
TCPM WG                                                        J. Touch
Internet Draft
Updates: 793                                                   Wes Eddy
Intended status: Standards Track                            MTI Systems
Expires: January 2019                                     July 19, 2018

TCP Extended Data Offset Option
draft-ietf-tcpm-tcp-edo-10.txt

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as
   reference material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

   This Internet-Draft will expire on January 19, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with
   respect to this document. Code Components extracted from this
   document must include Simplified BSD License text as described in

Touch                  Expires January 19, 2019                [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Internet-Draft     TCP Extended Data Offset Option            July 2018

   Section 4.e of the Trust Legal Provisions and are provided without
   warranty as described in the Simplified BSD License.

Abstract

   TCP segments include a Data Offset field to indicate space for TCP
   options but the size of the field can limit the space available for
   complex options such as SACK and Multipath TCP and can limit the
   combination of such options supported in a single connection. This
   document updates RFC 793 with an optional TCP extension to that
   space to support the use of multiple large options. It also explains
   why the initial SYN of a connection cannot be extending a single
   segment.

Table of Contents

1. Introduction...................................................3
2. Conventions used in this document..............................3
3. Motivation.....................................................3
4. Requirements for Extending TCP's Data Offset...................4
5. The TCP EDO Option.............................................4

5.1. EDO Supported.............................................5
5.2. EDO Extension.............................................5
5.3. The two EDO Extension variants............................8

6. TCP EDO Interaction with TCP...................................9
6.1. TCP User Interface........................................9
6.2. TCP States and Transitions................................9
6.3. TCP Segment Processing...................................10
6.4. Impact on TCP Header Size................................10
6.5. Connectionless Resets....................................11
6.6. ICMP Handling............................................11

7. Interactions with Middleboxes.................................12
7.1. Middlebox Coexistence with EDO...........................12
7.2. Middlebox Interference with EDO..........................13

8. Comparison to Previous Proposals..............................14
8.1. EDO Criteria.............................................14
8.2. Summary of Approaches....................................15
8.3. Extended Segments........................................16
8.4. TCPx2....................................................16
8.5. LO/SLO...................................................17
8.6. LOIC.....................................................17
8.7. Problems with Extending the Initial SYN..................18

9. Implementation Issues.........................................19
10. Security Considerations......................................20
11. IANA Considerations..........................................20
12. References...................................................20

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc793


Touch                  Expires January 19, 2019                [Page 2]



Internet-Draft     TCP Extended Data Offset Option            July 2018

12.1. Normative References....................................20
12.2. Informative References..................................20

13. Acknowledgments..............................................22

1. Introduction

   TCP's Data Offset (DO)is a 4-bit field, which indicates the number
   of 32-bit words of the entire TCP header [RFC793]. This limits the
   current total header size to 60 bytes, of which the basic header
   occupies 20, leaving 40 bytes for options. These 40 bytes are
   increasingly becoming a limitation to the development of advanced
   capabilities, such as when SACK [RFC2018][RFC6675] is combined with
   either Multipath TCP [RFC6824], TCP-AO [RFC5925], or TCP Fast Open
   [RFC7413].

   This document specifies the TCP Extended Data Offset (EDO) option,
   and is independent of (and thus compatible with) IPv4 and IPv6. EDO
   extends the space available for TCP options, except for the initial
   SYN and SYN/ACK. This document also explains why the option space of
   the initial SYN segments cannot be extended as individual segments
   without severe impact on TCP's initial handshake and the SYN/ACK
   limitation that results from potential middlebox misbehavior.
   Multiple other TCP extensions are being considered in the TCPM
   working group in order to address the case of SYN and SYN/ACK
   segments [Bo14][Br14][To18]. Some of these other extensions can work
   in conjunction with EDO (e.g., [To18]).

2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

   In this document, these words will appear with that interpretation
   only when in ALL CAPS. Lower case uses of these words are not to be
   interpreted as carrying RFC-2119 significance.

   In this document, the characters ">>" preceding an indented line(s)
   indicates a compliance requirement statement using the key words
   listed above. This convention aids reviewers in quickly identifying
   or finding the explicit compliance requirements of this RFC.

3. Motivation

   TCP supports headers with a total length of up to 15 32-bit words,
   as indicated in the 4-bit Data Offset field [RFC793]. This accounts

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793


Touch                  Expires January 19, 2019                [Page 3]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   for a total of 60 bytes, of which the default TCP header fields
   occupy 20 bytes, leaving 40 bytes for options.

   TCP connections already use this option space for a variety of
   capabilities. These include Maximum Segment Size (MSS) [RFC793],
   Window Scale (WS) [RFC7323], Timestamp (TS) [RFC7323], Selective
   Acknowledgement (SACK) [RFC2018][RFC6675], TCP Authentication Option
   (TCP-AO) [RFC5925], Multipath TCP (MP-TCP)_[RFC6824], and TCP User
   Timeout [RFC5482]. Some options occur only in a SYN or SYN/ACK (MSS,
   WS), and others vary in size when used in SYN vs. non-SYN segments.

   Each of these options consumes space, where some options consuming
   as much space as available (SACK) and other desired combinations can
   easily exceed the currently available space. For example, it is not
   currently possible to use TCP-AO with both TS and MP-TCP in the same
   non-SYN segment, i.e., to combine accurate round-trip estimation,
   authentication, and multipath support in the same connection - even
   though these options can be negotiated during a SYN exchange (10 for
   TS, 16 for TCP-AO, and 12 for MP-TCP).

   TCP EDO is intended to overcome this limitation for non-SYN
   segments, as well as to increase the space available for SACK
   blocks. Further discussion of the impact of EDO and existing options
   is discussed in Section 6.4. Extending SYN segments is much more
   complicated, as discussed in Section 8.7.

4. Requirements for Extending TCP's Data Offset

   The primary goal of extending the TCP Data Offset field is to
   increase the space available for TCP options in all segments except
   the initial SYN.

   An important requirement of any such extension is that it not impact
   legacy endpoints. Endpoints seeking to use this new option should
   not incur additional delay or segment exchanges to connect to either
   new endpoints supporting this option or legacy endpoints without
   this option. We call this a "backward downgrade" capability.

   An additional consideration of this extension is avoiding user data
   corruption in the presence of popular network devices, including
   middleboxes. Consideration of middlebox misbehavior can also
   interfere with extension in the SYN/ACK.

5. The TCP EDO Option

   TCP EDO extends the option space for all segments except the initial
   SYN (i.e., SYN set and ACK not set) and SYN/ACK response. EDO is

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5482


Touch                  Expires January 19, 2019                [Page 4]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   indicated by the TCP option codepoint of EDO-OPT and has two types:
   EDO Supported and EDO Extension, as discussed in the following
   subsections.

5.1. EDO Supported

   EDO capability is determined in both directions using a single
   exchange of the EDO Supported option (Figure 1). When EDO is desired
   on a given connection, the SYN and SYN/ACK segments include the EDO
   Supported option, which consists of the two required TCP option
   fields: Kind and Length. The EDO Supported option is used only in
   the SYN and SYN/ACK segments and only to confirm support for EDO in
   subsequent segments.

                            +--------+--------+
                            |  Kind  | Length |
                            +--------+--------+

                     Figure 1 TCP EDO Supported option

   An endpoint seeking to enable EDO includes the EDO Supported option
   in the initial SYN. If receiver of that SYN agrees to use EDO, it
   responds with the EDO Supported option in the SYN/ACK. The EDO
   Supported option does not extend the TCP option space.

   >> Connections using EDO MUST negotiate its availability during the
   SYN exchange of the initial three-way handshake.

   >> An endpoint confirming and agreeing to EDO use MUST respond with
   the EDO Supported option in its SYN/ACK.

   The SYN/ACK uses only the EDO Supported option (and not the EDO
   Extension option, below) because it may not yet be safe to extend
   the option space in the reverse direction due to potential middlebox
   misbehavior (see Section 7.2). Extension of the SYN and SYN/ACK
   space is addressed as a separate option (see Section 8.7).

5.2. EDO Extension

   When EDO is successfully negotiated, all other segments use the EDO
   Extension option, of which there are two variants (Figure 2 and
   Figure 3). Both variants are considered equivalent and either
   variant can be used in any segment where the EDO Extension option is
   required. Both variants add a Header_Length field (in network-
   standard byte order), indicating the length of the entire TCP header
   in 32-bit words. Figure 3 depicts the longer variant, which includes
   an additional Segment_Length field, which is identical to the TCP



Touch                  Expires January 19, 2019                [Page 5]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   pseudoheader TCP Length field and used to detect when segments have
   been altered in ways that would interfere with EDO (discussed
   further in Section 5.3).

                   +--------+--------+--------+--------+
                   |  Kind  | Length |  Header_Length  |
                   +--------+--------+--------+--------+

            Figure 2 TCP EDO Extension option - simple variant

                   +--------+--------+--------+--------+
                   |  Kind  | Length |  Header_Length  |
                   +--------+--------+--------+--------+
                   |  Segment_Length |
                   +--------+--------+

   Figure 3 TCP EDO Extension option - with segment length verification

   >> Once enabled on a connection, all segments in both directions
   MUST include the EDO Extension option. Segments not needing
   extension MUST set the EDO Extension option Header Length field
   equal to the Data Offset length.

   >> The EDO Extension option MAY be used only if confirmed when the
   connection transitions to the ESTABLISHED state, e.g., a client is
   enabled after receiving the EDO Supported option in the SYN/ACK and
   the server is enabled after seeing the EDO Extension option in the
   final ACK of the three-way handshake. If either of those segments
   lacks the appropriate EDO option, the connection MUST NOT use any
   EDO options on any other segments.

   Internet paths may vary after connection establishment, introducing
   misbehaving middleboxes (see Section 7.2). Using EDO on all segments
   in both directions allows this condition to be detected.

   >> The EDO Supported option MAY occur in an initial SYN as desired
   (e.g., as expressed by the user/application) and in the SYN/ACK as
   confirmation, but MUST NOT be inserted in other segments. If the EDO
   Supported option is received in other segments, it MUST be silently
   ignored.

   >> If EDO has not been negotiated and agreed, the EDO Extension
   option MUST be silently ignored on subsequent segments. The EDO
   Extension option MUST NOT be sent in an initial SYN segment or
   SYN/ACK, and MUST be silently ignored and not acknowledged if so
   received.



Touch                  Expires January 19, 2019                [Page 6]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   >> If EDO has been negotiated, any subsequent segments arriving
   without the EDO Extension option MUST be silently ignored. Such
   events MAY be logged as warning errors and logging MUST be rate
   limited.

   When processing a segment, EDO needs to be visible within the area
   indicated by the Data Offset field, so that processing can use the
   EDO Header_length to override the field for that segment.

   >> The EDO Extension option MUST occur within the space indicated by
   the TCP Data Offset.

   >> The EDO Extension option indicates the total length of the
   header. The EDO Header_length field MUST NOT exceed that of the
   total segment size (i.e., TCP Length).

   >> The EDO Header Length MUST be at least as large as the TCP Data
   Offset field of the segment in which they both appear. When the EDO
   Header Length equals the Data Offset length, the EDO Extension
   option is present but it does not extend the option space. When the
   EDO Header Length is invalid, the TCP segment MUST be silently
   dropped.

   >> The EDO Supported option SHOULD be aligned on a 16-bit boundary
   and the EDO Extension option SHOULD be aligned on a 32-bit boundary,
   in both cases for simpler processing.

   For example, a segment with only EDO would have a Data Offset of 6
   or 7 (depending on the EDO Extension variant used), where EDO would
   be the first option processed, at which point the EDO Extension
   option would override the Data Offset and processing would continue
   until the end of the TCP header as indicated by the EDO
   Header_length field.

   There are cases where it might be useful to process other options
   before EDO, notably those that determine whether the TCP header is
   valid, such as authentication, encryption, or alternate checksums.
   In those cases, the EDO Extension option is preferably the first
   option after a validation option, and the payload after the Data
   Offset is treated as user data for the purposes of validation.

   >> The EDO Extension option SHOULD occur as early as possible,
   either first or just after any authentication or encryption, and
   SHOULD be the last option covered by the Data Offset value.

   Other options are generally handled in the same manner as when the
   EDO option is not active, unless they interact with other options.



Touch                  Expires January 19, 2019                [Page 7]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   One such example is TCP-AO [RFC5925], which optionally ignores the
   contents of TCP options, so it would need to be aware of EDO to
   operate correctly when options are excluded from the HMAC
   calculation.

   >> Options that depend on other options, such as TCP-AO [RFC5925]
   (which may include or exclude options in MAC calculations) MUST also
   be augmented to interpret the EDO Extension option to operate
   correctly.

5.3. The two EDO Extension variants

   There are two variants of the EDO Extension option; one includes a
   copy of the TCP segment length, copied from the TCP pseduoheader
   [RFC793]. The Segment_Length field is added to the longer variant to
   detect when segments are incorrectly and inappropriately merged by
   middleboxes or TCP offload processing but without consideration for
   the additional option space indicated by the EDO Header_Length
   field. Such effects are described in further detail in Section 7.2.

   >> An endpoint MAY use either variant of the EDO Extension option
   interchangeably.

   When the longer, 6-byte variant is used, the Segment_Length field is
   used to check whether modification of the segment was performed
   consistent with knowledge of the EDO option. The Segment_Length
   field will detect any modification of the length of the segment,
   such as might occur when segments are split or merged, that occurs
   without also updating the Segment Length field as well. The Segment
   Length field thus helps endpoints detects devices that merge or
   split TCP segments without support for EDO. Devices that merge or
   split TCP segments that support EDO would update the Segment Length
   field as needed, but would also ensure that the user data is handled
   separately from the extended option space indicate by EDO.

   >> When an endpoint creates a new segment using the 6-byte EDO
   Extension option, the Segment_Length field is initialized with a
   copy of the segment length from the TCP pseudoheader.

   >> When an endpoint receives a segment using the 6-byte EDO
   Extension option, it MUST validate the Segment_Length field with the
   length of the segment as indicated in the TCP pseudoheader. If the
   segment lengths do not match, the segment MUST be discarded and an
   error SHOULD be logged in a rate-limited manner.

   >> The 6-byte EDO Extension variant SHOULD be used where middlebox
   or TCP offload support could merge or split TCP segments without

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc793


Touch                  Expires January 19, 2019                [Page 8]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   consideration for the EDO option. Because these conditions could
   occur at either endpoint or along the network path, the 6-byte
   variant SHOULD be preferred until sufficient evidence for safe use
   of the 4-byte variant is determined by the community.

   The field will not detect other modification of the TCP user data;
   such modifications would need more complex detection mechanisms,
   such as checksums or hashes. When these are used, as with IPsec or
   TCP-AO, the 4-byte variant is sufficient.

   >> The 4-byte EDO Extension variant is sufficient when EDO is used
   in conjunction with other mechanisms that provide integrity
   protection, such as IPsec or TCP-AO.

6. TCP EDO Interaction with TCP

   The following subsections describe how EDO interacts with the TCP
   specification [RFC793].

6.1. TCP User Interface

   The TCP EDO option is enabled on a connection using a mechanism
   similar to any other per-connection option. In Unix systems, this is
   typically performed using the 'setsockopt' system call.

   >> Implementations can also employ system-wide defaults, however
   systems SHOULD NOT activate this extension by default to avoid
   interfering with legacy applications.

   >> Due to the potential impacts of legacy middleboxes (discussed in
Section 7), a TCP implementation supporting EDO SHOULD log any

   events within an EDO connection when options that are malformed or
   show other evidence of tampering arrive. An operating system MAY
   choose to cache the list of destination endpoints where this has
   occurred with and block use of EDO on future connections to those
   endpoints, but this cache MUST be accessible to users/applications
   on the host. Note that such endpoint assumptions can vary in the
   presence of load balancers where server implementations vary behind
   such balancers.

6.2. TCP States and Transitions

   TCP EDO does not alter the existing TCP state or state transition
   mechanisms.

https://datatracker.ietf.org/doc/html/rfc793


Touch                  Expires January 19, 2019                [Page 9]



Internet-Draft     TCP Extended Data Offset Option            July 2018

6.3. TCP Segment Processing

   TCP EDO alters segment processing during the TCP option processing
   step. Once detected, the TCP EDO Extension option overrides the TCP
   Data Offset field for all subsequent option processing. Option
   processing continues at the next option (if present) after the EDO
   Extension option.

6.4. Impact on TCP Header Size

   The TCP EDO Supported option increases SYN header length by a
   minimum of 2 bytes, but could increase it by more depending on 32-
   bit word alignment. Currently popular SYN options total 19 bytes,
   which leaves more than enough room for the EDO Supported option:

   o  SACK permitted (2 bytes in SYN, optionally 2 + 8N bytes after)
      [RFC2018][RFC6675]

   o  Timestamp (10 bytes) [RFC7323]

   o  Window scale (3 bytes) [RFC7323]

   o  MSS option (4 bytes) [RFC793]

   Adding the EDO Supported option would result in a total of 21 bytes
   of SYN option space.

   Subsequent segments would use 10 bytes of option space without any
   SACK blocks (TS only; WS and MSS are used only in SYN and SYN/ACK)
   or allow up to 3 SACK blocks before needing to use EDO; with EDO,
   the number of SACK blocks or additional options would be
   substantially increased. There are also other options that are
   emerging in the SYN, including TCP Fast Open, which uses another 6-
   18 (typically 10) bytes in the SYN/ACK of the first connection and
   in the SYN of subsequent connections [RFC7413].

   TCP EDO can also be negotiated in SYNs with either of the following
   large options:

   o  TCP-AO (authentication) (16 bytes) [RFC5925]

   o  Multipath TCP (12 bytes in SYN and SYN/ACK, 20 after) [RFC6824]

   Including TCP-AO with TS, WS, SACK increases the SYN option space
   use to 35 bytes; with Multipath TCP the use is 31 bytes. When
   Multipath TCP is enabled with the typical options, later segments
   would require 30 bytes without SACK, thus limiting the SACK option

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824


Touch                  Expires January 19, 2019               [Page 10]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   to one block unless EDO is also supported on at least non-SYN
   segments.

   The full combination of the above options (47 bytes for TS, WS, MSS,
   SACK, TCP-AO, and MPTCP) does not fit in the existing SYN option
   space and (as noted) that space cannot be extended within a single
   SYN segment. There has been a proposal to change TS to a 2 byte "TS
   permitted" signal in the initial SYN, provided it can be safely
   enabled during the connection later or might be avoided completely
   [Ni15]. Even using "TS-permitted", the total space is still too
   large to support in the initial SYN without SYN option space
   extension [Bo14][Br14][To18].

   The EDO Extension option has negligible impact on other headers,
   because it can either come first or just after security information,
   and in either case the additional 4 or 6 bytes are easily
   accommodated within the TCP Data Offset length. Once the EDO option
   is processed, the entirety of the remainder of the TCP segment is
   available for any remaining options.

6.5. Connectionless Resets

   A RST may arrive during a currently active connection or may be
   needed to cleanup old state from an abandoned connection. The latter
   occurs when a new SYN is sent to an endpoint with matching existing
   connection state, at which point that endpoint responds with a RST
   and both ends remove stale information.

   The EDO Extension option is mandatory on all TCP segments once
   negotiated, i.e., except in the SYN and SYN/ACK (which establish
   support) and the RST. A RST may lack the context to know that EDO is
   active on a connection.

   >> The EDO Extension option MAY occur in a RST when the endpoint has
   connection state that has negotiated EDO. However, unless the RST is
   generated by an incoming segment that includes an EDO Extension
   option, the transmitted RST MUST NOT include the EDO Extension
   option.

6.6. ICMP Handling

   ICMP responses are intended to include the IP and the port fields of
   TCP and UDP headers of typical TCP/IP and UDP/IP packets [RFC792].
   This includes the first 8 data bytes of the original datagram,
   intended to include the transport port numbers used for connection
   demultiplexing. Later specifications encourage returning as much of
   the original payload as possible [RFC1812]. In either case, legacy

https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1812


Touch                  Expires January 19, 2019               [Page 11]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   options or new options in the EDO extension area might or might not
   be included, and so options are generally not assumed to be part of
   ICMP processing anyway.

7. Interactions with Middleboxes

   Middleboxes are on-path devices that typically examine or modify
   packets in ways that Internet routers do not [RFC3234]. This
   includes parsing transport headers and/or rewriting transport
   segments in ways that may affect EDO.

   There are several cases to consider:

   -  Typical NAT/NAPT devices, which modify only IP address and/or TCP
     port number fields (with associated TCP checksum updates)

   -  Middleboxes that try to reconstitute TCP data streams, such as
     for deep-packet inspection for virus scanning

   -  Middleboxes that modify known TCP header fields

   -  Middleboxes that rewrite TCP segments

7.1. Middlebox Coexistence with EDO

   Middleboxes can coexist with EDO when they either support EDO or
   when they ignore its impact on segment structure.

   NATs and NAPTs, which rewrite IP address and/or transport port
   fields, are the most common form of middlebox and are not affected
   by the EDO option.

   Middleboxes that support EDO would be those that correctly parse the
   EDO option. Such boxes can reconstitute the TCP data stream
   correctly or can modify header fields and/or rewrite segments
   without impact to EDO.

   Conventional TCP proxies terminate the TCP connection in both
   directions and thus operate as TCP endpoints, such as when a client-
   middlebox and middlebox-server each have separate TCP connections.
   They would support EDO by following the host requirements herein on
   both connections. The use of EDO on one connection is independent of
   its use on the other in this case.

https://datatracker.ietf.org/doc/html/rfc3234


Touch                  Expires January 19, 2019               [Page 12]



Internet-Draft     TCP Extended Data Offset Option            July 2018

7.2. Middlebox Interference with EDO

   Middleboxes that do not support EDO cannot coexist with its use when
   they modify segment boundaries or do not forward unknown (e.g., the
   EDO) options.

   So-called "transparent" rewriting proxies, which inappropriately and
   incorrectly modify TCP segment boundaries, might mix option
   information with user data if they did not support EDO. Such devices
   might also interfere with other TCP options such as TCP-AO. There
   are three types of such boxes:

   o  Those that process received options and transmit sent options
      separately, i.e., although they rewrite segments, they behave as
      TCP endpoints in both directions.

   o  Those that split segments, taking a received segment and emitting
      two or more segments with revised headers.

   o  Those that join segments, receiving multiple segments and
      emitting a single segment whose data is the concatenation of the
      components.

   In all three cases, EDO is either treated as independent on
   different sides of such boxes or not. If independent, EDO would
   either be correctly terminated in either or both directions or
   disabled due to lack of SYN/ACK confirmation in either or both
   directions. Problems would occur only when TCP segments with EDO are
   combined or split while ignoring the EDO option. In the split case,
   the key concern is if the split happens within the option extension
   space or if EDO is silently copied to both segments without copying
   the corresponding extended option space contents. However, the most
   comprehensive study of these cases indicates that "although
   middleboxes do split and coalesce segments, none did so while
   passing unknown options" [Ho11].

   Note that the second and third types of middlebox behaviors listed
   above may create syndromes similar to TCP transmit and receive
   hardware offload engines that incorrectly modify segments with
   unknown options.

   Middleboxes that silently remove options that they do not implement
   have been observed [Ho11]. Such boxes interfere with the use of the
   EDO Extension option in the SYN and SYN/ACK segments because
   extended option space would be misinterpreted as user data if the
   EDO Extension option were removed, and this cannot be avoided. This
   is one reason that SYN and SYN/ACK extension requires alternate



Touch                  Expires January 19, 2019               [Page 13]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   mechanisms (see Section 8.7). It is also the reason for the 6-byte
   EDO Extension variant (see Section 5.3), which can detect such
   merging or splitting of segments. Further, if such middleboxes
   become present on a path they could cause similar misinterpretation
   on segments exchanged in the ESTABLISHED and subsequent states. As a
   result, this document requires that the EDO Extension option be
   avoided on the SYN/ACK and that this option needs to be used on all
   segments once successfully negotiated and encourages use of the 6-
   byte EDO Extension variant.

   Deep-packet inspection systems that inspect TCP segment payloads or
   attempt to reconstitute the data stream would incorrectly include
   option data in the reconstituted user data stream, which might
   interfere with their operation.

   >> It can be important to detect misbehavior that could cause EDO
   space to be misinterpreted as user data. In such cases, EDO SHOULD
   be used in conjunction with an integrity protection mechanism. This
   includes the 6-byte EDO Extension variant or stronger mechanisms
   such as IPsec, TCP-AO, etc. It is useful to note that such
   protection only helps non-compliant components and enable avoidance
   (e.g., disabling EDO), but integrity protection alone cannot correct
   the misinterpretation of EDO space as user data.

   This situation is similar to that of ECN and ICMP support in the
   Internet. In both cases, endpoints have evolved mechanisms for
   detecting and robustly operating around "black holes". Very similar
   algorithms are expected to be applicable for EDO.

8. Comparison to Previous Proposals

   EDO is the latest in a long line of attempts to increase TCP option
   space [Al06][Ed08][Ko04][Ra12][Yo11]. The following is a comparison
   of these approaches to EDO, based partly on a previous summary
   [Ra12]. This comparison differs from that summary by using a
   different set of success criteria.

8.1. EDO Criteria

   Our criteria for a successful solution are as follows:

   o  Zero-cost fallback to legacy endpoints.

   o  Minimal impact on middlebox compatibility.

   o  No additional side-effects.



Touch                  Expires January 19, 2019               [Page 14]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   Zero-cost fallback requires that upgraded hosts incur no penalty for
   attempting to use EDO. This disqualifies dual-stack approaches,
   because the client might have to delay connection establishment to
   wait for the preferred connection mode to complete. Note that the
   impact of legacy endpoints that silently reflect unknown options are
   not considered, as they are already non-compliant with existing TCP
   requirements [RFC793].

   Minimal impact on middlebox compatibility requires that EDO works
   through simple NAT and NAPT boxes, which modify IP addresses and
   ports and recompute IPv4 header and TCP segment checksums.
   Middleboxes that reject unknown options or that process segments in
   detail without regard for unknown options are not considered; they
   process segments as if they were an endpoint but do so in ways that
   are not compliant with existing TCP requirements (e.g., they should
   have rejected the initial SYN because of its unknown options rather
   than silently relaying it).

   EDO also attempts to avoid creating side-effects, such as might
   happen if options were split across multiple TCP segments (which
   could arrive out of order or be lost) or across different TCP
   connections (which could fail to share fate through firewalls or
   NAT/NAPTs).

   These requirements are similar to those noted in [Ra12], but EDO
   groups cases of segment modification beyond address and port - such
   as rewriting, segment drop, sequence number modification, and option
   stripping - as already in violation of existing TCP requirements
   regarding unknown options, and so we do not consider their impact on
   this new option.

8.2. Summary of Approaches

   There are three basic ways in which TCP option space extension has
   been attempted:

   1. Use of a TCP option.

   2. Redefinition of the existing TCP header fields.

   3. Use of option space in multiple TCP segments (split across
      multiple segments).

   A TCP option is the most direct way to extend the option space and
   is the basis of EDO. This approach cannot extend the option space of
   the initial SYN.

https://datatracker.ietf.org/doc/html/rfc793


Touch                  Expires January 19, 2019               [Page 15]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   Redefining existing TCP header fields can be used to either contain
   additional options or as a pointer indicating alternate ways to
   interpret the segment payload. All such redefinitions make it
   difficult to achieve zero-impact backward compatibility, both with
   legacy endpoints and middleboxes.

   Splitting option space across separate segments can create
   unintended side-effects, such as increased delay to deal with path
   latency or loss differences.

   The following discusses three of the most notable past attempts to
   extend the TCP option space: Extended Segments, TCPx2, LO/SLO, and
   LOIC. [Ra12] suggests a few other approaches, including use of TCP
   option cookies, reuse/overload of other TCP fields (e.g., the URG
   pointer), or compressing TCP options. None of these is compatible
   with legacy endpoints or middleboxes.

8.3. Extended Segments

   TCP Extended Segments redefined the meaning of currently unused
   values of the Data Offset (DO) field [Ko04]. TCP defines DO as
   indicating the length of the TCP header, including options, in 32-
   bit words. The default TCP header with no options is 5 such words,
   so the minimum currently valid DO value is 5 (meaning 40 bytes of
   option space). This document defines interpretations of values 0-4:
   DO=0 means 48 bytes of option space, DO=1 means 64, DO=2 means 128,
   DO=3 means 256, and DO=4 means unlimited (e.g., the entire payload
   is option space). This variant negotiates the use of this capability
   by using one of these invalid DO values in the initial SYN.

   Use of this variant is not backward-compatible with legacy TCP
   implementations, whether at the desired endpoint or on middleboxes.
   The variant also defines a way to initiate the feature on the
   passive side, e.g., using an invalid DO during the SYN/ACK when the
   initial SYN had a valid DO. This capability allows either side to
   initiate use of the feature but is also not backward compatible.

8.4. TCPx2

   TCPx2 redefines legacy TCP headers by basically doubling all TCP
   header fields [Al06]. It relies on a new transport protocol number
   to indicate its use, defeating backward compatibility with all
   existing TCP capabilities, including firewalls, NATs/NAPTs, and
   legacy endpoints and applications.



Touch                  Expires January 19, 2019               [Page 16]



Internet-Draft     TCP Extended Data Offset Option            July 2018

8.5. LO/SLO

   The TCP Long Option (LO, [Ed08]) is very similar to EDO, except that
   presence of LO results in ignoring the existing Data Offset (DO)
   field and that LO is required to be the first option. EDO considers
   the need for other fields to be first and declares that the EDO is
   the last option as indicated by the DO field value. Like LO, EDO is
   required in every segment once negotiated.

   The TCP Long Option draft also specified the SYN Long Option (SLO)
   [Ed08]. If SLO is used in the initial SYN and successfully
   negotiated, it is used in each subsequent segment until all of the
   initial SYN options are transmitted.

   LO is backward compatible, as is SLO; in both cases, endpoints not
   supporting the option would not respond with the option, and in both
   cases the initial SYN is not itself extended.

   SLO does modify the three-way handshake because the connection isn't
   considered completely established until the first data byte is
   acknowledged. Legacy TCP can establish a connection even in the
   absence of data. SLO also changes the semantics of the SYN/ACK; for
   legacy TCP, this completes the active side connection establishment,
   where in SLO an additional data ACK is required. A connection whose
   initial SYN options have been confirmed in the SYN/ACK might still
   fail upon receipt of additional options sent in later SLO segments.
   This case - of late negotiation fail - is not addressed in the
   specification.

8.6. LOIC

   TCP Long Options by Invalid Checksum is a dual-stack approach that
   uses two initial SYNS to initiate all updated connections [Yo11].
   One SYN negotiates the new option and the other SYN payload contains
   only the entire options. The negotiation SYN is compliant with
   existing procedures, but the option SYN has a deliberately incorrect
   TCP checksum (decremented by 2). A legacy endpoint would discard the
   segment with the incorrect checksum and respond to the negotiation
   SYN without the LO option.

   Use of the option SYN and its incorrect checksum both interfere with
   other legacy components. Segments with incorrect checksums will be
   silently dropped by most middleboxes, including NATs/NAPTs. Use of
   two SYNs creates side-effects that can delay connections to upgraded
   endpoints, notably when the option SYN is lost or the SYNs arrive
   out of order. Finally, by not allowing other options in the
   negotiation SYN, all connections to legacy endpoints either use no



Touch                  Expires January 19, 2019               [Page 17]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   options or require a separate connection attempt (either concurrent
   or subsequent).

8.7. Problems with Extending the Initial SYN

   The key difficulty with most previous proposals is the desire to
   extend the option space in all TCP segments, including the initial
   SYN, i.e., SYN with no ACK, typically the first segment of a
   connection, as well as possibly the SYN/ACK. It has proven difficult
   to extend space within the segment of the initial SYN in the absence
   of prior negotiation while maintaining current TCP three-way
   handshake properties, and it may be similarly challenging to extend
   the SYN/ACK (depending on asymmetric middlebox assumptions).

   A new TCP option cannot extend the Data Offset of a single TCP
   initial SYN segment, and cannot extend a SYN/ACK in a single segment
   when considering misbehaving middleboxes. All TCP segments,
   including the initial SYN and SYN/ACK, may include user data in the
   payload data [RFC793], and this can be useful for some proposed
   features such as TCP Fast Open [RFC7413]. Legacy endpoints that
   ignore the new option would process the payload contents as user
   data and send an ACK. Once ACK'd, this data cannot be removed from
   the user stream.

   The Reserved TCP header bits cannot be redefined easily, even though
   three of the six total bits have already been redefined (ECE/CWR
   [RFC3168] and NS [RFC3540]). Legacy endpoints have been known to
   reflect received values in these fields; this was safely dealt with
   for ECN but would be difficult here [RFC3168].

   TCP initial SYN (SYN and not ACK) segments can use every other TCP
   header field except the Acknowledgement number, which is not used
   because the ACK field is not set. In all other segments, all fields
   except the three remaining Reserved header bits are actively used.
   The total amount of available header fields, in either case, is
   insufficient to be useful in extending the option space.

   The representation of TCP options can be optimized to minimize the
   space needed. In such cases, multiple Kind and Length fields are
   combined, so that a new Kind would indicate a specific combination
   of options, whose order is fixed and whose length is indicated by
   one Length field. Most TCP options use fields whose size is much
   larger than the required Kind and Length components, so the
   resulting efficiency is typically insufficient for additional
   options.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168


Touch                  Expires January 19, 2019               [Page 18]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   The option space of an initial SYN segment might be extended by
   using multiple initial segments (e.g., multiple SYNs or a SYN and
   non-SYN) or based on the context of previous or parallel
   connections. This method may also be needed to extend space in the
   SYN/ACK in the presence of misbehaving middleboxes. Because of their
   potential complexity, these approaches are addressed in separate
   documents [Bo14][Br14][To18].

   Option space cannot be extended in outer layer headers, e.g., IPv4
   or IPv6. These layers typically try to avoid extensions altogether,
   to simplify forwarding processing at routers. Introducing new shim
   layers to accommodate additional option space would interfere with
   deep-packet inspection mechanisms that are in widespread use.

   As a result, EDO does not attempt to extend the space available for
   options in TCP initial SYNs. It does extend that space in all other
   segments (including SYN/ACK), which has always been trivially
   possible once an option is defined.

9. Implementation Issues

   TCP segment processing can involve accessing nonlinear data
   structures, such as chains of buffers. Such chains are often
   designed so that the maximum default TCP header (60 bytes) fits in
   the first buffer. Extending the TCP header across multiple buffers
   may necessitate buffer traversal functions that span boundaries
   between buffers. Such traversal can also have a significant
   performance impact, which is additional rationale for using TCP
   option space - even extended option space - sparingly.

   Although EDO can be large enough to consume the entire segment, it
   is important to leave space for data so that the TCP connection can
   make forward progress. It would be wise to limit EDO to consuming no
   more than MSS-4 bytes of the IP segment, preferably even less (e.g.,
   MSS-128 bytes).

   When using the ExID variant for testing and experimentation, either
   TCP option codepoint (253, 254) is valid in sent or received
   segments.

   Implementers need to be careful about the potential for offload
   support interfering with this option. The EDO data needs to be
   passed to the protocol stack as part of the option space, not
   integrated with the user segment, to allow the offload to
   independently determine user data segment boundaries and combine
   them correctly with the extended option data. Some legacy hardware
   receive offload engines may present challenges in this regard, and



Touch                  Expires January 19, 2019               [Page 19]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   may be incompatible with EDO where they incorrectly attempt to
   process segments with unknown options. Such offload engines are part
   of the protocol stack and updated accordingly. Issues with incorrect
   resegmentation by an offload engine can be detected in the same way
   as middlebox tampering.

10. Security Considerations

   It is meaningless to have the Data Offset further exceed the
   position of the EDO data offset option.

   >> When the EDO Extension option is present, the EDO Extension
   option SHOULD be the last non-null option covered by the TCP Data
   Offset, because it would be the last option affected by Data Offset.

   This also makes it more difficult to use the Data Offset field as a
   covert channel.

11. IANA Considerations

   We request that, upon publication, this option be assigned a TCP
   Option codepoint by IANA, which the RFC Editor will replace EDO-OPT
   in this document with codepoint value.

   The TCP Experimental ID (ExID) with a 16-bit value of 0x0ED0 (in
   network standard byte order) has been assigned for use during
   testing and preliminary experiments.

12. References

12.1. Normative References

   [RFC793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2. Informative References

   [Al06]    Allman, M., "TCPx2: Don't Fence Me In", draft-allman-
tcpx2-hack-00 (work in progress), May 2006.

   [Bo14]    Borman, D., "TCP Four-Way Handshake", draft-borman-
tcp4way-00 (work in progress), October 2014.

Touch                  Expires January 19, 2019               [Page 20]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-allman-tcpx2-hack-00
https://datatracker.ietf.org/doc/html/draft-allman-tcpx2-hack-00
https://datatracker.ietf.org/doc/html/draft-borman-tcp4way-00
https://datatracker.ietf.org/doc/html/draft-borman-tcp4way-00


Internet-Draft     TCP Extended Data Offset Option            July 2018

   [Br14]    Briscoe, B., "Inner Space for TCP Options", draft-briscoe-
tcpm-inner-space-01 (work in progress), October 2014.

   [Ed08]    Eddy, W. and A. Langley, "Extending the Space Available
             for TCP Options", draft-eddy-tcp-loo-04 (work in
             progress), July 2008.

   [Ho11]    Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
             Handley, M., and H. Tokuda, "Is it still possible to
             extend TCP", Proc. ACM Sigcomm Internet Measurement
             Conference (IMC), 2011, pp. 181-194.

   [Ko04]    Kohler, E., "Extended Option Space for TCP", draft-kohler-
tcpm-extopt-00 (work in progress), September 2004.

   [Ni15]    Nishida, Y., "A-PAWS: Alternative Approach for PAWS",
draft-nishida-tcpm-apaws-02 (work in progress), Oct. 2015.

   [Ra12]    Ramaiah, A., "TCP option space extension", draft-ananth-
tcpm-tcpoptext-00 (work in progress), March 2012.

   [RFC792]  Postel, J., "Internet Control Message Protocol", RFC 792,
             September 1981.

   [RFC1812] Baker, F. (Ed.), "Requirements for IP Version 4 Routers,"
RFC 1812, June 1995.

   [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

   [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
             of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

   [RFC3234] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
             Issues", RFC 3234, February 2002.

   [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
             Congestion Notification (ECN) Signaling with Nonces", RFC

3540, June 2003.

   [RFC5482] Eggert, L., and F. Gont, "TCP User Timeout Option", RFC
5482, March 2009.

   [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
             Authentication Option", RFC 5925, June 2010.

https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inner-space-01
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inner-space-01
https://datatracker.ietf.org/doc/html/draft-eddy-tcp-loo-04
https://datatracker.ietf.org/doc/html/draft-kohler-tcpm-extopt-00
https://datatracker.ietf.org/doc/html/draft-kohler-tcpm-extopt-00
https://datatracker.ietf.org/doc/html/draft-nishida-tcpm-apaws-02
https://datatracker.ietf.org/doc/html/draft-ananth-tcpm-tcpoptext-00
https://datatracker.ietf.org/doc/html/draft-ananth-tcpm-tcpoptext-00
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc5482
https://datatracker.ietf.org/doc/html/rfc5925


Touch                  Expires January 19, 2019               [Page 21]



Internet-Draft     TCP Extended Data Offset Option            July 2018

   [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
             and Y. Nishida, "A Conservative Loss Recovery Algorithm
             Based on Selective Acknowledgment (SACK) for TCP", RFC

6675, August 2012.

   [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
             "TCP Extensions for Multipath Operation with Multiple
             Addresses", RFC 6824, January 2013.

   [RFC7323] Borman, D., Braden, B., Jacobson, V., and R. Scheffenegger
             (Ed.), "TCP Extensions for High Performance", RFC 7323,
             September 2014.

   [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
             Fast Open", RFC 7413, December 2014.

   [To18]    Touch, J., T. Faber, "TCP SYN Extended Option Space Using
             an Out-of-Band Segment", draft-touch-tcpm-tcp-syn-ext-opt
             (work in progress), Jan. 2018.

   [Yo11]    Yourtchenko, A., "Introducing TCP Long Options by Invalid
             Checksum", draft-yourtchenko-tcp-loic-00 (work in
             progress), April 2011.

13. Acknowledgments

   The authors would like to thank the IETF TCPM WG for their feedback,
   in particular: Oliver Bonaventure, Bob Briscoe, Ted Faber, John
   Leslie, Pasi Sarolahti, Richard Scheffenegger, and Alexander
   Zimmerman.

   This work is partly supported by USC/ISI's Postel Center.

   This document was prepared using 2-Word-v2.0.template.dot.

Authors' Addresses

   Joe Touch

   Manhattan Beach, CA 90266 USA

   Phone: +1 (310) 560-0334
   Email: touch@strayalpha.com

Touch                  Expires January 19, 2019               [Page 22]

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt
https://datatracker.ietf.org/doc/html/draft-yourtchenko-tcp-loic-00


Internet-Draft     TCP Extended Data Offset Option            July 2018

   Wesley M. Eddy
   MTI Systems
   US

   Email: wes@mti-systems.com

Touch                  Expires January 19, 2019               [Page 23]


