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Abstract

CUBIC is an extension to the traditional TCP standards. It differs

from the traditional TCP standards only in the congestion control

algorithm on the sender side. In particular, it uses a cubic

function instead of the linear window increase function of the

traditional TCP standards to improve scalability and stability under

fast and long-distance networks. CUBIC has been adopted as the

default TCP congestion control algorithm by the Linux, Windows, and

Apple stacks.

This document updates the specification of CUBIC to include

algorithmic improvements based on these implementations and recent

academic work. Based on the extensive deployment experience with

CUBIC, it also moves the specification to the Standards Track,

obsoleting [RFC8312].

Note to Readers

Discussion of this draft takes place on the TCPM working group

mailing list, which is archived at https://mailarchive.ietf.org/

arch/browse/tcpm/.

Working Group information can be found at https://

datatracker.ietf.org/wg/tcpm/; source code and issues list for this

draft can be found at https://github.com/NTAP/rfc8312bis.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.
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Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 September 2021.
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1. Introduction

The low utilization problem of traditional TCP in fast and long-

distance networks is well documented in [K03] and [RFC3649]. This

problem arises from a slow increase of the congestion window

following a congestion event in a network with a large bandwidth-

delay product (BDP). [HKLRX06] indicates that this problem is

frequently observed even in the range of congestion window sizes

over several hundreds of packets. This problem is equally applicable

to all Reno-style TCP standards and their variants, including TCP-

Reno [RFC5681], TCP-NewReno [RFC6582][RFC6675], SCTP [RFC4960], and

TFRC [RFC5348], which use the same linear increase function for

window growth. We refer to all Reno-style TCP standards and their

variants collectively as "AIMD TCP" below because they use the

Additive Increase and Multiplicative Decrease algorithm (AIMD).

CUBIC, originally proposed in [HRX08], is a modification to the

congestion control algorithm of traditional AIMD TCP to remedy this

problem. This document describes the most recent specification of

CUBIC. Specifically, CUBIC uses a cubic function instead of the

linear window increase function of AIMD TCP to improve scalability

and stability under fast and long-distance networks.

Binary Increase Congestion Control (BIC-TCP) [XHR04], a predecessor

of CUBIC, was selected as the default TCP congestion control

algorithm by Linux in the year 2005 and had been used for several

years by the Internet community at large.
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Principle 1:

Principle 2:

Principle 3:

Principle 4:

CUBIC uses a similar window increase function as BIC-TCP and is

designed to be less aggressive and fairer to AIMD TCP in bandwidth

usage than BIC-TCP while maintaining the strengths of BIC-TCP such

as stability, window scalability, and round-trip time (RTT)

fairness. CUBIC has been adopted as the default TCP congestion

control algorithm in the Linux, Windows, and Apple stacks, and has

been used and deployed globally. Extensive, decade-long deployment

experience in vastly different Internet scenarios has convincingly

demonstrated that CUBIC is safe for deployment on the global

Internet and delivers substantial benefits over traditional AIMD

congestion control. It is therefore to be regarded as the current

standard for TCP congestion control.

In the following sections, we first briefly explain the design

principles of CUBIC, then provide the exact specification of CUBIC,

and finally discuss the safety features of CUBIC following the

guidelines specified in [RFC5033].

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Design Principles of CUBIC

CUBIC is designed according to the following design principles:

For better network utilization and stability, CUBIC

uses both the concave and convex profiles of a cubic function to

increase the congestion window size, instead of using just a

convex function.

To be AIMD-friendly, CUBIC is designed to behave like

AIMD TCP in networks with short RTTs and small bandwidth where

AIMD TCP performs well.

For RTT-fairness, CUBIC is designed to achieve linear

bandwidth sharing among flows with different RTTs.

CUBIC appropriately sets its multiplicative window

decrease factor in order to balance between the scalability and

convergence speed.

3.1. Principle 1 for the CUBIC Increase Function

For better network utilization and stability, CUBIC [HRX08] uses a

cubic window increase function in terms of the elapsed time from the
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last congestion event. While most alternative congestion control

algorithms to AIMD TCP increase the congestion window using convex

functions, CUBIC uses both the concave and convex profiles of a

cubic function for window growth.

After a window reduction in response to a congestion event is

detected by duplicate ACKs or Explicit Congestion Notification-Echo

(ECN-Echo, ECE) ACKs [RFC3168], CUBIC remembers the congestion

window size where it received the congestion event and performs a

multiplicative decrease of the congestion window. When CUBIC enters

into congestion avoidance, it starts to increase the congestion

window using the concave profile of the cubic function. The cubic

function is set to have its plateau at the remembered congestion

window size, so that the concave window increase continues until

then. After that, the cubic function turns into a convex profile and

the convex window increase begins.

This style of window adjustment (concave and then convex) improves

the algorithm stability while maintaining high network utilization 

[CEHRX07]. This is because the window size remains almost constant,

forming a plateau around the remembered congestion window size of

the last congestion event, where network utilization is deemed

highest. Under steady state, most window size samples of CUBIC are

close to that remembered congestion window size, thus promoting high

network utilization and stability.

Note that congestion control algorithms that only use convex

functions to increase the congestion window size have their maximum

increments around the remembered congestion window size of the last

congestion event, and thus introduce a large number of packet bursts

around the saturation point of the network, likely causing frequent

global loss synchronizations.

3.2. Principle 2 for AIMD Friendliness

CUBIC promotes per-flow fairness to AIMD TCP. Note that AIMD TCP

performs well over paths with short RTTs and small bandwidths (or

small BDPs). There is only a scalability problem in networks with

long RTTs and large bandwidths (or large BDPs).

A congestion control algorithm designed to be friendly to AIMD TCP

on a per-flow basis must increase its congestion window less

aggressively in small BDP networks than in large BDP networks.

The aggressiveness of CUBIC mainly depends on the maximum window

size before a window reduction, which is smaller in small-BDP

networks than in large-BDP networks. Thus, CUBIC increases its

congestion window less aggressively in small-BDP networks than in

large-BDP networks.
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Furthermore, in cases when the cubic function of CUBIC would

increase the congestion window less aggressively than AIMD TCP,

CUBIC simply follows the window size of AIMD TCP to ensure that

CUBIC achieves at least the same throughput as AIMD TCP in small-BDP

networks. We call this region where CUBIC behaves like AIMD TCP the

"AIMD-friendly region".

3.3. Principle 3 for RTT Fairness

Two CUBIC flows with different RTTs have a throughput ratio that is

linearly proportional to the inverse of their RTT ratio, where the

throughput of a flow is approximately the size of its congestion

window divided by its RTT.

Specifically, CUBIC maintains a window increase rate independent of

RTTs outside of the AIMD-friendly region, and thus flows with

different RTTs have similar congestion window sizes under steady

state when they operate outside the AIMD-friendly region.

This notion of a linear throughput ratio is similar to that of AIMD

TCP under high statistical multiplexing where packet loss is

independent of individual flow rates. However, under low statistical

multiplexing, the throughput ratio of AIMD TCP flows with different

RTTs is quadratically proportional to the inverse of their RTT ratio

[XHR04].

CUBIC always ensures a linear throughput ratio independent of the

amount of statistical multiplexing. This is an improvement over AIMD

TCP. While there is no consensus on particular throughput ratios for

different RTT flows, we believe that over wired Internet paths, use

of a linear throughput ratio seems more reasonable than equal

throughputs (i.e., the same throughput for flows with different

RTTs) or a higher-order throughput ratio (e.g., a quadratical

throughput ratio of AIMD TCP under low statistical multiplexing

environments).

3.4. Principle 4 for the CUBIC Decrease Factor

To balance between scalability and convergence speed, CUBIC sets the

multiplicative window decrease factor to 0.7, whereas AIMD TCP uses

0.5.

While this improves the scalability of CUBIC, a side effect of this

decision is slower convergence, especially under low statistical

multiplexing. This design choice is following the observation that

HighSpeed TCP (HSTCP) [RFC3649] and other approaches (e.g., [GV02])

made: the current Internet becomes more asynchronous with less

frequent loss synchronizations under high statistical multiplexing.
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In such environments, even strict Multiplicative-Increase

Multiplicative-Decrease (MIMD) can converge. CUBIC flows with the

same RTT always converge to the same throughput independent of

statistical multiplexing, thus achieving intra-algorithm fairness.

We also find that in environments with sufficient statistical

multiplexing, the convergence speed of CUBIC is reasonable.

4. CUBIC Congestion Control

In this section, we discuss how the congestion window is updated

during the different stages of the CUBIC congestion controller.

4.1. Definitions

The unit of all window sizes in this document is segments of the

maximum segment size (MSS), and the unit of all times is seconds.

4.1.1. Constants of Interest

β : CUBIC multiplication decrease factor as described in Section

4.6.

α : CUBIC additive increase factor used in AIMD-friendly region as

described in Section 4.3.

C: constant that determines the aggressiveness of CUBIC in competing

with other congestion control algorithms in high BDP networks.

Please see Section 5 for more explanation on how it is set. The unit

for C is

4.1.2. Variables of Interest

This section defines the variables required to implement CUBIC:

RTT: Smoothed round-trip time in seconds, calculated as described

in [RFC6298].

cwnd: Current congestion window in segments.

ssthresh: Current slow start threshold in segments.

W : Size of cwnd in segments just before cwnd was reduced in the

last congestion event.

K: The time period in seconds it takes to increase the congestion

window size at the beginning of the current congestion avoidance

stage to W .
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current_time: Current time of the system in seconds.

epoch : The time in seconds at which the current congestion

avoidance stage started.

cwnd : The cwnd at the beginning of the current congestion

avoidance stage, i.e., at time epoch .

W (t): The congestion window in segments at time t in seconds

based on the cubic increase function, as described in Section 4.2.

target: Target value of congestion window in segments after the next

RTT, that is, W (t + RTT), as described in Section 4.2.

W : An estimate for the congestion window in segments in the AIMD-

friendly region, that is, an estimate for the congestion window of

AIMD TCP.

segments_acked: Number of segments acked when an ACK is received.

4.2. Window Increase Function

CUBIC maintains the acknowledgment (ACK) clocking of AIMD TCP by

increasing the congestion window only at the reception of an ACK. It

does not make any changes to the TCP Fast Recovery and Fast

Retransmit algorithms [RFC6582][RFC6675].

During congestion avoidance after a congestion event where a packet

loss is detected by duplicate ACKs or by receiving packets carrying

ECE flags [RFC3168], CUBIC changes the window increase function of

AIMD TCP.

CUBIC uses the following window increase function:

Figure 1

where t is the elapsed time in seconds from the beginning of the

current congestion avoidance stage, that is,

and where epoch  is the time at which the current congestion

avoidance stage starts. K is the time period that the above function

takes to increase the congestion window size at the beginning of the

current congestion avoidance stage to W  if there are no further

congestion events and is calculated using the following equation:
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Figure 2

where cwnd  is the congestion window at the beginning of the

current congestion avoidance stage. For example, right after a

congestion event, cwnd  is equal to the new cwnd calculated as

described in Section 4.6.

Upon receiving an ACK during congestion avoidance, CUBIC computes

the target congestion window size after the next RTT using Figure 1

as follows, where RTT is the smoothed round-trip time. The lower and

upper bounds below ensure that CUBIC's congestion window increase

rate is non-decreasing and is less than the increase rate of slow

start.

Depending on the value of the current congestion window size cwnd,

CUBIC runs in three different regions:

The AIMD-friendly region, which ensures that CUBIC achieves at

least the same throughput as AIMD TCP.

The concave region, if CUBIC is not in the AIMD-friendly region

and cwnd is less than W .

The convex region, if CUBIC is not in the AIMD-friendly region

and cwnd is greater than W .

Below, we describe the exact actions taken by CUBIC in each region.

4.3. AIMD-Friendly Region

AIMD TCP performs well in certain types of networks, for example,

under short RTTs and small bandwidths (or small BDPs). In these

networks, CUBIC remains in the AIMD-friendly region to achieve at

least the same throughput as AIMD TCP.

The AIMD-friendly region is designed according to the analysis in 

[FHP00], which studies the performance of an AIMD algorithm with an

additive factor of α  (segments per RTT) and a multiplicative

factor of β , denoted by AIMD(α , β ). Specifically, the

average congestion window size of AIMD(α , β ) can be calculated

using Figure 3. The analysis shows that AIMD(α , β ) with
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achieves the same average window size as AIMD TCP that uses AIMD(1,

0.5).

Figure 3

Based on the above analysis, CUBIC uses Figure 4 to estimate the

window size W  of AIMD(α , β ) with

which achieves the same average window size as AIMD TCP. When

receiving an ACK in congestion avoidance (where cwnd could be

greater than or less than W ), CUBIC checks whether W (t) is

less than W . If so, CUBIC is in the AIMD-friendly region and cwnd

SHOULD be set to W  at each reception of an ACK.

W  is set equal to cwnd  at the start of the congestion

avoidance stage. After that, on every ACK, W  is updated using 

Figure 4.

Figure 4

Note that once W  reaches W , that is, W  >= W , α  SHOULD be

set to 1 to achieve the same congestion window increment as AIMD

TCP, which uses AIMD(1, 0.5).

4.4. Concave Region

When receiving an ACK in congestion avoidance, if CUBIC is not in

the AIMD-friendly region and cwnd is less than W , then CUBIC is in

the concave region. In this region, cwnd MUST be incremented by

for each received ACK, where target is calculated as described in 

Section 4.2.
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4.5. Convex Region

When receiving an ACK in congestion avoidance, if CUBIC is not in

the AIMD-friendly region and cwnd is larger than or equal to W ,

then CUBIC is in the convex region.

The convex region indicates that the network conditions might have

changed since the last congestion event, possibly implying more

available bandwidth after some flow departures. Since the Internet

is highly asynchronous, some amount of perturbation is always

possible without causing a major change in available bandwidth.

In this region, CUBIC is very careful. The convex profile ensures

that the window increases very slowly at the beginning and gradually

increases its increase rate. We also call this region the "maximum

probing phase", since CUBIC is searching for a new W . In this

region, cwnd MUST be incremented by

for each received ACK, where target is calculated as described in 

Section 4.2.

4.6. Multiplicative Decrease

When a packet loss is detected by duplicate ACKs or by receiving

packets carrying ECE flags, CUBIC updates W  and reduces cwnd and 

ssthresh immediately as described below. An implementation MAY set a

smaller ssthresh than suggested below to accommodate rate-limited

applications as described in [RFC7661]. For both packet loss and

congestion detection through ECN, the sender MAY employ a Fast

Recovery algorithm to gradually adjust the congestion window to its

new reduced ssthresh value. The parameter β  SHOULD be set to 0.7.

A side effect of setting β  to a value bigger than 0.5 is slower

convergence. We believe that while a more adaptive setting of β

could result in faster convergence, it will make the analysis of

CUBIC much harder.

4.7. Fast Convergence

To improve convergence speed, CUBIC uses a heuristic. When a new

flow joins the network, existing flows need to give up some of their

bandwidth to allow the new flow some room for growth, if the

existing flows have been using all the network bandwidth. To speed
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up this bandwidth release by existing flows, the following "Fast

Convergence" mechanism SHOULD be implemented.

With Fast Convergence, when a congestion event occurs, we update W

as follows, before the window reduction as described in Section 4.6.

At a congestion event, if the current cwnd is less than W , this

indicates that the saturation point experienced by this flow is

getting reduced because of a change in available bandwidth. Then we

allow this flow to release more bandwidth by reducing W  further.

This action effectively lengthens the time for this flow to increase

its congestion window, because the reduced W  forces the flow to

plateau earlier. This allows more time for the new flow to catch up

to its congestion window size.

Fast Convergence is designed for network environments with multiple

CUBIC flows. In network environments with only a single CUBIC flow

and without any other traffic, Fast Convergence SHOULD be disabled.

4.8. Timeout

In case of a timeout, CUBIC follows AIMD TCP to reduce cwnd

[RFC5681], but sets ssthresh using β  (same as in Section 4.6) in

a way that is different from AIMD TCP [RFC5681].

During the first congestion avoidance stage after a timeout, CUBIC

increases its congestion window size using Figure 1, where t is the

elapsed time since the beginning of the current congestion

avoidance, K is set to 0, and W  is set to the congestion window

size at the beginning of the current congestion avoidance stage. In

addition, for the AIMD-friendly region, W  SHOULD be set to the

congestion window size at the beginning of the current congestion

avoidance.

4.9. Spurious Congestion Events

In cases where CUBIC reduces its congestion window in response to

having detected packet loss via duplicate ACKs or timeouts, there is

a possibility that the missing ACK would arrive after the congestion

window reduction and a corresponding packet retransmission. For

example, packet reordering could trigger this behavior. A high

degree of packet reordering could cause multiple congestion window

reduction events, where spurious losses are incorrectly interpreted

as congestion signals, thus degrading CUBIC's performance

significantly.
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When there is a congestion event, a CUBIC implementation SHOULD save

the current value of the following variables before the congestion

window reduction.

CUBIC MAY implement an algorithm to detect spurious retransmissions,

such as DSACK [RFC3708], Forward RTO-Recovery [RFC5682] or Eifel 

[RFC3522]. Once a spurious congestion event is detected, CUBIC

SHOULD restore the original values of above mentioned variables as

follows if the current cwnd is lower than prior_cwnd. Restoring the

original values ensures that CUBIC's performance is similar to what

it would be without spurious losses.

In rare cases, when the detection happens long after a spurious loss

event and the current cwnd is already higher than prior_cwnd, CUBIC

SHOULD continue to use the current and the most recent values of

these variables.

4.10. Slow Start

CUBIC MUST employ a slow-start algorithm, when cwnd is no more than 

ssthresh. Among the slow-start algorithms, CUBIC MAY choose the AIMD

TCP slow start [RFC5681] in general networks, or the limited slow

start [RFC3742] or hybrid slow start [HR08] for fast and long-

distance networks.

When CUBIC uses hybrid slow start [HR08], it may exit the first slow

start without incurring any packet loss and thus W  is undefined.

In this special case, CUBIC switches to congestion avoidance and

increases its congestion window size using Figure 1, where t is the

elapsed time since the beginning of the current congestion

avoidance, K is set to 0, and W  is set to the congestion window

size at the beginning of the current congestion avoidance stage.
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5. Discussion

In this section, we further discuss the safety features of CUBIC

following the guidelines specified in [RFC5033].

With a deterministic loss model where the number of packets between

two successive packet losses is always 1/p, CUBIC always operates

with the concave window profile, which greatly simplifies the

performance analysis of CUBIC. The average window size of CUBIC can

be obtained by the following function:

Figure 5

With β  set to 0.7, the above formula reduces to:

Figure 6

We will determine the value of C in the following subsection using 

Figure 6.

5.1. Fairness to AIMD TCP

In environments where AIMD TCP is able to make reasonable use of the

available bandwidth, CUBIC does not significantly change this state.

AIMD TCP performs well in the following two types of networks:

networks with a small bandwidth-delay product (BDP)

networks with a short RTTs, but not necessarily a small BDP

CUBIC is designed to behave very similarly to AIMD TCP in the above

two types of networks. The following two tables show the average

window sizes of AIMD TCP, HSTCP, and CUBIC. The average window sizes

of AIMD TCP and HSTCP are from [RFC3649]. The average window size of

CUBIC is calculated using Figure 6 and the CUBIC AIMD-friendly

region for three different values of C.

Loss Rate

P
AIMD HSTCP

CUBIC

(C=0.04)

CUBIC

(C=0.4)

CUBIC

(C=4)

1.0e-02 12 12 12 12 12

1.0e-03 38 38 38 38 59

¶

¶

¶

cubic ¶

¶

¶

¶

¶

1. ¶

2. ¶

¶



Loss Rate

P
AIMD HSTCP

CUBIC

(C=0.04)

CUBIC

(C=0.4)

CUBIC

(C=4)

1.0e-04 120 263 120 187 333

1.0e-05 379 1795 593 1054 1874

1.0e-06 1200 12280 3332 5926 10538

1.0e-07 3795 83981 18740 33325 59261

1.0e-08 12000 574356 105383 187400 333250

Table 1: AIMD TCP, HSTCP, and CUBIC with RTT = 0.1 seconds

Table 1 describes the response function of AIMD TCP, HSTCP, and

CUBIC in networks with RTT = 0.1 seconds. The average window size is

in MSS-sized segments.

Loss Rate

P
AIMD HSTCP

CUBIC

(C=0.04)

CUBIC

(C=0.4)

CUBIC

(C=4)

1.0e-02 12 12 12 12 12

1.0e-03 38 38 38 38 38

1.0e-04 120 263 120 120 120

1.0e-05 379 1795 379 379 379

1.0e-06 1200 12280 1200 1200 1874

1.0e-07 3795 83981 3795 5926 10538

1.0e-08 12000 574356 18740 33325 59261

Table 2: AIMD TCP, HSTCP, and CUBIC with RTT = 0.01 seconds

Table 2 describes the response function of AIMD TCP, HSTCP, and

CUBIC in networks with RTT = 0.01 seconds. The average window size

is in MSS-sized segments.

Both tables show that CUBIC with any of these three C values is more

friendly to AIMD TCP than HSTCP, especially in networks with a short

RTT where AIMD TCP performs reasonably well. For example, in a

network with RTT = 0.01 seconds and p=10^-6, AIMD TCP has an average

window of 1200 packets. If the packet size is 1500 bytes, then AIMD

TCP can achieve an average rate of 1.44 Gbps. In this case, CUBIC

with C=0.04 or C=0.4 achieves exactly the same rate as AIMD TCP,

whereas HSTCP is about ten times more aggressive than AIMD TCP.

We can see that C determines the aggressiveness of CUBIC in

competing with other congestion control algorithms for bandwidth.

CUBIC is more friendly to AIMD TCP, if the value of C is lower.

However, we do not recommend setting C to a very low value like

0.04, since CUBIC with a low C cannot efficiently use the bandwidth

in fast and long-distance networks. Based on these observations and

extensive deployment experience, we find C=0.4 gives a good balance

between AIMD- friendliness and aggressiveness of window increase.

Therefore, C SHOULD be set to 0.4. With C set to 0.4, Figure 6 is

reduced to:

¶
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¶

¶



Figure 7

Figure 7 is then used in the next subsection to show the scalability

of CUBIC.

5.2. Using Spare Capacity

CUBIC uses a more aggressive window increase function than AIMD TCP

for fast and long-distance networks.

The following table shows that to achieve the 10 Gbps rate, AIMD TCP

requires a packet loss rate of 2.0e-10, while CUBIC requires a

packet loss rate of 2.9e-8.

Throughput (Mbps) Average W AIMD P HSTCP P CUBIC P

1 8.3 2.0e-2 2.0e-2 2.0e-2

10 83.3 2.0e-4 3.9e-4 2.9e-4

100 833.3 2.0e-6 2.5e-5 1.4e-5

1000 8333.3 2.0e-8 1.5e-6 6.3e-7

10000 83333.3 2.0e-10 1.0e-7 2.9e-8

Table 3: Required packet loss rate for AIMD TCP, HSTCP,

and CUBIC to achieve a certain throughput

Table 3 describes the required packet loss rate for AIMD TCP, HSTCP,

and CUBIC to achieve a certain throughput. We use 1500-byte packets

and an RTT of 0.1 seconds.

Our test results in [HKLRX06] indicate that CUBIC uses the spare

bandwidth left unused by existing AIMD TCP flows in the same

bottleneck link without taking away much bandwidth from the existing

flows.

5.3. Difficult Environments

CUBIC is designed to remedy the poor performance of AIMD TCP in fast

and long-distance networks.

5.4. Investigating a Range of Environments

CUBIC has been extensively studied by using both NS-2 simulation and

testbed experiments, covering a wide range of network environments.

More information can be found in [HKLRX06]. Additionally, there is

decade-long deployment experience with CUBIC on the Internet.
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Same as AIMD TCP, CUBIC is a loss-based congestion control

algorithm. Because CUBIC is designed to be more aggressive (due to a

faster window increase function and bigger multiplicative decrease

factor) than AIMD TCP in fast and long-distance networks, it can

fill large drop-tail buffers more quickly than AIMD TCP and

increases the risk of a standing queue [RFC8511]. In this case,

proper queue sizing and management [RFC7567] could be used to reduce

the packet queuing delay.

5.5. Protection against Congestion Collapse

With regard to the potential of causing congestion collapse, CUBIC

behaves like AIMD TCP, since CUBIC modifies only the window

adjustment algorithm of AIMD TCP. Thus, it does not modify the ACK

clocking and timeout behaviors of AIMD TCP.

5.6. Fairness within the Alternative Congestion Control Algorithm

CUBIC ensures convergence of competing CUBIC flows with the same RTT

in the same bottleneck links to an equal throughput. When competing

flows have different RTT values, their throughput ratio is linearly

proportional to the inverse of their RTT ratios. This is true

independently of the level of statistical multiplexing on the link.

5.7. Performance with Misbehaving Nodes and Outside Attackers

This is not considered in the current CUBIC design.

5.8. Behavior for Application-Limited Flows

CUBIC does not increase its congestion window size if a flow is

currently limited by the application instead of the congestion

window. In case of long periods during which cwnd has not been

updated due to such an application limit, such as idle periods, t in 

Figure 1 MUST NOT include these periods; otherwise, W (t) might be

very high after restarting from these periods.

5.9. Responses to Sudden or Transient Events

If there is a sudden congestion, a routing change, or a mobility

event, CUBIC behaves the same as AIMD TCP.

5.10. Incremental Deployment

CUBIC requires only changes to TCP senders, and it does not require

any changes at TCP receivers. That is, a CUBIC sender works

correctly with the AIMD TCP receivers. In addition, CUBIC does not

require any changes to routers and does not require any assistance

from routers.

¶

¶

¶

¶

cubic

¶

¶

¶
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6. Security Considerations

CUBIC makes no changes to the underlying security of TCP. More

information about TCP security concerns can be found in [RFC5681].

7. IANA Considerations

This document does not require any IANA actions.
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Appendix B. Evolution of CUBIC

B.1. Since draft-eggert-tcpm-rfc8312bis-03

fix spelling nits

rename to draft-ietf

B.2. Since draft-eggert-tcpm-rfc8312bis-02

add definition for segments_acked and alpha . (#47)

fix a mistake in W  calculation in the fast convergence section.

(#51)

clarity on setting ssthresh and cwnd  during multiplicative

decrease. (#53)

B.3. Since draft-eggert-tcpm-rfc8312bis-01

rename TCP-Friendly to AIMD-Friendly and rename Standard TCP to

AIMD TCP to avoid confusion as CUBIC has been widely used in the

Internet. (#38)

change introductory text to reflect the significant broader

deployment of CUBIC in the Internet. (#39)

rephrase introduction to avoid referring to variables that have

not been defined yet.
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B.4. Since draft-eggert-tcpm-rfc8312bis-00

acknowledge former co-authors (#15)

prevent cwnd from becoming less than two (#7)

add list of variables and constants (#5, #6)

update K's definition and add bounds for CUBIC target cwnd

[SXEZ19] (#1, #14)

update W  to use AIMD approach (#20)

set alpha  to 1 once W  reaches W  (#2)

add Vidhi as co-author (#17)

note for Fast Recovery during cwnd decrease due to congestion

event (#11)

add section for spurious congestion events (#23)

initialize W  after timeout and remove variable W  (#28)

B.5. Since RFC8312

converted to Markdown and xml2rfc v3

updated references (as part of the conversion)

updated author information

various formatting changes

move to Standards Track

B.6. Since the Original Paper

CUBIC has gone through a few changes since the initial release 

[HRX08] of its algorithm and implementation. Below we highlight the

differences between its original paper and [RFC8312].

The original paper [HRX08] includes the pseudocode of CUBIC

implementation using Linux's pluggable congestion control

framework, which excludes system-specific optimizations. The

simplified pseudocode might be a good source to start with and

understand CUBIC.
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[HRX08] also includes experimental results showing its

performance and fairness.

The definition of beta  constant was changed in [RFC8312]. For

example, beta  in the original paper was the window decrease

constant while [RFC8312] changed it to CUBIC multiplication

decrease factor. With this change, the current congestion window

size after a congestion event in [RFC8312] was beta  * W

while it was (1-beta ) * W  in the original paper.

Its pseudocode used W  while [RFC8312] used W .

Its AIMD-friendly window was W  while [RFC8312] used W .
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