
Network Working Group M. Dalal
Internet-Draft Editor
Expires: May 23, 2005 November 22, 2004

Transmission Control Protocol security considerations
draft-ietf-tcpm-tcpsecure-02.txt

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 23, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 TCP (RFC793 [1]) is widely deployed and one of the most often used
 reliable end to end protocols for data communication. Yet when it
 was defined over 20 years ago the internet, as we know it, was a
 different place lacking many of the threats that are now common.
 Recently several rather serious threats have been detailed that can
 pose new methods for both denial of service and possibly data
 injection by blind attackers. This document details those threats
 and also proposes some small changes to the way TCP handles inbound

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc793

Dalal Expires May 23, 2005 [Page 1]

Internet-Draft TCP Security November 2004

 segments that either eliminate the threats or at least minimize them
 to a more acceptable level.

Table of Contents

1. Introduction . 3
2. Blind reset attack using the RST bit 5
2.1 Description of the attack 5
2.2 Solution . 5

3. Blind reset attack using the SYN bit 7
3.1 Description of the attack 7
3.2 Solution . 7

4. Blind data injection attack 9
4.1 Description of the attack 9
4.2 Solution . 9

5. Backward Compatibility and Other considerations 10
6. Middlebox considerations 12
6.1 Middlebox that cache RST's 12
6.2 Middleboxes that advance sequence numbers 12

7. Contributors . 14
8. Acknowledgments . 15
9. References . 16
9.1 Normative References . 16
9.2 Informative References 16

 Author's Address . 16
 Intellectual Property and Copyright Statements 17

Dalal Expires May 23, 2005 [Page 2]

Internet-Draft TCP Security November 2004

1. Introduction

 TCP (RFC793 [1]) is widely deployed and one of the most often used
 reliable end to end protocols for data communication. Yet when it
 was defined over 20 years ago the internet, as we know it, was a
 different place lacking many of the threats that are now common.
 Recently several rather serious threats have been detailed that can
 pose new methods for both denial of service and possibly data
 injection by blind attackers. This document details those threats
 and also proposes some small changes to the way TCP handles inbound
 segments that either eliminate the threats or at least minimize them
 to a more acceptable level.

 Most of these proposals modify handling procedures for DATA, RST and
 SYN's as defined in RFC793 [1] but do not cause interoperability
 issues. The authors feel that many of the changes proposed in this
 document would, if TCP were being standardized today, be required to
 be in the base TCP document and the lack of these procedures is more
 an artifact of the time when TCP was developed than any strict
 requirement of the protocol.

 For some uses of TCP, an alternative protection against the threats
 that these changes address has already been implemented and deployed
 in the TCP MD5 Signature Option (RFC2385 [2]). Because this option
 is not negotiated and is implemented with a manually established
 shared key or password, it has been used for protecting uses of TCP
 in which the endpoints are managed, such as for BGP peers. RFC3562
 [2] provides importance guidance for users of RFC2385 [2] for
 decreasing their vulnerability to key-guessing.

 Yet another commonly known mitigation technique is cryptography,
 especially IPSec. For IPSec to work, both ends of the connection
 need to agree on the properties to use for the connection and also
 agree upon a pre-shared key. In the absence of PKI infrastr1ucture,
 this may be inconvenient. IPSec with manual keys can be used to
 avoid using ISAKMP. However, this adds considerable burden on the
 administration of such solution. If ISAKMP were to be used, this
 would typically require all firewalls in the path between the two TCP
 endpoints to allow UDP traffic for atleast ISAKMP to function.
 Further, IPSec and NAT have long been known to have interoperability
 issues.

 TCP implementations SHOULD also introduce ephemeral port
 randomization. By randomizing ephemeral ports an attacker would have
 a less easy time in guessing the four tuples needed to mount a
 successful attack. Since ephemeral ports are 16 bit values and are a
 subset of the entire available port numbers, it is a weaker defense
 than an exact sequence number match as proposed here which is a

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc3562
https://datatracker.ietf.org/doc/html/rfc2385

Dalal Expires May 23, 2005 [Page 3]

Internet-Draft TCP Security November 2004

 32-bit value and changes dramatically within the life of a
 connection. Nevertheless, both of them are complimentary solutions
 that will make it difficult to launch attacks discussed below.

 Alternative proposals, including the use of cookies (or, use of the
 timestamp option as a cookie) require both peers to implement the
 changes before any additional protection can be realized.

Dalal Expires May 23, 2005 [Page 4]

Internet-Draft TCP Security November 2004

2. Blind reset attack using the RST bit

2.1 Description of the attack

 It has been traditionally thought that for a blind attacker to reset
 a TCP connection the attacker would have to guess a single sequence
 number in the TCP sequence space. This would in effect require an
 attacker to generate (2^^32) segments in order to reset a connection.
 Recent papers have shown this to not necessarily be the case. An
 attacker need only guess a number that lies between the last sequence
 number acknowledged and the last sequence number acknowledged added
 to the receiver window (RCV.WND)[4]. Modern operating systems
 normally default the RCV.WND to about 32,768 bytes. This means that
 a blind attacker need only guess 65,535 RST segments (2^^32/RCV.WND)
 in order to reset a connection. At DSL speeds this means that most
 connections (assuming the attacker can accurately guess both ports)
 can be reset in under 200 seconds (usually far less). With the rise
 of broadband availability and increasing available bandwidth, many
 Operating Systems have raised their default RCV.WND to as much as
 64k, thus making these attacks even easier.

2.2 Solution

RFC793 [1] currently requires handling of a segment with the RST bit
 when in a synchronized state to be processed as follows:
 1) If the RST bit is set and the sequence number is outside the
 expected window, silently drop the segment.
 2) If the RST bit is set and the sequence number is acceptable i.e.:
 (RCV.NXT <= SEG.SEQ <= RCV.NXT+RCV.WND) then reset the connection.

 Instead, the following changes should be made to provide some
 protection against such an attack.
 A) If the RST bit is set and the sequence number is outside the
 expected window, silently drop the segment.
 B) If the RST bit is set and the sequence number exactly matches the
 next expected sequence number, reset the connection.
 C) If the RST bit is set and the sequence number does not exactly
 match the next expected sequence value, yet is within the
 acceptable window (RCV.NXT < SEG.SEQ <= RCV.NXT+RCV.WND) send an
 acknowledgment:
 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
 After sending the acknowledgment, drop the unacceptable segment
 and return.
 This solution forms a challenge/response with any RST where the
 value does not exactly match the expected value and yet the RST is
 within the window. In cases of a legitimate reset without the
 exact sequence number, the consequences of this new
 challenge/response will be that the peer requires an extra round

https://datatracker.ietf.org/doc/html/rfc793

Dalal Expires May 23, 2005 [Page 5]

Internet-Draft TCP Security November 2004

 trip time before the connection can be reset.

 In order to alleviate multiple RSTs/SYNs from triggering multiple
 challenge ACKs, a ACK throttling mechanism SHOULD be implemented.
 Suggested values are to send no more than 10 challenge ACKs in a 5
 second window. These values MUST be tunable to accomodate different
 requirements. ACK throttling if implemented successfully can lead to
 several advantages. Besides preventing the RST/ACK war outlined in
 the section below, it can also alleviate spurious fast retransmits at
 the remote end caused by flood of duplicate ACKs and also save
 spurious processing required to send an ACK on the victim side.

Dalal Expires May 23, 2005 [Page 6]

Internet-Draft TCP Security November 2004

3. Blind reset attack using the SYN bit

3.1 Description of the attack

 Analysis of the reset attack, which uses the RST flag bit, highlights
 another possible avenue for a blind attacker. Instead of using the
 RST bit an attacker can use the SYN bit as well to tear down a
 connection. Using the same guessing technique, repeated SYN's can be
 generated with sequence numbers incrementing by an amount not larger
 than the window size apart and thus eventually cause the connection
 to be terminated.

3.2 Solution

RFC793 [1] currently requires handling of a segment with the SYN bit
 set in the synchronized state to be as follows:
 1) If the SYN bit is set and the sequence number is outside the
 expected window, send an ACK back to the sender.
 2) If the SYN bit is set and the sequence number is acceptable i.e.:
 (RCV.NXT <= SEG.SEQ <= RCV.NXT+RCV.WND) then send a RST segment to
 the sender.

 Instead, changing the handling of the SYN to the following will
 provide complete protection from this attack:
 1) If the SYN bit is set, irrespective of the sequence number, send
 an ACK to the remote peer:
 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
 After sending the acknowledgment, drop the unacceptable segment
 and return.
 This solution agains forms a challenge response with the peer as
 in the previous section.

 By always sending an ACK to the sender, a challenge/response is setup
 with the peer. A legitimate peer, after restart, would not have a
 TCB in the synchronized state. Thus when the ACK arrives the peer
 should send a RST segment with the sequence number derived from the
 ACK field that caused the RST.

 Note, there is one corner case for the SYN attack problem that will
 prevent the successful reset of the connection. This is a result of
 the RFC793 [1] specification and is nothing to do with the proposed
 solution. In this problem, if a restarting host generates a SYN with
 an initial sequence number that is exactly equal to RCV.NXT - 1 of
 the remote TCP endpoint that is still in the established state and if
 the SYN arrives at the peer that is still holding the stale
 connection, an ACK will be generated. This ACK will have an ack
 value of RCV.NXT and will be acceptable to the restarting host which
 will accept the ACK and do nothing. The SYN will then be

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Dalal Expires May 23, 2005 [Page 7]

Internet-Draft TCP Security November 2004

 retransmitted and the behavior will repeat. This could lead to an
 initialization failure. Subsequent connection attempts will
 hopefully succeed by choosing a new ISN that is not equal to RCV.NXT
 - 1. A similar problem will be seen should the SYN contain data.

Dalal Expires May 23, 2005 [Page 8]

Internet-Draft TCP Security November 2004

4. Blind data injection attack

4.1 Description of the attack

 A third type of attack is also highlighted by both the RST and SYN
 attacks. It is quite possible to inject data into a TCP connection
 by simply guessing a sequence value that is within the window. The
 ACK value of any data segment is considered valid as long as it does
 not acknowledge data ahead of the next segment to send. In other
 words an ACK value is acceptable if it is (SND.UNA-(2^^31-1)) <=
 SEG.ACK <= SND.NXT). This means that an attacker simply need guess
 two ACK values with every guessed sequence number so that the chances
 of successfully injecting data into a connection are 1 in ((2^^32 /
 RCV.WND) * 2).

 When an attacker successfully injects data into a connection the data
 will sit in the receiver's re-assembly queue until the peer sends
 enough data to bridge the gap between the RCV.NXT value and the
 injected data. At that point one of two things will occur either:
 a) An ACK war will ensue with the receiver indicating that it has
 received data up until RCV.NXT (which includes the attackers data)
 and the sender sending a corrective ACK with a value less than
 RCV.NXT (the real sequence number of the last byte sent).
 b) The sender will send enough data to the peer which will move
 RCV.NXT even further along past the injected data.
 In either case the injected data will be made readable to the upper
 layer and in case <a> the connection will eventually be reset by one
 of the sides. Note that the protections illustrated in this section
 neither cause an ACK war nor prevent one from occurring if data is
 actually injected into a connection. The ACK war is a natural
 consequence of any data injection that is sucessful.

4.2 Solution

 An additional input check should be added to any incoming segment.
 The ACK value should be acceptable only if it is in the range of
 ((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT). MAX.SND.WND is
 defined as the largest window that the local receiver has ever
 advertised to it's peer. This window is the scaled value i.e. the
 value may be larger than 65,535 bytes. This small check will greatly
 reduce the vulnerability of an attacker guessing a valid sequence
 number since not only must he/she guess the sequence number in
 window, but must also guess a proper ACK value within a scoped range.
 This solution reduces but does not eliminate the ability to generate
 false segments. It does however reduce the probability that invalid
 data will be injected to a more acceptable level. For those
 applications that wish to close this attack completely RFC2385 [2]
 should be deployed between the two endpoints.

https://datatracker.ietf.org/doc/html/rfc2385

Dalal Expires May 23, 2005 [Page 9]

Internet-Draft TCP Security November 2004

5. Backward Compatibility and Other considerations

 1) The proposed solution is backward compatible as it uses the
 semantics laid down in RFC793 [1] to defend against it's own
 weakness. Referring to the figure below, if we assume that the
 RST (1.c) was in flight when the ACK (2) left TCP A, TCP B has no
 way of knowing what triggered the ACK. For all it cares, the ACK
 might have been a result of the data or the RST that it had sent
 earlier. Hence in either case, TCP B must reply to this ACK with
 an appropriate RST that is in keeping with RFC793 [1].

 2) Concerns have been raised that the challenge response mechanism
 will lead to a reflector kind of attack. In this attack, it is
 believed that an attacker with higher bandwidth can potentially
 spoof SYN or RST packets within the window and cause ACK flooding
 to a remote peer that may have a lower bandwidth. These concerns
 are misplaced because it is trivial to cause a victim to generate
 an ACK. A spoofer can simply send packets with sequence numbers
 that are outside the acceptable window of the attacker or send an
 ACK that acknowledges something that is not yet sent. Further, an
 attacker can also simply generate data packets that fall within
 the window to cause an ACK to be sent. RFC793 [1] also mandates
 that an ACK be sent if the incoming SYN to an established
 connection falls outside the acceptable window. All these
 scenarios can be used to launch a flood attack. However, the
 potential harm of such attacks are low and can be easily detected
 due to the volume of packets generated. The latter is a strong
 deterrent to such attacks.

 3) There is a corner scenario in the above proposed solutions which
 will require more than one round trip time to successfully abort
 the connection as per the figure below. This scenario is similar
 to the one in which the original RST was lost in the network.

 TCP A TCP B
 1.a. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=ACK><DATA> <-- ESTABLISHED
 b. (delayed) ... <SEQ=400><ACK=101><CTL=ACK><DATA> <-- ESTABLISHED
 c. (in flight) ... <SEQ=500><ACK=101><CTL=RST> <-- CLOSED
 2. ESTABLISHED --> <SEQ=101><ACK=400><CTL=ACK> --> CLOSED
 (ACK for 1.a)
 ... <SEQ=400><ACK=0><CTL=RST> <-- CLOSED
 3. CHALLENGE --> <SEQ=101><ACK=400><CTL=ACK> --> CLOSED
 (for 1.c)
 ... <SEQ=400><ACK=0><CTL=RST> <-- RESPONSE
 4.a. ESTABLISHED <-- <SEQ=400><ACK=101><CTL=ACK><DATA> 1.b reaches A
 b. ESTABLISHED --> <SEQ=101><ACK=500><CTL=ACK>
 c. (in flight) ... <SEQ=500><ACK=0><CTL=RST> <-- CLOSED
 5. RESPONSE arrives at A, but is dropped because of being out of window.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Dalal Expires May 23, 2005 [Page 10]

Internet-Draft TCP Security November 2004

 6. ESTABLISHED <-- <SEQ=500><ACK=0><CTL=RST> 4.c reaches A
 7. CLOSED CLOSE

 4) For the solution to be totally effective against the
 vulnerabilities discussed in this document, both ends of the TCP
 connection need to have the fix. Although, having it at one end
 might prevent that end from being exposed to the attack, the
 connection is still vulnerable at the other end.

Dalal Expires May 23, 2005 [Page 11]

Internet-Draft TCP Security November 2004

6. Middlebox considerations

 The following scenarios were brought to notice by the tcpm working
 group members as middlebox issues which may cause the proposed
 solution to behave in an unexpected manner.

6.1 Middlebox that cache RST's

 Consider a middlebox B tracking connection between two TCP endhosts A
 and C. If C sends a RST with a sequence number that is within the
 window but not an exact match to reset the connection and if B does
 not have the fix proposed here, it will clear the connection and ask
 A to do the same. If A does not have the fix it will clear the
 connection and everything will be fine. However if A does have the
 proposed fix above, it will send a challenge ACK. B being a
 middlebox will intercept this ACK and resend the RST cached earlier
 that was responsible for bringing down the connection. However, the
 RST will again be not acceptable and will trigger a challenge ACK
 again. This will cause a RST/ACK war to happen. However, we are not
 aware of middleboxes that actually do this and believe the design
 itself is flawed in that given the scenario that the RST from B to A
 got lost on the way, A will continue to hold the connection and A
 might send an ACK an arbitrary time after the connection was brought
 down at B. In this case, B will have to cache the RST for an
 arbitrary amount of time till it's confirmed that the connection has
 been cleared at A.

6.2 Middleboxes that advance sequence numbers

 Some Middleboxes may compute RST sequence numbers at the higher end
 of the acceptable window. The setup is the same as the earlier case,
 but in this case instead of sending the cached RST, the middlebox
 sends a RST that computes it's sequence number as a sum of the ack
 field in the ACK and the window advertised by the ACK that was sent
 by A to challenge the RST as depicted below. The difference in the
 sequence numbers between step 1 and 2 below is due to data lost in
 the network.

 TCP A Middlebox

 1. ESTABLISHED <-- <SEQ=500><ACK=100><CTL=RST> <-- CLOSED

 2. ESTABLISHED --> <SEQ=100><ACK=300><WND=500><CTL=ACK> --> CLOSED

 3. ESTABLISHED <-- <SEQ=800><ACK=100><CTL=RST> <-- CLOSED

 4. ESTABLISHED --> <SEQ=100><ACK=300><WND=500><CTL=ACK> --> CLOSED

Dalal Expires May 23, 2005 [Page 12]

Internet-Draft TCP Security November 2004

 5. ESTABLISHED <-- <SEQ=800><ACK=100><CTL=RST> <-- CLOSED

 Although the authors are not aware of a working implementation that
 does the above, it could be mitigated by implementing the RST
 throttling mechanism described earlier.

Dalal Expires May 23, 2005 [Page 13]

Internet-Draft TCP Security November 2004

7. Contributors

 Mitesh Dalal and Amol Khare of Cisco Systems came up with the
 solution for the RST/SYN attacks. Anantha Ramaiah and Randall
 Stewart of Cisco Systems discovered the data injection vulnerability
 and together with Patrick Mahan and Peter Lei of Cisco Systems found
 solutions for the same. Paul Goyette, Mark Baushke, Frank
 Kastenholz, Art Stine and David Wang of Juniper Networks provided the
 insight that apart from RSTs, SYNs could also result in formidable
 attacks. Shrirang Bage of Cisco Systems, Qing Li and Preety Puri of
 Wind River Systems and Xiaodan Tang of QNX Software along with the
 folks above helped in ratifying and testing the interoperability of
 the suggested solutions.

Dalal Expires May 23, 2005 [Page 14]

Internet-Draft TCP Security November 2004

8. Acknowledgments

 Special thanks to Sharad Ahlawat, Mark Allman, Steve Bellovin, Vern
 Paxson, Allison Mankin, Damir Rajnovic, John Wong and the tcpm WG
 members for suggestions and comments.

Dalal Expires May 23, 2005 [Page 15]

Internet-Draft TCP Security November 2004

9. References

9.1 Normative References

 [1] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [2] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

9.2 Informative References

 [3] Leech, M., "Key Management Considerations for the TCP MD5
 Signature Option", RFC 3562, July 2003.

 [4] Watson, P., ""Slipping in the Window: TCP Reset attacks"".

Author's Address

 Mitesh Dalal
 Editor
 170 Tasman Drive
 San Jose, CA 95134
 USA

 Phone: +1-408-853-5257
 EMail: mdalal@cisco.com

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc3562

Dalal Expires May 23, 2005 [Page 16]

Internet-Draft TCP Security November 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Dalal Expires May 23, 2005 [Page 17]

