

receiver's total buffer space RCV.BUFF. An approach that has been

found to work well is for the sender to calculate Max(SND.WND), the

maximum send window it has seen so far on the connection, and to use

this value as an estimate of RCV.BUFF. Unfortunately, this can only

be an estimate; the receiver may at any time reduce the size of

RCV.BUFF. To avoid a resulting deadlock, it is necessary to have a

timeout to force transmission of data, overriding the SWS avoidance

algorithm. In practice, this timeout should seldom occur.

The "usable window" is:

U = SND.UNA + SND.WND - SND.NXT

i.e., the offered window less the amount of data sent but not

acknowledged. If D is the amount of data queued in the sending TCP

endpoint but not yet sent, then the following set of rules is

recommended.

Send data:

if a maximum-sized segment can be sent, i.e., if:

min(D,U) >= Eff.snd.MSS;

or if the data is pushed and all queued data can be sent now,

i.e., if:

[SND.NXT = SND.UNA and] PUSHED and D <= U
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(3)

(4)

(the bracketed condition is imposed by the Nagle algorithm);

or if at least a fraction Fs of the maximum window can be sent,

i.e., if:

[SND.NXT = SND.UNA and]

min(D,U) >= Fs * Max(SND.WND);

or if the override timeout occurs.

Here Fs is a fraction whose recommended value is 1/2. The override

timeout should be in the range 0.1 - 1.0 seconds. It may be

convenient to combine this timer with the timer used to probe zero

windows (Section 3.8.6.1).

3.8.6.2.2. Receiver's Algorithm - When to Send a Window Update

A TCP implementation MUST include a SWS avoidance algorithm in the

receiver (MUST-39).

The receiver's SWS avoidance algorithm determines when the right

window edge may be advanced; this is customarily known as "updating

the window". This algorithm combines with the delayed ACK algorithm

(Section 3.8.6.3) to determine when an ACK segment containing the

current window will really be sent to the receiver.

The solution to receiver SWS is to avoid advancing the right window

edge RCV.NXT+RCV.WND in small increments, even if data is received

from the network in small segments.

Suppose the total receive buffer space is RCV.BUFF. At any given

moment, RCV.USER octets of this total may be tied up with data that

has been received and acknowledged but that the user process has not

yet consumed. When the connection is quiescent, RCV.WND = RCV.BUFF

and RCV.USER = 0.

Keeping the right window edge fixed as data arrives and is

acknowledged requires that the receiver offer less than its full

buffer space, i.e., the receiver must specify a RCV.WND that keeps

RCV.NXT+RCV.WND constant as RCV.NXT increases. Thus, the total

buffer space RCV.BUFF is generally divided into three parts:
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The suggested SWS avoidance algorithm for the receiver is to keep

RCV.NXT+RCV.WND fixed until the reduction satisfies:

where Fr is a fraction whose recommended value is 1/2, and

Eff.snd.MSS is the effective send MSS for the connection (see 

Section 3.7.1). When the inequality is satisfied, RCV.WND is set to

RCV.BUFF-RCV.USER.

Note that the general effect of this algorithm is to advance RCV.WND

in increments of Eff.snd.MSS (for realistic receive buffers:

Eff.snd.MSS < RCV.BUFF/2). Note also that the receiver must use its

own Eff.snd.MSS, making the assumption that it is the same as the

sender's.

3.8.6.3. Delayed Acknowledgements - When to Send an ACK Segment

A host that is receiving a stream of TCP data segments can increase

efficiency in both the Internet and the hosts by sending fewer than

one ACK (acknowledgment) segment per data segment received; this is

known as a "delayed ACK".

A TCP endpoint SHOULD implement a delayed ACK (SHLD-18), but an ACK

should not be excessively delayed; in particular, the delay MUST be

less than 0.5 seconds (MUST-40). An ACK SHOULD be generated for at

least every second full-sized segment or 2*RMSS bytes of new data

(where RMSS is the MSS specified by the TCP endpoint receiving the

segments to be acknowledged, or the default value if not specified)

(SHLD-19). Excessive delays on ACKs can disturb the round-trip

timing and packet "clocking" algorithms. More complete discussion of

delayed ACK behavior is in Section 4.2 of RFC 5681 [8], including

recommendations to immediately acknowledge out-of-order segments,

segments above a gap in sequence space, or segments that fill all or

part of a gap, in order to accelerate loss recovery.

               |<------- RCV.BUFF ---------------->|

                    1             2            3

           ----|---------|------------------|------|----

                      RCV.NXT               ^

                                         (Fixed)

           1 - RCV.USER =  data received but not yet consumed;

           2 - RCV.WND =   space advertised to sender;

           3 - Reduction = space available but not yet

                           advertised.
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¶

             RCV.BUFF - RCV.USER - RCV.WND  >=

                    min( Fr * RCV.BUFF, Eff.snd.MSS )
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Note that there are several current practices that further lead to a

reduced number of ACKs, including generic receive offload (GRO), ACK

compression, and ACK decimation [29].

3.9. Interfaces

There are of course two interfaces of concern: the user/TCP

interface and the TCP/lower level interface. We have a fairly

elaborate model of the user/TCP interface, but the interface to the

lower level protocol module is left unspecified here, since it will

be specified in detail by the specification of the lower level

protocol. For the case that the lower level is IP we note some of

the parameter values that TCP implementations might use.

3.9.1. User/TCP Interface

The following functional description of user commands to the TCP

implementation is, at best, fictional, since every operating system

will have different facilities. Consequently, we must warn readers

that different TCP implementations may have different user

interfaces. However, all TCP implementations must provide a certain

minimum set of services to guarantee that all TCP implementations

can support the same protocol hierarchy. This section specifies the

functional interfaces required of all TCP implementations.

Section 3.1 of [54] also identifies primitives provided by TCP, and

could be used as an additional reference for implementers.

The following sections functionally characterize a USER/TCP

interface. The notation used is similar to most procedure or

function calls in high level languages, but this usage is not meant

to rule out trap type service calls.

The user commands described below specify the basic functions the

TCP implementation must perform to support interprocess

communication. Individual implementations must define their own

exact format, and may provide combinations or subsets of the basic

functions in single calls. In particular, some implementations may

wish to automatically OPEN a connection on the first SEND or RECEIVE

issued by the user for a given connection.

In providing interprocess communication facilities, the TCP

implementation must not only accept commands, but must also return

information to the processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,

remote close, binding of unspecified remote socket).

(b) replies to specific user commands indicating success or

various types of failure.
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3.9.1.1. Open

Format: OPEN (local port, remote socket, active/passive [,

timeout] [, DiffServ field] [, security/compartment] [local IP

address,] [, options]) -> local connection name

If the active/passive flag is set to passive, then this is a call

to LISTEN for an incoming connection. A passive open may have

either a fully specified remote socket to wait for a particular

connection or an unspecified remote socket to wait for any call.

A fully specified passive call can be made active by the

subsequent execution of a SEND.

A transmission control block (TCB) is created and partially

filled in with data from the OPEN command parameters.

Every passive OPEN call either creates a new connection record in

LISTEN state, or it returns an error; it MUST NOT affect any

previously created connection record (MUST-41).

A TCP implementation that supports multiple concurrent

connections MUST provide an OPEN call that will functionally

allow an application to LISTEN on a port while a connection block

with the same local port is in SYN-SENT or SYN-RECEIVED state

(MUST-42).

On an active OPEN command, the TCP endpoint will begin the

procedure to synchronize (i.e., establish) the connection at

once.

The timeout, if present, permits the caller to set up a timeout

for all data submitted to TCP. If data is not successfully

delivered to the destination within the timeout period, the TCP

endpoint will abort the connection. The present global default is

five minutes.

The TCP implementation or some component of the operating system

will verify the user's authority to open a connection with the

specified DiffServ field value or security/compartment. The

absence of a DiffServ field value or security/compartment

specification in the OPEN call indicates the default values must

be used.

TCP will accept incoming requests as matching only if the

security/compartment information is exactly the same as that

requested in the OPEN call.

The DiffServ field value indicated by the user only impacts

outgoing packets, may be altered en route through the network,

and has no direct bearing or relation to received packets.
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A local connection name will be returned to the user by the TCP

implementation. The local connection name can then be used as a

short-hand term for the connection defined by the <local socket,

remote socket> pair.

The optional "local IP address" parameter MUST be supported to

allow the specification of the local IP address (MUST-43). This

enables applications that need to select the local IP address

used when multihoming is present.

A passive OPEN call with a specified "local IP address" parameter

will await an incoming connection request to that address. If the

parameter is unspecified, a passive OPEN will await an incoming

connection request to any local IP address, and then bind the

local IP address of the connection to the particular address that

is used.

For an active OPEN call, a specified "local IP address" parameter

will be used for opening the connection. If the parameter is

unspecified, the host will choose an appropriate local IP address

(see RFC 1122 section 3.3.4.2).

If an application on a multihomed host does not specify the local

IP address when actively opening a TCP connection, then the TCP

implementation MUST ask the IP layer to select a local IP address

before sending the (first) SYN (MUST-44). See the function

GET_SRCADDR() in Section 3.4 of RFC 1122.

At all other times, a previous segment has either been sent or

received on this connection, and TCP implementations MUST use the

same local address that was used in those previous segments

(MUST-45).

A TCP implementation MUST reject as an error a local OPEN call

for an invalid remote IP address (e.g., a broadcast or multicast

address) (MUST-46).

3.9.1.2. Send

Format: SEND (local connection name, buffer address, byte count,

PUSH flag (optional), URGENT flag [,timeout])

This call causes the data contained in the indicated user buffer

to be sent on the indicated connection. If the connection has not

been opened, the SEND is considered an error. Some

implementations may allow users to SEND first; in which case, an

automatic OPEN would be done. For example, this might be one way

for application data to be included in SYN segments. If the

calling process is not authorized to use this connection, an

error is returned.
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A TCP endpoint MAY implement PUSH flags on SEND calls (MAY-15).

If PUSH flags are not implemented, then the sending TCP peer: (1)

MUST NOT buffer data indefinitely (MUST-60), and (2) MUST set the

PSH bit in the last buffered segment (i.e., when there is no more

queued data to be sent) (MUST-61). The remaining description

below assumes the PUSH flag is supported on SEND calls.

If the PUSH flag is set, the application intends the data to be

transmitted promptly to the receiver, and the PUSH bit will be

set in the last TCP segment created from the buffer.

The PSH bit is not a record marker and is independent of segment

boundaries. The transmitter SHOULD collapse successive bits when

it packetizes data, to send the largest possible segment

(SHLD-27).

If the PUSH flag is not set, the data may be combined with data

from subsequent SENDs for transmission efficiency. When an

application issues a series of SEND calls without setting the

PUSH flag, the TCP implementation MAY aggregate the data

internally without sending it (MAY-16). Note that when the Nagle

algorithm is in use, TCP implementations may buffer the data

before sending, without regard to the PUSH flag (see Section

3.7.4).

An application program is logically required to set the PUSH flag

in a SEND call whenever it needs to force delivery of the data to

avoid a communication deadlock. However, a TCP implementation

SHOULD send a maximum-sized segment whenever possible (SHLD-28),

to improve performance (see Section 3.8.6.2.1).

New applications SHOULD NOT set the URGENT flag [40] due to

implementation differences and middlebox issues (SHLD-13).

If the URGENT flag is set, segments sent to the destination TCP

peer will have the urgent pointer set. The receiving TCP peer

will signal the urgent condition to the receiving process if the

urgent pointer indicates that data preceding the urgent pointer

has not been consumed by the receiving process. The purpose of

urgent is to stimulate the receiver to process the urgent data

and to indicate to the receiver when all the currently known

urgent data has been received. The number of times the sending

user's TCP implementation signals urgent will not necessarily be

equal to the number of times the receiving user will be notified

of the presence of urgent data.

If no remote socket was specified in the OPEN, but the connection

is established (e.g., because a LISTENing connection has become

specific due to a remote segment arriving for the local socket),
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then the designated buffer is sent to the implied remote socket.

Users who make use of OPEN with an unspecified remote socket can

make use of SEND without ever explicitly knowing the remote

socket address.

However, if a SEND is attempted before the remote socket becomes

specified, an error will be returned. Users can use the STATUS

call to determine the status of the connection. Some TCP

implementations may notify the user when an unspecified socket is

bound.

If a timeout is specified, the current user timeout for this

connection is changed to the new one.

In the simplest implementation, SEND would not return control to

the sending process until either the transmission was complete or

the timeout had been exceeded. However, this simple method is

both subject to deadlocks (for example, both sides of the

connection might try to do SENDs before doing any RECEIVEs) and

offers poor performance, so it is not recommended. A more

sophisticated implementation would return immediately to allow

the process to run concurrently with network I/O, and,

furthermore, to allow multiple SENDs to be in progress. Multiple

SENDs are served in first come, first served order, so the TCP

endpoint will queue those it cannot service immediately.

We have implicitly assumed an asynchronous user interface in

which a SEND later elicits some kind of SIGNAL or pseudo-

interrupt from the serving TCP endpoint. An alternative is to

return a response immediately. For instance, SENDs might return

immediate local acknowledgment, even if the segment sent had not

been acknowledged by the distant TCP endpoint. We could

optimistically assume eventual success. If we are wrong, the

connection will close anyway due to the timeout. In

implementations of this kind (synchronous), there will still be

some asynchronous signals, but these will deal with the

connection itself, and not with specific segments or buffers.

In order for the process to distinguish among error or success

indications for different SENDs, it might be appropriate for the

buffer address to be returned along with the coded response to

the SEND request. TCP-to-user signals are discussed below,

indicating the information that should be returned to the calling

process.

3.9.1.3. Receive

Format: RECEIVE (local connection name, buffer address, byte

count) -> byte count, urgent flag, push flag (optional)
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This command allocates a receiving buffer associated with the

specified connection. If no OPEN precedes this command or the

calling process is not authorized to use this connection, an

error is returned.

In the simplest implementation, control would not return to the

calling program until either the buffer was filled, or some error

occurred, but this scheme is highly subject to deadlocks. A more

sophisticated implementation would permit several RECEIVEs to be

outstanding at once. These would be filled as segments arrive.

This strategy permits increased throughput at the cost of a more

elaborate scheme (possibly asynchronous) to notify the calling

program that a PUSH has been seen or a buffer filled.

A TCP receiver MAY pass a received PSH flag to the application

layer via the PUSH flag in the interface (MAY-17), but it is not

required (this was clarified in RFC 1122 section 4.2.2.2). The

remainder of text describing the RECEIVE call below assumes that

passing the PUSH indication is supported.

If enough data arrive to fill the buffer before a PUSH is seen,

the PUSH flag will not be set in the response to the RECEIVE. The

buffer will be filled with as much data as it can hold. If a PUSH

is seen before the buffer is filled the buffer will be returned

partially filled and PUSH indicated.

If there is urgent data the user will have been informed as soon

as it arrived via a TCP-to-user signal. The receiving user should

thus be in "urgent mode". If the URGENT flag is on, additional

urgent data remains. If the URGENT flag is off, this call to

RECEIVE has returned all the urgent data, and the user may now

leave "urgent mode". Note that data following the urgent pointer

(non-urgent data) cannot be delivered to the user in the same

buffer with preceding urgent data unless the boundary is clearly

marked for the user.

To distinguish among several outstanding RECEIVEs and to take

care of the case that a buffer is not completely filled, the

return code is accompanied by both a buffer pointer and a byte

count indicating the actual length of the data received.

Alternative implementations of RECEIVE might have the TCP

endpoint allocate buffer storage, or the TCP endpoint might share

a ring buffer with the user.

3.9.1.4. Close

Format: CLOSE (local connection name)
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This command causes the connection specified to be closed. If the

connection is not open or the calling process is not authorized

to use this connection, an error is returned. Closing connections

is intended to be a graceful operation in the sense that

outstanding SENDs will be transmitted (and retransmitted), as

flow control permits, until all have been serviced. Thus, it

should be acceptable to make several SEND calls, followed by a

CLOSE, and expect all the data to be sent to the destination. It

should also be clear that users should continue to RECEIVE on

CLOSING connections, since the remote peer may be trying to

transmit the last of its data. Thus, CLOSE means "I have no more

to send" but does not mean "I will not receive any more." It may

happen (if the user level protocol is not well-thought-out) that

the closing side is unable to get rid of all its data before

timing out. In this event, CLOSE turns into ABORT, and the

closing TCP peer gives up.

The user may CLOSE the connection at any time on their own

initiative, or in response to various prompts from the TCP

implementation (e.g., remote close executed, transmission timeout

exceeded, destination inaccessible).

Because closing a connection requires communication with the

remote TCP peer, connections may remain in the closing state for

a short time. Attempts to reopen the connection before the TCP

peer replies to the CLOSE command will result in error responses.

Close also implies push function.

3.9.1.5. Status

Format: STATUS (local connection name) -> status data

This is an implementation dependent user command and could be

excluded without adverse effect. Information returned would

typically come from the TCB associated with the connection.

This command returns a data block containing the following

information:

local socket,

remote socket,

local connection name,

receive window,

send window,
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connection state,

number of buffers awaiting acknowledgment,

number of buffers pending receipt,

urgent state,

DiffServ field value,

security/compartment,

and transmission timeout.

Depending on the state of the connection, or on the

implementation itself, some of this information may not be

available or meaningful. If the calling process is not authorized

to use this connection, an error is returned. This prevents

unauthorized processes from gaining information about a

connection.

3.9.1.6. Abort

Format: ABORT (local connection name)

This command causes all pending SENDs and RECEIVES to be aborted,

the TCB to be removed, and a special RESET message to be sent to

the remote TCP peer of the connection. Depending on the

implementation, users may receive abort indications for each

outstanding SEND or RECEIVE, or may simply receive an ABORT-

acknowledgment.

3.9.1.7. Flush

Some TCP implementations have included a FLUSH call, which will

empty the TCP send queue of any data that the user has issued

SEND calls for but is still to the right of the current send

window. That is, it flushes as much queued send data as possible

without losing sequence number synchronization. The FLUSH call

MAY be implemented (MAY-14).

3.9.1.8. Asynchronous Reports

There MUST be a mechanism for reporting soft TCP error conditions

to the application (MUST-47). Generically, we assume this takes

the form of an application-supplied ERROR_REPORT routine that may

be upcalled asynchronously from the transport layer:

ERROR_REPORT(local connection name, reason, subreason)
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The precise encoding of the reason and subreason parameters is

not specified here. However, the conditions that are reported

asynchronously to the application MUST include:

* ICMP error message arrived (see Section 3.9.2.2 for

description of handling each ICMP message type, since some

message types need to be suppressed from generating reports to

the application)

* Excessive retransmissions (see Section 3.8.3)

* Urgent pointer advance (see Section 3.8.5)

However, an application program that does not want to receive

such ERROR_REPORT calls SHOULD be able to effectively disable

these calls (SHLD-20).

3.9.1.9. Set Differentiated Services Field (IPv4 TOS or IPv6 Traffic

Class)

The application layer MUST be able to specify the Differentiated

Services field for segments that are sent on a connection

(MUST-48). The Differentiated Services field includes the 6-bit

Differentiated Services Code Point (DSCP) value. It is not

required, but the application SHOULD be able to change the

Differentiated Services field during the connection lifetime

(SHLD-21). TCP implementations SHOULD pass the current

Differentiated Services field value without change to the IP

layer, when it sends segments on the connection (SHLD-22).

The Differentiated Services field will be specified independently

in each direction on the connection, so that the receiver

application will specify the Differentiated Services field used

for ACK segments.

TCP implementations MAY pass the most recently received

Differentiated Services field up to the application (MAY-9).

3.9.2. TCP/Lower-Level Interface

The TCP endpoint calls on a lower level protocol module to actually

send and receive information over a network. The two current

standard Internet Protocol (IP) versions layered below TCP are IPv4 

[1] and IPv6 [13].

¶

-

¶

- ¶

- ¶

¶

¶

¶

¶

¶



If the lower level protocol is IPv4 it provides arguments for a type

of service (used within the Differentiated Services field) and for a

time to live. TCP uses the following settings for these parameters:

DiffServ field: The IP header value for the DiffServ field is

given by the user. This includes the bits of the DiffServ Code

Point (DSCP).

Time to Live (TTL): The TTL value used to send TCP segments MUST

be configurable (MUST-49).

Note that RFC 793 specified one minute (60 seconds) as a

constant for the TTL, because the assumed maximum segment

lifetime was two minutes. This was intended to explicitly ask

that a segment be destroyed if it cannot be delivered by the

internet system within one minute. RFC 1122 changed this

specification to require that the TTL be configurable.

Note that the DiffServ field is permitted to change during a

connection (Section 4.2.4.2 of RFC 1122). However, the

application interface might not support this ability, and the

application does not have knowledge about individual TCP

segments, so this can only be done on a coarse granularity, at

best. This limitation is further discussed in RFC 7657 (sec

5.1, 5.3, and 6) [51]. Generally, an application SHOULD NOT

change the DiffServ field value during the course of a

connection (SHLD-23).

Any lower level protocol will have to provide the source address,

destination address, and protocol fields, and some way to determine

the "TCP length", both to provide the functional equivalent service

of IP and to be used in the TCP checksum.

When received options are passed up to TCP from the IP layer, a TCP

implementation MUST ignore options that it does not understand

(MUST-50).

A TCP implementation MAY support the Time Stamp (MAY-10) and Record

Route (MAY-11) options.

3.9.2.1. Source Routing

If the lower level is IP (or other protocol that provides this

feature) and source routing is used, the interface must allow the

route information to be communicated. This is especially important

so that the source and destination addresses used in the TCP

checksum be the originating source and ultimate destination. It is

also important to preserve the return route to answer connection

requests.
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Source Quench

Soft Errors

Hard Errors

An application MUST be able to specify a source route when it

actively opens a TCP connection (MUST-51), and this MUST take

precedence over a source route received in a datagram (MUST-52).

When a TCP connection is OPENed passively and a packet arrives with

a completed IP Source Route option (containing a return route), TCP

implementations MUST save the return route and use it for all

segments sent on this connection (MUST-53). If a different source

route arrives in a later segment, the later definition SHOULD

override the earlier one (SHLD-24).

3.9.2.2. ICMP Messages

TCP implementations MUST act on an ICMP error message passed up from

the IP layer, directing it to the connection that created the error

(MUST-54). The necessary demultiplexing information can be found in

the IP header contained within the ICMP message.

This applies to ICMPv6 in addition to IPv4 ICMP.

[36] contains discussion of specific ICMP and ICMPv6 messages

classified as either "soft" or "hard" errors that may bear different

responses. Treatment for classes of ICMP messages is described

below:

TCP implementations MUST silently discard any received ICMP

Source Quench messages (MUST-55). See [11] for discussion.

For IPv4 ICMP these include: Destination Unreachable -- codes 0,

1, 5, Time Exceeded -- codes 0, 1, and Parameter Problem.

For ICMPv6 these include: Destination Unreachable -- codes 0 and

3, Time Exceeded -- codes 0, 1, and Parameter Problem -- codes 0,

1, 2.

Since these Unreachable messages indicate soft error conditions,

TCP implementations MUST NOT abort the connection (MUST-56), and

it SHOULD make the information available to the application

(SHLD-25).

For ICMP these include Destination Unreachable -- codes 2-4.

These are hard error conditions, so TCP implementations SHOULD

abort the connection (SHLD-26). [36] notes that some

implementations do not abort connections when an ICMP hard error

is received for a connection that is in any of the synchronized

states.
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Note that [36] section 4 describes widespread implementation

behavior that treats soft errors as hard errors during connection

establishment.

3.9.2.3. Source Address Validation

RFC 1122 requires addresses to be validated in incoming SYN packets:

An incoming SYN with an invalid source address MUST be ignored

either by TCP or by the IP layer (MUST-63) (Section 3.2.1.3 of 

[20]).

A TCP implementation MUST silently discard an incoming SYN

segment that is addressed to a broadcast or multicast address

(MUST-57).

This prevents connection state and replies from being erroneously

generated, and implementers should note that this guidance is

applicable to all incoming segments, not just SYNs, as specifically

indicated in RFC 1122.

3.10. Event Processing

The processing depicted in this section is an example of one

possible implementation. Other implementations may have slightly

different processing sequences, but they should differ from those in

this section only in detail, not in substance.

The activity of the TCP endpoint can be characterized as responding

to events. The events that occur can be cast into three categories:

user calls, arriving segments, and timeouts. This section describes

the processing the TCP endpoint does in response to each of the

events. In many cases the processing required depends on the state

of the connection.

Events that occur:

User Calls

OPEN

SEND

RECEIVE

CLOSE

ABORT

STATUS
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Arriving Segments

SEGMENT ARRIVES

Timeouts

USER TIMEOUT

RETRANSMISSION TIMEOUT

TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an

immediate return and possibly a delayed response via an event or

pseudo interrupt. In the following descriptions, the term "signal"

means cause a delayed response.

Error responses in this document are identified by character

strings. For example, user commands referencing connections that do

not exist receive "error: connection not open".

Please note in the following that all arithmetic on sequence

numbers, acknowledgment numbers, windows, et cetera, is modulo 2**32

(the size of the sequence number space). Also note that "=<" means

less than or equal to (modulo 2**32).

A natural way to think about processing incoming segments is to

imagine that they are first tested for proper sequence number (i.e.,

that their contents lie in the range of the expected "receive

window" in the sequence number space) and then that they are

generally queued and processed in sequence number order.

When a segment overlaps other already received segments we

reconstruct the segment to contain just the new data, and adjust the

header fields to be consistent.

Note that if no state change is mentioned the TCP connection stays

in the same state.

3.10.1. OPEN Call

CLOSED STATE (i.e., TCB does not exist)

Create a new transmission control block (TCB) to hold

connection state information. Fill in local socket identifier,

remote socket, DiffServ field, security/compartment, and user

timeout information. Note that some parts of the remote socket

may be unspecified in a passive OPEN and are to be filled in

by the parameters of the incoming SYN segment. Verify the

security and DiffServ value requested are allowed for this
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user, if not return "error: precedence not allowed" or "error:

security/compartment not allowed." If passive enter the LISTEN

state and return. If active and the remote socket is

unspecified, return "error: remote socket unspecified"; if

active and the remote socket is specified, issue a SYN

segment. An initial send sequence number (ISS) is selected. A

SYN segment of the form <SEQ=ISS><CTL=SYN> is sent. Set

SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT state, and

return.

If the caller does not have access to the local socket

specified, return "error: connection illegal for this

process". If there is no room to create a new connection,

return "error: insufficient resources".

LISTEN STATE

If the OPEN call is active and the remote socket is specified,

then change the connection from passive to active, select an

ISS. Send a SYN segment, set SND.UNA to ISS, SND.NXT to ISS+1.

Enter SYN-SENT state. Data associated with SEND may be sent

with SYN segment or queued for transmission after entering

ESTABLISHED state. The urgent bit if requested in the command

must be sent with the data segments sent as a result of this

command. If there is no room to queue the request, respond

with "error: insufficient resources". If the remote socket was

not specified, then return "error: remote socket unspecified".

SYN-SENT STATE

SYN-RECEIVED STATE

ESTABLISHED STATE

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

CLOSE-WAIT STATE

CLOSING STATE

LAST-ACK STATE

TIME-WAIT STATE

Return "error: connection already exists".
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3.10.2. SEND Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, then

return "error: connection illegal for this process".

Otherwise, return "error: connection does not exist".

LISTEN STATE

If the remote socket is specified, then change the connection

from passive to active, select an ISS. Send a SYN segment, set

SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data

associated with SEND may be sent with SYN segment or queued

for transmission after entering ESTABLISHED state. The urgent

bit if requested in the command must be sent with the data

segments sent as a result of this command. If there is no room

to queue the request, respond with "error: insufficient

resources". If the remote socket was not specified, then

return "error: remote socket unspecified".

SYN-SENT STATE

SYN-RECEIVED STATE

Queue the data for transmission after entering ESTABLISHED

state. If no space to queue, respond with "error: insufficient

resources".

ESTABLISHED STATE

CLOSE-WAIT STATE

Segmentize the buffer and send it with a piggybacked

acknowledgment (acknowledgment value = RCV.NXT). If there is

insufficient space to remember this buffer, simply return

"error: insufficient resources".

If the urgent flag is set, then SND.UP <- SND.NXT and set the

urgent pointer in the outgoing segments.

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

CLOSING STATE

LAST-ACK STATE
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TIME-WAIT STATE

Return "error: connection closing" and do not service request.

3.10.3. RECEIVE Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return

"error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE

SYN-SENT STATE

SYN-RECEIVED STATE

Queue for processing after entering ESTABLISHED state. If

there is no room to queue this request, respond with "error:

insufficient resources".

ESTABLISHED STATE

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

If insufficient incoming segments are queued to satisfy the

request, queue the request. If there is no queue space to

remember the RECEIVE, respond with "error: insufficient

resources".

Reassemble queued incoming segments into receive buffer and

return to user. Mark "push seen" (PUSH) if this is the case.

If RCV.UP is in advance of the data currently being passed to

the user notify the user of the presence of urgent data.

When the TCP endpoint takes responsibility for delivering data

to the user that fact must be communicated to the sender via

an acknowledgment. The formation of such an acknowledgment is

described below in the discussion of processing an incoming

segment.

CLOSE-WAIT STATE

Since the remote side has already sent FIN, RECEIVEs must be

satisfied by data already on hand, but not yet delivered to
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the user. If no text is awaiting delivery, the RECEIVE will

get an "error: connection closing" response. Otherwise, any

remaining data can be used to satisfy the RECEIVE.

CLOSING STATE

LAST-ACK STATE

TIME-WAIT STATE

Return "error: connection closing".

3.10.4. CLOSE Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return

"error: connection illegal for this process".

Otherwise, return "error: connection does not exist".

LISTEN STATE

Any outstanding RECEIVEs are returned with "error: closing"

responses. Delete TCB, enter CLOSED state, and return.

SYN-SENT STATE

Delete the TCB and return "error: closing" responses to any

queued SENDs, or RECEIVEs.

SYN-RECEIVED STATE

If no SENDs have been issued and there is no pending data to

send, then form a FIN segment and send it, and enter FIN-

WAIT-1 state; otherwise queue for processing after entering

ESTABLISHED state.

ESTABLISHED STATE

Queue this until all preceding SENDs have been segmentized,

then form a FIN segment and send it. In any case, enter FIN-

WAIT-1 state.

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

Strictly speaking, this is an error and should receive an

"error: connection closing" response. An "ok" response would

¶
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be acceptable, too, as long as a second FIN is not emitted

(the first FIN may be retransmitted though).

CLOSE-WAIT STATE

Queue this request until all preceding SENDs have been

segmentized; then send a FIN segment, enter LAST-ACK state.

CLOSING STATE

LAST-ACK STATE

TIME-WAIT STATE

Respond with "error: connection closing".

3.10.5. ABORT Call

CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection,

return "error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE

Any outstanding RECEIVEs should be returned with "error:

connection reset" responses. Delete TCB, enter CLOSED state,

and return.

SYN-SENT STATE

All queued SENDs and RECEIVEs should be given "connection

reset" notification, delete the TCB, enter CLOSED state, and

return.

SYN-RECEIVED STATE

ESTABLISHED STATE

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

CLOSE-WAIT STATE

Send a reset segment:

<SEQ=SND.NXT><CTL=RST>
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All queued SENDs and RECEIVEs should be given "connection

reset" notification; all segments queued for transmission

(except for the RST formed above) or retransmission should be

flushed, delete the TCB, enter CLOSED state, and return.

CLOSING STATE LAST-ACK STATE TIME-WAIT STATE

Respond with "ok" and delete the TCB, enter CLOSED state, and

return.

3.10.6. STATUS Call

CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection,

return "error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE

Return "state = LISTEN", and the TCB pointer.

SYN-SENT STATE

Return "state = SYN-SENT", and the TCB pointer.

SYN-RECEIVED STATE

Return "state = SYN-RECEIVED", and the TCB pointer.

ESTABLISHED STATE

Return "state = ESTABLISHED", and the TCB pointer.

FIN-WAIT-1 STATE

Return "state = FIN-WAIT-1", and the TCB pointer.

FIN-WAIT-2 STATE

Return "state = FIN-WAIT-2", and the TCB pointer.

CLOSE-WAIT STATE

Return "state = CLOSE-WAIT", and the TCB pointer.

CLOSING STATE

Return "state = CLOSING", and the TCB pointer.
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LAST-ACK STATE

Return "state = LAST-ACK", and the TCB pointer.

TIME-WAIT STATE

Return "state = TIME-WAIT", and the TCB pointer.

3.10.7. SEGMENT ARRIVES

3.10.7.1. CLOSED State

If the state is CLOSED (i.e., TCB does not exist) then

all data in the incoming segment is discarded. An incoming

segment containing a RST is discarded. An incoming segment not

containing a RST causes a RST to be sent in response. The

acknowledgment and sequence field values are selected to make the

reset sequence acceptable to the TCP endpoint that sent the

offending segment.

If the ACK bit is off, sequence number zero is used,

<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

If the ACK bit is on,

<SEQ=SEG.ACK><CTL=RST>

Return.

3.10.7.2. LISTEN State

If the state is LISTEN then

first check for an RST

An incoming RST segment could not be valid, since it could not

have been sent in response to anything sent by this

incarnation of the connection. An incoming RST should be

ignored. Return.

second check for an ACK

Any acknowledgment is bad if it arrives on a connection still

in the LISTEN state. An acceptable reset segment should be

formed for any arriving ACK-bearing segment. The RST should be

formatted as follows:

<SEQ=SEG.ACK><CTL=RST>
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Return.

third check for a SYN

If the SYN bit is set, check the security. If the security/

compartment on the incoming segment does not exactly match the

security/compartment in the TCB then send a reset and return.

<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other

control or text should be queued for processing later. ISS

should be selected and a SYN segment sent of the form:

<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection

state should be changed to SYN-RECEIVED. Note that any other

incoming control or data (combined with SYN) will be processed

in the SYN-RECEIVED state, but processing of SYN and ACK

should not be repeated. If the listen was not fully specified

(i.e., the remote socket was not fully specified), then the

unspecified fields should be filled in now.

fourth other data or control

This should not be reached. Drop the segment and return. Any

other control or data-bearing segment (not containing SYN)

must have an ACK and thus would have been discarded by the ACK

processing in the second step, unless it was first discarded

by RST checking in the first step.

3.10.7.3. SYN-SENT State

If the state is SYN-SENT then

first check the ACK bit

If the ACK bit is set

If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset

(unless the RST bit is set, if so drop the segment and

return)

<SEQ=SEG.ACK><CTL=RST>

and discard the segment. Return.

If SND.UNA < SEG.ACK =< SND.NXT then the ACK is acceptable.

Some deployed TCP code has used the check SEG.ACK ==
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SND.NXT (using "==" rather than "=<", but this is not

appropriate when the stack is capable of sending data on

the SYN, because the TCP peer may not accept and

acknowledge all of the data on the SYN.

second check the RST bit

If the RST bit is set

A potential blind reset attack is described in RFC 5961 

[9]. The mitigation described in that document has specific

applicability explained therein, and is not a substitute

for cryptographic protection (e.g. IPsec or TCP-AO). A TCP

implementation that supports the RFC 5961 mitigation SHOULD

first check that the sequence number exactly matches

RCV.NXT prior to executing the action in the next

paragraph.

If the ACK was acceptable then signal the user "error:

connection reset", drop the segment, enter CLOSED state,

delete TCB, and return. Otherwise (no ACK), drop the

segment and return.

third check the security

If the security/compartment in the segment does not exactly

match the security/compartment in the TCB, send a reset

If there is an ACK

<SEQ=SEG.ACK><CTL=RST>

Otherwise

<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

If a reset was sent, discard the segment and return.

fourth check the SYN bit

This step should be reached only if the ACK is ok, or there is

no ACK, and the segment did not contain a RST.

If the SYN bit is on and the security/compartment is

acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to

SEG.SEQ. SND.UNA should be advanced to equal SEG.ACK (if there

is an ACK), and any segments on the retransmission queue that

are thereby acknowledged should be removed.
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If SND.UNA > ISS (our SYN has been ACKed), change the

connection state to ESTABLISHED, form an ACK segment

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

and send it. Data or controls that were queued for

transmission MAY be included. Some TCP implementations

suppress sending this segment when the received segment

contains data that will anyways generate an acknowledgement in

the later processing steps, saving this extra acknowledgement

of the SYN from being sent. If there are other controls or

text in the segment then continue processing at the sixth step

under Section 3.10.7.4 where the URG bit is checked, otherwise

return.

Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

and send it. Set the variables:

SND.WND <- SEG.WND

SND.WL1 <- SEG.SEQ

SND.WL2 <- SEG.ACK

If there are other controls or text in the segment, queue them

for processing after the ESTABLISHED state has been reached,

return.

Note that it is legal to send and receive application data on

SYN segments (this is the "text in the segment" mentioned

above. There has been significant misinformation and

misunderstanding of this topic historically. Some firewalls

and security devices consider this suspicious. However, the

capability was used in T/TCP [22] and is used in TCP Fast Open

(TFO) [49], so is important for implementations and network

devices to permit.

fifth, if neither of the SYN or RST bits is set then drop the

segment and return.

3.10.7.4. Other States

Otherwise,

first check sequence number

SYN-RECEIVED STATE
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ESTABLISHED STATE

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

CLOSE-WAIT STATE

CLOSING STATE

LAST-ACK STATE

TIME-WAIT STATE

Segments are processed in sequence. Initial tests on

arrival are used to discard old duplicates, but further

processing is done in SEG.SEQ order. If a segment's

contents straddle the boundary between old and new, only

the new parts are processed.

In general, the processing of received segments MUST be

implemented to aggregate ACK segments whenever possible

(MUST-58). For example, if the TCP endpoint is processing a

series of queued segments, it MUST process them all before

sending any ACK segments (MUST-59).

There are four cases for the acceptability test for an

incoming segment:

In implementing sequence number validation as described

here, please note Appendix A.2.

If the RCV.WND is zero, no segments will be acceptable, but

special allowance should be made to accept valid ACKs, URGs

and RSTs.
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o      Segment Receive  Test

      Length  Window

      ------- -------  -------------------------------------------

         0       0     SEG.SEQ = RCV.NXT

         0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

        >0       0     not acceptable

        >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

                    or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
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If an incoming segment is not acceptable, an acknowledgment

should be sent in reply (unless the RST bit is set, if so

drop the segment and return):

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

After sending the acknowledgment, drop the unacceptable

segment and return.

Note that for the TIME-WAIT state, there is an improved

algorithm described in [41] for handling incoming SYN

segments, that utilizes timestamps rather than relying on

the sequence number check described here. When the improved

algorithm is implemented, the logic above is not applicable

for incoming SYN segments with timestamp options, received

on a connection in the TIME-WAIT state.

In the following it is assumed that the segment is the

idealized segment that begins at RCV.NXT and does not

exceed the window. One could tailor actual segments to fit

this assumption by trimming off any portions that lie

outside the window (including SYN and FIN), and only

processing further if the segment then begins at RCV.NXT.

Segments with higher beginning sequence numbers SHOULD be

held for later processing (SHLD-31).

second check the RST bit,

RFC 5961 [9] section 3 describes a potential blind reset

attack and optional mitigation approach. This does not

provide a cryptographic protection (e.g. as in IPsec or

TCP-AO), but can be applicable in situations described in

RFC 5961. For stacks implementing the RFC 5961 protection,

the three checks below apply, otherwise processing for

these states is indicated further below.

1) If the RST bit is set and the sequence number is

outside the current receive window, silently drop the

segment.

2) If the RST bit is set and the sequence number exactly

matches the next expected sequence number (RCV.NXT),

then TCP endpoints MUST reset the connection in the

manner prescribed below according to the connection

state.

3) If the RST bit is set and the sequence number does

not exactly match the next expected sequence value, yet

is within the current receive window, TCP endpoints MUST

send an acknowledgement (challenge ACK):
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<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

After sending the challenge ACK, TCP endpoints MUST drop

the unacceptable segment and stop processing the

incoming packet further. Note that RFC 5961 and Errata

ID 4772 contain additional considerations for ACK

throttling in an implementation.

SYN-RECEIVED STATE

If the RST bit is set

If this connection was initiated with a passive OPEN

(i.e., came from the LISTEN state), then return this

connection to LISTEN state and return. The user need

not be informed. If this connection was initiated

with an active OPEN (i.e., came from SYN-SENT state)

then the connection was refused, signal the user

"connection refused". In either case, all segments on

the retransmission queue should be removed. And in

the active OPEN case, enter the CLOSED state and

delete the TCB, and return.

ESTABLISHED

FIN-WAIT-1

FIN-WAIT-2

CLOSE-WAIT

If the RST bit is set then, any outstanding RECEIVEs and

SEND should receive "reset" responses. All segment

queues should be flushed. Users should also receive an

unsolicited general "connection reset" signal. Enter the

CLOSED state, delete the TCB, and return.

CLOSING STATE

LAST-ACK STATE

TIME-WAIT

If the RST bit is set then, enter the CLOSED state,

delete the TCB, and return.
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third check security

SYN-RECEIVED

If the security/compartment in the segment does not

exactly match the security/compartment in the TCB then

send a reset, and return.

ESTABLISHED

FIN-WAIT-1

FIN-WAIT-2

CLOSE-WAIT

CLOSING

LAST-ACK

TIME-WAIT

If the security/compartment in the segment does not

exactly match the security/compartment in the TCB then

send a reset, any outstanding RECEIVEs and SEND should

receive "reset" responses. All segment queues should be

flushed. Users should also receive an unsolicited

general "connection reset" signal. Enter the CLOSED

state, delete the TCB, and return.

Note this check is placed following the sequence check to

prevent a segment from an old connection between these port

numbers with a different security from causing an abort of

the current connection.

fourth, check the SYN bit,

SYN-RECEIVED

If the connection was initiated with a passive OPEN,

then return this connection to the LISTEN state and

return. Otherwise, handle per the directions for

synchronized states below.

ESTABLISHED STATE

FIN-WAIT STATE-1

FIN-WAIT STATE-2
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CLOSE-WAIT STATE

CLOSING STATE

LAST-ACK STATE

TIME-WAIT STATE

If the SYN bit is set in these synchronized states, it

may be either a legitimate new connection attempt (e.g.

in the case of TIME-WAIT), an error where the connection

should be reset, or the result of an attack attempt, as

described in RFC 5961 [9]. For the TIME-WAIT state, new

connections can be accepted if the timestamp option is

used and meets expectations (per [41]). For all other

cases, RFC 5961 provides a mitigation with applicability

to some situations, though there are also alternatives

that offer cryptographic protection (see Section 7). RFC

5961 recommends that in these synchronized states, if

the SYN bit is set, irrespective of the sequence number,

TCP endpoints MUST send a "challenge ACK" to the remote

peer:

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

After sending the acknowledgement, TCP implementations

MUST drop the unacceptable segment and stop processing

further. Note that RFC 5961 and Errata ID 4772 contain

additional ACK throttling notes for an implementation.

For implementations that do not follow RFC 5961, the

original RFC 793 behavior follows in this paragraph. If

the SYN is in the window it is an error, send a reset,

any outstanding RECEIVEs and SEND should receive "reset"

responses, all segment queues should be flushed, the

user should also receive an unsolicited general

"connection reset" signal, enter the CLOSED state,

delete the TCB, and return.

If the SYN is not in the window this step would not be

reached and an ACK would have been sent in the first

step (sequence number check).

fifth check the ACK field,

if the ACK bit is off drop the segment and return
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if the ACK bit is on

RFC 5961 [9] section 5 describes a potential blind data

injection attack, and mitigation that implementations

MAY choose to include (MAY-12). TCP stacks that

implement RFC 5961 MUST add an input check that the ACK

value is acceptable only if it is in the range of

((SND.UNA - MAX.SND.WND) =< SEG.ACK =< SND.NXT). All

incoming segments whose ACK value doesn't satisfy the

above condition MUST be discarded and an ACK sent back.

The new state variable MAX.SND.WND is defined as the

largest window that the local sender has ever received

from its peer (subject to window scaling) or may be

hard-coded to a maximum permissible window value. When

the ACK value is acceptable, the processing per-state

below applies:

SYN-RECEIVED STATE

If SND.UNA < SEG.ACK =< SND.NXT then enter

ESTABLISHED state and continue processing with

variables below set to:

SND.WND <- SEG.WND

SND.WL1 <- SEG.SEQ

SND.WL2 <- SEG.ACK

If the segment acknowledgment is not acceptable, form

a reset segment,

<SEQ=SEG.ACK><CTL=RST>

and send it.

ESTABLISHED STATE

If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <-

SEG.ACK. Any segments on the retransmission queue

that are thereby entirely acknowledged are removed.

Users should receive positive acknowledgments for

buffers that have been SENT and fully acknowledged

(i.e., SEND buffer should be returned with "ok"

response). If the ACK is a duplicate (SEG.ACK =<

SND.UNA), it can be ignored. If the ACK acks

something not yet sent (SEG.ACK > SND.NXT) then send

an ACK, drop the segment, and return.
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If SND.UNA =< SEG.ACK =< SND.NXT, the send window

should be updated. If (SND.WL1 < SEG.SEQ or (SND.WL1

= SEG.SEQ and SND.WL2 =< SEG.ACK)), set SND.WND <-

SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <-

SEG.ACK.

Note that SND.WND is an offset from SND.UNA, that

SND.WL1 records the sequence number of the last

segment used to update SND.WND, and that SND.WL2

records the acknowledgment number of the last segment

used to update SND.WND. The check here prevents using

old segments to update the window.

FIN-WAIT-1 STATE

In addition to the processing for the ESTABLISHED

state, if the FIN segment is now acknowledged then

enter FIN-WAIT-2 and continue processing in that

state.

FIN-WAIT-2 STATE

In addition to the processing for the ESTABLISHED

state, if the retransmission queue is empty, the

user's CLOSE can be acknowledged ("ok") but do not

delete the TCB.

CLOSE-WAIT STATE

Do the same processing as for the ESTABLISHED state.

CLOSING STATE

In addition to the processing for the ESTABLISHED

state, if the ACK acknowledges our FIN then enter the

TIME-WAIT state, otherwise ignore the segment.

LAST-ACK STATE

The only thing that can arrive in this state is an

acknowledgment of our FIN. If our FIN is now

acknowledged, delete the TCB, enter the CLOSED state,

and return.

TIME-WAIT STATE

The only thing that can arrive in this state is a

retransmission of the remote FIN. Acknowledge it, and

restart the 2 MSL timeout.
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sixth, check the URG bit,

ESTABLISHED STATE

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and

signal the user that the remote side has urgent data if

the urgent pointer (RCV.UP) is in advance of the data

consumed. If the user has already been signaled (or is

still in the "urgent mode") for this continuous sequence

of urgent data, do not signal the user again.

CLOSE-WAIT STATE

CLOSING STATE

LAST-ACK STATE

TIME-WAIT

This should not occur, since a FIN has been received

from the remote side. Ignore the URG.

seventh, process the segment text,

ESTABLISHED STATE

FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

Once in the ESTABLISHED state, it is possible to deliver

segment data to user RECEIVE buffers. Data from segments

can be moved into buffers until either the buffer is

full or the segment is empty. If the segment empties and

carries a PUSH flag, then the user is informed, when the

buffer is returned, that a PUSH has been received.

When the TCP endpoint takes responsibility for

delivering the data to the user it must also acknowledge

the receipt of the data.

Once the TCP endpoint takes responsibility for the data

it advances RCV.NXT over the data accepted, and adjusts

RCV.WND as appropriate to the current buffer

availability. The total of RCV.NXT and RCV.WND should

not be reduced.
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A TCP implementation MAY send an ACK segment

acknowledging RCV.NXT when a valid segment arrives that

is in the window but not at the left window edge

(MAY-13).

Please note the window management suggestions in Section

3.8.

Send an acknowledgment of the form:

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

This acknowledgment should be piggybacked on a segment

being transmitted if possible without incurring undue

delay.

CLOSE-WAIT STATE

CLOSING STATE

LAST-ACK STATE

TIME-WAIT STATE

This should not occur, since a FIN has been received

from the remote side. Ignore the segment text.

eighth, check the FIN bit,

Do not process the FIN if the state is CLOSED, LISTEN or

SYN-SENT since the SEG.SEQ cannot be validated; drop the

segment and return.

If the FIN bit is set, signal the user "connection closing"

and return any pending RECEIVEs with same message, advance

RCV.NXT over the FIN, and send an acknowledgment for the

FIN. Note that FIN implies PUSH for any segment text not

yet delivered to the user.

SYN-RECEIVED STATE

ESTABLISHED STATE

Enter the CLOSE-WAIT state.

FIN-WAIT-1 STATE

If our FIN has been ACKed (perhaps in this segment),

then enter TIME-WAIT, start the time-wait timer, turn
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ACK

off the other timers; otherwise enter the CLOSING

state.

FIN-WAIT-2 STATE

Enter the TIME-WAIT state. Start the time-wait timer,

turn off the other timers.

CLOSE-WAIT STATE

Remain in the CLOSE-WAIT state.

CLOSING STATE

Remain in the CLOSING state.

LAST-ACK STATE

Remain in the LAST-ACK state.

TIME-WAIT STATE

Remain in the TIME-WAIT state. Restart the 2 MSL

time-wait timeout.

and return.

3.10.8. Timeouts

USER TIMEOUT

For any state if the user timeout expires, flush all queues,

signal the user "error: connection aborted due to user

timeout" in general and for any outstanding calls, delete the

TCB, enter the CLOSED state and return.

RETRANSMISSION TIMEOUT

For any state if the retransmission timeout expires on a

segment in the retransmission queue, send the segment at the

front of the retransmission queue again, reinitialize the

retransmission timer, and return.

TIME-WAIT TIMEOUT

If the time-wait timeout expires on a connection delete the

TCB, enter the CLOSED state and return.

4. Glossary
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A control bit (acknowledge) occupying no sequence space, which

indicates that the acknowledgment field of this segment specifies

the next sequence number the sender of this segment is expecting



connection

datagram

Destination Address

FIN

fragment

header

host

Identification

internet address

internet datagram

internet fragment

IP

IRS

to receive, hence acknowledging receipt of all previous sequence

numbers.

A logical communication path identified by a pair of sockets.

A message sent in a packet switched computer communications

network.

The network layer address of the endpoint intended to receive a

segment.

A control bit (finis) occupying one sequence number, which

indicates that the sender will send no more data or control

occupying sequence space.

A portion of a logical unit of data, in particular an internet

fragment is a portion of an internet datagram.

Control information at the beginning of a message, segment,

fragment, packet or block of data.

A computer. In particular a source or destination of messages

from the point of view of the communication network.

An Internet Protocol field. This identifying value assigned by

the sender aids in assembling the fragments of a datagram.

A network layer address.

The unit of data exchanged between an internet module and the

higher level protocol together with the internet header.

A portion of the data of an internet datagram with an internet

header.

Internet Protocol. See [1] and [13].
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ISN

ISS

left sequence

module

MSL

octet

Options

packet

port

process

PUSH

The Initial Receive Sequence number. The first sequence number

used by the sender on a connection.

The Initial Sequence Number. The first sequence number used on a

connection, (either ISS or IRS). Selected in a way that is unique

within a given period of time and is unpredictable to attackers.

The Initial Send Sequence number. The first sequence number used

by the sender on a connection.

This is the next sequence number to be acknowledged by the data

receiving TCP endpoint (or the lowest currently unacknowledged

sequence number) and is sometimes referred to as the left edge of

the send window.

An implementation, usually in software, of a protocol or other

procedure.

Maximum Segment Lifetime, the time a TCP segment can exist in the

internetwork system. Arbitrarily defined to be 2 minutes.

An eight bit byte.

An Option field may contain several options, and each option may

be several octets in length.

A package of data with a header that may or may not be logically

complete. More often a physical packaging than a logical

packaging of data.

The portion of a connection identifier used for demultiplexing

connections at an endpoint.

A program in execution. A source or destination of data from the

point of view of the TCP endpoint or other host-to-host protocol.

A control bit occupying no sequence space, indicating that this

segment contains data that must be pushed through to the

receiving user.
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RCV.NXT

RCV.UP

RCV.WND

receive next sequence number

receive window

RST

receive next sequence number

receive urgent pointer

receive window

This is the next sequence number the local TCP endpoint is

expecting to receive.

This represents the sequence numbers the local (receiving) TCP

endpoint is willing to receive. Thus, the local TCP endpoint

considers that segments overlapping the range RCV.NXT to RCV.NXT

+ RCV.WND - 1 carry acceptable data or control. Segments

containing sequence numbers entirely outside this range are

considered duplicates or injection attacks and discarded.

A control bit (reset), occupying no sequence space, indicating

that the receiver should delete the connection without further

interaction. The receiver can determine, based on the sequence

number and acknowledgment fields of the incoming segment, whether

it should honor the reset command or ignore it. In no case does
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SEG.ACK

SEG.LEN

SEG.SEQ

SEG.UP

SEG.WND

segment

segment acknowledgment

segment length

segment sequence

send sequence

send window

SND.NXT

receipt of a segment containing RST give rise to a RST in

response.

segment acknowledgment

segment length

segment sequence

segment urgent pointer field

segment window field

A logical unit of data, in particular a TCP segment is the unit

of data transferred between a pair of TCP modules.

The sequence number in the acknowledgment field of the arriving

segment.

The amount of sequence number space occupied by a segment,

including any controls that occupy sequence space.

The number in the sequence field of the arriving segment.

This is the next sequence number the local (sending) TCP endpoint

will use on the connection. It is initially selected from an

initial sequence number curve (ISN) and is incremented for each

octet of data or sequenced control transmitted.

This represents the sequence numbers that the remote (receiving)

TCP endpoint is willing to receive. It is the value of the window

field specified in segments from the remote (data receiving) TCP

endpoint. The range of new sequence numbers that may be emitted

by a TCP implementation lies between SND.NXT and SND.UNA +

SND.WND - 1. (Retransmissions of sequence numbers between SND.UNA

and SND.NXT are expected, of course.)

send sequence
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SND.UNA

SND.UP

SND.WL1

SND.WL2

SND.WND

socket (or socket number, or socket address, or socket identifier)

Source Address

SYN

TCB

TCP

TOS

Type of Service

URG

left sequence

send urgent pointer

segment sequence number at last window update

segment acknowledgment number at last window update

send window

An address that specifically includes a port identifier, that is,

the concatenation of an Internet Address with a TCP port.

The network layer address of the sending endpoint.

A control bit in the incoming segment, occupying one sequence

number, used at the initiation of a connection, to indicate where

the sequence numbering will start.

Transmission control block, the data structure that records the

state of a connection.

Transmission Control Protocol: A host-to-host protocol for

reliable communication in internetwork environments.

Type of Service, an obsoleted IPv4 field. The same header bits

currently are used for the Differentiated Services field [4]

containing the Differentiated Services Code Point (DSCP) value

and the 2-bit ECN codepoint [6].

See "TOS".

A control bit (urgent), occupying no sequence space, used to

indicate that the receiving user should be notified to do urgent

processing as long as there is data to be consumed with sequence

numbers less than the value indicated by the urgent pointer.
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urgent pointer

A control field meaningful only when the URG bit is on. This

field communicates the value of the urgent pointer that indicates

the data octet associated with the sending user's urgent call.

5. Changes from RFC 793

This document obsoletes RFC 793 as well as RFC 6093 and 6528, which

updated 793. In all cases, only the normative protocol specification

and requirements have been incorporated into this document, and some

informational text with background and rationale may not have been

carried in. The informational content of those documents is still

valuable in learning about and understanding TCP, and they are valid

Informational references, even though their normative content has

been incorporated into this document.

The main body of this document was adapted from RFC 793's Section 3,

titled "FUNCTIONAL SPECIFICATION", with an attempt to keep

formatting and layout as close as possible.

The collection of applicable RFC Errata that have been reported and

either accepted or held for an update to RFC 793 were incorporated

(Errata IDs: 573, 574, 700, 701, 1283, 1561, 1562, 1564, 1571, 1572,

2297, 2298, 2748, 2749, 2934, 3213, 3300, 3301, 6222). Some errata

were not applicable due to other changes (Errata IDs: 572, 575,

1565, 1569, 2296, 3305, 3602).

Changes to the specification of the Urgent Pointer described in RFCs

1011, 1122, and 6093 were incorporated. See RFC 6093 for detailed

discussion of why these changes were necessary.

The discussion of the RTO from RFC 793 was updated to refer to RFC

6298. The RFC 1122 text on the RTO originally replaced the 793 text,

however, RFC 2988 should have updated 1122, and has subsequently

been obsoleted by 6298.

RFC 1011 [19] contains a number of comments about RFC 793, including

some needed changes to the TCP specification. These are expanded in

RFC 1122, which contains a collection of other changes and

clarifications to RFC 793. The normative items impacting the

protocol have been incorporated here, though some historically

useful implementation advice and informative discussion from RFC

1122 is not included here. The present document updates RFC 1011,

since this is now the TCP specification rather than RFC 793, and the

comments noted in 1011 have been incorporated.

RFC 1122 contains more than just TCP requirements, so this document

can't obsolete RFC 1122 entirely. It is only marked as "updating"

1122, however, it should be understood to effectively obsolete all

of the RFC 1122 material on TCP.
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The more secure Initial Sequence Number generation algorithm from

RFC 6528 was incorporated. See RFC 6528 for discussion of the

attacks that this mitigates, as well as advice on selecting PRF

algorithms and managing secret key data.

A note based on RFC 6429 was added to explicitly clarify that system

resource management concerns allow connection resources to be

reclaimed. RFC 6429 is obsoleted in the sense that this

clarification has been reflected in this update to the base TCP

specification now.

The description of congestion control implementation was added,

based on the set of documents that are IETF BCP or Standards Track

on the topic, and the current state of common implementations.

RFC EDITOR'S NOTE: the content below is for detailed change tracking

and planning, and not to be included with the final revision of the

document.

This document started as draft-eddy-rfc793bis-00, that was merely a

proposal and rough plan for updating RFC 793.

The -01 revision of this draft-eddy-rfc793bis incorporates the

content of RFC 793 Section 3 titled "FUNCTIONAL SPECIFICATION".

Other content from RFC 793 has not been incorporated. The -01

revision of this document makes some minor formatting changes to the

RFC 793 content in order to convert the content into XML2RFC format

and account for left-out parts of RFC 793. For instance, figure

numbering differs and some indentation is not exactly the same.

The -02 revision of draft-eddy-rfc793bis incorporates errata that

have been verified:

Errata ID 573: Reported by Bob Braden (note: This errata report

basically is just a reminder that RFC 1122 updates 793. Some of

the associated changes are left pending to a separate revision

that incorporates 1122. Bob's mention of PUSH in 793 section 2.8

was not applicable here because that section was not part of the

"functional specification". Also, the 1122 text on the

retransmission timeout also has been updated by subsequent RFCs,

so the change here deviates from Bob's suggestion to apply the

1122 text.)

Errata ID 574: Reported by Yin Shuming

Errata ID 700: Reported by Yin Shuming

Errata ID 701: Reported by Yin Shuming

Errata ID 1283: Reported by Pei-chun Cheng

Errata ID 1561: Reported by Constantin Hagemeier

Errata ID 1562: Reported by Constantin Hagemeier

Errata ID 1564: Reported by Constantin Hagemeier
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Errata ID 1565: Reported by Constantin Hagemeier

Errata ID 1571: Reported by Constantin Hagemeier

Errata ID 1572: Reported by Constantin Hagemeier

Errata ID 2296: Reported by Vishwas Manral

Errata ID 2297: Reported by Vishwas Manral

Errata ID 2298: Reported by Vishwas Manral

Errata ID 2748: Reported by Mykyta Yevstifeyev

Errata ID 2749: Reported by Mykyta Yevstifeyev

Errata ID 2934: Reported by Constantin Hagemeier

Errata ID 3213: Reported by EugnJun Yi

Errata ID 3300: Reported by Botong Huang

Errata ID 3301: Reported by Botong Huang

Errata ID 3305: Reported by Botong Huang

Note: Some verified errata were not used in this update, as they

relate to sections of RFC 793 elided from this document. These

include Errata ID 572, 575, and 1569.

Note: Errata ID 3602 was not applied in this revision as it is

duplicative of the 1122 corrections.

Not related to RFC 793 content, this revision also makes small

tweaks to the introductory text, fixes indentation of the pseudo

header diagram, and notes that the Security Considerations should

also include privacy, when this section is written.

The -03 revision of draft-eddy-rfc793bis revises all discussion of

the urgent pointer in order to comply with RFC 6093, 1122, and 1011.

Since 1122 held requirements on the urgent pointer, the full list of

requirements was brought into an appendix of this document, so that

it can be updated as-needed.

The -04 revision of draft-eddy-rfc793bis includes the ISN generation

changes from RFC 6528.

The -05 revision of draft-eddy-rfc793bis incorporates MSS

requirements and definitions from RFC 879 [17], 1122, and 6691, as

well as option-handling requirements from RFC 1122.

The -00 revision of draft-ietf-tcpm-rfc793bis incorporates several

additional clarifications and updates to the section on

segmentation, many of which are based on feedback from Joe Touch

improving from the initial text on this in the previous revision.

The -01 revision incorporates the change to Reserved bits due to

ECN, as well as many other changes that come from RFC 1122.

The -02 revision has small formatting modifications in order to

address xml2rfc warnings about long lines. It was a quick update to

avoid document expiration. TCPM working group discussion in 2015
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also indicated that we should not try to add sections on

implementation advice or similar non-normative information.

The -03 revision incorporates more content from RFC 1122: Passive

OPEN Calls, Time-To-Live, Multihoming, IP Options, ICMP messages,

Data Communications, When to Send Data, When to Send a Window

Update, Managing the Window, Probing Zero Windows, When to Send an

ACK Segment. The section on data communications was re-organized

into clearer subsections (previously headings were embedded in the

793 text), and windows management advice from 793 was removed (as

reviewed by TCPM working group) in favor of the 1122 additions on

SWS, ZWP, and related topics.

The -04 revision includes reference to RFC 6429 on the ZWP

condition, RFC1122 material on TCP Connection Failures, TCP Keep-

Alives, Acknowledging Queued Segments, and Remote Address

Validation. RTO computation is referenced from RFC 6298 rather than

RFC 1122.

The -05 revision includes the requirement to implement TCP

congestion control with recommendation to implement ECN, the RFC

6633 update to 1122, which changed the requirement on responding to

source quench ICMP messages, and discussion of ICMP (and ICMPv6)

soft and hard errors per RFC 5461 (ICMPv6 handling for TCP doesn't

seem to be mentioned elsewhere in standards track).

The -06 revision includes an appendix on "Other Implementation

Notes" to capture widely-deployed fundamental features that are not

contained in the RFC series yet. It also added mention of RFC 6994

and the IANA TCP parameters registry as a reference. It includes

references to RFC 5961 in appropriate places. The references to TOS

were changed to DiffServ field, based on reflecting RFC 2474 as well

as the IPv6 presence of traffic class (carrying DiffServ field)

rather than TOS.

The -07 revision includes reference to RFC 6191, updated security

considerations, discussion of additional implementation

considerations, and clarification of data on the SYN.

The -08 revision includes changes based on:

describing treatment of reserved bits (following TCPM mailing

list thread from July 2014 on "793bis item - reserved bit

behavior"

addition a brief TCP key concepts section to make up for not

including the outdated section 2 of RFC 793

changed "TCP" to "host" to resolve conflict between 1122 wording

on whether TCP or the network layer chooses an address when

multihomed
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fixed/updated definition of options in glossary

moved note on aggregating ACKs from 1122 to a more appropriate

location

resolved notes on IP precedence and security/compartment

added implementation note on sequence number validation

added note that PUSH does not apply when Nagle is active

added 1122 content on asynchronous reports to replace 793 section

on TCP to user messages

The -09 revision fixes section numbering problems.

The -10 revision includes additions to the security considerations

based on comments from Joe Touch, and suggested edits on RST/FIN

notification, RFC 2525 reference, and other edits suggested by

Yuchung Cheng, as well as modifications to DiffServ text from

Yuchung Cheng and Gorry Fairhurst.

The -11 revision includes a start at identifying all of the

requirements text and referencing each instance in the common table

at the end of the document.

The -12 revision completes the requirement language indexing started

in -11 and adds necessary description of the PUSH functionality that

was missing.

The -13 revision contains only changes in the inline editor notes.

The -14 revision includes updates with regard to several comments

from the mailing list, including editorial fixes, adding IANA

considerations for the header flags, improving figure title

placement, and breaking up the "Terminology" section into more

appropriately titled subsections.

The -15 revision has many technical and editorial corrections from

Gorry Fairhurst's review, and subsequent discussion on the TCPM

list, as well as some other collected clarifications and

improvements from mailing list discussion.

The -16 revision addresses several discussions that rose from

additional reviews and follow-up on some of Gorry Fairhurst's

comments from revision 14.

The -17 revision includes errata 6222 from Charles Deng, update to

the key words boilerplate, updated description of the header flags

registry changes, and clarification about connections rather than

users in the discussion of OPEN calls.

The -18 revision includes editorial changes to the IANA

considerations, based on comments from Richard Scheffenegger at the

IETF 108 TCPM virtual meeting.
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The -19 revision includes editorial changes from Errata 6281 and

6282 reported by Merlin Buge. It also includes WGLC changes noted by

Mohamed Boucadair, Rahul Jadhav, Praveen Balasubramanian, Matt

Olson, Yi Huang, Joe Touch, and Juhamatti Kuusisaari.

The -20 revision includes text on congestion control based on

mailing list and meeting discussion, put together in its final form

by Markku Kojo. It also clarifies that SACK, WS, and TS options are

recommended for high performance, but not needed for basic

interoperability. It also clarifies that the length field is

required for new TCP options.

The -21 revision includes slight changes to the header diagram for

compatibility with tooling, from Stephen McQuistin, clarification on

the meaning of idle connections from Yuchung Cheng, Neal Cardwell,

Michael Scharf, and Richard Scheffenegger, editorial improvements

from Markku Kojo, notes that some stacks suppress extra

acknowledgments of the SYN when SYN-ACK carries data from Richard

Scheffenegger, and adds MAY-18 numbering based on note from Jonathan

Morton.

The -22 revision includes small clarifications on terminology (might

versus may) and IPv6 extension headers versus IPv4 options, based on

comments from Gorry Fairhurst.

The -23 revision has a fix to indentation from Michael Tuexen and

idnits issues addressed from Michael Scharf.

The -24 revision incorporates changes after Martin Duke's AD review,

including further feedback on those comments from Yuchung Cheng and

Joe Touch. Important changes for review include (1) removal of the

need to check for the PUSH flag when evaluating the SWS override

timer expiration, (2) clarification about receding urgent pointer,

and (3) de-duplicating handling of the RST checking between step 4

and step 1.

The -25 revision incorporates changes based on the GENART review

from Francis Dupont, SECDIR review from Kyle Rose, and OPSDIR review

from Sarah Banks.

The -26 revision incorporates changes stemming from the IESG

reviews, and INTDIR review from Bernie Volz.

The -27 revision fixes a few small editorial incompatibilities that

Stephen McQuistin found related to automated code generation.

Some other suggested changes that will not be incorporated in this

793 update unless TCPM consensus changes with regard to scope are:

Tony Sabatini's suggestion for describing DO field
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Per discussion with Joe Touch (TAPS list, 6/20/2015), the

description of the API could be revisited

Reducing the R2 value for SYNs has been suggested as a possible

topic for future consideration.

Early in the process of updating RFC 793, Scott Brim mentioned that

this should include a PERPASS/privacy review. This may be something

for the chairs or AD to request during WGLC or IETF LC.

6. IANA Considerations

In the "Transmission Control Protocol (TCP) Header Flags" registry,

IANA is asked to make several changes described in this section.

RFC 3168 originally created this registry, but only populated it

with the new bits defined in RFC 3168, neglecting the other bits

that had previously been described in RFC 793 and other documents.

Bit 7 has since also been updated by RFC 8311.

The "Bit" column is renamed below as the "Bit Offset" column, since

it references each header flag's offset within the 16-bit aligned

view of the TCP header in Figure 1. The bits in offsets 0 through 4

are the TCP segment Data Offset field, and not header flags.

IANA should add a column for "Assignment Notes".

IANA should assign values indicated below.

2. 

¶

3. 

¶

¶

¶

¶

¶

¶
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   TCP Header Flags

   Bit      Name                                       Reference       Assignment Notes

  Offset

   ---      ----                                       ---------       ----------------

   4        Reserved for future use                    (this document)

   5        Reserved for future use                    (this document)

   6        Reserved for future use                    (this document)

   7        Reserved for future use                    [RFC8311]             [1]

   8        CWR (Congestion Window Reduced)            [RFC3168]

   9        ECE (ECN-Echo)                             [RFC3168]

   10       Urgent Pointer field is significant (URG)  (this document)

   11       Acknowledgment field is significant (ACK)  (this document)

   12       Push Function (PSH)                        (this document)

   13       Reset the connection (RST)                 (this document)

   14       Synchronize sequence numbers (SYN)         (this document)

   15       No more data from sender (FIN)             (this document)

   FOOTNOTES:

   [1] Previously used by Historic [RFC3540] as NS (Nonce Sum).

¶



This TCP Header Flags registry should also be moved to a sub-

registry under the global "Transmission Control Protocol (TCP)

Parameters registry (https://www.iana.org/assignments/tcp-

parameters/tcp-parameters.xhtml).

The registry's Registration Procedure should remain Standards

Action, but the Reference can be updated to this document, and the

Note removed.

7. Security and Privacy Considerations

The TCP design includes only rudimentary security features that

improve the robustness and reliability of connections and

application data transfer, but there are no built-in cryptographic

capabilities to support any form of confidentiality, authentication,

or other typical security functions. Non-cryptographic enhancements

(e.g. [9]) have been developed to improve robustness of TCP

connections to particular types of attacks, but the applicability

and protections of non-cryptographic enhancements are limited (e.g.

see section 1.1 of [9]). Applications typically utilize lower-layer

(e.g. IPsec) and upper-layer (e.g. TLS) protocols to provide

security and privacy for TCP connections and application data

carried in TCP. Methods based on TCP options have been developed as

well, to support some security capabilities.

In order to fully provide confidentiality, integrity protection, and

authentication for TCP connections (including their control flags)

IPsec is the only current effective method. For integrity protection

and authentication, the TCP Authentication Option (TCP-AO) [39] is

available, with a proposed extension to also provide confidentiality

for the segment payload. Other methods discussed in this section may

provide confidentiality or integrity protection for the payload, but

for the TCP header only cover either a subset of the fields (e.g.

tcpcrypt [57]) or none at all (e.g. TLS). Other security features

that have been added to TCP (e.g. ISN generation, sequence number

checks, and others) are only capable of partially hindering attacks.

Applications using long-lived TCP flows have been vulnerable to

attacks that exploit the processing of control flags described in

earlier TCP specifications [34]. TCP-MD5 was a commonly implemented

TCP option to support authentication for some of these connections,

but had flaws and is now deprecated. TCP-AO provides a capability to

protect long-lived TCP connections from attacks, and has superior

properties to TCP-MD5. It does not provide any privacy for

application data, nor for the TCP headers.

The "tcpcrypt" [57] Experimental extension to TCP provides the

ability to cryptographically protect connection data. Metadata

aspects of the TCP flow are still visible, but the application
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stream is well-protected. Within the TCP header, only the urgent

pointer and FIN flag are protected through tcpcrypt.

The TCP Roadmap [50] includes notes about several RFCs related to

TCP security. Many of the enhancements provided by these RFCs have

been integrated into the present document, including ISN generation,

mitigating blind in-window attacks, and improving handling of soft

errors and ICMP packets. These are all discussed in greater detail

in the referenced RFCs that originally described the changes needed

to earlier TCP specifications. Additionally, see RFC 6093 [40] for

discussion of security considerations related to the urgent pointer

field, that has been deprecated.

Since TCP is often used for bulk transfer flows, some attacks are

possible that abuse the TCP congestion control logic. An example is

"ACK-division" attacks. Updates that have been made to the TCP

congestion control specifications include mechanisms like

Appropriate Byte Counting (ABC) [30] that act as mitigations to

these attacks.

Other attacks are focused on exhausting the resources of a TCP

server. Examples include SYN flooding [33] or wasting resources on

non-progressing connections [42]. Operating systems commonly

implement mitigations for these attacks. Some common defenses also

utilize proxies, stateful firewalls, and other technologies outside

the end-host TCP implementation.

The concept of a protocol's "wire image" is described in RFC 8546 

[56], which describes how TCP's cleartext headers expose more

metadata to nodes on the path than is strictly required to route the

packets to their destination. On-path adversaries may be able to

leverage this metadata. Lessons learned in this respect from TCP

have been applied in the design of newer transports like QUIC [60].

Additionally, based partly on experiences with TCP and its

extensions, there are considerations that might be applicable for

future TCP extensions and other transports that the IETF has

documented in RFC 9065 [61], along with IAB recommendations in RFC

8558 [58] and [68].

There are also methods of "fingerprinting" that can be used to infer

the host TCP implementation (operating system) version or platform

information. These collect observations of several aspects such as

the options present in segments, the ordering of options, the

specific behaviors in the case of various conditions, packet timing,

packet sizing, and other aspects of the protocol that are left to be

determined by an implementer, and can use those observations to

identify information about the host and implementation.
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Appendix A. Other Implementation Notes

This section includes additional notes and references on TCP

implementation decisions that are currently not a part of the RFC

series or included within the TCP standard. These items can be

considered by implementers, but there was not yet a consensus to

include them in the standard.

A.1. IP Security Compartment and Precedence

The IPv4 specification [1] includes a precedence value in the (now

obsoleted) Type of Service field (TOS) field. It was modified in 

[21], and then obsoleted by the definition of Differentiated

Services (DiffServ) [4]. Setting and conveying TOS between the

network layer, TCP implementation, and applications is obsolete, and

replaced by DiffServ in the current TCP specification.

RFC 793 required checking the IP security compartment and precedence

on incoming TCP segments for consistency within a connection, and

with application requests. Each of these aspects of IP have become

outdated, without specific updates to RFC 793. The issues with

precedence were fixed by [26], which is Standards Track, and so this

present TCP specification includes those changes. However, the state

of IP security options that may be used by MLS systems is not as

apparent in the IETF currently.

Resetting connections when incoming packets do not meet expected

security compartment or precedence expectations has been recognized

as a possible attack vector [64], and there has been discussion

about amending the TCP specification to prevent connections from

being aborted due to non-matching IP security compartment and

DiffServ codepoint values.
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A.1.1. Precedence

In DiffServ the former precedence values are treated as Class

Selector codepoints, and methods for compatible treatment are

described in the DiffServ architecture. The RFC 793/1122 TCP

specification includes logic intending to have connections use the

highest precedence requested by either endpoint application, and to

keep the precedence consistent throughout a connection. This logic

from the obsolete TOS is not applicable for DiffServ, and should not

be included in TCP implementations, though changes to DiffServ

values within a connection are discouraged. For discussion of this,

see RFC 7657 (sec 5.1, 5.3, and 6) [51].

The obsoleted TOS processing rules in TCP assumed bidirectional (or

symmetric) precedence values used on a connection, but the DiffServ

architecture is asymmetric. Problems with the old TCP logic in this

regard were described in [26] and the solution described is to

ignore IP precedence in TCP. Since RFC 2873 is a Standards Track

document (although not marked as updating RFC 793), current

implementations are expected to be robust to these conditions. Note

that the DiffServ field value used in each direction is a part of

the interface between TCP and the network layer, and values in use

can be indicated both ways between TCP and the application.

A.1.2. MLS Systems

The IP security option (IPSO) and compartment defined in [1] was

refined in RFC 1038 that was later obsoleted by RFC 1108. The

Commercial IP Security Option (CIPSO) is defined in FIPS-188

(withdrawn by NIST in 2015), and is supported by some vendors and

operating systems. RFC 1108 is now Historic, though RFC 791 itself

has not been updated to remove the IP security option. For IPv6, a

similar option (CALIPSO) has been defined [37]. RFC 793 includes

logic that includes the IP security/compartment information in

treatment of TCP segments. References to the IP "security/

compartment" in this document may be relevant for Multi-Level Secure

(MLS) system implementers, but can be ignored for non-MLS

implementations, consistent with running code on the Internet. See 

Appendix A.1 for further discussion. Note that RFC 5570 describes

some MLS networking scenarios where IPSO, CIPSO, or CALIPSO may be

used. In these special cases, TCP implementers should see section

7.3.1 of RFC 5570, and follow the guidance in that document.

A.2. Sequence Number Validation

There are cases where the TCP sequence number validation rules can

prevent ACK fields from being processed. This can result in

connection issues, as described in [65], which includes descriptions

of potential problems in conditions of simultaneous open, self-
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connects, simultaneous close, and simultaneous window probes. The

document also describes potential changes to the TCP specification

to mitigate the issue by expanding the acceptable sequence numbers.

In Internet usage of TCP, these conditions are rarely occurring.

Common operating systems include different alternative mitigations,

and the standard has not been updated yet to codify one of them, but

implementers should consider the problems described in [65].

A.3. Nagle Modification

In common operating systems, both the Nagle algorithm and delayed

acknowledgements are implemented and enabled by default. TCP is used

by many applications that have a request-response style of

communication, where the combination of the Nagle algorithm and

delayed acknowledgements can result in poor application performance.

A modification to the Nagle algorithm is described in [69] that

improves the situation for these applications.

This modification is implemented in some common operating systems,

and does not impact TCP interoperability. Additionally, many

applications simply disable Nagle, since this is generally supported

by a socket option. The TCP standard has not been updated to include

this Nagle modification, but implementers may find it beneficial to

consider.

A.4. Low Watermark Settings

Some operating system kernel TCP implementations include socket

options that allow specifying the number of bytes in the buffer

until the socket layer will pass sent data to TCP (SO_SNDLOWAT) or

to the application on receiving (SO_RCVLOWAT).

In addition, another socket option (TCP_NOTSENT_LOWAT) can be used

to control the amount of unsent bytes in the write queue. This can

help a sending TCP application to avoid creating large amounts of

buffered data (and corresponding latency). As an example, this may

be useful for applications that are multiplexing data from multiple

upper level streams onto a connection, especially when streams may

be a mix of interactive / real-time and bulk data transfer.

Appendix B. TCP Requirement Summary

This section is adapted from RFC 1122.

Note that there is no requirement related to PLPMTUD in this list,

but that PLPMTUD is recommended.
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                                                 |        | | | |S| |

                                                 |        | | | |H| |F

                                                 |        | | | |O|M|o

                                                 |        | |S| |U|U|o

                                                 |        | |H| |L|S|t

                                                 |        |M|O| |D|T|n

                                                 |        |U|U|M| | |o

                                                 |        |S|L|A|N|N|t

                                                 |        |T|D|Y|O|O|t

FEATURE                                          | ReqID  | | | |T|T|e

-------------------------------------------------|--------|-|-|-|-|-|--

                                                 |        | | | | | |

Push flag                                        |        | | | | | |

  Aggregate or queue un-pushed data              | MAY-16 | | |x| | |

  Sender collapse successive PSH flags           | SHLD-27| |x| | | |

  SEND call can specify PUSH                     | MAY-15 | | |x| | |

    If cannot: sender buffer indefinitely        | MUST-60| | | | |x|

    If cannot: PSH last segment                  | MUST-61|x| | | | |

  Notify receiving ALP of PSH                    | MAY-17 | | |x| | |1

  Send max size segment when possible            | SHLD-28| |x| | | |

                                                 |        | | | | | |

Window                                           |        | | | | | |

  Treat as unsigned number                       | MUST-1 |x| | | | |

  Handle as 32-bit number                        | REC-1  | |x| | | |

  Shrink window from right                       | SHLD-14| | | |x| |

  - Send new data when window shrinks            | SHLD-15| | | |x| |

  - Retransmit old unacked data within window    | SHLD-16| |x| | | |

  - Time out conn for data past right edge       | SHLD-17| | | |x| |

  Robust against shrinking window                | MUST-34|x| | | | |

  Receiver's window closed indefinitely          | MAY-8  | | |x| | |

  Use standard probing logic                     | MUST-35|x| | | | |

  Sender probe zero window                       | MUST-36|x| | | | |

    First probe after RTO                        | SHLD-29| |x| | | |

    Exponential backoff                          | SHLD-30| |x| | | |

  Allow window stay zero indefinitely            | MUST-37|x| | | | |

  Retransmit old data beyond SND.UNA+SND.WND     | MAY-7  | | |x| | |

  Process RST and URG even with zero window      | MUST-66|x| | | | |

                                                 |        | | | | | |

Urgent Data                                      |        | | | | | |

  Include support for urgent pointer             | MUST-30|x| | | | |

  Pointer indicates first non-urgent octet       | MUST-62|x| | | | |

  Arbitrary length urgent data sequence          | MUST-31|x| | | | |

  Inform ALP asynchronously of urgent data       | MUST-32|x| | | | |1

  ALP can learn if/how much urgent data Q'd      | MUST-33|x| | | | |1

  ALP employ the urgent mechanism                | SHLD-13| | | |x| |

                                                 |        | | | | | |

TCP Options                                      |        | | | | | |

  Support the mandatory option set               | MUST-4 |x| | | | |



  Receive TCP option in any segment              | MUST-5 |x| | | | |

  Ignore unsupported options                     | MUST-6 |x| | | | |

  Include length for all options except EOL+NOP  | MUST-68|x| | | | |

  Cope with illegal option length                | MUST-7 |x| | | | |

  Process options regardless of word alignment   | MUST-64|x| | | | |

  Implement sending & receiving MSS option       | MUST-14|x| | | | |

  IPv4 Send MSS option unless 536                | SHLD-5 | |x| | | |

  IPv6 Send MSS option unless 1220               | SHLD-5 | |x| | | |

  Send MSS option always                         | MAY-3  | | |x| | |

  IPv4 Send-MSS default is 536                   | MUST-15|x| | | | |

  IPv6 Send-MSS default is 1220                  | MUST-15|x| | | | |

  Calculate effective send seg size              | MUST-16|x| | | | |

  MSS accounts for varying MTU                   | SHLD-6 | |x| | | |

  MSS not sent on non-SYN segments               | MUST-65| | | | |x|

  MSS value based on MMS_R                       | MUST-67|x| | | | |

  Pad with zero                                  | MUST-69|x| | | | |

                                                 |        | | | | | |

TCP Checksums                                    |        | | | | | |

  Sender compute checksum                        | MUST-2 |x| | | | |

  Receiver check checksum                        | MUST-3 |x| | | | |

                                                 |        | | | | | |

ISN Selection                                    |        | | | | | |

  Include a clock-driven ISN generator component | MUST-8 |x| | | | |

  Secure ISN generator with a PRF component      | SHLD-1 | |x| | | |

  PRF computable from outside the host           | MUST-9 | | | | |x|

                                                 |        | | | | | |

Opening Connections                              |        | | | | | |

  Support simultaneous open attempts             | MUST-10|x| | | | |

  SYN-RECEIVED remembers last state              | MUST-11|x| | | | |

  Passive Open call interfere with others        | MUST-41| | | | |x|

  Function: simultan. LISTENs for same port      | MUST-42|x| | | | |

  Ask IP for src address for SYN if necc.        | MUST-44|x| | | | |

    Otherwise, use local addr of conn.           | MUST-45|x| | | | |

  OPEN to broadcast/multicast IP Address         | MUST-46| | | | |x|

  Silently discard seg to bcast/mcast addr       | MUST-57|x| | | | |

                                                 |        | | | | | |

Closing Connections                              |        | | | | | |

  RST can contain data                           | SHLD-2 | |x| | | |

  Inform application of aborted conn             | MUST-12|x| | | | |

  Half-duplex close connections                  | MAY-1  | | |x| | |

    Send RST to indicate data lost               | SHLD-3 | |x| | | |

  In TIME-WAIT state for 2MSL seconds            | MUST-13|x| | | | |

    Accept SYN from TIME-WAIT state              | MAY-2  | | |x| | |

    Use Timestamps to reduce TIME-WAIT           | SHLD-4 | |x| | | |

                                                 |        | | | | | |

Retransmissions                                  |        | | | | | |

  Implement exponential backoff, slow start, and | MUST-19|x| | | | |

    congestion avoidance                         |        | | | | | |

  Retransmit with same IP ident                  | MAY-4  | | |x| | |



  Karn's algorithm                               | MUST-18|x| | | | |

                                                 |        | | | | | |

Generating ACKs:                                 |        | | | | | |

  Aggregate whenever possible                    | MUST-58|x| | | | |

  Queue out-of-order segments                    | SHLD-31| |x| | | |

  Process all Q'd before send ACK                | MUST-59|x| | | | |

  Send ACK for out-of-order segment              | MAY-13 | | |x| | |

  Delayed ACKs                                   | SHLD-18| |x| | | |

    Delay < 0.5 seconds                          | MUST-40|x| | | | |

    Every 2nd full-sized segment or 2*RMSS ACK'd | SHLD-19| |x| | | |

  Receiver SWS-Avoidance Algorithm               | MUST-39|x| | | | |

                                                 |        | | | | | |

Sending data                                     |        | | | | | |

  Configurable TTL                               | MUST-49|x| | | | |

  Sender SWS-Avoidance Algorithm                 | MUST-38|x| | | | |

  Nagle algorithm                                | SHLD-7 | |x| | | |

    Application can disable Nagle algorithm      | MUST-17|x| | | | |

                                                 |        | | | | | |

Connection Failures:                             |        | | | | | |

  Negative advice to IP on R1 retxs              | MUST-20|x| | | | |

  Close connection on R2 retxs                   | MUST-20|x| | | | |

  ALP can set R2                                 | MUST-21|x| | | | |1

  Inform ALP of  R1<=retxs<R2                    | SHLD-9 | |x| | | |1

  Recommended value for R1                       | SHLD-10| |x| | | |

  Recommended value for R2                       | SHLD-11| |x| | | |

  Same mechanism for SYNs                        | MUST-22|x| | | | |

    R2 at least 3 minutes for SYN                | MUST-23|x| | | | |

                                                 |        | | | | | |

Send Keep-alive Packets:                         | MAY-5  | | |x| | |

  - Application can request                      | MUST-24|x| | | | |

  - Default is "off"                             | MUST-25|x| | | | |

  - Only send if idle for interval               | MUST-26|x| | | | |

  - Interval configurable                        | MUST-27|x| | | | |

  - Default at least 2 hrs.                      | MUST-28|x| | | | |

  - Tolerant of lost ACKs                        | MUST-29|x| | | | |

  - Send with no data                            | SHLD-12| |x| | | |

  - Configurable to send garbage octet           | MAY-6  | | |x| | |

                                                 |        | | | | | |

IP Options                                       |        | | | | | |

  Ignore options TCP doesn't understand          | MUST-50|x| | | | |

  Time Stamp support                             | MAY-10 | | |x| | |

  Record Route support                           | MAY-11 | | |x| | |

  Source Route:                                  |        | | | | | |

    ALP can specify                              | MUST-51|x| | | | |1

      Overrides src rt in datagram               | MUST-52|x| | | | |

    Build return route from src rt               | MUST-53|x| | | | |

    Later src route overrides                    | SHLD-24| |x| | | |

                                                 |        | | | | | |

Receiving ICMP Messages from IP                  | MUST-54|x| | | | |



  Dest. Unreach (0,1,5) => inform ALP            | SHLD-25| |x| | | |

  Abort on Dest. Unreach (0,1,5) =>nn            | MUST-56| | | | |x|

  Dest. Unreach (2-4) => abort conn              | SHLD-26| |x| | | |

  Source Quench => silent discard                | MUST-55|x| | | | |

  Abort on Time Exceeded =>                      | MUST-56| | | | |x|

  Abort on Param Problem =>                      | MUST-56| | | | |x|

                                                 |        | | | | | |

Address Validation                               |        | | | | | |

  Reject OPEN call to invalid IP address         | MUST-46|x| | | | |

  Reject SYN from invalid IP address             | MUST-63|x| | | | |

  Silently discard SYN to bcast/mcast addr       | MUST-57|x| | | | |

                                                 |        | | | | | |

TCP/ALP Interface Services                       |        | | | | | |

  Error Report mechanism                         | MUST-47|x| | | | |

  ALP can disable Error Report Routine           | SHLD-20| |x| | | |

  ALP can specify DiffServ field for sending     | MUST-48|x| | | | |

    Passed unchanged to IP                       | SHLD-22| |x| | | |

  ALP can change DiffServ field during connection| SHLD-21| |x| | | |

  ALP generally changing DiffServ during conn.   | SHLD-23| | | |x| |

  Pass received DiffServ field up to ALP         | MAY-9  | | |x| | |

  FLUSH call                                     | MAY-14 | | |x| | |

  Optional local IP addr parm. in OPEN           | MUST-43|x| | | | |

                                                 |        | | | | | |

RFC 5961 Support:                                |        | | | | | |

  Implement data injection protection            | MAY-12 | | |x| | |

                                                 |        | | | | | |

Explicit Congestion Notification:                |        | | | | | |

  Support ECN                                    | SHLD-8 | |x| | | |

                                                 |        | | | | | |

Alternative Congestion Control:                  |        | | | | | |

  Implement alternative conformant algorithm(s)  | MAY-18 | | |x| | |

-------------------------------------------------|--------|-|-|-|-|-|-

¶



FOOTNOTES: (1) "ALP" means Application-Layer Program.
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