
TCP Maintenance and Minor A. Ramaiah
Extensions Working Group Cisco Systems
Internet-Draft R. Stewart
Intended status: Standards Track Huawei
Expires: November 4, 2010 M. Dalal
 Cisco Systems
 May 3, 2010

Improving TCP's Robustness to Blind In-Window Attacks
draft-ietf-tcpm-tcpsecure-13.txt

Abstract

 TCP has historically been considered protected against spoofed off-
 path packet injection attacks by relying on the fact that it is
 difficult to guess the 4-tuple (the source and destination IP
 addresses and the source and destination ports) in combination with
 the 32 bit sequence number(s). A combination of increasing window
 sizes and applications using longer term connections (e.g. H-323 or
 Border Gateway Protocol [RFC4271]) have left modern TCP
 implementations more vulnerable to these types of spoofed packet
 injection attacks.

 Many of these long term TCP applications tend to have predictable IP
 addresses and ports which makes it far easier for the 4-tuple
 (4-tuple is the same as the socket pair mentioned in [RFC0793]) to be
 guessed. Having guessed the 4-tuple correctly, an attacker can
 inject a TCP segment with the RST bit set, the SYN bit set or data
 into a TCP connection by systematically guessing the sequence number
 of the spoofed segment to be in the current receive window. This can
 cause the connection to abort or cause data corruption. This
 document specifies small modifications to the way TCP handles inbound
 segments that can reduce the chances of a successful attack.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Ramaiah, et al. Expires November 4, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Security May 2010

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 4, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Ramaiah, et al. Expires November 4, 2010 [Page 2]

Internet-Draft TCP Security May 2010

Table of Contents

1. Introduction . 4
1.1. Applicability Statement 4
1.2. Basic Attack Methodology 5
1.3. Attack probabilities 6

2. Terminology . 8
3. Blind reset attack using the RST bit 9
3.1. Description of the attack 9
3.2. Mitigation . 9

4. Blind reset attack using the SYN bit 11
4.1. Description of the attack 11
4.2. Mitigation . 11

5. Blind data injection attack 13
5.1. Description of the attack 13
5.2. Mitigation . 14

6. Suggested Mitigation strengths 15
7. ACK throttling . 16
8. Backward Compatibility and Other considerations 17
9. Middlebox considerations 18
9.1. Middlebox that resend RST's 18
9.2. Middleboxes that advance sequence numbers 18
9.3. Middleboxes that drop the challenge ACK 19

10. Security Considerations 20
11. IANA Considerations . 21
12. Contributors . 22
13. Acknowledgments . 23
14. References . 24
14.1. Normative References 24
14.2. Informative References 24

 Authors' Addresses . 26

Ramaiah, et al. Expires November 4, 2010 [Page 3]

Internet-Draft TCP Security May 2010

1. Introduction

 TCP [RFC0793] is widely deployed and the most common reliable end to
 end transport protocol used for data communication in today's
 Internet. Yet when it was standardized over 20 years ago, the
 Internet, was a different place, lacking many of the threats that are
 now common. The off-path TCP spoofing attacks, which are seen in the
 Internet today, fall into this category.

 In a TCP spoofing attack, an off-path attacker crafts TCP packets by
 forging the IP source and destination addresses as well as the source
 and destination ports (referred to as a 4-tuple value in this
 document). The targeted TCP endpoint will then associate such a
 packet with an existing TCP connection. It needs to be noted that,
 guessing this 4-tuple value is not always easy for an attacker. But
 there are some applications (e.g. BGP [RFC4271]) that have a
 tendency to use the same set(s) of ports on either endpoint making
 the odds of correctly guessing the 4-tuple value much easier. When
 an attacker is successful in guessing the 4-tuple value, one of three
 types of injection attacks may be waged against a long-lived
 connection.

 RST - Where an attacker injects a RST segment hoping to cause the
 connection to be torn down. RST segment here refers to a TCP
 segment with RST bit set.

 SYN - Where an attacker injects a SYN hoping to cause the receiver
 to believe the peer has restarted and so tear down the connection
 state. SYN segment here refers to a TCP segment with SYN bit set.

 DATA - Where an attacker tries to inject a DATA segment to corrupt
 the contents of the transmission. DATA segment here refers to any
 TCP segment containing data.

1.1. Applicability Statement

 This document talks about some known in-window attacks and suitable
 defenses against these. The mitigations suggested in this draft
 SHOULD be implemented in devices that regularly need to maintain TCP
 connections of the kind most vulnerable to the attacks described in
 this document. Examples of such TCP connections are the ones that
 tend to be long-lived and where the connection end points can be
 determined, in cases where no auxiliary anti-spoofing protection
 mechanisms like TCP MD5 [RFC2385] can be deployed. These mitigations
 MAY be implemented in other cases.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc2385

Ramaiah, et al. Expires November 4, 2010 [Page 4]

Internet-Draft TCP Security May 2010

1.2. Basic Attack Methodology

 Focusing upon the RST attack, we examine this attack in more detail
 to get an overview as to how it works and how this document addresses
 the issue. For this attack the goal is for the attacker to cause one
 of the two endpoints of the connection to incorrectly tear down the
 connection state, effectively aborting the connection. One of the
 important things to note is that for the attack to succeed the RST
 needs to be in the valid receive window. It also needs to be
 emphasized that the receive window is independent of the current
 congestion window of the TCP connection. The attacker would try to
 forge many RST segments to try to cover the space of possible windows
 by putting out a packet in each potential window. To do this the
 attacker needs to have or guess several pieces of information namely:

 1) The 4-tuple value containing the IP address and TCP port number of
 both ends of the connection. For one side (usually the server)
 guessing the port number is a trivial exercise. The client side
 may or may not be easy for an attacker to guess depending on a
 number of factors, most notably the operating system and
 application involved.

 2) A sequence number that will be used in the RST. This sequence
 number will be a starting point for a series of guesses to attempt
 to present a RST segment to a connection endpoint that would be
 acceptable to it. Any random value may be used to guess the
 starting sequence number.

 3) The window size that the two endpoints are using. This value does
 NOT have to be the exact window size since a smaller value used in
 lieu of the correct one will just cause the attacker to generate
 more segments before succeeding in his mischief. Most modern
 operating systems have a default window size which usually is
 applied to most connections. Some applications however may change
 the window size to better suit the needs of the application. So
 often times the attacker, with a fair degree of certainty (knowing
 the application that is under attack), can come up with a very
 close approximation as to the actual window size in use on the
 connection.

 After assembling the above set of information the attacker begins
 sending spoofed TCP segments with the RST bit set and a guessed TCP
 sequence number. Each time a new RST segment is sent, the sequence
 number guess is incremented by the window size. The feasibility of
 this methodology (without mitigations) was first shown in [SITW].
 This is because [RFC0793] specifies that any RST within the current
 window is acceptable. Also [RFC4953] talks about the probability of
 a successful attack with varying window sizes and bandwidth.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4953

Ramaiah, et al. Expires November 4, 2010 [Page 5]

Internet-Draft TCP Security May 2010

 A slight enhancement to TCP's segment processing rules can be made
 which makes such an attack much more difficult to accomplish. If the
 receiver examines the incoming RST segment and validates that the
 sequence number exactly matches the sequence number that is next
 expected, then such an attack becomes much more difficult than
 outlined in [SITW] (i.e. the attacker would have to generate 1/2 the
 entire sequence space, on average). This document will discuss the
 exact details of what needs to be changed within TCP's segment
 processing rules to mitigate all three types of attacks (RST, SYN and
 DATA).

1.3. Attack probabilities

 Every application has control of a number of factors that drastically
 affect the probability of a successful spoofing attack. These
 factors include such things as:

 Window Size - Normally settable by the application but often times
 defaulting to 32,768 or 65,535 depending upon the operating system
 ([Medina05]).

 Server Port number - This value is normally a fixed value so that a
 client will know where to connect to the peer at. Thus this value
 normally provides no additional protection.

 Client Port number - This value may be a random ephemeral value, if
 so, this makes a spoofing attack more difficult. There are some
 clients, however, that for whatever reason either pick a fixed
 client port or have a very guessable one (due to the range of
 ephemeral ports available with their operating system or other
 application considerations) for such applications a spoofing
 attack becomes less difficult.

 For the purposes of the rest of this discussion we will assume that
 the attacker knows the 4-tuple values. This assumption will help us
 focus on the effects of the window size versus the number of TCP
 packets an attacker must generate. This assumption will rarely be
 true in the real Internet since at least the client port number will
 provide us with some amount of randomness (depending on the operating
 system).

 To successfully inject a spoofed packet (RST, SYN or DATA), in the
 past, the entire sequence space (i.e. 2^32) was often considered
 available to make such an attack unlikely. [SITW] demonstrated that
 this assumption was incorrect and that instead of (1/2 * 2^32)
 packets (assuming a random distribution), (1/2 * (2^32/window))
 packets is required. In other words, the mean number of tries needed
 to inject a RST segment is (2^31/window) rather than the 2^31 assumed

Ramaiah, et al. Expires November 4, 2010 [Page 6]

Internet-Draft TCP Security May 2010

 before.

 Substituting numbers into this formula we see that for a window size
 of 32,768, an average of 65,536 packets would need to be transmitted
 in order to "spoof" a TCP segment that would be acceptable to a TCP
 receiver. A window size of 65,535 reduces this even further to
 32,768 packets. At today's access bandwidths an attack of that size
 is feasible.

 With rises in bandwidth to both the home and office, it can only be
 expected that the values for default window sizes will continue to
 rise in order to better take advantage of the newly available
 bandwidth. It also needs to be noted that this attack can be
 performed in a distributed fashion in order potentially gain access
 to more bandwidth.

 As we can see from the above discussion this weakness lowers the bar
 quite considerably for likely attacks. But there is one additional
 dependency which is the duration of the TCP connection. A TCP
 connection that lasts only a few brief packets, as often is the case
 for web traffic, would not be subject to such an attack since the
 connection may not be established long enough for an attacker to
 generate enough traffic. However there is a set of applications such
 as BGP [RFC4271] which is judged to be potentially most affected by
 this vulnerability. BGP relies on a persistent TCP session between
 BGP peers. Resetting the connection can result in medium term
 unavailability due to the need to rebuild routing tables and route
 flapping; see [NISCC] for further details.

 For applications that can use the TCP MD5 option [RFC2385], such as
 BGP, that option makes the attacks described in this specification
 effectively impossible. However, some applications or
 implementations may find that option expensive to implement.

 There are alternative protections against the threats that this
 document addresses. For further details regarding the attacks and
 the existing techniques, please refer to [RFC4953]. It also needs to
 be emphasized that, as suggested in
 [I-D.ietf-tsvwg-port-randomization] and [RFC1948], port randomization
 and ISN randomization would help improve the robustness of the TCP
 connection against off-path attacks.

https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc1948

Ramaiah, et al. Expires November 4, 2010 [Page 7]

Internet-Draft TCP Security May 2010

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. TCP
 terminology should be interpreted as described in [RFC0793].

Ramaiah, et al. Expires November 4, 2010 [Page 8]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793

Internet-Draft TCP Security May 2010

3. Blind reset attack using the RST bit

3.1. Description of the attack

 As described in the introduction, it is possible for an attacker to
 generate a "RST" segment that would be acceptable to a TCP receiver
 by guessing "in-window" sequence numbers. In particular [RFC0793],
 p37, states the following:

 "In all states except SYN-SENT, all reset (RST) segments are
 validated by checking their SEQ-fields [sequence numbers]. A reset
 is valid if its sequence number is in the window. In the SYN-SENT
 state (a RST received in response to an initial SYN), the RST is
 acceptable if the ACK field acknowledges the SYN."

3.2. Mitigation

 [RFC0793] currently requires handling of a segment with the RST bit
 when in a synchronized state to be processed as follows:

 1) If the RST bit is set and the sequence number is outside the
 current receive window (SEG.SEQ <= RCV.NXT || SEG.SEQ > RCV.NXT+
 RCV.WND) , silently drop the segment.

 2) If the RST bit is set and the sequence number is acceptable i.e.:
 (RCV.NXT <= SEG.SEQ < RCV.NXT+RCV.WND) then reset the connection.

 Instead, this document requires that implementations SHOULD implement
 the following steps in place of those specified in [RFC0793] (as
 listed above).

 1) If the RST bit is set and the sequence number is outside the
 current receive window, silently drop the segment.

 2) If the RST bit is set and the sequence number exactly matches the
 next expected sequence number (RCV.NXT), then TCP MUST reset the
 connection.

 3) If the RST bit is set and the sequence number does not exactly
 match the next expected sequence value, yet is within the current
 receive window (RCV.NXT < SEG.SEQ < RCV.NXT+RCV.WND), TCP MUST
 send an acknowledgment (challenge ACK):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Ramaiah, et al. Expires November 4, 2010 [Page 9]

Internet-Draft TCP Security May 2010

 After sending the challenge ACK, TCP MUST drop the unacceptable
 segment and stop processing the incoming packet further. Further
 segments destined to this connection will be processed as normal.

 The modified RST segment processing would thus become :

 In all states except SYN-SENT, all reset (RST) segments are validated
 by checking their SEQ-fields [sequence numbers]. A reset is valid if
 its sequence number exactly matches the next expected sequence
 number. If the RST arrives and its sequence number field does NOT
 match the next expected sequence number but is within the window,
 then the receiver should generate an ACK. In all other cases where
 the SEQ-field does not match and is outside the window, the receiver
 MUST silently discard the segment.

 In the SYN-SENT state (a RST received in response to an initial SYN),
 the RST is acceptable if the ACK field acknowledges the SYN. In all
 other cases the receiver MUST silently discard the segment.

 With the above slight change to the TCP state machine, it becomes
 much harder for an attacker to generate an acceptable reset segment.

 In cases where the remote peer did generate a RST but it fails to
 meet the above criteria (the RST sequence number was within the
 window but NOT the exact expected sequence number) when the challenge
 ACK is sent back, it will no longer have the transmission control
 block (TCB) related to this connection and hence as per [RFC0793],
 the remote peer will send a second RST back. The sequence number of
 the second RST is derived from the acknowledgment number of the
 incoming ACK. This second RST, if it reaches the sender, will cause
 the connection to be aborted since the sequence number would now be
 an exact match.

 A valid RST received out-of-order would still generate a challenge
 ACK in response. If this RST happens to be a genuine one, the other
 end would send an RST with an exact sequence number match which would
 cause the connection to be dropped.

 Note that the above mitigation may cause a non-amplification ACK
 exchange. This concern is discussed in Section 10.

https://datatracker.ietf.org/doc/html/rfc0793

Ramaiah, et al. Expires November 4, 2010 [Page 10]

Internet-Draft TCP Security May 2010

4. Blind reset attack using the SYN bit

4.1. Description of the attack

 The analysis of the reset attack using the RST bit highlights another
 possible avenue for a blind attacker using a similar set of sequence
 number guessing. Instead of using the RST bit an attacker can use
 the SYN bit with the exact same semantics to tear down a connection.

4.2. Mitigation

 [RFC0793] currently requires handling of a segment with the SYN bit
 set in the synchronized state to be as follows:

 1) If the SYN bit is set and the sequence number is outside the
 expected window, send an ACK back to the sender.

 2) If the SYN bit is set and the sequence number is acceptable i.e.:
 (RCV.NXT <= SEG.SEQ < RCV.NXT+RCV.WND) then send a RST segment to
 the sender.

 Instead, the handling of the SYN in the synchronized state SHOULD be
 performed as follows:

 1) If the SYN bit is set, irrespective of the sequence number, TCP
 MUST send an ACK (also referred to as challenge ACK) to the remote
 peer:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, TCP MUST drop the unacceptable
 segment and stop processing further.

 By sending an ACK, the remote peer is challenged to confirm the loss
 of the previous connection and the request to start a new connection.
 A legitimate peer, after restart, would not have a TCB in the
 synchronized state. Thus when the ACK arrives the peer should send a
 RST segment back with the sequence number derived from the ACK field
 that caused the RST.

 This RST will confirm that the remote peer has indeed closed the
 previous connection. Upon receipt of a valid RST, the local TCP
 endpoint MUST terminate its connection. The local TCP endpoint
 should then rely on SYN retransmission from the remote end to re-
 establish the connection.

 A spoofed SYN, on the other hand, will then have generated an
 additional ACK which the peer will discard as a duplicate ACK and

Ramaiah, et al. Expires November 4, 2010 [Page 11]

Internet-Draft TCP Security May 2010

 will not affect the established connection.

 Note that this mitigation does leave one corner case un-handled which
 will prevent the reset of a connection when it should be reset (i.e.
 it is a non-spoofed SYN wherein a peer really did restart). This
 problem occurs when the restarting host chooses the exact same IP
 address and port number that it was using prior to its restart. By
 chance the restarted host must also choose an initial sequence number
 of exactly (RCV.NXT - 1) of the remote peer that is still in the
 established state. Such a case would cause the receiver to generate
 a "challenge" ACK as described above. But since the ACK would be
 within the outgoing connections window the inbound ACK would be
 acceptable, and the sender of the SYN will do nothing with the
 response ACK. This sequence will continue as the SYN sender
 continually times out and retransmits the SYN until such time as the
 connection attempt fails.

 This corner case is a result of the [RFC0793] specification and is
 not introduced by these new requirements.

 Note that the above mitigation may cause a non-amplification ACK
 exchange. This concern is discussed in Section 10.

https://datatracker.ietf.org/doc/html/rfc0793

Ramaiah, et al. Expires November 4, 2010 [Page 12]

Internet-Draft TCP Security May 2010

5. Blind data injection attack

5.1. Description of the attack

 A third type of attack is also highlighted by both the RST and SYN
 attacks. It is also possible to inject data into a TCP connection by
 simply guessing a sequence number within the current receive window
 of the victim. The ACK value of any data segment is considered valid
 as long as it does not acknowledge data ahead of the next segment to
 send. In other words an ACK value is acceptable if it is ((SND.UNA-
 (2^31-1)) <= SEG.ACK <= SND.NXT). The (2^31 - 1) in the above
 inequality takes into account the fact that comparisons on TCP
 sequence and acknowledgement numbers is done using the modulo 32 bit
 arithmetic to accommodate the number wraparound. This means that an
 attacker has to guess two ACK values with every guessed sequence
 number so that the chances of successfully injecting data into a
 connection are 1 in (1/2 (2^32 / RCV.WND) * 2). Thus the mean
 number of tries needed to inject data successfully is 1/2 (2*2^32/
 RWND) = 2^32/RCV.WND.

 When an attacker successfully injects data into a connection the data
 will sit in the receiver's re-assembly queue until the peer sends
 enough data to bridge the gap between the RCV.NXT value and the
 injected data. At that point one of two things will occur :

 1) A packet war will ensue with the receiver indicating that it has
 received data up until RCV.NXT (which includes the attacker's
 data) and the sender sending an ACK with an acknowledgment number
 less than RCV.NXT.

 2) The sender will send enough data to the peer which will move
 RCV.NXT even further along past the injected data.

 Depending upon the TCP implementation in question and the TCP traffic
 characteristics at that time, data corruption may result. In case
 (a) the connection will eventually be reset by one of the sides
 unless the sender produces more data that will transform the ACK war
 into case (b). The reset will usually occur via User Time Out (UTO)
 (see section 4.2.3.5 of [RFC1122]).

 Note that the protections illustrated in this section neither cause
 an ACK war nor prevent one from occurring if data is actually
 injected into a connection. The ACK war is a product of the attack
 itself and cannot be prevented (other than by preventing the data
 from being injected).

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.5

Ramaiah, et al. Expires November 4, 2010 [Page 13]

Internet-Draft TCP Security May 2010

5.2. Mitigation

 All TCP stacks MAY implement the following mitigation. TCP stacks
 which implement this mitigation MUST add an additional input check to
 any incoming segment. The ACK value is considered acceptable only if
 it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <=
 SND.NXT). All incoming segments whose ACK value doesn't satisfy the
 above condition MUST be discarded and an ACK sent back. It needs to
 be noted that RFC 793 on page 72 (fifth check) says: "If the ACK is a
 duplicate (SEG.ACK < SND.UNA), it can be ignored. If the ACK
 acknowledges something not yet sent (SEG.ACK > SND.NXT) then send an
 ACK, drop the segment, and return." The "ignored" above implies that
 the processing of the incoming data segment continues, which means
 the ACK value is treated as acceptable. This mitigation makes the
 ACK check more stringent since any ACK < SND.UNA wouldn't be
 accepted, instead only ACKs which are in the range ((SND.UNA -
 MAX.SND.WND) <= SEG.ACK <= SND.NXT) gets through.

 A new state variable MAX.SND.WND is defined as the largest window
 that the local sender has ever received from its peer. This window
 may be scaled to a value larger than 65,535 bytes ([RFC1323]). This
 small check will reduce the vulnerability to an attacker guessing a
 valid sequence number, since, not only one must guess the in-window
 sequence number, but also guess a proper ACK value within a scoped
 range. This mitigation reduces, but does not eliminate, the ability
 to generate false segments. It does however reduce the probability
 that invalid data will be injected.

 Implementations can also chose to hard code the MAX.SND.WND value to
 the maximum permissible window size i.e., 65535 in the absence of
 window scaling. In presence of the window scaling option the value
 becomes (MAX.SND.WND << Snd.Wind.Scale).

 This mitigation also helps in improving robustness on accepting
 spoofed FIN segments (FIN attacks). Among other things, this
 mitigation requires that the attacker also needs to get the
 acknowledgment number to fall in the range mentioned above in order
 to successfully spoof a FIN segment leading to the closure of the
 connection. Thus, this mitigation greatly improves the robustness to
 spoofed FIN segments.

 Note that the above mitigation may cause a non-amplification ACK
 exchange. This concern is discussed in Section 10.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1323

Ramaiah, et al. Expires November 4, 2010 [Page 14]

Internet-Draft TCP Security May 2010

6. Suggested Mitigation strengths

 As described in the above sections, recommendation levels for RST,
 SYN and DATA are tagged as SHOULD, SHOULD and MAY respectively. The
 reason that DATA mitigation is tagged as MAY, even though it
 increased the TCP robustness in general is because, the DATA
 injection is perceived to be more difficult (twice as unlikely) when
 compared to RST and SYN counterparts. However, it needs to be noted
 that all the suggested mitigations improve TCP's robustness in
 general and hence the choice of implementing some or all mitigations
 recommended in the document is purely left to the implementer.

Ramaiah, et al. Expires November 4, 2010 [Page 15]

Internet-Draft TCP Security May 2010

7. ACK throttling

 In order to alleviate multiple RSTs/SYNs from triggering multiple
 challenge ACKs, an ACK throttling mechanism is suggested as follows :

 1) The system administrator can configure the number of challenge
 ACKs that can be sent out in a given interval. For example, in
 any 5 second window, no more than 10 challenge ACKs should be
 sent.

 2) The values for both the time and number of ACKs SHOULD be tunable
 by the system administrator to accommodate different perceived
 levels of threat and/or system resources.

 It should be noted that these numbers are empirical in nature and
 have been obtained from the RST throttling mechanisms existing in
 some implementations. Also note that no timer is needed to implement
 the above mechanism, instead a timestamp and a counter can be used.

 An implementation SHOULD include an ACK throttling mechanism to be
 conservative. While we have not encountered a case where the lack of
 ACK throttling can be exploited, as a fail-safe mechanism we
 recommend its use. An implementation may take an excessive number of
 invocations of the throttling mechanism as an indication that network
 conditions are unusual or hostile.

 An administrator who is more concerned about protecting his bandwidth
 and CPU utilization may set smaller ACK throttling values whereas an
 administrator who is more interested in faster cleanup of stale
 connections (i.e. concerned about excess TCP state) may decide to set
 a higher value thus allowing more RST's to be processed in any given
 time period.

 The time limit SHOULD be tunable to help timeout brute force attacks
 faster than a potential legitimate flood of RSTs.

Ramaiah, et al. Expires November 4, 2010 [Page 16]

Internet-Draft TCP Security May 2010

8. Backward Compatibility and Other considerations

 All of the new required mitigation techniques in this document are
 totally compatible with existing ([RFC0793]) compliant TCP
 implementations as this document introduces no new assumptions or
 conditions.

 There is a corner scenario in the above mitigations which will
 require more than one round trip time to successfully abort the
 connection as per the figure below. This scenario is similar to the
 one in which the original RST was lost in the network.

 TCP A TCP B
 1.a. ESTAB <-- <SEQ=300><ACK=101><CTL=ACK><DATA> <-- ESTAB
 b. (delayed) ... <SEQ=400><ACK=101><CTL=ACK><DATA> <-- ESTAB
 c. (in flight) ... <SEQ=500><ACK=101><CTL=RST> <-- CLOSED
 2. ESTAB --> <SEQ=101><ACK=400><CTL=ACK> --> CLOSED
 (ACK for 1.a)
 ... <SEQ=400><ACK=0><CTL=RST> <-- CLOSED
 3. CHALLENGE --> <SEQ=101><ACK=400><CTL=ACK> --> CLOSED
 (for 1.c)
 ... <SEQ=400><ACK=0><CTL=RST> <-- RESPONSE
 4.a. ESTAB <-- <SEQ=400><ACK=101><CTL=ACK><DATA> 1.b reaches A
 b. ESTAB --> <SEQ=101><ACK=500><CTL=ACK>
 c. (in flight) ... <SEQ=500><ACK=0><CTL=RST> <-- CLOSED
 5. RESPONSE arrives at A, but dropped since its outside of window.
 6. ESTAB <-- <SEQ=500><ACK=0><CTL=RST> 4.c reaches A
 7. CLOSED CLOSED

 For the mitigation to be maximally effective against the
 vulnerabilities discussed in this document, both ends of the TCP
 connection need to have the fix. Although, having the mitigations at
 one end might prevent that end from being exposed to the attack, the
 connection is still vulnerable at the other end.

https://datatracker.ietf.org/doc/html/rfc0793

Ramaiah, et al. Expires November 4, 2010 [Page 17]

Internet-Draft TCP Security May 2010

9. Middlebox considerations

9.1. Middlebox that resend RST's

 Consider a middlebox M-B tracking connections between two TCP end
 hosts E-A and E-C. If E-C sends a RST with a sequence number that is
 within the window but not an exact match to reset the connection and
 M-B does not have the fix recommended in this document, it may clear
 the connection and forward the RST to E-A saving an incorrect
 sequence number. If E-A does not have the fix the connection would
 get cleared as required. However if E-A does have the required fix,
 it will send a challenge ACK to E-C. M-B, being a middlebox, may
 intercept this ACK and resend the RST on behalf of E-C with the old
 sequence number. This RST will, again, not be acceptable and may
 trigger a challenge ACK.

 The above situation may result in a RST/ACK war. However, we believe
 that if such a case exists in the Internet, the middle box is
 generating packets a conformant TCP endpoint would not generate.
 [RFC0793] dictates that the sequence number of a RST has to be
 derived from the acknowledgment number of the incoming ACK segment.
 It is outside the scope of this document to suggest mitigations to
 the ill-behaved middleboxes.

 Consider a similar scenario where the RST from M-B to E-A gets lost,
 E-A will continue to hold the connection and E-A might send an ACK an
 arbitrary time later after the connection state was destroyed at M-B.
 For this case, M-B will have to cache the RST for an arbitrary amount
 of time till until it is confirmed that the connection has been
 cleared at E-A.

9.2. Middleboxes that advance sequence numbers

 Some middleboxes may compute RST sequence numbers at the higher end
 of the acceptable window. The scenario is the same as the earlier
 case, but in this case instead of sending the cached RST, the
 middlebox (M-B) sends a RST that computes its sequence number as the
 sum of the acknowledgement field in the ACK and the window advertised
 by the ACK that was sent by E-A to challenge the RST as depicted
 below. The difference in the sequence numbers between step 1 and 2
 below is due to data lost in the network.

https://datatracker.ietf.org/doc/html/rfc0793

Ramaiah, et al. Expires November 4, 2010 [Page 18]

Internet-Draft TCP Security May 2010

 TCP A Middlebox

 1. ESTABLISHED <-- <SEQ=500><ACK=100><CTL=RST> <-- CLOSED

 2. ESTABLISHED --> <SEQ=100><ACK=300><WND=500><CTL=ACK> --> CLOSED

 3. ESTABLISHED <-- <SEQ=800><ACK=100><CTL=RST> <-- CLOSED

 4. ESTABLISHED --> <SEQ=100><ACK=300><WND=500><CTL=ACK> --> CLOSED

 5. ESTABLISHED <-- <SEQ=800><ACK=100><CTL=RST> <-- CLOSED

 Although the authors are not aware of an implementation that does the
 above, it could be mitigated by implementing the ACK throttling
 mechanism described earlier.

9.3. Middleboxes that drop the challenge ACK

 It also needs to be noted that, some middleboxes (Firewalls/NATs)
 which doesn't have the fix recommended in the document, may drop the
 challenge ACK. This can happen because, the original RST segment
 which was in window had already cleared the flow state pertaining to
 the TCP connection in the middlebox. In such cases, the end hosts
 which have implemented the RST mitigation described in this document,
 will have the TCP connection left open. This is a corner case and
 can go away if the middlebox is conformant with the changes proposed
 in this document.

Ramaiah, et al. Expires November 4, 2010 [Page 19]

Internet-Draft TCP Security May 2010

10. Security Considerations

 These changes to the TCP state machine do NOT protect an
 implementation from on-path attacks. It also needs to be emphasized
 that while mitigations within this document make it harder for off-
 path attackers to inject segments, it does NOT make it impossible.
 The only way to fully protect a TCP connection from both on and off
 path attacks is by using either IPSEC-AH [RFC4302] or IPSEC-ESP
 [RFC4303].

 Implementers also should be aware that the attacks detailed in this
 specification are not the only attacks available to an off-path
 attacker and that the counter measures described herein are not a
 comprehensive defense against such attacks.

 In particular, administrators should be aware that forged ICMP
 messages provide off-path attackers the opportunity to disrupt
 connections or degrade service. Such attacks may be subject to even
 less scrutiny than the TCP attacks addressed here, especially in
 stacks not tuned for hostile environments. It is important to note
 that some ICMP messages, validated or not, are key to the proper
 function of TCP. Those ICMP messages used to properly set the path
 maximum transmission unit are the most obvious example. There are a
 variety of ways to choose which, if any, ICMP messages to trust in
 the presence of off-path attackers and choosing between them depends
 on the assumptions and guarantees developers and administrators can
 make about their network. This specification does not attempt to do
 more than note this and related issues. Unless implementers address
 spoofed ICMP messages [I-D.ietf-tcpm-icmp-attacks], the mitigations
 specified in this document may not provide the desired protection
 level.

 In any case, this RFC details only part of a complete strategy to
 prevent off-path attackers from disrupting services that use TCP.
 Administrators and implementers should consider the other attack
 vectors and determine appropriate mitigations in securing their
 systems.

 Another notable consideration is that a reflector attack is possible
 with the required RST/SYN mitigation techniques. In this attack, an
 off-path attacker can cause a victim to send an ACK segment for each
 spoofed RST/SYN segment that lies within the current receive window
 of the victim. It should be noted, however, that this does not cause
 any amplification since the attacker must generate a segment for each
 one that the victim will generate.

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303

Ramaiah, et al. Expires November 4, 2010 [Page 20]

Internet-Draft TCP Security May 2010

11. IANA Considerations

 This document contains no IANA considerations.

Ramaiah, et al. Expires November 4, 2010 [Page 21]

Internet-Draft TCP Security May 2010

12. Contributors

 Mitesh Dalal and Amol Khare of Cisco Systems came up with the
 solution for the RST/SYN attacks. Anantha Ramaiah and Randall
 Stewart of Cisco Systems discovered the data injection vulnerability
 and together with Patrick Mahan and Peter Lei of Cisco Systems found
 solutions for the same. Paul Goyette, Mark Baushke, Frank
 Kastenholz, Art Stine and David Wang of Juniper Networks provided the
 insight that apart from RSTs, SYNs could also result in formidable
 attacks. Shrirang Bage of Cisco Systems, Qing Li and Preety Puri of
 Wind River Systems and Xiaodan Tang of QNX Software along with the
 folks above helped in ratifying and testing the interoperability of
 the suggested solutions.

Ramaiah, et al. Expires November 4, 2010 [Page 22]

Internet-Draft TCP Security May 2010

13. Acknowledgments

 Special thanks to Mark Allman, Ted Faber, Steve Bellovin, Vern
 Paxson, Allison Mankin, Sharad Ahlawat, Damir Rajnovic, John Wong,
 Joe Touch, Alfred Hoenes, Andre Oppermann, Fernando Gont, Sandra
 Murphy, Brian Carpenter, Cullen Jennings and other members of the
 tcpm WG for suggestions and comments. ACK throttling was introduced
 to this document by combining the suggestions from the tcpm working
 group.

Ramaiah, et al. Expires November 4, 2010 [Page 23]

Internet-Draft TCP Security May 2010

14. References

14.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

14.2. Informative References

 [I-D.ietf-tcpm-icmp-attacks]
 Gont, F., "ICMP attacks against TCP",

draft-ietf-tcpm-icmp-attacks-12 (work in progress),
 March 2010.

 [I-D.ietf-tsvwg-port-randomization]
 Larsen, M. and F. Gont, "Transport Protocol Port
 Randomization Recommendations",

draft-ietf-tsvwg-port-randomization-07 (work in progress),
 April 2010.

 [Medina05]
 Medina, A., Allman, M., and S. Floyd, "Measuring the
 Evolution of Transport Protocols in the Internet. ACM
 Computer Communication Review, 35(2), April 2005.

http://www.icir.org/mallman/papers/tcp-evo-ccr05.ps
 (figure 6)".

 [NISCC] NISCC, "NISCC Vulnerability Advisory 236929 -
 Vulnerability Issues in TCP".

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
RFC 1948, May 1996.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-icmp-attacks-12
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-randomization-07
http://www.icir.org/mallman/papers/tcp-evo-ccr05.ps
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1948
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc4271

Ramaiah, et al. Expires November 4, 2010 [Page 24]

Internet-Draft TCP Security May 2010

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, July 2007.

 [SITW] Watson, P., "Slipping in the Window: TCP Reset attacks,
 Presentation at 2004 CanSecWest

http://www.cansecwest.com/archives.html".

Ramaiah, et al. Expires November 4, 2010 [Page 25]

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4953
http://www.cansecwest.com/archives

Internet-Draft TCP Security May 2010

Authors' Addresses

 Anantha Ramaiah
 Cisco Systems
 170 Tasman Drive
 San Jose, CA 95134
 USA

 Phone: +1 (408) 525-6486
 Email: ananth@cisco.com

 Randall R. Stewart
 Huawei
 148 Crystal Cove Ct
 Chapin, SC 29036
 USA

 Phone: +1 (803) 345-0369
 Email: rstewart@huawei.com

 Mitesh Dalal
 Cisco Systems
 170 Tasman Drive
 San Jose, CA 95134
 USA

 Phone: +1 (408) 853-5257
 Email: mdalal@cisco.com

Ramaiah, et al. Expires November 4, 2010 [Page 26]

