
Internet Engineering Task Force M. Allman
INTERNET-DRAFT ICSI
File: draft-ietf-tcpm-rto-consider-04.txt June 15, 2016
Intended Status: Best Current Practice
Expires: December 15, 2016

Retransmission Timeout Requirements

Status of this Memo

 This document may not be modified, and derivative works of it may
 not be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 15, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 Ensuring reliable communication often manifests in a timeout and

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 retry mechanism. Each implementation of a retransmission timeout
 mechanism represents a balance between correctness and timeliness
 and therefore no implementation suits all situations. This document

Expires: December 15, 2016 [Page 1]

draft-ietf-tcpm-rto-consider-04.txt June 2016

 provides high-level requirements for retransmission timeout schemes
 appropriate for general use in the Internet. Within the
 requirements, implementations have latitude to define particulars
 that best address each situation.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

1 Introduction

 Reliable transmission is a key property for many network protocols
 and applications. Our protocols use various mechanisms to achieve
 reliable data transmission. Often we use continuous or periodic
 reports from the recipient to inform the sender's notion of which
 pieces of data are missing and need to be retransmitted to ensure
 reliability. Alternatively, information coding---e.g., FEC---can be
 used to achieve probabilistic reliability without retransmissions.
 However, despite our best intentions and most robust mechanisms, the
 only thing we can truly depend on is the passage of time and
 therefore our ultimate backstop to ensuring reliability is a timeout
 and re-try mechanism. That is, the sender sets some expectation for
 how long to wait for confirmation of delivery for a given piece of
 data. When this time period passes without delivery confirmation
 the sender assumes the data was lost in transit and therefore
 schedules a retransmission. This process of ensuring reliability
 via time-based loss detection and resending lost data is commonly
 referred to as a "retransmission timeout (RTO)" mechanism.

 Various protocols have defined their own RTO mechanisms (e.g., TCP
 [RFC6298], SCTP [RFC4960], SIP [RFC3261]). The specifics of
 retransmission timeouts often represent a particular tradeoff
 between correctness and responsiveness [AP99]. In other words we
 want to simultaneously:

 - wait long enough to ensure the detection of loss is correct and
 therefore a retransmission is in fact needed, and

 - bound the delay we impose on applications before repairing
 loss.

 Serving both of these goals is difficult as they pull in opposite
 directions. I.e., towards either (a) withholding needed
 retransmissions too long to ensure the original transmission is
 truly lost or (b) not waiting long enough to help application
 responsiveness and hence sending unnecessary (often denoted

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3261

 "spurious") retransmissions. We have found that even though the RTO
 procedure is standardized for some protocols (e.g., TCP [RFC6298]),
 implementations often add their own subtle imprint on the specifics
 of the process to tilt the tradeoff between correctness and
 responsiveness in some particular way.

Expires: December 15, 2016 [Page 2]

https://datatracker.ietf.org/doc/html/rfc6298

draft-ietf-tcpm-rto-consider-04.txt June 2016

 At this point we recognize that often these specific tweaks that
 deviate from standardized RTO mechanisms do not materially impact
 network safety. Therefore, in this document we outline a set of
 high-level protocol-agnostic requirements for RTO mechanisms that
 provide a for network safety. The intent is to provide a safe
 foundation on which implementations have the flexibility to
 instantiate mechanisms that best realize their specific goals.

2 Scope

 The principles we outline in this document are protocol-agnostic and
 widely applicable. We make the following scope statements about
 the application of the requirements discussed in Section 3:

 (S.1) The requirements in this document apply only to timer-based
 loss detection and retransmission.

 While there are a bevy of uses for timers in protocols---from
 rate-based pacing to connection failure detection to making
 congestion control decisions and beyond---these are outside
 the scope of this document.

 (S.2) The requirements in this document only apply to cases where
 loss detected via a timer is repaired by a retransmission of
 the original data.

 Other cases are certainly possible---e.g., replacing the lost
 data with an updated version---but fall outside the scope of
 this document.

 (S.3) The requirements in this document apply only to endpoint-to-
 endpoint unicast communication. Reliable multicast (e.g.,
 [RFC5740]) protocols are explicitly outside the scope of this
 document.

 Protocols such as SCTP [RFC4960] and MP-TCP [RFC6182] that
 communicate in a unicast fashion with multiple specific
 endpoints can leverage the requirements in this document
 provided they track state and follow the requirements for each
 endpoint independently. I.e., if host A communicates with
 hosts B and C, A must use independent RTOs for traffic sent to
 B and C.

 (S.4) There are cases where state is shared across connections or
 flows (e.g., [RFC2140], [RFC3124]). The RTO is one piece
 state that is often discussed as sharable. These situations
 raise issues that the simple flow-oriented RTO mechanism
 discussed in this document does not consider (e.g., how long
 to preserve state between connections). Therefore, while the

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc5740
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc3124

 general principles given in Section 3 are likely applicable,
 sharing RTOs across flows is outside the scope of this
 document.

Expires: December 15, 2016 [Page 3]

draft-ietf-tcpm-rto-consider-04.txt June 2016

 (S.5) The requirements in this document apply to reliable
 transmission, but do not assume that all data transmitted
 within a connection or flow is reliably sent.

 E.g., a protocol like DCCP [RFC4340] could leverage the
 requirements in this document for the initial reliable
 handshake even though the protocol reverts to unreliable
 transmission after the handshake.

 E.g., a protocol like SCTP [RFC4960] could leverage the
 requirements for data that is sent only "partially reliably".
 In this case, the protocol uses two phases for each message.
 In the first phase, the protocol attempts to ensure
 reliability and can leverage the requirements in this
 document. At some point the value of the data is gone and the
 protocol transitions to the second phase where the data is
 treated as unreliably transmitted and therefore the protocol
 will no longer attempt to repair the loss---and hence there
 are no more retransmissions and the requirements in this
 document are moot.

 (S.6) The requirements for RTO mechanisms in this document can be
 applied regardless of whether the RTO mechanism is the sole
 loss repair strategy or works in concert with other
 mechanisms.

 E.g., for a simple protocol like UDP-based DNS [] a timeout
 and re-try mechanism is likely to act alone to ensure
 reliability.

 E.g., within a complex protocol like TCP or SCTP we have
 designed methods to detect and repair loss based on explicit
 endpoint state sharing [RFC2018,RFC4960,RFC6675]. These
 mechanisms are preferred over the RTO as they are often more
 timely and precise than the coarse-grained RTO. In these
 cases, the RTO becomes a last resort when the more advanced
 mechanisms fail.

 Additionally, the following statements detail the relationship of
 the requirements in this document to other specifications and
 implementations:

 (R.1) RTO mechanisms that are currently standardized are not updated
 or obsoleted by this document. Implementations are free to
 use these existing specifications as they do now.

 This holds even in cases where the existing specification
 differs from the requirements in this document (e.g.,
 [RFC3261] uses a smaller initial timeout than this document

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc3261

 specifies). Existing standard specifications enjoy their own
 consensus which this document does not change.

 (R.2) Future standardization efforts that specify RTO mechanisms
 SHOULD follow the requirements in this document.

Expires: December 15, 2016 [Page 4]

draft-ietf-tcpm-rto-consider-04.txt June 2016

 There may be reasons for future RTO mechanisms to deviate from
 the requirements in Section 3. In these cases, we expect only
 that the standards process does so after reasonable
 deliberation and with good reason.

 (R.3) Alternatively, future RTO mechanism implementations may be
 made directly against the requirements in Section 3 without
 another protocol-specific specification.

 (R.4) There will no doubt be cases where applying the requirements
 in this document directly is not possible due to the structure
 or operation of a protocol. For instance, a case where a
 timeout is used to detect loss, but the loss is not repaired
 with a direct retransmission of the original data. In these
 situations, an alternate specification is required. We
 encourage such future efforts to leverage the spirit of the
 requirements in this document to inform alternate
 specifications.

3 Requirements

 We now list the requirements that apply when designing
 retransmission timeout (RTO) mechanisms.

 (1) In the absence of any knowledge about the latency of a path, the
 RTO MUST be conservatively set to no less than 1 second.

 This requirement ensures two important aspects of the RTO.
 First, when transmitting into an unknown network,
 retransmissions will not be sent before an ACK would reasonably
 be expected to arrive and hence possibly waste scarce network
 resources. Second, as noted below, sometimes retransmissions
 can lead to ambiguities in assessing the latency of a network
 path. Therefore, it is especially important for the first
 latency sample to be free of ambiguities such that there is a
 baseline for the remainder of the communication.

 The specific constant (1 second) comes from the analysis of
 Internet RTTs found in Appendix A of [RFC6298].

 (2) As we note above, loss detection happens when a sender does not
 receive delivery confirmation within an some expected period of
 time. We now specify three requirements that pertain to setting
 the length of this expectation.

 Often measuring the time required for delivery confirmation is
 is framed as the round-trip time (RTT) of the network path as
 this is the minimum amount of time required to receive delivery
 confirmation and also often follows protocol behavior whereby

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc6298#appendix-A

 acknowledgments are generated quickly after data arrives. For
 instance, this is the case for the RTO used by TCP [RFC6298] and
 SCTP [RFC4960]. However, this is somewhat mis-leading as the
 expected latency is better framed as the "feedback time" (FT).

Expires: December 15, 2016 [Page 5]

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc4960

draft-ietf-tcpm-rto-consider-04.txt June 2016

 In other words, the expectation is not always simply a network
 property, but includes additional time before a sender should
 reasonably expect a response to a query.

 For instance, consider a UDP-based DNS request from a client to
 a resolver. When the request can be served from the resolver's
 cache the FT likely well approximates the network RTT between
 the client and resolver. However, on a cache miss the resolver
 will have to request the needed information from authoritative
 DNS servers, which will non-trivially increase the FT compared
 to the RTT between the client and resolver.

 (a) In steady state the RTO MUST be set based on recent
 observations of both the FT and the variance of the FT.

 In other words, the RTO should be based on a reasonable
 amount of time that the sender should wait for delivery
 confirmation before retransmitting the given data.

 (b) FT observations MUST be taken regularly.

 Internet measurements show that taking only a single FT
 sample per TCP connection results in a relatively poorly
 performing RTO mechanism [AP99], hence the requirement that
 the FT be sampled continuously throughout the lifetime of a
 connection.

 TCP takes an FT sample roughly once per RTT, or if using the
 timestamp option [RFC7323] on each acknowledgment arrival.
 [AP99] shows that both these approaches result in roughly
 equivalent performance for the RTO estimator.

 Therefore, "regularly" SHOULD be defined as at least once
 per RTT or as frequently as data is exchanged in cases where
 that happens less frequently than once per RTT. However, we
 also recognize that it may not always be practical to take
 an FT sample this often in all cases. Hence, this
 once-per-RTT definition of "regularly" is explicitly a
 "SHOULD" and not a "MUST".

 (c) FT observations MAY be taken from non-data exchanges.

 Some protocols use keepalives, heartbeats or other messages
 to exchange control information. To the extent that the
 latency of these transactions mirrors data exchange, they
 can be leveraged to take FT samples within the RTO
 mechanism. Such samples can help protocols keep their RTO
 accurate during lulls in data transmission. However, given
 that these messages may not be subject to the same delays as
 data transmission, we do not take a general view on whether

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc7323

 this is useful or not.

 (d) An RTO mechanism MUST NOT use ambiguous FT samples.

Expires: December 15, 2016 [Page 6]

draft-ietf-tcpm-rto-consider-04.txt June 2016

 Assume two copies of some segment X are transmitted at times
 t0 and t1 and then at time t2 the sender receives
 confirmation that X in fact arrived. In some cases, it is
 not clear which copy of X triggered the confirmation and
 hence the actual FT is either t2-t1 or t2-t0, but which is a
 mystery. Therefore, in this situation an implementation
 MUST use Karn's algorithm [KP87,RFC6298] and use neither
 version of the FT sample and hence not update the RTO.

 There are cases where two copies of some data are
 transmitted in a way whereby the sender can tell which is
 being acknowledged by an incoming ACK. E.g., TCP's
 timestamp option [RFC7323] allows for segments to be
 uniquely identified and hence avoid the ambiguity. In such
 cases there is no ambiguity and the resulting samples can
 update the RTO.

 (3) Each time the RTO detects a loss and a retransmission is
 scheduled, the value of the RTO MUST be exponentially backed off
 such that the next firing requires a longer interval. The
 backoff SHOULD be removed after the successful repair of the
 lost data and subsequent transmission of non-retransmitted data.

 A maximum value MAY be placed on the RTO. The maximum RTO MUST
 NOT be less than 60 seconds (a la [RFC6298]).

 This ensures network safety.

 (4) Retransmissions triggered by the RTO mechanism MUST be taken as
 indications of network congestion and the sending rate adapted
 using a standard mechanism (e.g., TCP collapses the congestion
 window to one segment [RFC5681]).

 This ensures network safety.

 Exception could be made to this rule if an IETF standardized
 mechanism is used to determine that a particular loss is due to
 a non-congestion event (e.g., packet corruption). In such a
 case a congestion control action is not required. Additionally,
 RTO-triggered congestion control actions may be reversed when a
 standard mechanism determines that the cause of the loss was not
 congestion after all (e.g., [RFC5682]).

4 Discussion

 We note that research has shown the tension between the
 responsiveness and correctness of retransmission timeouts seems to
 be a fundamental tradeoff in the context of TCP [AP99]. That is,
 making the RTO more aggressive (e.g., via changing TCP's EWMA gains,
 lowering the minimum RTO, etc.) can reduce the time spent waiting on

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682

 needed retransmissions. However, at the same time, such
 aggressiveness leads to more needless retransmissions. Therefore,
 being as aggressive as the requirements given in the previous
 section allow in any particular situation may not be the best course

Expires: December 15, 2016 [Page 7]

draft-ietf-tcpm-rto-consider-04.txt June 2016

 of action because an RTO expiration carries a requirement to invoke
 a congestion response and hence slow transmission down.

 While the tradeoff between responsiveness and correctness seems
 fundamental, the tradeoff can be made less relevant if the sender
 can detect and recover from spurious RTOs. Several mechanisms have
 been proposed for this purpose, such as Eifel [RFC3522], F-RTO
 [RFC5682] and DSACK [RFC2883,RFC3708]. Using such mechanisms may
 allow a data originator to tip towards being more responsive without
 incurring (as much of) the attendant costs of needless retransmits.

 Also, note, that in addition to the experiments discussed in [AP99],
 the Linux TCP implementation has been using various non-standard RTO
 mechanisms for many years seemingly without large scale problems
 (e.g., using different EWMA gains than specified in [RFC6298]).
 Further, a number of implementations use minimum RTOs that are less
 than the 1 second specified in [RFC6298]. While the implication of
 these deviations from the standard may be more spurious retransmits
 (per [AP99]), we are aware of no large scale problems caused by this
 change to the minimum RTO.

 Finally, we note that while allowing implementations to be more
 aggressive may in fact increase the number of needless
 retransmissions the above requirements fail safe in that they insist
 on exponential backoff of the RTO and a transmission rate reduction.
 Therefore, providing implementers more latitude than they have
 traditionally been given in IETF specifications of RTO mechanisms
 does not somehow open the flood gates to aggressive behavior. Since
 there is a downside to being aggressive the incentives for proper
 behavior are retained in the mechanism.

5 Security Considerations

 This document does not alter the security properties of
 retransmission timeout mechanisms. See [RFC6298] for a discussion
 of these within the context of TCP.

Acknowledgments

 This document benefits from years of discussions with Ethan Blanton,
 Sally Floyd, Jana Iyengar, Shawn Ostermann, Vern Paxson, and the
 members of the TCPM and TCP-IMPL working groups. Ran Atkinson,
 Yuchung Cheng, David Black, Gorry Fairhurst, Jonathan Looney and
 Michael Scharf provided useful comments on a previous version of
 this draft.

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3708
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Informative References

 [AP99] Allman, M., V. Paxson, "On Estimating End-to-End Network Path

Expires: December 15, 2016 [Page 8]

draft-ietf-tcpm-rto-consider-04.txt June 2016

 Properties", Proceedings of the ACM SIGCOMM Technical Symposium,
 September 1999.

 [KP87] Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", SIGCOMM 87.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 April 1997.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option for
 TCP", RFC 2883, July 2000.

 [RFC3124] Balakrishnan, H., S. Seshan, "The Congestion Manager", RFC
2134, June 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E. Schooler,
 "SIP: Session Initiation Protocol", RFC 3261, June 2002.

 [RFC3522] Ludwig, R., M. Meyer, "The Eifel Detection Algorithm for
 TCP", RFC 3522, april 2003.

 [RFC3708] Blanton, E., M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers (TSNs)
 to Detect Spurious Retransmissions", RFC 3708, February 2004.

 [RFC3940] Adamson, B., C. Bormann, M. Handley, J. Macker,
 "Negative-acknowledgment (NACK)-Oriented Reliable Multicast
 (NORM) Protocol", November 2004, RFC 3940.

 [RFC4340] Kohler, E., M. Handley, S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", March 2006, RFC 4340.

 [RFC4960] Stweart, R., "Stream Control Transmission Protocol", RFC
4960, September 2007.

 [RFC5682] Sarolahti, P., M. Kojo, K. Yamamoto, M. Hata, "Forward
 RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious
 Retransmission Timeouts with TCP", RFC 5682, September 2009.

 [RFC5740] Adamson, B., C. Bormann, M. Handley, J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport Protocol",
 November 2009, RFC 5740.

 [RFC6182] Ford, A., C. Raiciu, M. Handley, S. Barre, J. Iyengar,

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2134
https://datatracker.ietf.org/doc/html/rfc2134
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc3708
https://datatracker.ietf.org/doc/html/rfc3940
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc5740

 "Architectural Guidelines for Multipath TCP Development", March
 2011, RFC 6182.

 [RFC6298] Paxson, V., M. Allman, H.K. Chu, M. Sargent, "Computing

Expires: December 15, 2016 [Page 9]

https://datatracker.ietf.org/doc/html/rfc6182

draft-ietf-tcpm-rto-consider-04.txt June 2016

 TCP's Retransmission Timer", June 2011, RFC 6298.

 [RFC6582] Henderson, T., S. Floyd, A. Gurtov, Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm", April
 2012, RFC 6582.

 [RFC6675] Blanton, E., M. Allman, L. Wang, I. Jarvinen, M. Kojo,
 Y. Nishida, "A Conservative Loss Recovery Algorithm Based on
 Selective Acknowledgment (SACK) for TCP", August 2012, RFC 6675.

 [RFC7323] Borman D., B. Braden, V. Jacobson, R. Scheffenegger, "TCP
 Extensions for High Performance", September 2014, RFC 7323.

Authors' Addresses

 Mark Allman
 International Computer Science Institute
 1947 Center St. Suite 600
 Berkeley, CA 94704

 EMail: mallman@icir.org
http://www.icir.org/mallman

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-04.txt
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc7323
http://www.icir.org/mallman

Expires: December 15, 2016 [Page 10]

