Abstract

This document reclassifies several TCP extensions and TCP-related documents that have either been superseded, have never seen widespread use, or are no longer recommended for use to "Historic" status. The affected RFCs are RFC 675, RFC 721, RFC 761, RFC 813, RFC 816, RFC 879, RFC 896, RFC 1078, and RFC 6013. Additionally, this document reclassifies RFC 700, RFC 794, RFC 814, RFC 817, RFC 872, RFC 889, RFC 964, and RFC 1071 to "Informational" status.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 15, 2016.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
1. Introduction

TCP has a long history. Over time, many RFCs have accumulated that describe aspects of the TCP protocol, implementation, and extensions. Some of these have been superseded, are no longer recommended for use, or have simply never seen widespread use.

Section 6 and 7.1 of the TCP roadmap document [RFC7414] already reclassified a number of TCP extensions as "Historic" and describes the reasons for doing so, but it did not instruct the RFC Editor to change the status of these RFCs in the RFC database. The purpose of this document is to do just that.

In addition, this document reclassifies all other documents mentioned in the TCP roadmap that currently have an "Unknown" status to either "Historic" or "Informational".

2. RFC Editor Considerations

The following two sections give a short justification why a specific TCP extension or a TCP-related document is being reclassified as "Historic" or "Informational". In addition, the letter code after an RFC number indicates from which original status a particular RFC is changed to "Historic" or "Informational" (see BCP 9 [RFC2026] for an explanation of these categories):

S - Standards Track (Proposed Standard, Draft Standard, or Internet Standard)

E - Experimental

I - Informational

H - Historic

B - Best Current Practice
For the content of the documents itself, the reader is referred either to the corresponding RFC or, for a brief description, to the TCP Roadmap document [RFC7414].

2.1. Moving to "Historic" Status

The RFC Editor is requested to change the status of the following RFCs to "Historic" [RFC2026]:

- [RFC0675] U, "Specification of Internet Transmission Control Program" was replaced by the final TCP specification [RFC0793]

- [RFC0721] U, "Out-of-Band Control Signals in a Host-to-Host Protocol" was a proposal that was not incorporated into the final TCP specification [RFC0793]

- [RFC0761] U, "DoD standard Transmission Control Protocol" was replaced by the final TCP specification [RFC0793]

- [RFC0813] U, "Window and Acknowledgement Strategy in TCP" was incorporated into [RFC1122]

- [RFC0816] U, "Fault Isolation and Recovery" was incorporated into [RFC1122] and [RFC5461]

- [RFC0879] U, "The TCP Maximum Segment Size and Related Topics" was incorporated into [RFC1122] and [RFC6691]

- [RFC0896] U, "Congestion Control in IP/TCP Internetworks" was incorporated into [RFC1122] and [RFC6633]

- [RFC1078] U, "TCP Port Service Multiplexer (TCPMUX)" should be deprecated, because:
 * It modifies the TCP connection establishment semantics by also completing the three-way handshake when a service is not
available.
* It requires all new connections to be received on a single
 port, which limits the number of connections between two
 machines.
* It complicates firewall implementation and management, because
 all services share the same port number.
* There are no known client-side deployments.

- [RFC6013] E: "TCP Cookie Transactions (TCPCT)" should be
deprecated (although only published in 2011), because:

2.2. Moving to "Informational" Status

The RFC Editor is requested to change the status of the following
RFCs to "Informational" [RFC2026]:

- [RFC0700] U, "A Protocol Experiment", which presents a field
 report about the deployment of a very early version of TCP

- [RFC0794] U, "Pre-emption", which recommends that operating
 systems need to manage their limited resources, which may include
 TCP connection state

- [RFC0814] U, "Name, Addresses, Ports, and Routes", which gives
 guidance on designing tables and algorithms to keep track of
 various identifiers within a TCP/IP implementation

- [RFC0817] U, "Modularity and Efficiency in Protocol
 Implementation", which contains general implementation suggestions

- [RFC0872] U, "TCP-on-a-LAN", which concludes that the fear of
 using TCP on a local network is unfounded

- [RFC0889] U, "Internet Delay Experiments", which which describes
experiments with the TCP retransmission timeout calculation

- [RFC0964] U, "Some Problems with the Specification of the Military Standard Transmission Control Protocol", which points out several specification bugs in the US Military's MIL-STD-1778 document, which was intended as a successor to [RFC0793]

- [RFC1071] U, "Computing the Internet Checksum", which lists a number of implementation techniques for efficiently computing the Internet checksum

3. IANA Considerations

None of the documents moved to "Historic" or "Informational" status have assigned TCP options numbers. Therefore, no IANA actions are required.

4. Security Considerations

This document introduces no new security considerations. Each RFC listed in this document attempts to address the security considerations of the specification it contains.

5. Acknowledgments

The authors thank John Leslie, Pasi Sarolahti, Richard Scheffenegger, Martin Stiemerling, and Joe Touch for their contributions.

Alexander Zimmermann and Lars Eggert have received funding from the European Union's Horizon 2020 research and innovation program 2014-2018 under grant agreement No. 644866 (SSICLOPS). This document reflects only the authors' views and the European Commission is not responsible for any use that may be made of the information it contains.

6. References

6.1. Normative References

6.2. Informative References

[I-D.ietf-tcpm-tcp-edo]
Touch, J. and W. Eddy, "TCP Extended Data Offset Option",
draft-ietf-tcpm-tcp-edo-03 (work in progress), April 2015.

[RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
DOI 10.17487/RFC0793, September 1981,

Authors' Addresses
NetApp, Inc.
Sonnenallee 1
Kirchheim 85551
Germany

Phone: +49 89 900594712
Email: alexander.zimmermann@netapp.com

Wesley M. Eddy
MTI Systems
Suite 170, 18013 Cleveland Parkway
Cleveland, OH 44135

Phone: 216-433-6682
Email: wes@mti-systems.com

Lars Eggert
NetApp, Inc.
Sonnenallee 1
Kirchheim 85551
Germany

Phone: +49 89 900594306
Email: lars@netapp.com