
Network Working Group W. Eddy
Internet-Draft Verizon Federal Network Systems
Expires: January 18, 2007 July 17, 2006

TCP SYN Flooding Attacks and Common Mitigations
draft-ietf-tcpm-syn-flood-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 18, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes TCP SYN flooding attacks, which have been
 well-known to the community for several years. Various
 countermeasures against these attacks, and the trade-offs of each,
 are described. This document archives explanations of the attack and
 common defense techniques for the benefit of TCP implementers and
 administrators of TCP servers or networks.

Eddy Expires January 18, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP SYN Flooding July 2006

Table of Contents

1. Introduction . 3
2. Attack Description . 4
2.1 History . 4
2.2 Theory of Operation 4

3. Common Defenses . 8
3.1 Filtering . 8
3.2 Increasing Backlog . 8
3.3 Reducing SYN-RECEIVED Timer 8
3.4 SYN Cache . 8
3.5 SYN Cookies . 9
3.6 Hybrid Approaches . 10
3.7 Firewalls and Proxies 10

4. Analysis . 11
5. Security Considerations 13
6. Acknowledgements . 14
7. Informative References . 14

 Author's Address . 15
A. SYN Cookies . 16

 Intellectual Property and Copyright Statements 19

Eddy Expires January 18, 2007 [Page 2]

Internet-Draft TCP SYN Flooding July 2006

1. Introduction

 The SYN flooding attack is a denial of service method affecting hosts
 that run TCP server processes. The attack takes advantage of the
 state retention TCP performs for some time after receiving a SYN
 segment to a port that has been put into the LISTEN state. The basic
 idea is to exploit this behavior by causing a host to retain enough
 state for bogus half-connections that there are no resources left to
 establish new legitimate connections.

 This SYN flooding attack has been well-known to the community for
 many years, and has been observed in the wild by network operators
 and end-hosts. A number of methods have been developed and deployed
 to make SYN flooding less effective. Despite the notoriety of the
 attack, and the widely available countermeasures, the RFC series has
 not previously documented the vulnerability, nor suggested any
 mitigation techniques for TCP implementations. The purpose of this
 document is to satisfy both of these ends in an informational
 context. The advancement of (or need to advance) mitigation
 techniques through the standards track is left to be considered as
 further work for the IETF, and formal specifications and requirements
 of defense mechanisms are outside the scope of this document.

 This majority of this document consists of three sections. Section 2
 explains the SYN flooding attack in greater detail. Several common
 mitigation techniques are described in Section 3. An analysis and
 discussion of these techniques and their use is presented in

Section 4. Further information on SYN cookies is contained in
Appendix A.

Eddy Expires January 18, 2007 [Page 3]

Internet-Draft TCP SYN Flooding July 2006

2. Attack Description

 This section describes both the history and the technical basis of
 the SYN flooding attack.

2.1 History

 The TCP SYN flooding weakness was discovered as early as 1994 by Bill
 Cheswick and Steve Bellovin. They included, and then removed, a
 paragraph on the attack in their book "Firewalls and Internet
 Security: Repelling the Wily Hacker" [CB94]. Unfortunately, no
 countermeasures were developed within the next two years.

 The SYN flooding attack was first publicized in 1996, with the
 release of a description and exploit tool in Phrack Magazine
 [P48-13]. Aside from some minor inaccuracies, this article is of
 high enough quality to be useful. This article contains code for the
 attack and was widely distributed via the Internet.

 By September of 1996, SYN flooding attacks had been observed in the
 wild. Particularly, an attack against the Panix ISP's mail servers
 caused well-publicized outages. CERT quickly released an advisory on
 the attack [CA-96.21]. SYN flooding was particularly serious in
 comparison to other known denial of service attacks at the time.
 Rather than relying on the common brute-force tactic of simply
 exhausting the network's resources, SYN flooding targets end-host
 resources, which it requires fewer packets to deplete.

 The community quickly developed many widely-differing techniques for
 preventing or limiting the impact of SYN flooding attacks. Many of
 these have been deployed to varying degrees on the Internet, in both
 end hosts and intervening routers. Some of these techniques have
 become important pieces of the TCP implementations in certain
 operating systems, although some significantly diverge from the TCP
 specification and have not yet been standardized or sanctioned by the
 IETF process.

2.2 Theory of Operation

 As described in RFC 793, a TCP implementation may allow the LISTEN
 state to be entered with either all, some. or none of the pair of IP
 addresses and port numbers specified by the application. In many
 common applications like web servers, none of the remote host's
 information is pre-known or preconfigured, so that a connection can
 be established with any client whose details are unknown to the
 server ahead of time. This type of "unbound" LISTEN is the target of
 SYN flooding attacks, due to the way it is typically implemented by
 operating systems.

https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires January 18, 2007 [Page 4]

Internet-Draft TCP SYN Flooding July 2006

 For success, the SYN flooding attack relies on the victim host TCP
 implementation's behavior. In particular, it assumes that the victim
 allocates state for every TCP SYN segment when it is received, and
 that there is a limit on the amount of such state than can be kept at
 any time. The current base TCP specification, RFC 793 [RFC0793],
 describes the standard processing of incoming SYN segments. RFC 793
 describes the concept of a Transmission Control Block (TCB) data
 structure to store all the state information for an individual
 connection. In practice, operating systems may implement this
 concept rather differently, but the key is that each TCP connection
 requires some memory space.

 Per RFC 793, when a SYN is received for a local TCP port where a
 connection is in the LISTEN state, then the state transitions to SYN-
 RECEIVED and some of the TCB is initialized with information from the
 header fields of the received SYN segment. In practice, this is not
 really how things work. Many operating systems do not alter the TCB
 in LISTEN, but instead make a copy of the TCB and perform the state
 transition and update on the copy. This is done so that the local
 TCP port may be shared amongst several distinct connections. This
 TCB-copying behavior is not actually essential for this purpose, but
 influences the way in which applications that wish to handle multiple
 simultaneous connections through a single TCP port are written. The
 crucial result of this behavior is that instead of updating already-
 allocated memory, new (or unused) memory must be devoted to the
 copied TCB.

 As an example, in the Linux 2.6.10 networking code, a "sock"
 structure is used to implement the TCB concept. By examination, this
 structure takes over 1300 bytes to store in memory. In other systems
 that implement less complex TCP algorithms and options, the overhead
 may be less, although typically exceeds 280 bytes [SKK+97].

 To protect host memory from being exhausted by connection requests,
 the number of TCB structures that can be resident at any time is
 usually limited by operating system kernels. Systems vary on whether
 limits are globally applied or local to a particular port number.
 There is also variation on whether the limits apply to fully-
 established connections as well as those in SYN-RECEIVED. Commonly,
 systems implement a parameter to the typical listen() system call
 that allows the application to suggest a value for this limit, called
 the backlog. When the backlog limit is reached, then either incoming
 SYN segments are ignored, or uncompleted connections in the backlog
 are replaced. The concept of using a backlog is not described in the
 standards documents, so the failure behavior when the backlog is
 reached might differ between stacks (for instance, TCP RSTs might be
 generated). The exact failure behavior will determine whether
 initiating hosts continue to retransmit SYN segments over time, or

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Eddy Expires January 18, 2007 [Page 5]

Internet-Draft TCP SYN Flooding July 2006

 quickly cease.

 The SYN flooding attack neither attempts to overload the network's
 resources, nor the end host's memory, but merely to exhaust an
 application's backlog of half-open connections. The goal is to send
 a quick barrage of SYN segments from spoofed IP addresses that will
 not generate replies to the SYN-ACKs that are produced. By keeping
 the backlog full of bogus half-opened connections, legitimate
 requests will be rejected. Three important attack parameters for
 success are the size of the barrage, the frequency with which
 barrages are generated, and the means of selecting IP addresses to
 spoof.

 Barrage Size

 To be effective, the size of the barrage must be made large enough
 to reach the backlog. Ideally, the barrage size is no larger than
 the backlog, minimizing the volume of traffic the attacker must
 source. Typical default backlog values vary from a half-dozen to
 several dozen, so the attack might be tailored to the particular
 value determined by the victim host and application.

 Barrage Frequency

 To limit the lifetime of half-opened connection state, TCP
 implementations commonly reclaim memory from half-opened
 connections if they do not become fully-opened after some time
 period. For instance, a timer of 75 seconds [SKK+97] might be set
 when the first SYN-ACK is sent, and on expiration cause SYN-ACK
 retransmissions to cease and the TCB to be released. The TCP
 specifications do not include this behavior of giving up on
 connection establishment after an arbitrary time. Some purists
 have expressed that the TCP implementation should continue
 retransmitting SYN and SYN-ACK segments without artificial bounds
 (but with exponential backoff to some conservative rate) until the
 application gives up. Despite this, common operating systems
 today do implement some artificial limit on half-open TCB
 lifetime. For instance, backing off and stopping after a total of
 511 seconds can be observed in 4.4 BSD-Lite [Ste95].

 To remain effective, a SYN flooding attack needs to send new
 barrages of bogus connection requests as soon as the TCBs from the
 previous barrage begin to be reclaimed. The frequency of barrages
 are tailored to the victim TCP implementation's TCB reclamation
 timer. Frequencies higher than needed source more packets,
 potentially drawing more attention, and frequencies that are too
 low will allow windows of time where legitimate connections can be
 established.

Eddy Expires January 18, 2007 [Page 6]

Internet-Draft TCP SYN Flooding July 2006

 IP Address Selection

 For an effective attack, it is important that the spoofed IP
 addresses be unresponsive to the SYN-ACK segments that the victim
 will generate. If addresses of normal connected hosts are used,
 then those hosts will send the victim a TCP reset segment that
 will immediately free the corresponding TCB and allow room in the
 backlog for legitimate connections to be made. The code
 distributed in the original Phrack article used a single source
 address for all spoofed SYN segments. This makes the attack
 segments somewhat easier to identify and filter. A strong
 attacker will have a list of unresponsive and unrelated addresses
 that it chooses spoofed source addresses from.

 It is important to note that this attack is directed at particular
 listening applications on a host, and not the host itself or the
 network. The attack also prevents only the establishment of new
 incoming connections to the victim port, and does not impact outgoing
 connection requests, nor previously established connections to the
 victim port.

 In practice, an attacker might choose not to use spoofed IP
 addresses, but instead to use a multitude of hosts to initiate a SYN
 flooding attack. For instance, a "botnet" could be used. In this
 case, each host utilized in the attack would have to supress its
 operating system's native response to the SYN-ACKs coming from the
 target. It is also possible for the attack TCP segments to arrive in
 a more continuous fashion than the "barrage" terminology used here
 suggests; as long as the rate of new SYNs exceeds the rate at which
 TCBs are reaped, the attack will be successful.

Eddy Expires January 18, 2007 [Page 7]

Internet-Draft TCP SYN Flooding July 2006

3. Common Defenses

3.1 Filtering

 Since the ability to send packets with spoofed source IP addresses is
 required for this attack to work, removing an attacker's ability to
 send spoofed IP packets is an effective solution that requires no
 modifications to TCP. The filtering techniques described in RFCs
 2827, 3013, and 3704 represent the best current practices for packet
 filtering based on IP addresses [RFC2827][RFC3013][RFC3704]. While
 perfectly effective, end hosts should not rely on filtering policies
 to prevent attacks from spoofed segments, as global deployment of
 filters is neither guaranteed nor likely. An attacker with the
 ability to use a group of compromised hosts or to move around in the
 network will also make filtering an impotent solution.

3.2 Increasing Backlog

 An obvious attempt at defense is for end hosts to use a larger
 backlog. Lemon has shown that in FreeBSD 4.4, this tactic has some
 serious negative aspects as the size of the backlog grows [Lem02].
 The implementation has not been designed to scale past backlogs of a
 few hundred, and the data structures and search algorithms that it
 uses are inefficient with larger backlogs. It is reasonable to
 assume that other TCP implementations have similar design factors
 that limit their performance with large backlogs, and there seems to
 be no compelling reason why stacks should be re-engineered to support
 extremely large backlogs, since other solutions are available.
 However, experiments with large backlogs using efficient data
 structures and search algorithms have not been conducted, to our
 knowledge.

3.3 Reducing SYN-RECEIVED Timer

 Decreasing the timer that limits the lifetime of TCBs in SYN-RECEIVED
 is also flawed. While a shorter timer will keep bogus connection
 attempts from persisting for as long in the backlog, and thus free up
 space for legitimate connections sooner, it can prevent some fraction
 of legitimate connections from becoming fully established. This
 tactic is also ineffective because it only requires the attacker to
 increase the barrage frequency by a linearly proportional amount.

3.4 SYN Cache

 The SYN cache, best described by Lemon [Lem02], is based on
 minimizing the amount of state that a SYN allocates, i.e. not
 immediately allocating a full TCB. The full state allocation is
 delayed until the connection has been fully established. Hosts

https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc3704

Eddy Expires January 18, 2007 [Page 8]

Internet-Draft TCP SYN Flooding July 2006

 implementing a SYN cache have some secret bits that they select from
 the incoming SYN segments. The secret bits are hashed along with the
 IP addresses and TCP ports of a segment, and the hash value
 determines the location in a global hash table where the incomplete
 TCB is stored. There is a bucket limit for each hash value, and when
 this limit is reached, the oldest entry is dropped.

 The SYN cache technique is effective because the secret bits prevent
 an attacker from being able to target specific hash values for
 overflowing the bucket limit, and it bounds both the CPU time and
 memory requirements. Lemon's evaluation of the SYN cache shows that
 even under conditions where a SYN flooding attack is not being
 performed, due to the modified processing path, connection
 establishment is slightly more expedient. Under active attack, SYN
 cache performance was observed to approximately linearly shift the
 distribution of times to establish legitimate connections to about
 15% longer than when not under attack.

 If data accompanies the SYN segment, then this data is not
 acknowledged or stored by the receiver, and will require
 retransmission. This does not affect the reliability of TCP's data
 transfer service, but it does affect its performance to some small
 extent.

3.5 SYN Cookies

 SYN cookies go a step further and allocate no state at all for
 connections in SYN-RECEIVED. Instead, they encode most of the state
 (and all of the strictly required) state that they would normally
 keep into the sequence number transmitted on the SYN-ACK. If the SYN
 was not spoofed, then the acknowledgement number (along with several
 other fields) in the ACK that completes the handshake can be used to
 reconstruct the state to be put into the TCB. To date, one of the
 best references on SYN cookies can be found on Dan Bernstein's web
 site [cr.yp.to]. This technique exploits the long-understood low
 entropy in TCP header fields [RFC1144][RFC4413]. In Appendix A, we
 describe the SYN cookie technique, to avoid the possibility that the
 web page will become unavailable.

 The exact mechanism for encoding state into the SYN-ACK sequence
 number can be implementation dependent. A common consideration is
 that to prevent replay, some time-dependent random bits must be
 embedded in the sequence number. One technique used 7 bits for these
 bits and 25 bits for the other data [Lem02]. One way to encode these
 bits has been to XOR the initial sequence number received with a
 truncated cryptographic hash of the IP address and TCP port number
 pairs, and secret bits. In practice, this hash has been generated
 using MD5.

https://datatracker.ietf.org/doc/html/rfc1144

Eddy Expires January 18, 2007 [Page 9]

Internet-Draft TCP SYN Flooding July 2006

 The problem with SYN cookies is that current schemes are incompatible
 with some TCP options, if the cookie generation scheme does not
 consider them. For example, an encoding of the MSS advertised on the
 SYN has been accommodated by using 2 sequence number bits to
 represent 4 predefined common MSS values. Similar techniques would
 be required for some other TCP options, while negotiated use of other
 TCP options can be detected implicitly. A timestamp on the ACK, as
 an example, indicates that Timestamp use was successfully negotiated
 on the SYN and SYN-ACK, while the reception of a SACK option at some
 point during the connection implies that SACK was negotiated. Note
 that SACK blocks should normally not be sent by a host using TCP
 cookies unless they are first received. For the common
 unidirectional data flow in many TCP connections, this can be a
 problem, as it limits SACK usage. For this reason, SYN cookies
 typically default to off on systems that implement them, and are only
 enabled either under high-stress conditions indicative of an attack,
 or via adminstrative action.

 Similarly to SYN caches, SYN cookies do not handle application data
 piggybacked on the SYN segment.

3.6 Hybrid Approaches

 The SYN cache and SYN cookie techniques can be combined. For
 example, in the event that the cache becomes full, then SYN cookies
 can be sent instead of purging cache entries upon the arrival of new
 SYNs. Such hybrid approaches may provide a strong combination of the
 positive aspects of each approach. Lemon has demonstrated the
 utility of this hybrid.

3.7 Firewalls and Proxies

 Firewall-baed tactics may also be used to defend end-hosts from SYN
 flooding attacks. The basic concept is to offload the connection
 establishment proceedures onto a firewall that screens connection
 attempts until they are completed and then proxies them back to
 protected end hosts. This moves the problem away from end-hosts to
 become the firewall's or proxy's problem, and may introduce other
 problems related to altering TCP's expected end-to-end semantics.

Eddy Expires January 18, 2007 [Page 10]

Internet-Draft TCP SYN Flooding July 2006

4. Analysis

 Several of the defenses discussed in the previous section rely on
 changes to behavior inside the network; via router filtering,
 firewalls, and proxies. These may be highly effective, and often
 require no modification or configuration of end host software. Given
 the mobile nature and dynamic connectivity of many end hosts, it is
 optimistic for TCP implementers to assume the presence of such
 protective devices. TCP implementers should provide some means of
 defense to SYN flooding attacks in end host implementations.

 Among end host modifications, the SYN cache and SYN cookie approaches
 seem to be the only viable techniques discoverd. Increasing the
 backlog and reducing the SYN-RECEIVED timer are measurably
 problematic. The SYN cache implies a higher memory footprint than
 SYN cookies, however, SYN cookies may not be fully compatible with
 some TCP options, and may hamper development of future TCP extensions
 that require state. For these reasons, SYN cookies should not be
 enabled by default on systems that provide them. SYN caches do not
 have the same negative implications and may be enabled as a default
 mode of processing.

 In October of 1996, Dave Borman implemented a SYN cache at BSDi for
 BSD/OS, which was given to the community with no restrictions. This
 code seems to be the basis for the SYN cache implementations adopted
 later in other BSD variants. The cache was used when the backlog
 became full, rather than by default, as we have described. A note to
 the tcp-impl mailing list explains that this code does not retransmit
 SYN-ACKs, which is a practice we would not encourage.

 In 1997, NetBSD incorporated a modified version of Borman's code.
 Two notable differences from the original code stem from the decision
 to use of the cache by default (for all connections). This implied
 the need to perform retransmissions for SYN-ACKs, and to use larger
 structures to keep more complete data. The original structure was 32
 bytes long for IPv4 connections and 56 bytes with IPv6 support, while
 the current FreeBSD structure is 196 bytes long. As previously
 cited, Lemon implemented the SYN cache and cookie techniques in
 FreeBSD 4.4. Lemon notes that a SYN cache structure took up 160
 bytes compared to 736 for the full TCB (now 196 bytes for the cache
 structure). We have examined the OpenBSD 3.6 code and determined
 that it includes a similar SYN cache.

 Linux 2.6.5 code, also by examination, contains a SYN cookie
 implementation that encodes 8 MSS values, and does not use SYN
 cookies by default. This functionality has been present in the Linux
 kernel for several years previous to 2.6.5.

Eddy Expires January 18, 2007 [Page 11]

Internet-Draft TCP SYN Flooding July 2006

 Beginning with Windows 2000, Microsoft's Windows operating systems
 have had a "TCP SYN attack protection" feature which can be toggled
 on or off in the registry. This defaulted to off, until Windows 2003
 SP1, in which it is on by default. With this feature enabled, when
 the number of half-open connections and half-open connections with
 retransmitted SYN-ACKs exceeds configurable thresholds, then the
 number of times which SYN-ACKs are retransmitted before giving up is
 reduced, and the "Route Cache Entry" creation is delayed, which
 prevents some features (e.g. window scaling) from being used .

 Several vendors of commercial firewall products sell devices that can
 mitigate SYN flooding's effects on end hosts by proxying connections.

 Discovery and exploitation of the SYN flooding vulnerability in TCP's
 design provided a valuable lesson for protocol designers. The Stream
 Control Transmission Protocol [RFC2960], which was designed more
 recently, incorporated a 4-way handshake with a stateless cookie-
 based component for the listening end. In this way, the passive-
 opening side has better evidence that the initiator really exists at
 the given address before it allocates any state. The Host Identity
 Protocol base exchange [MNJH04] is similarly designed as a 4-way
 handshake, but also involves a puzzle sent to the initiator which
 must be solved before any state is reserved by the responder. The
 general concept of designing statelessness into protocol setup to
 avoid denial of service attacks has been discussed by Aura and
 Nikander [AN97].

https://datatracker.ietf.org/doc/html/rfc2960

Eddy Expires January 18, 2007 [Page 12]

Internet-Draft TCP SYN Flooding July 2006

5. Security Considerations

 The SYN flooding attack on TCP has been described in numerous other
 publications, and the details and code needed to perform the attack
 have been easily available for years. Describing the attack in this
 document does not pose any danger of further publicizing this
 weakness in unmodified TCP stacks. Several widely-deployed operating
 systems implement the mitigation techniques that this document
 discusses for defeating SYN flooding attacks. In at least some
 cases, these operating systems do not enable these countermeasures by
 default, however, the mechanisms for defeating SYN flooding are well
 deployed, and easily enabled by end-users. The publication of this
 document should not influence the number of SYN flooding attacks
 observed, and might increase the robustness of the Internet to such
 attacks by encouraging use of the commonly available mitigations.

Eddy Expires January 18, 2007 [Page 13]

Internet-Draft TCP SYN Flooding July 2006

6. Acknowledgements

 A conversation with Ted Faber was the impetus for writing this
 document. Comments and suggestions from Joe Touch, Dave Borman,
 Fernando Gont, Jean-Baptiste Marchand, Christian Huitema, and Caitlin
 Bestler were useful in strengthening this document.

 Work on this document was performed at NASA's Glenn Research Center.
 Funding was partially provided by a combination of NASA's Advanced
 Communications, Navigation, and Surveillance Architectures and System
 Technologies (ACAST) project, the Sensis Corporation, and NASA's
 Space Communications Architecture Working Group.

7. Informative References

 [AN97] Aura, T. and P. Nikander, "Stateless Connections",
 Proceedings of the First International Conference on
 Information and Communication Security , 1997.

 [CA-96.21]
 CERT, "CERT Advisory CA-1996-21 TCP SYN Flooding and IP
 Spoofing Attacks", September 1996.

 [CB94] Cheswick, W. and S. Bellovin, "Firewalls and Internet
 Security", ISBN: 0201633574, January 1994.

 [Lem02] Lemon, J., "Resisting SYN Flood DoS Attacks with a SYN
 Cache", BSDCON 2002, February 2002.

 [MNJH04] Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson,
 "Host Identity Protocol", (draft-ietf-hip-base-03),
 June 2005.

 [P48-13] daemon9, "Project Neptune", Phrack Magazine, Volume 7,
 Issue 48, File 13 of 18, July 1996.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1144] Jacobson, V., "Compressing TCP/IP headers for low-speed
 serial links", RFC 1144, February 1990.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,

https://datatracker.ietf.org/doc/html/draft-ietf-hip-base-03
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1144
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827

Eddy Expires January 18, 2007 [Page 14]

Internet-Draft TCP SYN Flooding July 2006

 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3013] Killalea, T., "Recommended Internet Service Provider
 Security Services and Procedures", BCP 46, RFC 3013,
 November 2000.

 [RFC3704] Baker, F. and P. Savola, "Ingress Filtering for Multihomed
 Networks", BCP 84, RFC 3704, March 2004.

 [RFC4413] West, M. and S. McCann, "TCP/IP Field Behavior", RFC 4413,
 March 2006.

 [SKK+97] Schuba, C., Krsul, I., Kuhn, M., Spafford, E., Sundaram,
 A., and D. Zamboni, "Analysis of a Denial of Service
 Attack on TCP", Proceedings of the 1997 IEEE Symposium on
 Security and Privacy 1997.

 [Ste95] Stevens, W. and G. Wright, "TCP/IP Illustrated, Volume 2:
 The Implementation", January 1995.

 [cr.yp.to]
 Bernstein, D., "URL: http://cr.yp.to/syncookies.html",
 visited in December 2005.

 [win2k3-wp]
 Microsoft Corporation, "Microsoft Windows Server 2003
 TCP/IP Implementation Details", White Paper, July 2005.

Author's Address

 Wesley M. Eddy
 Verizon Federal Network Systems
 NASA Glenn Research Center
 21000 Brookpark Rd, MS 54-5
 Cleveland, OH 44135

 Phone: 216-433-6682
 Email: weddy@grc.nasa.gov

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/bcp46
https://datatracker.ietf.org/doc/html/rfc3013
https://datatracker.ietf.org/doc/html/bcp84
https://datatracker.ietf.org/doc/html/rfc3704
https://datatracker.ietf.org/doc/html/rfc4413
http://cr.yp.to/syncookies

Eddy Expires January 18, 2007 [Page 15]

Internet-Draft TCP SYN Flooding July 2006

Appendix A. SYN Cookies

 This information is taken from Bernstein's web page on SYN cookies .
 This is a rewriting of the technical information on that web page and
 not a full replacement. There are other slightly different ways of
 implementing the SYN cookie concept than the exact means described
 here, although the basic idea of encoding data into the SYN-ACK
 sequence number is constant.

 A SYN cookie is an initial sequence number sent in the SYN-ACK, that
 is chosen based on the connection initiator's initial sequence
 number, MSS, a time counter, and the relevent addresses and port
 numbers. The actual bits comprising the SYN cookie are chosen to be
 the bitwise difference (exclusive-or) between the SYN's sequence
 number and a 32 bit quantity computed so that the top five bits come
 from a 32-bit counter value modulo 32, where the counter increases
 every 64 seconds, the next 3 bits encode a usable MSS near to the one
 in the SYN, and the bottom 24 bits are a server-selected secret
 function of pair of IP addresses, the pair of port numbers, and the
 32-bit counter used for the first 5 bits. This means of selecting an
 initial sequence number for use in the SYN-ACK complies with the rule
 that TCP sequence numbers increase slowly.

 When a connection in LISTEN receives a SYN segment, it can generate a
 SYN cookie and send it in the sequence number of a SYN-ACK, without
 allocating any other state. If an ACK comes back, the difference
 between the acknowledged sequence number and the sequence number of
 the ACK segment can be checked against recent values of the counter
 and the secret function's output given those counter values and the
 IP addresses and port numbers in the ACK segment. If there is a
 match, the connection can be accepted, since it is statistically very
 likely that the other side received the SYN cookie and did not simply
 guess a valid cookie value. If there is not a match, the connection
 can be rejected under the heuristic that it is probably not in
 response to a recently sent SYN-ACK.

 With SYN cookies enabled, a host will be able to maintain responsive
 even when under a SYN flooding attack. The largest price to be paid
 for using SYN cookies is in the disabling of the window scaling
 option, which disables high performance.

 Bernstein's web page contains more information about the initial
 conceptualization and implementation of SYN cookies, and archives of
 emails documenting this history. It also lists some false negative
 claims that have been made about SYN cookies, and discusses reducing
 the vulnerability of SYN cookie implementations to blind connection
 forgery by an attacker guessing valid cookies.

Eddy Expires January 18, 2007 [Page 16]

Internet-Draft TCP SYN Flooding July 2006

 The best description of the exact SYN cookie algorithms is in part of
 an email from Bernstein, that is archived on the web site (notice it
 does not set the top five bits from the counter modulo 32, as the
 previous description did, but instead uses 29 bits from the second
 MD5 operation and 3 bits for the index into the MSS table;
 establishing the secret values is also not discussed):

 Here's what an implementation would involve:

 Maintain two (constant) secret keys, sec1 and sec2.

 Maintain a (constant) sorted table of 8 common MSS values,
 msstab[8].

 Keep track of a ``last overflow time.''

 Maintain a counter that increases slowly over time and never
 repeats, such as ``number of seconds since 1970, shifted right
 6 bits.''

 When a SYN comes in from (saddr,sport) to (daddr,dport) with
 ISN x, find the largest i for which msstab[i] <= the incoming
 MSS. Compute

 z = MD5(sec1,saddr,sport,daddr,dport,sec1)

 + x

 + (counter << 24)

 + (MD5(sec2,counter,saddr,sport,daddr,dport,sec2) % (1 <<
 24))

 and then

 y = (i << 29) + (z % (1 << 29))

 Create a TCB as usual, with y as our ISN. Send back a SYNACK.

 Exception: _If_ we're out of memory for TCBs, set the ``last
 overflow time'' to the current time. Send the SYNACK anyway,
 with all fancy options turned off.

 When an ACK comes back, follow this procedure to find a TCB:

 (1) Look for a (saddr,sport,daddr,dport) TCB. If it's
 there, done.

Eddy Expires January 18, 2007 [Page 17]

Internet-Draft TCP SYN Flooding July 2006

 (2) If the ``last overflow time'' is earlier than a few
 minutes ago, give up.

 (3) Figure out whether our alleged ISN makes sense. This
 means recomputing y as above, for each of the counters that
 could have been used in the last few minutes (say, the last
 four counters), and seeing whether any of the y's match the
 ISN in the bottom 29 bits. If none of them do, give up.

 (4) Create a new TCB. The top three bits of our ISN give a
 usable MSS. Turn off all fancy options.

Eddy Expires January 18, 2007 [Page 18]

Internet-Draft TCP SYN Flooding July 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Eddy Expires January 18, 2007 [Page 19]

