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Enhancing TCP Over Satellite Channels
using Standard Mechanisms

Status of this Memo

    This document is an Internet-Draft.  Internet-Drafts are working
    documents of the Internet Engineering Task Force (IETF), its areas,
    and its working groups.  Note that other groups may also distribute
    working documents as Internet-Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time.  It is inappropriate to use Internet-Drafts as
    reference material or to cite them other than as ``work in
    progress.''

    To view the entire list of current Internet-Drafts, please check the
    "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
    Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
    Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
    Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

    The Transmission Control Protocol (TCP) provides reliable delivery
    of data across any network path, including network paths containing
    satellite channels.  While TCP works over satellite channels there
    are several IETF standardized mechanisms that enable TCP to more
    effectively utilize the available capacity of the network path.
    This document outlines some of these TCP mitigations.  At this time,
    all mitigations discussed in this document are IETF standards track
    mechanisms (or are compliant with IETF standards).

1.  Introduction

    Satellite channel characteristics may have an effect on the way
    transport protocols, such as the Transmission Control Protocol (TCP)
    [Pos81], behave.  When protocols, such as TCP, perform poorly,
    channel utilization is low.  While the performance of a transport
    protocol is important, it is not the only consideration when
    constructing a network containing satellite links.  For example,
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    data link protocol, application protocol, router buffer size,
    queueing discipline and proxy location are some of the
    considerations that must be taken into account.  However, this

Expires: March, 1999                                            [Page 1]



draft-ietf-tcpsat-stand-mech-06.txt                       September 1998

    document focuses on improving TCP in the satellite environment and
    non-TCP considerations are left for another document.  Finally,
    there have been many satellite mitigations proposed and studied by
    the research community.  While these mitigations may prove useful
    and safe for shared networks in the future, this document only
    considers TCP mechanisms which are currently well understood and on
    the IETF standards track (or are compliant with IETF standards).

    This document is divided up as follows: Section 2 provides a brief
    outline of the characteristics of satellite networks.  Section 3
    outlines two non-TCP mechanisms that enable TCP to more effectively
    utilize the available bandwidth.  Section 4 outlines the TCP
    mechanisms defined by the IETF that may benefit satellite networks.
    Finally, Section 5 provides a summary of what modern TCP
    implementations should include to be considered ``satellite
    friendly''.

2.  Satellite Characteristics

    There is an inherent delay in the delivery of a message over a
    satellite link due to the finite speed of light and the altitude of
    communications satellites.

    Many communications satellites are located at Geostationary Orbit
    (GSO) with an altitude of approximately 36,000 km [Sta94].  At this
    altitude the orbit period is the same as the Earth's rotation
    period.  Therefore, each ground station is always able to ``see''
    the orbiting satellite at the same position in the sky.  The
    propagation time for a radio signal to travel twice that distance
    (corresponding to a ground station directly below the satellite) is
    239.6 milliseconds (ms) [Mar78].  For ground stations at the edge of
    the view area of the satellite, the distance traveled is 2 x 41,756
    km for a total propagation delay of 279.0 ms [Mar78].  These delays
    are for one ground station-to-satellite-to-ground station route (or
    ``hop'').  Therefore, the propagation delay for a message and the
    corresponding reply (one round-trip time or RTT) could be at least
    558 ms.  The RTT is not based solely on satellite propagation time.
    The RTT will be increased by other factors in the network, such as
    the transmission time and propagation time of other links in the
    network path and queueing delay in gateways.  Furthermore, the
    satellite propagation delay will be longer if the link includes
    multiple hops or if intersatellite links are used.  As satellites
    become more complex and include on-board processing of signals,
    additional delay may be added.

    Other orbits are possible for use by communications satellites
    including Low Earth Orbit (LEO) [Stu95] [Mon98] and Medium Earth
    Orbit (MEO) [Mar78].  The lower orbits require the use of
    constellations of satellites for constant coverage.  In other words,
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    as one satellite leaves the ground station's sight, another
    satellite appears on the horizon and the channel is switched to it.
    The propagation delay to a LEO orbit ranges from several
    milliseconds when communicating with a satellite directly overhead,
    to as much as 80 ms when the satellite is on the horizon.  These
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    systems are more likely to use intersatellite links and have
    variable path delay depending on routing through the network.

    Satellite channels are dominated by two fundamental characteristics,
    as described below:

        NOISE - The strength of a radio signal falls in proportion to
        the square of the distance traveled.  For a satellite link the
        distance is large and so the signal becomes weak before reaching
        its destination.  This results in a low signal-to-noise ratio.
        Some frequencies are particularly susceptible to atmospheric
        effects such as rain attenuation.  For mobile applications,
        satellite channels are especially susceptible to multi-path
        distortion and shadowing (e.g., blockage by buildings).  Typical
        bit error rates (BER) for a satellite link today are on the
        order of 1 error per 10 million bits (1 x 10^-7) or less
        frequent.  Advanced error control coding (e.g., Reed Solomon)
        can be added to existing satellite services and is currently
        being used by many services.  Satellite error performance
        approaching fiber will become more common as advanced error
        control coding is used in new systems.  However, many legacy
        satellite systems will continue to exhibit higher BER than newer
        satellite systems and terrestrial channels.

        BANDWIDTH - The radio spectrum is a limited natural resource,
        hence there is a restricted amount of bandwidth available to
        satellite systems which is typically controlled by licenses.
        This scarcity makes it difficult to trade bandwidth to solve
        other design problems.  Typical carrier frequencies for current,
        point-to-point, commercial, satellite services are 6 GHz
        (uplink) and 4 GHz (downlink), also known as C band, and 14/12
        GHz (Ku band).  A new service at 30/20 GHz (Ka band) will be
        emerging over the next few years.  Satellite-based radio
        repeaters are known as transponders.  Traditional C band
        transponder bandwidth is typically 36 MHz to accommodate one
        color television channel (or 1200 voice channels).  Ku band
        transponders are typically around 50 MHz.  Furthermore, one
        satellite may carry a few dozen transponders.

    Not only is bandwidth limited by nature, but the allocations for
    commercial communications are limited by international agreements so
    that this scarce resource can be used fairly by many different
    applications.

    Although satellites have certain disadvantages when compared to
    fiber channels (e.g., cannot be easily repaired, rain fades, etc.),
    they also have certain advantages over terrestrial links.  First,
    satellites have a natural broadcast capability.  This gives
    satellites an advantage for multicast applications.  Next,
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    satellites can reach geographically remote areas or countries that
    have little terrestrial infrastructure.  A related advantage is the
    ability of satellite links to reach mobile users.

    Satellite channels have several characteristics that differ from
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    most terrestrial channels.  These characteristics may degrade the
    performance of TCP.  These characteristics include:

    Long feedback loop

        Due to the propagation delay of some satellite channels (e.g.,
        approximately 250 ms over a geosynchronous satellite) it may
        take a long time for a TCP sender to determine whether or not a
        packet has been successfully received at the final destination.
        This delay hurts interactive applications such as telnet, as
        well as some of the TCP congestion control algorithms (see

section 4).

    Large delay*bandwidth product

        The delay*bandwidth product (DBP) defines the amount of data a
        protocol should have ``in flight'' (data that has been
        transmitted, but not yet acknowledged) at any one time to fully
        utilize the available channel capacity.  The delay used in this
        equation is the RTT and the bandwidth is the capacity of the
        bottleneck link in the network path.  Because the delay in some
        satellite environments is large, TCP will need to keep a large
        number of packets ``in flight'' (that is, sent but not yet
        acknowledged) .

    Transmission errors

        Satellite channels exhibit a higher bit-error rate (BER) than
        typical terrestrial networks.  TCP uses all packet drops as
        signals of network congestion and reduces its window size in an
        attempt to alleviate the congestion.  In the absence of
        knowledge about why a packet was dropped (congestion or
        corruption), TCP must assume the drop was due to network
        congestion to avoid congestion collapse [Jac88] [FF98].
        Therefore, packets dropped due to corruption cause TCP to reduce
        the size of its sliding window, even though these packet drops
        do not signal congestion in the network.

    Asymmetric use

        Due to the expense of the equipment used to send data to
        satellites, asymmetric satellite networks are often constructed.
        For example, a host connected to a satellite network will send
        all outgoing traffic over a slow terrestrial link (such as a
        dialup modem channel) and receive incoming traffic via the
        satellite channel.  Another common situation arises when both
        the incoming and outgoing traffic are sent using a satellite
        link, but the uplink has less available capacity than the
        downlink due to the expense of the transmitter required to
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        provide a high bandwidth back channel.  This asymmetry may have
        an impact on TCP performance.
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    Variable Round Trip Times

        In some satellite environments, such as low-Earth orbit (LEO)
        constellations, the propagation delay to and from the satellite
        varies over time.  Whether or not this will have an impact on
        TCP performance is currently an open question.

    Intermittent connectivity

        In non-GSO satellite orbit configurations, TCP connections must
        be transferred from one satellite to another or from one ground
        station to another from time to time.  This handoff may cause
        packet loss if not properly performed.

    Most satellite channels only exhibit a subset of the above
    characteristics.  Furthermore, satellite networks are not the only
    environments where the above characteristics are found.  However,
    satellite networks do tend to exhibit more of the above problems or
    the above problems are aggravated in the satellite environment.  The
    mechanisms outlined in this document should benefit most networks,
    especially those with one or more of the above characteristics
    (e.g., gigabit networks have large delay*bandwidth products).

3.  Lower Level Mitigations

    It is recommended that those utilizing satellite channels in their
    networks should use the following two non-TCP mechanisms which can
    increase TCP performance.  These mechanisms are Path MTU Discovery
    and forward error correction (FEC) and are outlined in the following
    two sections.

    The data link layer protocol employed over a satellite channel can
    have a large impact on performance of higher layer protocols.  While
    beyond the scope of this document, those constructing satellite
    networks should tune these protocols in an appropriate manner to
    ensure that the data link protocol does not limit TCP performance.
    In particular, data link layer protocols often implement a flow
    control window and retransmission mechanisms.  When the link level
    window size is too small, performance will suffer just as when the
    TCP window size is too small (see section 4.3 for a discussion of
    appropriate window sizes).  The impact that link level
    retransmissions have on TCP transfers is not currently well
    understood.  The interaction between TCP retransmissions and link
    level retransmissions is a subject for further research.

3.1 Path MTU Discovery

    Path MTU discovery [MD90] is used to determine the maximum packet
    size a connection can use on a given network path without being
    subjected to IP fragmentation.  The sender transmits a packet that
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    is the appropriate size for the local network to which it is
    connected (e.g., 1500 bytes on an Ethernet) and sets the IP ``don't
    fragment'' (DF) bit.  If the packet is too large to be forwarded
    without being fragmented to a given channel along the network path,

Expires: March, 1999                                            [Page 5]



draft-ietf-tcpsat-stand-mech-06.txt                       September 1998

    the gateway that would normally fragment the packet and forward the
    fragments will instead return an ICMP message to the originator of
    the packet.  The ICMP message will indicate that the original
    segment could not be transmitted without being fragmented and will
    also contain the size of the largest packet that can be forwarded by
    the gateway.  Additional information from the IESG regarding Path
    MTU discovery is available in [Kno93].

    Path MTU Discovery allows TCP to use the largest possible packet
    size, without incurring the cost of fragmentation and reassembly.
    Large packets reduce the packet overhead by sending more data bytes
    per overhead byte.  As outlined in section 4, increasing TCP's
    congestion window is segment based, rather than byte based and
    therefore, larger segments enable TCP senders to increase the
    congestion window more rapidly, in terms of bytes, than smaller
    segments.

    The disadvantage of Path MTU Discovery is that it may cause a delay
    before TCP is able to start sending data.  For example, assume a
    packet is sent with the DF bit set and one of the intervening
    gateways (G1) returns an ICMP message indicating that it cannot
    forward the segment.  At this point, the sending host reduces the
    packet size per the ICMP message returned by G1 and sends another
    packet with the DF bit set.  The packet will be forwarded by G1,
    however this does not ensure all subsequent gateways in the network
    path will be able to forward the segment.  If a second gateway (G2)
    cannot forward the segment it will return an ICMP message to the
    transmitting host and the process will be repeated.  Therefore, path
    MTU discovery can spend a large amount of time determining the
    maximum allowable packet size on the network path between the sender
    and receiver.  Satellite delays can aggravate this problem (consider
    the case when the channel between G1 and G2 is a satellite link).
    However, in practice, Path MTU Discovery does not consume a large
    amount of time due to wide support of common MTU values.
    Additionally, caching MTU values may be able to eliminate discovery
    time in many instances, although the exact implementation of this
    and the aging of cached values remains an open problem.

    The relationship between BER and segment size is likely to vary
    depending on the error characteristics of the given channel.  This
    relationship deserves further study, however with the use of good
    forward error correction (see section 3.2) larger segments should
    provide better performance, as with any network [MSMO97].  While the
    exact method for choosing the best MTU for a satellite link is
    outside the scope of this document, the use of Path MTU Discovery is
    recommended to allow TCP to use the largest possible MTU over the
    satellite channel.

3.2 Forward Error Correction
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    A loss event in TCP is always interpreted as an indication of
    congestion and always causes TCP to reduce its congestion window
    size.  Since the congestion window grows based on returning
    acknowledgments (see section 4), TCP spends a long time recovering
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    from loss when operating in satellite networks.  When packet loss is
    due to corruption, rather than congestion, TCP does not need to
    reduce its congestion window size.  However, at the present time
    detecting corruption loss is a research issue.

    Therefore, for TCP to operate efficiently, the channel
    characteristics should be such that nearly all loss is due to
    network congestion.  The use of forward error correction coding
    (FEC) on a satellite link should be used to improve the bit-error
    rate (BER) of the satellite channel.  Reducing the BER is not always
    possible in satellite environments.  However, since TCP takes a long
    time to recover from lost packets because the long propagation delay
    imposed by a satellite link delays feedback from the receiver
    [PS97], the link should be made as clean as possible to prevent TCP
    connections from receiving false congestion signals.  This document
    does not make a specific BER recommendation for TCP other than it
    should be as low as possible.

    FEC should not be expected to fix all problems associated with noisy
    satellite links.  There are some situations where FEC cannot be
    expected to solve the noise problem (such as military jamming, deep
    space missions, noise caused by rain fade, etc.).  In addition, link
    outages can also cause problems in satellite systems that do not
    occur as frequently in terrestrial networks.  Finally, FEC is not
    without cost.  FEC requires additional hardware and uses some of the
    available bandwidth.  It can add delay and timing jitter due to the
    processing time of the coder/decoder.

    Further research is needed into mechanisms that allow TCP to
    differentiate between congestion induced drops and those caused by
    corruption.  Such a mechanism would allow TCP to respond to
    congestion in an appropriate manner, as well as repairing corruption
    induced loss without reducing the transmission rate.  However, in
    the absence of such a mechanism packet loss must be assumed to
    indicate congestion to preserve network stability.  Incorrectly
    interpreting loss as caused by corruption and not reducing the
    transmission rate accordingly can lead to congestive collapse
    [Jac88] [FF98].

4.  Standard TCP Mechanisms

    This section outlines TCP mechanisms that may be necessary in
    satellite or hybrid satellite/terrestrial networks to better utilize
    the available capacity of the link.  These mechanisms may also be
    needed to fully utilize fast terrestrial channels.  Furthermore,
    these mechanisms do not fundamentally hurt performance in a shared
    terrestrial network.  Each of the following sections outlines one
    mechanism and why that mechanism may be needed.
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4.1 Congestion Control

    To avoid generating an inappropriate amount of network traffic for
    the current network conditions, during a connection TCP employs four
    congestion control mechanisms [Jac88] [Jac90] [Ste97].  These
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    algorithms are slow start, congestion avoidance, fast retransmit and
    fast recovery.  These algorithms are used to adjust the amount of
    unacknowledged data that can be injected into the network and to
    retransmit segments dropped by the network.

    TCP senders use two state variables to accomplish congestion
    control.  The first variable is the congestion window (cwnd).  This
    is an upper bound on the amount of data the sender can inject into
    the network before receiving an acknowledgment (ACK).  The value of
    cwnd is limited to the receiver's advertised window.  The congestion
    window is increased or decreased during the transfer based on the
    inferred amount of congestion present in the network.  The second
    variable is the slow start threshold (ssthresh).  This variable
    determines which algorithm is used to increase the value of cwnd.
    If cwnd is less than ssthresh the slow start algorithm is used to
    increase the value of cwnd.  However, if cwnd is greater than or
    equal to (or just greater than in some TCP implementations) ssthresh
    the congestion avoidance algorithm is used.  The initial value of
    ssthresh is the receiver's advertised window size.  Furthermore, the
    value of ssthresh is set when congestion is detected.

    The four congestion control algorithms are outlined below, followed
    by a brief discussion of the impact of satellite environments on
    these algorithms.

4.1.1 Slow Start and Congestion Avoidance

    When a host begins sending data on a TCP connection the host has no
    knowledge of the current state of the network between itself and the
    data receiver.  In order to avoid transmitting an inappropriately
    large burst of traffic, the data sender is required to use the slow
    start algorithm at the beginning of a transfer [Jac88] [Bra89]
    [Ste97].  Slow start begins by initializing cwnd to 1 segment
    (although an IETF experimental mechanism would increase the size of
    the initial window to roughly 4 Kbytes [AFP98]) and ssthresh to the
    receiver's advertised window.  This forces TCP to transmit one
    segment and wait for the corresponding ACK.  For each ACK that is
    received during slow start, the value of cwnd is increased by 1
    segment.  For example, after the first ACK is received cwnd will be
    2 segments and the sender will be allowed to transmit 2 data
    packets.  This continues until cwnd meets or exceeds ssthresh (or,
    in some implementations when cwnd equals ssthresh), or loss is
    detected.

    When the value of cwnd is greater than or equal to (or equal to in
    certain implementations) ssthresh the congestion avoidance algorithm
    is used to increase cwnd [Jac88] [Bra89] [Ste97].  This algorithm
    increases the size of cwnd more slowly than does slow start.
    Congestion avoidance is used to slowly probe the network for
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    additional capacity.  During congestion avoidance, cwnd is increased
    by 1/cwnd for each incoming ACK.  Therefore, if one ACK is received
    for every data segment, cwnd will increase by roughly 1 segment per
    round-trip time (RTT).

Expires: March, 1999                                            [Page 8]



draft-ietf-tcpsat-stand-mech-06.txt                       September 1998

    The slow start and congestion control algorithms can force poor
    utilization of the available channel bandwidth when using long-delay
    satellite networks [All97].  For example, transmission begins with
    the transmission of one segment.  After the first segment is
    transmitted the data sender is forced to wait for the corresponding
    ACK.  When using a GSO satellite this leads to an idle time of
    roughly 500 ms when no useful work is being accomplished.
    Therefore, slow start takes more real time over GSO satellites than
    on typical terrestrial channels.  This holds for congestion
    avoidance, as well [All97].  This is precisely why Path MTU
    Discovery is an important algorithm.  While the number of segments
    we transmit is determined by the congestion control algorithms, the
    size of these segments is not.  Therefore, using larger packets will
    enable TCP to send more data per segment which yields better channel
    utilization.

4.1.2 Fast Retransmit and Fast Recovery

    TCP's default mechanism to detect dropped segments is a timeout
    [Pos81].  In other words, if the sender does not receive an ACK for
    a given packet within the expected amount of time the segment will
    be retransmitted.  The retransmission timeout (RTO) is based on
    observations of the RTT.  In addition to retransmitting a segment
    when the RTO expires, TCP also uses the lost segment as an
    indication of congestion in the network.  In response to the
    congestion, the value of ssthresh is set to half of the cwnd and the
    value of cwnd is then reduced to 1 segment.  This triggers the use
    of the slow start algorithm to increase cwnd until the value of cwnd
    reaches half of its value when congestion was detected.  After the
    slow start phase, the congestion avoidance algorithm is used to
    probe the network for additional capacity.

    TCP ACKs always acknowledge the highest in-order segment that has
    arrived.  Therefore an ACK for segment X also effectively ACKs all
    segments < X.  Furthermore, if a segment arrives out-of-order the
    ACK triggered will be for the highest in-order segment, rather than
    the segment that just arrived.  For example, assume segment 11 has
    been dropped somewhere in the network and segment 12 arrives at the
    receiver.  The receiver is going to send a duplicate ACK covering
    segment 10 (and all previous segments).

    The fast retransmit algorithm uses these duplicate ACKs to detect
    lost segments.  If 3 duplicate ACKs arrive at the data originator,
    TCP assumes that a segment has been lost and retransmits the missing
    segment without waiting for the RTO to expire.  After a segment is
    resent using fast retransmit, the fast recovery algorithm is used to
    adjust the congestion window.  First, the value of ssthresh is set
    to half of the value of cwnd.  Next, the value of cwnd is halved.
    Finally, the value of cwnd is artificially increased by 1 segment
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    for each duplicate ACK that has arrived.  The artificial inflation
    can be done because each duplicate ACK represents 1 segment that has
    left the network.  When the cwnd permits, TCP is able to transmit
    new data.  This allows TCP to keep data flowing through the network
    at half the rate it was when loss was detected.  When an ACK for the
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    retransmitted packet arrives, the value of cwnd is reduced back to
    ssthresh (half the value of cwnd when the congestion was detected).

    Generally, fast retransmit can resend only one segment per window of
    data sent.  When multiple segments are lost in a given window of
    data, one of the segments will be resent using fast retransmit and
    the rest of the dropped segments must usually wait for the RTO to
    expire, which causes TCP to revert to slow start.

    TCP's response to congestion differs based on the way the congestion
    is detected.  If the retransmission timer causes a packet to be
    resent, TCP drops ssthresh to half the current cwnd and reduces the
    value of cwnd to 1 segment (thus triggering slow start).  However,
    if a segment is resent via fast retransmit both ssthresh and cwnd
    are set to half the current value of cwnd and congestion avoidance
    is used to send new data.  The difference is that when
    retransmitting due to duplicate ACKs, TCP knows that packets are
    still flowing through the network and can therefore infer that the
    congestion is not that bad.  However, when resending a packet due to
    the expiration of the retransmission timer, TCP cannot infer
    anything about the state of the network and therefore must proceed
    conservatively by sending new data using the slow start algorithm.

    Note that the fast retransmit/fast recovery algorithms, as discussed
    above can lead to a phenomenon that allows multiple fast retransmits
    per window of data [Flo94].  This can reduce the size of the
    congestion window multiple times in response to a single ``loss
    event''.  The problem is particularly noticeable in connections that
    utilize large congestion windows, since these connections are able
    to inject enough new segments into the network during recovery to
    trigger the multiple fast retransmits.  Reducing cwnd multiple times
    for a single loss event may hurt performance [GJKFV98].

    The best way to improve the fast retransmit/fast recovery algorithms
    is to use a selective acknowledgment (SACK) based algorithm for loss
    recovery.  As discussed below, these algorithms are generally able
    to quickly recover from multiple lost segments without needlessly
    reducing the value of cwnd.  In the absence of SACKs, the fast
    retransmit and fast recovery algorithms should be used.  Fixing
    these algorithms to achieve better performance in the face of
    multiple fast retransmissions is beyond the scope of this document.
    Therefore, TCP implementers are advised to implement the current
    version of fast retransmit/fast recovery outlined in RFC 2001
    [Ste97] or subsequent versions of RFC 2001.

4.1.3 Congestion Control in Satellite Environment

    The above algorithms have a negative impact on the performance of
    individual TCP connection's performance because the algorithms
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    slowly probe the network for additional capacity, which in turn
    wastes bandwidth.  This is especially true over long-delay satellite
    channels because of the large amount of time required for the sender
    to obtain feedback from the receiver [All97] [AHKO97].  However, the
    algorithms are necessary to prevent congestive collapse in a shared
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    network [Jac88].  Therefore, the negative impact on a given
    connection is more than offset by the benefit to the entire network.

4.2 Large TCP Windows

    The standard maximum TCP window size (65,535 bytes) is not adequate
    to allow a single TCP connection to utilize the entire bandwidth
    available on some satellite channels.  TCP throughput is limited by
    the following formula [Pos81]:

        throughput = window size / RTT

    Therefore, using the maximum window size of 65,535 bytes and a
    geosynchronous satellite channel RTT of 560 ms [Kru95] the maximum
    throughput is limited to:

        throughput = 65,535 bytes / 560 ms = 117,027 bytes/second

    Therefore, a single standard TCP connection cannot fully utilize,
    for example, T1 rate (approximately 192,000 bytes/second) GSO
    satellite channels.  However, TCP has been extended to support
    larger windows [JBB92].  The window scaling options outlined in
    [JBB92] should be used in satellite environments, as well as the
    companion algorithms PAWS (Protection Against Wrapped Sequence
    space) and RTTM (Round-Trip Time Measurements).

    It should be noted that for a satellite link shared among many
    flows, large windows may not be necessary.  For instance, two
    long-lived TCP connections each using a window of 65,535 bytes, as
    in the above example, can fully utilize a T1 GSO satellite channel.

    Using large windows often requires both client and server
    applications or TCP stacks to be hand tuned (usually by an expert)
    to utilize large windows.  Research into operating system mechanisms
    that are able to adjust the buffer capacity as dictated by the
    current network conditions is currently underway [SMM98].  This will
    allow stock TCP implementations and applications to better utilize
    the capacity provided by the underlying network.

4.3 Acknowledgment Strategies

    There are two standard methods that can be used by TCP receivers to
    generated acknowledgments.  The method outlined in [Pos81] generates
    an ACK for each incoming segment.  [Bra89] states that hosts SHOULD
    use ``delayed acknowledgments''.  Using this algorithm, an ACK is
    generated for every second full-sized segment, or if a second
    full-size segment does not arrive within a given timeout (which must
    not exceed 500 ms).  The congestion window is increased based on the
    number of incoming ACKs and delayed ACKs reduce the number of ACKs
    being sent by the receiver.  Therefore, cwnd growth occurs much more
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    slowly when using delayed ACKs compared to the case when the receiver
    ACKs each incoming segment [All98].
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    A tempting ``fix'' to the problem caused by delayed ACKs is to
    simply turn the mechanism off and let the receiver ACK each incoming
    segment.  However, this is not recommended.  First, [Bra89] says
    that a TCP receiver SHOULD generate delayed ACKs.  And, second,
    increasing the number of ACKs by a factor of two in a shared network
    may have consequences that are not yet understood.  Therefore,
    disabling delayed ACKs is still a research issue and thus, at this
    time TCP receivers should continue to generate delayed ACKs, per
    [Bra89].

4.4 Selective Acknowledgments

    Selective acknowledgments (SACKs) [MMFR96] allow TCP receivers to
    inform TCP senders exactly which packets have arrived.  SACKs allow
    TCP to recover more quickly from lost segments, as well as avoiding
    needless retransmissions.

    The fast retransmit algorithm can generally only repair one loss per
    window of data.  When multiple losses occur, the sender generally
    must rely on a timeout to determine which segment needs to be
    retransmitted next.  While waiting for a timeout, the data segments
    and their acknowledgments drain from the network.  In the absence of
    incoming ACKs to clock new segments into the network, the sender
    must use the slow start algorithm to restart transmission.  As
    discussed above, the slow start algorithm can be time consuming over
    satellite channels.  When SACKs are employed, the sender is
    generally able to determine which segments need to be retransmitted
    in the first RTT following loss detection.  This allows the sender
    to continue to transmit segments (retransmissions and new segments,
    if appropriate) at an appropriate rate and therefore sustain the ACK
    clock.  This avoids a costly slow start period following multiple
    lost segments.  Generally SACK is able to retransmit all dropped
    segments within the first RTT following the loss detection.  [MM96]
    and [FF96] discuss specific congestion control algorithms that rely
    on SACK information to determine which segments need to be
    retransmitted and when it is appropriate to transmit those segments.
    Both these algorithms follow the basic principles of congestion
    control outlined in [Jac88] and reduce the window by half when
    congestion is detected.

5.  Mitigation Summary

    Table 1 summarizes the mechanisms that have been discussed in this
    document.  Those mechanisms denoted ``Recommended'' are IETF standards
    track mechanisms that are recommended by the authors for use in
    networks containing satellite channels.  Those mechanisms marked
    ``Required'' have been defined by the IETF as required for hosts using
    the shared Internet [Bra89].  Along with the section of this
    document containing the discussion of each mechanism, we note where
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    the mechanism needs to be implemented.  The codes listed in the last
    column are defined as follows: ``S'' for the data sender, ``R'' for
    the data receiver and ``L'' for the satellite link.
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      Mechanism                 Use          Section      Where
     +------------------------+-------------+------------+--------+
     | Path-MTU Discovery     | Recommended | 3.1        | S      |
     | FEC                    | Recommended | 3.2        | L      |
     | TCP Congestion Control |             |            |        |
     |   Slow Start           | Required    | 4.1.1      | S      |
     |   Congestion Avoidance | Required    | 4.1.1      | S      |
     |   Fast Retransmit      | Recommended | 4.1.2      | S      |
     |   Fast Recovery        | Recommended | 4.1.2      | S      |
     | TCP Large Windows      |             |            |        |
     |   Window Scaling       | Recommended | 4.2        | S,R    |
     |   PAWS                 | Recommended | 4.2        | S,R    |
     |   RTTM                 | Recommended | 4.2        | S,R    |
     | TCP SACKs              | Recommended | 4.4        | S,R    |
     +------------------------+-------------+------------+--------+
                                Table 1

    Satellite users should check with their TCP vendors (implementors)
    to ensure the recommended mechanisms are supported in their stack in
    current and/or future versions.  Alternatively, the Pittsburgh
    Supercomputer Center tracks TCP implementations and which extensions
    they support, as well as providing guidance on tuning various TCP
    implementations [PSC].

    Research into improving the efficiency of TCP over satellite
    channels is ongoing and will be summarized in a planned memo along
    with other considerations, such as satellite network architectures.

6.  Security Considerations

    The authors believe that the recommendations contained in this memo
    do not alter the security implications of TCP.  However, when using
    a broadcast medium such as satellites links to transfer user data
    and/or network control traffic, one should be aware of the intrinsic
    security implications of such technology.

    Eavesdropping on network links is a form of passive attack that, if
    performed successfully, could reveal critical traffic control
    information that would jeopardize the proper functioning of the
    network.  These attacks could reduce the ability of the network to
    provide data transmission services efficiently.  Eavesdroppers could
    also compromise the privacy of user data, especially if end-to-end
    security mechanisms are not in use.  While passive monitoring can
    occur on any network, the wireless broadcast nature of satellite
    links allows reception of signals without physical connection to the
    network which enables monitoring to be conducted without detection.
    However, it should be noted that the resources needed to monitor a
    satellite link are non-trivial.
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    Data encryption at the physical and/or link layers can provide
    secure communication over satellite channels.  However, this still
    leaves traffic vulnerable to eavesdropping on networks before and
    after traversing the satellite link.  Therefore, end-to-end security
    mechanisms should be considered.  This document does not make any
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    recommendations as to which security mechanisms should be employed.
    However, those operating and using satellite networks should survey
    the currently available network security mechanisms and choose those
    that meet their security requirements.

Acknowledgments

    This document has benefited from comments from the members of the
    TCP Over Satellite Working Group.  In particular, we would like to
    thank Aaron Falk, Matthew Halsey, Hans Kruse, Matt Mathis, Greg
    Nakanishi, Vern Paxson, Jeff Semke, Bill Sepmeier and Eric Travis
    for their useful comments about this document.

References

    [AFP98] Mark Allman, Sally Floyd, Craig Partridge.  Increasing TCP's
        Initial Window, September 1998.  RFC 2414.

    [AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann.
        TCP Performance Over Satellite Links.  In Proceedings of the 5th
        International Conference on Telecommunication Systems, March
        1997.

    [All97] Mark Allman.  Improving TCP Performance Over Satellite
        Channels.  Master's thesis, Ohio University, June 1997.

    [All98] Mark Allman.  On the Generation and Use of TCP
        Acknowledgments. ACM Computer Communication Review, 28(5),
        October 1998.

    [Bra89] Robert Braden.  Requirements for Internet Hosts --
        Communication Layers, October 1989.  RFC 1122.

    [FF96] Kevin Fall and Sally Floyd.  Simulation-based Comparisons of
        Tahoe, Reno and SACK TCP.  Computer Communication Review, July
        1996.

    [FF98] Sally Floyd, Kevin Fall.  Promoting the Use of End-to-End
        Congestion Control in the Internet.  Submitted to IEEE
        Transactions on Networking.

    [Flo94] S. Floyd, TCP and Successive Fast Retransmits. Technical
        report, October 1994.

ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

    [GJKFV98] Rohit Goyal, Raj Jain, Shiv Kalyanaraman, Sonia Fahmy,
        Bobby Vandalore, Improving the Performance of TCP over the
        ATM-UBR service, 1998.  Sumbitted to Computer Communications.

    [Jac90] Van Jacobson.  Modified TCP Congestion Avoidance Algorithm.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc1122
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps


        Technical Report, LBL, April 1990.

    [JBB92] Van Jacobson, Robert Braden, and David Borman.  TCP
        Extensions for High Performance, May 1992.  RFC 1323.

Expires: March, 1999                                           [Page 14]

https://datatracker.ietf.org/doc/html/rfc1323


draft-ietf-tcpsat-stand-mech-06.txt                       September 1998

    [Jac88] Van Jacobson.  Congestion Avoidance and Control.  In ACM
        SIGCOMM, 1988.

    [Kno93] Steve Knowles.  IESG Advice from Experience with Path MTU
        Discovery, March 1993.  RFC 1435.

    [Mar78] James Martin.  Communications Satellite Systems.  Prentice
        Hall, 1978.

    [MD90] Jeff Mogul and Steve Deering.  Path MTU Discovery, November
        1990.  RFC 1191.

    [MM96] Matt Mathis and Jamshid Mahdavi.  Forward Acknowledgment:
        Refining TCP Congestion Control.  In ACM SIGCOMM, 1996.

    [MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
        Romanow.  TCP Selective Acknowledgment Options, October 1996.

RFC 2018.

    [Mon98] M. J. Montpetit. TELEDESIC: Enabling The Global Community
        Interaccess. In Proc. of the International Wireless Symposium,
        May 1998.

    [MSMO97] M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The Macroscopic
        Behavior of the TCP Congestion Avoidance Algorithm", Computer
        Communication Review, volume 27, number3, July 1997.  available
        from http://www.psc.edu/networking/papers/papers.html.

    [Pos81] Jon Postel.  Transmission Control Protocol, September 1981.
RFC 793.

    [PS97] Craig Partridge and Tim Shepard.  TCP Performance Over
        Satellite Links.  IEEE Network, 11(5), September/October 1997.

    [PSC] Jamshid Mahdavi.  Enabling High Performance Data Transfers on
        Hosts.  http://www.psc.edu/networking/perf_tune.html.

    [SMM98] Jeff Semke, Jamshid Mahdavi and Matt Mathis.  Automatic TCP
        Buffer Tuning.  In ACM SIGCOMM, August 1998.  To appear.

    [Sta94] William Stallings.  Data and Computer Communications.
        MacMillian, 4th edition, 1994.

    [Ste97] W. Richard Stevens.  TCP Slow Start, Congestion Avoidance,
        Fast Retransmit, and Fast Recovery Algorithms, January 1997.

RFC 2001.

    [Stu95] M. A. Sturza. Architecture of the TELEDESIC Satellite
        System. In Proceedings of the International Mobile Satellite

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
https://datatracker.ietf.org/doc/html/rfc1435
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2018
http://www.psc.edu/networking/papers/papers.html
https://datatracker.ietf.org/doc/html/rfc793
http://www.psc.edu/networking/perf_tune.html
https://datatracker.ietf.org/doc/html/rfc2001


        Conference, 1995.

Expires: March, 1999                                           [Page 15]



draft-ietf-tcpsat-stand-mech-06.txt                       September 1998

Author's Addresses:

    Mark Allman
    NASA Lewis Research Center/Sterling Software
    21000 Brookpark Rd.  MS 54-2
    Cleveland, OH  44135
    mallman@lerc.nasa.gov
    +1 216 433 6586

http://gigahertz.lerc.nasa.gov/~mallman

    Daniel R. Glover
    NASA Lewis Research Center
    21000 Brookpark Rd.  MS 54-2
    Cleveland, OH  44135
    Daniel.R.Glover@lerc.nasa.gov
    +1 216 433 2847

    Luis A. Sanchez
    BBN Technologies
    GTE Internetworking
    10 Moulton Street
    Cambridge, MA  02140
    USA
    lsanchez@ir.bbn.com
    +1 617 873 3351

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
http://gigahertz.lerc.nasa.gov/~mallman


Expires: March, 1999                                           [Page 16]


