
Internet Engineering Task Force Mark Allman
INTERNET DRAFT NASA Lewis/Sterling Software
File: draft-ietf-tcpsat-stand-mech-06.txt Daniel R. Glover
 NASA Lewis
 Luis A. Sanchez
 BBN
 September, 1998
 Expires: March, 1999

Enhancing TCP Over Satellite Channels
using Standard Mechanisms

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as ``work in
 progress.''

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 The Transmission Control Protocol (TCP) provides reliable delivery
 of data across any network path, including network paths containing
 satellite channels. While TCP works over satellite channels there
 are several IETF standardized mechanisms that enable TCP to more
 effectively utilize the available capacity of the network path.
 This document outlines some of these TCP mitigations. At this time,
 all mitigations discussed in this document are IETF standards track
 mechanisms (or are compliant with IETF standards).

1. Introduction

 Satellite channel characteristics may have an effect on the way
 transport protocols, such as the Transmission Control Protocol (TCP)
 [Pos81], behave. When protocols, such as TCP, perform poorly,
 channel utilization is low. While the performance of a transport
 protocol is important, it is not the only consideration when
 constructing a network containing satellite links. For example,

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 data link protocol, application protocol, router buffer size,
 queueing discipline and proxy location are some of the
 considerations that must be taken into account. However, this

Expires: March, 1999 [Page 1]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 document focuses on improving TCP in the satellite environment and
 non-TCP considerations are left for another document. Finally,
 there have been many satellite mitigations proposed and studied by
 the research community. While these mitigations may prove useful
 and safe for shared networks in the future, this document only
 considers TCP mechanisms which are currently well understood and on
 the IETF standards track (or are compliant with IETF standards).

 This document is divided up as follows: Section 2 provides a brief
 outline of the characteristics of satellite networks. Section 3
 outlines two non-TCP mechanisms that enable TCP to more effectively
 utilize the available bandwidth. Section 4 outlines the TCP
 mechanisms defined by the IETF that may benefit satellite networks.
 Finally, Section 5 provides a summary of what modern TCP
 implementations should include to be considered ``satellite
 friendly''.

2. Satellite Characteristics

 There is an inherent delay in the delivery of a message over a
 satellite link due to the finite speed of light and the altitude of
 communications satellites.

 Many communications satellites are located at Geostationary Orbit
 (GSO) with an altitude of approximately 36,000 km [Sta94]. At this
 altitude the orbit period is the same as the Earth's rotation
 period. Therefore, each ground station is always able to ``see''
 the orbiting satellite at the same position in the sky. The
 propagation time for a radio signal to travel twice that distance
 (corresponding to a ground station directly below the satellite) is
 239.6 milliseconds (ms) [Mar78]. For ground stations at the edge of
 the view area of the satellite, the distance traveled is 2 x 41,756
 km for a total propagation delay of 279.0 ms [Mar78]. These delays
 are for one ground station-to-satellite-to-ground station route (or
 ``hop''). Therefore, the propagation delay for a message and the
 corresponding reply (one round-trip time or RTT) could be at least
 558 ms. The RTT is not based solely on satellite propagation time.
 The RTT will be increased by other factors in the network, such as
 the transmission time and propagation time of other links in the
 network path and queueing delay in gateways. Furthermore, the
 satellite propagation delay will be longer if the link includes
 multiple hops or if intersatellite links are used. As satellites
 become more complex and include on-board processing of signals,
 additional delay may be added.

 Other orbits are possible for use by communications satellites
 including Low Earth Orbit (LEO) [Stu95] [Mon98] and Medium Earth
 Orbit (MEO) [Mar78]. The lower orbits require the use of
 constellations of satellites for constant coverage. In other words,

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 as one satellite leaves the ground station's sight, another
 satellite appears on the horizon and the channel is switched to it.
 The propagation delay to a LEO orbit ranges from several
 milliseconds when communicating with a satellite directly overhead,
 to as much as 80 ms when the satellite is on the horizon. These

Expires: March, 1999 [Page 2]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 systems are more likely to use intersatellite links and have
 variable path delay depending on routing through the network.

 Satellite channels are dominated by two fundamental characteristics,
 as described below:

 NOISE - The strength of a radio signal falls in proportion to
 the square of the distance traveled. For a satellite link the
 distance is large and so the signal becomes weak before reaching
 its destination. This results in a low signal-to-noise ratio.
 Some frequencies are particularly susceptible to atmospheric
 effects such as rain attenuation. For mobile applications,
 satellite channels are especially susceptible to multi-path
 distortion and shadowing (e.g., blockage by buildings). Typical
 bit error rates (BER) for a satellite link today are on the
 order of 1 error per 10 million bits (1 x 10^-7) or less
 frequent. Advanced error control coding (e.g., Reed Solomon)
 can be added to existing satellite services and is currently
 being used by many services. Satellite error performance
 approaching fiber will become more common as advanced error
 control coding is used in new systems. However, many legacy
 satellite systems will continue to exhibit higher BER than newer
 satellite systems and terrestrial channels.

 BANDWIDTH - The radio spectrum is a limited natural resource,
 hence there is a restricted amount of bandwidth available to
 satellite systems which is typically controlled by licenses.
 This scarcity makes it difficult to trade bandwidth to solve
 other design problems. Typical carrier frequencies for current,
 point-to-point, commercial, satellite services are 6 GHz
 (uplink) and 4 GHz (downlink), also known as C band, and 14/12
 GHz (Ku band). A new service at 30/20 GHz (Ka band) will be
 emerging over the next few years. Satellite-based radio
 repeaters are known as transponders. Traditional C band
 transponder bandwidth is typically 36 MHz to accommodate one
 color television channel (or 1200 voice channels). Ku band
 transponders are typically around 50 MHz. Furthermore, one
 satellite may carry a few dozen transponders.

 Not only is bandwidth limited by nature, but the allocations for
 commercial communications are limited by international agreements so
 that this scarce resource can be used fairly by many different
 applications.

 Although satellites have certain disadvantages when compared to
 fiber channels (e.g., cannot be easily repaired, rain fades, etc.),
 they also have certain advantages over terrestrial links. First,
 satellites have a natural broadcast capability. This gives
 satellites an advantage for multicast applications. Next,

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 satellites can reach geographically remote areas or countries that
 have little terrestrial infrastructure. A related advantage is the
 ability of satellite links to reach mobile users.

 Satellite channels have several characteristics that differ from

Expires: March, 1999 [Page 3]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 most terrestrial channels. These characteristics may degrade the
 performance of TCP. These characteristics include:

 Long feedback loop

 Due to the propagation delay of some satellite channels (e.g.,
 approximately 250 ms over a geosynchronous satellite) it may
 take a long time for a TCP sender to determine whether or not a
 packet has been successfully received at the final destination.
 This delay hurts interactive applications such as telnet, as
 well as some of the TCP congestion control algorithms (see

section 4).

 Large delay*bandwidth product

 The delay*bandwidth product (DBP) defines the amount of data a
 protocol should have ``in flight'' (data that has been
 transmitted, but not yet acknowledged) at any one time to fully
 utilize the available channel capacity. The delay used in this
 equation is the RTT and the bandwidth is the capacity of the
 bottleneck link in the network path. Because the delay in some
 satellite environments is large, TCP will need to keep a large
 number of packets ``in flight'' (that is, sent but not yet
 acknowledged) .

 Transmission errors

 Satellite channels exhibit a higher bit-error rate (BER) than
 typical terrestrial networks. TCP uses all packet drops as
 signals of network congestion and reduces its window size in an
 attempt to alleviate the congestion. In the absence of
 knowledge about why a packet was dropped (congestion or
 corruption), TCP must assume the drop was due to network
 congestion to avoid congestion collapse [Jac88] [FF98].
 Therefore, packets dropped due to corruption cause TCP to reduce
 the size of its sliding window, even though these packet drops
 do not signal congestion in the network.

 Asymmetric use

 Due to the expense of the equipment used to send data to
 satellites, asymmetric satellite networks are often constructed.
 For example, a host connected to a satellite network will send
 all outgoing traffic over a slow terrestrial link (such as a
 dialup modem channel) and receive incoming traffic via the
 satellite channel. Another common situation arises when both
 the incoming and outgoing traffic are sent using a satellite
 link, but the uplink has less available capacity than the
 downlink due to the expense of the transmitter required to

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 provide a high bandwidth back channel. This asymmetry may have
 an impact on TCP performance.

Expires: March, 1999 [Page 4]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 Variable Round Trip Times

 In some satellite environments, such as low-Earth orbit (LEO)
 constellations, the propagation delay to and from the satellite
 varies over time. Whether or not this will have an impact on
 TCP performance is currently an open question.

 Intermittent connectivity

 In non-GSO satellite orbit configurations, TCP connections must
 be transferred from one satellite to another or from one ground
 station to another from time to time. This handoff may cause
 packet loss if not properly performed.

 Most satellite channels only exhibit a subset of the above
 characteristics. Furthermore, satellite networks are not the only
 environments where the above characteristics are found. However,
 satellite networks do tend to exhibit more of the above problems or
 the above problems are aggravated in the satellite environment. The
 mechanisms outlined in this document should benefit most networks,
 especially those with one or more of the above characteristics
 (e.g., gigabit networks have large delay*bandwidth products).

3. Lower Level Mitigations

 It is recommended that those utilizing satellite channels in their
 networks should use the following two non-TCP mechanisms which can
 increase TCP performance. These mechanisms are Path MTU Discovery
 and forward error correction (FEC) and are outlined in the following
 two sections.

 The data link layer protocol employed over a satellite channel can
 have a large impact on performance of higher layer protocols. While
 beyond the scope of this document, those constructing satellite
 networks should tune these protocols in an appropriate manner to
 ensure that the data link protocol does not limit TCP performance.
 In particular, data link layer protocols often implement a flow
 control window and retransmission mechanisms. When the link level
 window size is too small, performance will suffer just as when the
 TCP window size is too small (see section 4.3 for a discussion of
 appropriate window sizes). The impact that link level
 retransmissions have on TCP transfers is not currently well
 understood. The interaction between TCP retransmissions and link
 level retransmissions is a subject for further research.

3.1 Path MTU Discovery

 Path MTU discovery [MD90] is used to determine the maximum packet
 size a connection can use on a given network path without being
 subjected to IP fragmentation. The sender transmits a packet that

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 is the appropriate size for the local network to which it is
 connected (e.g., 1500 bytes on an Ethernet) and sets the IP ``don't
 fragment'' (DF) bit. If the packet is too large to be forwarded
 without being fragmented to a given channel along the network path,

Expires: March, 1999 [Page 5]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 the gateway that would normally fragment the packet and forward the
 fragments will instead return an ICMP message to the originator of
 the packet. The ICMP message will indicate that the original
 segment could not be transmitted without being fragmented and will
 also contain the size of the largest packet that can be forwarded by
 the gateway. Additional information from the IESG regarding Path
 MTU discovery is available in [Kno93].

 Path MTU Discovery allows TCP to use the largest possible packet
 size, without incurring the cost of fragmentation and reassembly.
 Large packets reduce the packet overhead by sending more data bytes
 per overhead byte. As outlined in section 4, increasing TCP's
 congestion window is segment based, rather than byte based and
 therefore, larger segments enable TCP senders to increase the
 congestion window more rapidly, in terms of bytes, than smaller
 segments.

 The disadvantage of Path MTU Discovery is that it may cause a delay
 before TCP is able to start sending data. For example, assume a
 packet is sent with the DF bit set and one of the intervening
 gateways (G1) returns an ICMP message indicating that it cannot
 forward the segment. At this point, the sending host reduces the
 packet size per the ICMP message returned by G1 and sends another
 packet with the DF bit set. The packet will be forwarded by G1,
 however this does not ensure all subsequent gateways in the network
 path will be able to forward the segment. If a second gateway (G2)
 cannot forward the segment it will return an ICMP message to the
 transmitting host and the process will be repeated. Therefore, path
 MTU discovery can spend a large amount of time determining the
 maximum allowable packet size on the network path between the sender
 and receiver. Satellite delays can aggravate this problem (consider
 the case when the channel between G1 and G2 is a satellite link).
 However, in practice, Path MTU Discovery does not consume a large
 amount of time due to wide support of common MTU values.
 Additionally, caching MTU values may be able to eliminate discovery
 time in many instances, although the exact implementation of this
 and the aging of cached values remains an open problem.

 The relationship between BER and segment size is likely to vary
 depending on the error characteristics of the given channel. This
 relationship deserves further study, however with the use of good
 forward error correction (see section 3.2) larger segments should
 provide better performance, as with any network [MSMO97]. While the
 exact method for choosing the best MTU for a satellite link is
 outside the scope of this document, the use of Path MTU Discovery is
 recommended to allow TCP to use the largest possible MTU over the
 satellite channel.

3.2 Forward Error Correction

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 A loss event in TCP is always interpreted as an indication of
 congestion and always causes TCP to reduce its congestion window
 size. Since the congestion window grows based on returning
 acknowledgments (see section 4), TCP spends a long time recovering

Expires: March, 1999 [Page 6]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 from loss when operating in satellite networks. When packet loss is
 due to corruption, rather than congestion, TCP does not need to
 reduce its congestion window size. However, at the present time
 detecting corruption loss is a research issue.

 Therefore, for TCP to operate efficiently, the channel
 characteristics should be such that nearly all loss is due to
 network congestion. The use of forward error correction coding
 (FEC) on a satellite link should be used to improve the bit-error
 rate (BER) of the satellite channel. Reducing the BER is not always
 possible in satellite environments. However, since TCP takes a long
 time to recover from lost packets because the long propagation delay
 imposed by a satellite link delays feedback from the receiver
 [PS97], the link should be made as clean as possible to prevent TCP
 connections from receiving false congestion signals. This document
 does not make a specific BER recommendation for TCP other than it
 should be as low as possible.

 FEC should not be expected to fix all problems associated with noisy
 satellite links. There are some situations where FEC cannot be
 expected to solve the noise problem (such as military jamming, deep
 space missions, noise caused by rain fade, etc.). In addition, link
 outages can also cause problems in satellite systems that do not
 occur as frequently in terrestrial networks. Finally, FEC is not
 without cost. FEC requires additional hardware and uses some of the
 available bandwidth. It can add delay and timing jitter due to the
 processing time of the coder/decoder.

 Further research is needed into mechanisms that allow TCP to
 differentiate between congestion induced drops and those caused by
 corruption. Such a mechanism would allow TCP to respond to
 congestion in an appropriate manner, as well as repairing corruption
 induced loss without reducing the transmission rate. However, in
 the absence of such a mechanism packet loss must be assumed to
 indicate congestion to preserve network stability. Incorrectly
 interpreting loss as caused by corruption and not reducing the
 transmission rate accordingly can lead to congestive collapse
 [Jac88] [FF98].

4. Standard TCP Mechanisms

 This section outlines TCP mechanisms that may be necessary in
 satellite or hybrid satellite/terrestrial networks to better utilize
 the available capacity of the link. These mechanisms may also be
 needed to fully utilize fast terrestrial channels. Furthermore,
 these mechanisms do not fundamentally hurt performance in a shared
 terrestrial network. Each of the following sections outlines one
 mechanism and why that mechanism may be needed.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

4.1 Congestion Control

 To avoid generating an inappropriate amount of network traffic for
 the current network conditions, during a connection TCP employs four
 congestion control mechanisms [Jac88] [Jac90] [Ste97]. These

Expires: March, 1999 [Page 7]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 algorithms are slow start, congestion avoidance, fast retransmit and
 fast recovery. These algorithms are used to adjust the amount of
 unacknowledged data that can be injected into the network and to
 retransmit segments dropped by the network.

 TCP senders use two state variables to accomplish congestion
 control. The first variable is the congestion window (cwnd). This
 is an upper bound on the amount of data the sender can inject into
 the network before receiving an acknowledgment (ACK). The value of
 cwnd is limited to the receiver's advertised window. The congestion
 window is increased or decreased during the transfer based on the
 inferred amount of congestion present in the network. The second
 variable is the slow start threshold (ssthresh). This variable
 determines which algorithm is used to increase the value of cwnd.
 If cwnd is less than ssthresh the slow start algorithm is used to
 increase the value of cwnd. However, if cwnd is greater than or
 equal to (or just greater than in some TCP implementations) ssthresh
 the congestion avoidance algorithm is used. The initial value of
 ssthresh is the receiver's advertised window size. Furthermore, the
 value of ssthresh is set when congestion is detected.

 The four congestion control algorithms are outlined below, followed
 by a brief discussion of the impact of satellite environments on
 these algorithms.

4.1.1 Slow Start and Congestion Avoidance

 When a host begins sending data on a TCP connection the host has no
 knowledge of the current state of the network between itself and the
 data receiver. In order to avoid transmitting an inappropriately
 large burst of traffic, the data sender is required to use the slow
 start algorithm at the beginning of a transfer [Jac88] [Bra89]
 [Ste97]. Slow start begins by initializing cwnd to 1 segment
 (although an IETF experimental mechanism would increase the size of
 the initial window to roughly 4 Kbytes [AFP98]) and ssthresh to the
 receiver's advertised window. This forces TCP to transmit one
 segment and wait for the corresponding ACK. For each ACK that is
 received during slow start, the value of cwnd is increased by 1
 segment. For example, after the first ACK is received cwnd will be
 2 segments and the sender will be allowed to transmit 2 data
 packets. This continues until cwnd meets or exceeds ssthresh (or,
 in some implementations when cwnd equals ssthresh), or loss is
 detected.

 When the value of cwnd is greater than or equal to (or equal to in
 certain implementations) ssthresh the congestion avoidance algorithm
 is used to increase cwnd [Jac88] [Bra89] [Ste97]. This algorithm
 increases the size of cwnd more slowly than does slow start.
 Congestion avoidance is used to slowly probe the network for

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 additional capacity. During congestion avoidance, cwnd is increased
 by 1/cwnd for each incoming ACK. Therefore, if one ACK is received
 for every data segment, cwnd will increase by roughly 1 segment per
 round-trip time (RTT).

Expires: March, 1999 [Page 8]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 The slow start and congestion control algorithms can force poor
 utilization of the available channel bandwidth when using long-delay
 satellite networks [All97]. For example, transmission begins with
 the transmission of one segment. After the first segment is
 transmitted the data sender is forced to wait for the corresponding
 ACK. When using a GSO satellite this leads to an idle time of
 roughly 500 ms when no useful work is being accomplished.
 Therefore, slow start takes more real time over GSO satellites than
 on typical terrestrial channels. This holds for congestion
 avoidance, as well [All97]. This is precisely why Path MTU
 Discovery is an important algorithm. While the number of segments
 we transmit is determined by the congestion control algorithms, the
 size of these segments is not. Therefore, using larger packets will
 enable TCP to send more data per segment which yields better channel
 utilization.

4.1.2 Fast Retransmit and Fast Recovery

 TCP's default mechanism to detect dropped segments is a timeout
 [Pos81]. In other words, if the sender does not receive an ACK for
 a given packet within the expected amount of time the segment will
 be retransmitted. The retransmission timeout (RTO) is based on
 observations of the RTT. In addition to retransmitting a segment
 when the RTO expires, TCP also uses the lost segment as an
 indication of congestion in the network. In response to the
 congestion, the value of ssthresh is set to half of the cwnd and the
 value of cwnd is then reduced to 1 segment. This triggers the use
 of the slow start algorithm to increase cwnd until the value of cwnd
 reaches half of its value when congestion was detected. After the
 slow start phase, the congestion avoidance algorithm is used to
 probe the network for additional capacity.

 TCP ACKs always acknowledge the highest in-order segment that has
 arrived. Therefore an ACK for segment X also effectively ACKs all
 segments < X. Furthermore, if a segment arrives out-of-order the
 ACK triggered will be for the highest in-order segment, rather than
 the segment that just arrived. For example, assume segment 11 has
 been dropped somewhere in the network and segment 12 arrives at the
 receiver. The receiver is going to send a duplicate ACK covering
 segment 10 (and all previous segments).

 The fast retransmit algorithm uses these duplicate ACKs to detect
 lost segments. If 3 duplicate ACKs arrive at the data originator,
 TCP assumes that a segment has been lost and retransmits the missing
 segment without waiting for the RTO to expire. After a segment is
 resent using fast retransmit, the fast recovery algorithm is used to
 adjust the congestion window. First, the value of ssthresh is set
 to half of the value of cwnd. Next, the value of cwnd is halved.
 Finally, the value of cwnd is artificially increased by 1 segment

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 for each duplicate ACK that has arrived. The artificial inflation
 can be done because each duplicate ACK represents 1 segment that has
 left the network. When the cwnd permits, TCP is able to transmit
 new data. This allows TCP to keep data flowing through the network
 at half the rate it was when loss was detected. When an ACK for the

Expires: March, 1999 [Page 9]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 retransmitted packet arrives, the value of cwnd is reduced back to
 ssthresh (half the value of cwnd when the congestion was detected).

 Generally, fast retransmit can resend only one segment per window of
 data sent. When multiple segments are lost in a given window of
 data, one of the segments will be resent using fast retransmit and
 the rest of the dropped segments must usually wait for the RTO to
 expire, which causes TCP to revert to slow start.

 TCP's response to congestion differs based on the way the congestion
 is detected. If the retransmission timer causes a packet to be
 resent, TCP drops ssthresh to half the current cwnd and reduces the
 value of cwnd to 1 segment (thus triggering slow start). However,
 if a segment is resent via fast retransmit both ssthresh and cwnd
 are set to half the current value of cwnd and congestion avoidance
 is used to send new data. The difference is that when
 retransmitting due to duplicate ACKs, TCP knows that packets are
 still flowing through the network and can therefore infer that the
 congestion is not that bad. However, when resending a packet due to
 the expiration of the retransmission timer, TCP cannot infer
 anything about the state of the network and therefore must proceed
 conservatively by sending new data using the slow start algorithm.

 Note that the fast retransmit/fast recovery algorithms, as discussed
 above can lead to a phenomenon that allows multiple fast retransmits
 per window of data [Flo94]. This can reduce the size of the
 congestion window multiple times in response to a single ``loss
 event''. The problem is particularly noticeable in connections that
 utilize large congestion windows, since these connections are able
 to inject enough new segments into the network during recovery to
 trigger the multiple fast retransmits. Reducing cwnd multiple times
 for a single loss event may hurt performance [GJKFV98].

 The best way to improve the fast retransmit/fast recovery algorithms
 is to use a selective acknowledgment (SACK) based algorithm for loss
 recovery. As discussed below, these algorithms are generally able
 to quickly recover from multiple lost segments without needlessly
 reducing the value of cwnd. In the absence of SACKs, the fast
 retransmit and fast recovery algorithms should be used. Fixing
 these algorithms to achieve better performance in the face of
 multiple fast retransmissions is beyond the scope of this document.
 Therefore, TCP implementers are advised to implement the current
 version of fast retransmit/fast recovery outlined in RFC 2001
 [Ste97] or subsequent versions of RFC 2001.

4.1.3 Congestion Control in Satellite Environment

 The above algorithms have a negative impact on the performance of
 individual TCP connection's performance because the algorithms

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2001

 slowly probe the network for additional capacity, which in turn
 wastes bandwidth. This is especially true over long-delay satellite
 channels because of the large amount of time required for the sender
 to obtain feedback from the receiver [All97] [AHKO97]. However, the
 algorithms are necessary to prevent congestive collapse in a shared

Expires: March, 1999 [Page 10]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 network [Jac88]. Therefore, the negative impact on a given
 connection is more than offset by the benefit to the entire network.

4.2 Large TCP Windows

 The standard maximum TCP window size (65,535 bytes) is not adequate
 to allow a single TCP connection to utilize the entire bandwidth
 available on some satellite channels. TCP throughput is limited by
 the following formula [Pos81]:

 throughput = window size / RTT

 Therefore, using the maximum window size of 65,535 bytes and a
 geosynchronous satellite channel RTT of 560 ms [Kru95] the maximum
 throughput is limited to:

 throughput = 65,535 bytes / 560 ms = 117,027 bytes/second

 Therefore, a single standard TCP connection cannot fully utilize,
 for example, T1 rate (approximately 192,000 bytes/second) GSO
 satellite channels. However, TCP has been extended to support
 larger windows [JBB92]. The window scaling options outlined in
 [JBB92] should be used in satellite environments, as well as the
 companion algorithms PAWS (Protection Against Wrapped Sequence
 space) and RTTM (Round-Trip Time Measurements).

 It should be noted that for a satellite link shared among many
 flows, large windows may not be necessary. For instance, two
 long-lived TCP connections each using a window of 65,535 bytes, as
 in the above example, can fully utilize a T1 GSO satellite channel.

 Using large windows often requires both client and server
 applications or TCP stacks to be hand tuned (usually by an expert)
 to utilize large windows. Research into operating system mechanisms
 that are able to adjust the buffer capacity as dictated by the
 current network conditions is currently underway [SMM98]. This will
 allow stock TCP implementations and applications to better utilize
 the capacity provided by the underlying network.

4.3 Acknowledgment Strategies

 There are two standard methods that can be used by TCP receivers to
 generated acknowledgments. The method outlined in [Pos81] generates
 an ACK for each incoming segment. [Bra89] states that hosts SHOULD
 use ``delayed acknowledgments''. Using this algorithm, an ACK is
 generated for every second full-sized segment, or if a second
 full-size segment does not arrive within a given timeout (which must
 not exceed 500 ms). The congestion window is increased based on the
 number of incoming ACKs and delayed ACKs reduce the number of ACKs
 being sent by the receiver. Therefore, cwnd growth occurs much more

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 slowly when using delayed ACKs compared to the case when the receiver
 ACKs each incoming segment [All98].

Expires: March, 1999 [Page 11]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 A tempting ``fix'' to the problem caused by delayed ACKs is to
 simply turn the mechanism off and let the receiver ACK each incoming
 segment. However, this is not recommended. First, [Bra89] says
 that a TCP receiver SHOULD generate delayed ACKs. And, second,
 increasing the number of ACKs by a factor of two in a shared network
 may have consequences that are not yet understood. Therefore,
 disabling delayed ACKs is still a research issue and thus, at this
 time TCP receivers should continue to generate delayed ACKs, per
 [Bra89].

4.4 Selective Acknowledgments

 Selective acknowledgments (SACKs) [MMFR96] allow TCP receivers to
 inform TCP senders exactly which packets have arrived. SACKs allow
 TCP to recover more quickly from lost segments, as well as avoiding
 needless retransmissions.

 The fast retransmit algorithm can generally only repair one loss per
 window of data. When multiple losses occur, the sender generally
 must rely on a timeout to determine which segment needs to be
 retransmitted next. While waiting for a timeout, the data segments
 and their acknowledgments drain from the network. In the absence of
 incoming ACKs to clock new segments into the network, the sender
 must use the slow start algorithm to restart transmission. As
 discussed above, the slow start algorithm can be time consuming over
 satellite channels. When SACKs are employed, the sender is
 generally able to determine which segments need to be retransmitted
 in the first RTT following loss detection. This allows the sender
 to continue to transmit segments (retransmissions and new segments,
 if appropriate) at an appropriate rate and therefore sustain the ACK
 clock. This avoids a costly slow start period following multiple
 lost segments. Generally SACK is able to retransmit all dropped
 segments within the first RTT following the loss detection. [MM96]
 and [FF96] discuss specific congestion control algorithms that rely
 on SACK information to determine which segments need to be
 retransmitted and when it is appropriate to transmit those segments.
 Both these algorithms follow the basic principles of congestion
 control outlined in [Jac88] and reduce the window by half when
 congestion is detected.

5. Mitigation Summary

 Table 1 summarizes the mechanisms that have been discussed in this
 document. Those mechanisms denoted ``Recommended'' are IETF standards
 track mechanisms that are recommended by the authors for use in
 networks containing satellite channels. Those mechanisms marked
 ``Required'' have been defined by the IETF as required for hosts using
 the shared Internet [Bra89]. Along with the section of this
 document containing the discussion of each mechanism, we note where

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 the mechanism needs to be implemented. The codes listed in the last
 column are defined as follows: ``S'' for the data sender, ``R'' for
 the data receiver and ``L'' for the satellite link.

Expires: March, 1999 [Page 12]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 Mechanism Use Section Where
 +------------------------+-------------+------------+--------+
 | Path-MTU Discovery | Recommended | 3.1 | S |
 | FEC | Recommended | 3.2 | L |
 | TCP Congestion Control | | | |
 | Slow Start | Required | 4.1.1 | S |
 | Congestion Avoidance | Required | 4.1.1 | S |
 | Fast Retransmit | Recommended | 4.1.2 | S |
 | Fast Recovery | Recommended | 4.1.2 | S |
 | TCP Large Windows | | | |
 | Window Scaling | Recommended | 4.2 | S,R |
 | PAWS | Recommended | 4.2 | S,R |
 | RTTM | Recommended | 4.2 | S,R |
 | TCP SACKs | Recommended | 4.4 | S,R |
 +------------------------+-------------+------------+--------+
 Table 1

 Satellite users should check with their TCP vendors (implementors)
 to ensure the recommended mechanisms are supported in their stack in
 current and/or future versions. Alternatively, the Pittsburgh
 Supercomputer Center tracks TCP implementations and which extensions
 they support, as well as providing guidance on tuning various TCP
 implementations [PSC].

 Research into improving the efficiency of TCP over satellite
 channels is ongoing and will be summarized in a planned memo along
 with other considerations, such as satellite network architectures.

6. Security Considerations

 The authors believe that the recommendations contained in this memo
 do not alter the security implications of TCP. However, when using
 a broadcast medium such as satellites links to transfer user data
 and/or network control traffic, one should be aware of the intrinsic
 security implications of such technology.

 Eavesdropping on network links is a form of passive attack that, if
 performed successfully, could reveal critical traffic control
 information that would jeopardize the proper functioning of the
 network. These attacks could reduce the ability of the network to
 provide data transmission services efficiently. Eavesdroppers could
 also compromise the privacy of user data, especially if end-to-end
 security mechanisms are not in use. While passive monitoring can
 occur on any network, the wireless broadcast nature of satellite
 links allows reception of signals without physical connection to the
 network which enables monitoring to be conducted without detection.
 However, it should be noted that the resources needed to monitor a
 satellite link are non-trivial.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt

 Data encryption at the physical and/or link layers can provide
 secure communication over satellite channels. However, this still
 leaves traffic vulnerable to eavesdropping on networks before and
 after traversing the satellite link. Therefore, end-to-end security
 mechanisms should be considered. This document does not make any

Expires: March, 1999 [Page 13]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 recommendations as to which security mechanisms should be employed.
 However, those operating and using satellite networks should survey
 the currently available network security mechanisms and choose those
 that meet their security requirements.

Acknowledgments

 This document has benefited from comments from the members of the
 TCP Over Satellite Working Group. In particular, we would like to
 thank Aaron Falk, Matthew Halsey, Hans Kruse, Matt Mathis, Greg
 Nakanishi, Vern Paxson, Jeff Semke, Bill Sepmeier and Eric Travis
 for their useful comments about this document.

References

 [AFP98] Mark Allman, Sally Floyd, Craig Partridge. Increasing TCP's
 Initial Window, September 1998. RFC 2414.

 [AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann.
 TCP Performance Over Satellite Links. In Proceedings of the 5th
 International Conference on Telecommunication Systems, March
 1997.

 [All97] Mark Allman. Improving TCP Performance Over Satellite
 Channels. Master's thesis, Ohio University, June 1997.

 [All98] Mark Allman. On the Generation and Use of TCP
 Acknowledgments. ACM Computer Communication Review, 28(5),
 October 1998.

 [Bra89] Robert Braden. Requirements for Internet Hosts --
 Communication Layers, October 1989. RFC 1122.

 [FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons of
 Tahoe, Reno and SACK TCP. Computer Communication Review, July
 1996.

 [FF98] Sally Floyd, Kevin Fall. Promoting the Use of End-to-End
 Congestion Control in the Internet. Submitted to IEEE
 Transactions on Networking.

 [Flo94] S. Floyd, TCP and Successive Fast Retransmits. Technical
 report, October 1994.

ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

 [GJKFV98] Rohit Goyal, Raj Jain, Shiv Kalyanaraman, Sonia Fahmy,
 Bobby Vandalore, Improving the Performance of TCP over the
 ATM-UBR service, 1998. Sumbitted to Computer Communications.

 [Jac90] Van Jacobson. Modified TCP Congestion Avoidance Algorithm.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc1122
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps

 Technical Report, LBL, April 1990.

 [JBB92] Van Jacobson, Robert Braden, and David Borman. TCP
 Extensions for High Performance, May 1992. RFC 1323.

Expires: March, 1999 [Page 14]

https://datatracker.ietf.org/doc/html/rfc1323

draft-ietf-tcpsat-stand-mech-06.txt September 1998

 [Jac88] Van Jacobson. Congestion Avoidance and Control. In ACM
 SIGCOMM, 1988.

 [Kno93] Steve Knowles. IESG Advice from Experience with Path MTU
 Discovery, March 1993. RFC 1435.

 [Mar78] James Martin. Communications Satellite Systems. Prentice
 Hall, 1978.

 [MD90] Jeff Mogul and Steve Deering. Path MTU Discovery, November
 1990. RFC 1191.

 [MM96] Matt Mathis and Jamshid Mahdavi. Forward Acknowledgment:
 Refining TCP Congestion Control. In ACM SIGCOMM, 1996.

 [MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
 Romanow. TCP Selective Acknowledgment Options, October 1996.

RFC 2018.

 [Mon98] M. J. Montpetit. TELEDESIC: Enabling The Global Community
 Interaccess. In Proc. of the International Wireless Symposium,
 May 1998.

 [MSMO97] M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The Macroscopic
 Behavior of the TCP Congestion Avoidance Algorithm", Computer
 Communication Review, volume 27, number3, July 1997. available
 from http://www.psc.edu/networking/papers/papers.html.

 [Pos81] Jon Postel. Transmission Control Protocol, September 1981.
RFC 793.

 [PS97] Craig Partridge and Tim Shepard. TCP Performance Over
 Satellite Links. IEEE Network, 11(5), September/October 1997.

 [PSC] Jamshid Mahdavi. Enabling High Performance Data Transfers on
 Hosts. http://www.psc.edu/networking/perf_tune.html.

 [SMM98] Jeff Semke, Jamshid Mahdavi and Matt Mathis. Automatic TCP
 Buffer Tuning. In ACM SIGCOMM, August 1998. To appear.

 [Sta94] William Stallings. Data and Computer Communications.
 MacMillian, 4th edition, 1994.

 [Ste97] W. Richard Stevens. TCP Slow Start, Congestion Avoidance,
 Fast Retransmit, and Fast Recovery Algorithms, January 1997.

RFC 2001.

 [Stu95] M. A. Sturza. Architecture of the TELEDESIC Satellite
 System. In Proceedings of the International Mobile Satellite

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
https://datatracker.ietf.org/doc/html/rfc1435
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2018
http://www.psc.edu/networking/papers/papers.html
https://datatracker.ietf.org/doc/html/rfc793
http://www.psc.edu/networking/perf_tune.html
https://datatracker.ietf.org/doc/html/rfc2001

 Conference, 1995.

Expires: March, 1999 [Page 15]

draft-ietf-tcpsat-stand-mech-06.txt September 1998

Author's Addresses:

 Mark Allman
 NASA Lewis Research Center/Sterling Software
 21000 Brookpark Rd. MS 54-2
 Cleveland, OH 44135
 mallman@lerc.nasa.gov
 +1 216 433 6586

http://gigahertz.lerc.nasa.gov/~mallman

 Daniel R. Glover
 NASA Lewis Research Center
 21000 Brookpark Rd. MS 54-2
 Cleveland, OH 44135
 Daniel.R.Glover@lerc.nasa.gov
 +1 216 433 2847

 Luis A. Sanchez
 BBN Technologies
 GTE Internetworking
 10 Moulton Street
 Cambridge, MA 02140
 USA
 lsanchez@ir.bbn.com
 +1 617 873 3351

https://datatracker.ietf.org/doc/html/draft-ietf-tcpsat-stand-mech-06.txt
http://gigahertz.lerc.nasa.gov/~mallman

Expires: March, 1999 [Page 16]

