
TEEP M. Pei
Internet-Draft Symantec
Intended status: Informational H. Tschofenig
Expires: January 9, 2020 Arm Limited
 D. Wheeler
 Intel
 A. Atyeo
 Intercede
 L. Dapeng
 Alibaba Group
 July 08, 2019

Trusted Execution Environment Provisioning (TEEP) Architecture
draft-ietf-teep-architecture-03

Abstract

 A Trusted Execution Environment (TEE) is designed to provide a
 hardware-isolation mechanism to separate a regular operating system
 from security-sensitive application components.

 This architecture document motivates the design and standardization
 of a protocol for managing the lifecycle of trusted applications
 running inside a TEE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Pei, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TEEP Architecture July 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Assumptions . 8
4. Use Cases . 8
4.1. Payment . 8
4.2. Authentication . 9
4.3. Internet of Things 9
4.4. Confidential Cloud Computing 9

5. Architecture . 9
5.1. System Components . 9
5.2. Different Renditions of TEEP Architecture 12
5.3. Multiple TAMs and Relationship to TAs 14
5.4. Client Apps, Trusted Apps, and Personalization Data . . . 15

 5.5. Examples of Application Delivery Mechanisms in Existing
 TEEs . 16
 5.6. TEEP Architectural Support for Client App, TA, and
 Personalization Data Delivery 17

5.7. Entity Relations . 17
5.8. Trust Anchors in TEE 20
5.9. Trust Anchors in TAM 20
5.10. Keys and Certificate Types 21
5.11. Scalability . 23
5.12. Message Security . 23
5.13. Security Domain . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Pei, et al. Expires January 9, 2020 [Page 2]

Internet-Draft TEEP Architecture July 2019

5.14. A Sample Device Setup Flow 23
6. TEEP Broker . 24
6.1. Role of the TEEP Broker 25
6.2. TEEP Broker Implementation Consideration 25
6.2.1. TEEP Broker Distribution 26
6.2.2. Number of TEEP Brokers 26

7. Attestation . 26
7.1. Attestation Cryptographic Properties 28
7.2. TEEP Attestation Structure 29
7.3. TEEP Attestation Claims 31
7.4. TEEP Attestation Flow 31
7.5. Attestation Key Example 31
7.5.1. Attestation Hierarchy Establishment: Manufacture . . 32
7.5.2. Attestation Hierarchy Establishment: Device Boot . . 32
7.5.3. Attestation Hierarchy Establishment: TAM 32

8. Algorithm and Attestation Agility 32
9. Security Considerations 33
9.1. TA Trust Check at TEE 33
9.2. One TA Multiple SP Case 33
9.3. Broker Trust Model 34
9.4. Data Protection at TAM and TEE 34
9.5. Compromised CA . 34
9.6. Compromised TAM . 34
9.7. Certificate Renewal 34

10. IANA Considerations . 35
11. Acknowledgements . 35
12. References . 35
12.1. Normative References 35
12.2. Informative References 35

Appendix A. History . 37
 Authors' Addresses . 37

1. Introduction

 Applications executing in a device are exposed to many different
 attacks intended to compromise the execution of the application, or
 reveal the data upon which those applications are operating. These
 attacks increase with the number of other applications on the device,
 with such other applications coming from potentially untrustworthy
 sources. The potential for attacks further increase with the
 complexity of features and applications on devices, and the
 unintended interactions among those features and applications. The
 danger of attacks on a system increases as the sensitivity of the
 applications or data on the device increases. As an example,
 exposure of emails from a mail client is likely to be of concern to
 its owner, but a compromise of a banking application raises even
 greater concerns.

Pei, et al. Expires January 9, 2020 [Page 3]

Internet-Draft TEEP Architecture July 2019

 The Trusted Execution Environment (TEE) concept is designed to
 execute applications in a protected environment that separates
 applications inside the TEE from the regular operating system and
 from other applications on the device. This separation reduces the
 possibility of a successful attack on application components and the
 data contained inside the TEE. Typically, application components are
 chosen to execute inside a TEE because those application components
 perform security sensitive operations or operate on sensitive data.
 An application component running inside a TEE is referred to as a
 Trusted Application (TA), while a normal application running in the
 regular operating system is referred to as an Untrusted Application
 (UA).

 The TEE uses hardware to enforce protections on the TA and its data,
 but also presents a more limited set of services to applications
 inside the TEE than is normally available to UA's running in the
 normal operating system.

 But not all TEEs are the same, and different vendors may have
 different implementations of TEEs with different security properties,
 different features, and different control mechanisms to operate on
 TAs. Some vendors may themselves market multiple different TEEs with
 different properties attuned to different markets. A device vendor
 may integrate one or more TEEs into their devices depending on market
 needs.

 To simplify the life of developers and service providers interacting
 with TAs in a TEE, an interoperable protocol for managing TAs running
 in different TEEs of various devices is needed. In this TEE
 ecosystem, there often arises a need for an external trusted party to
 verify the identity, claims, and rights of Service Providers(SP),
 devices, and their TEEs. This trusted third party is the Trusted
 Application Manager (TAM).

 This protocol addresses the following problems:

 - A Service Provider (SP) intending to provide services through a TA
 to users of a device needs to determine security-relevant
 information of a device before provisioning their TA to the TEE
 within the device. Examples include the verification of the
 device 'root of trust' and the type of TEE included in a device.

 - A TEE in a device needs to determine whether a Service Provider
 (SP) that wants to manage a TA in the device is authorized to
 manage TAs in the TEE, and what TAs the SP is permitted to manage.

Pei, et al. Expires January 9, 2020 [Page 4]

Internet-Draft TEEP Architecture July 2019

 - The parties involved in the protocol must be able to attest that a
 TEE is genuine and capable of providing the security protections
 required by a particular TA.

 - A Service Provider (SP) must be able to determine if a TA exists
 (is installed) on a device (in the TEE), and if not, install the
 TA in the TEE.

 - A Service Provider (SP) must be able to check whether a TA in a
 device's TEE is the most up-to-date version, and if not, update
 the TA in the TEE.

 - A Service Provider (SP) must be able to remove a TA in a device's
 TEE if the SP is no longer offering such services or the services
 are being revoked from a particular user (or device). For
 example, if a subscription or contract for a particular service
 has expired, or a payment by the user has not been completed or
 has been rescinded.

 - A Service Provider (SP) must be able to define the relationship
 between cooperating TAs under the SP's control, and specify
 whether the TAs can communicate, share data, and/or share key
 material.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used:

 - Client Application: An application running in a Rich Execution
 Environment, such as an Android, Windows, or iOS application. We
 sometimes refer to this as the 'Client App'.

 - Device: A physical piece of hardware that hosts a TEE along with a
 Rich Execution Environment. A Device contains a default list of
 Trust Anchors that identify entities (e.g., TAMs) that are trusted
 by the Device. This list is normally set by the Device
 Manufacturer, and may be governed by the Device's network carrier.
 The list of Trust Anchors is normally modifiable by the Device's
 owner or Device Administrator. However the Device manufacturer
 and network carrier may restrict some modifications, for example,
 by not allowing the manufacturer or carrier's Trust Anchor to be
 removed or disabled.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Pei, et al. Expires January 9, 2020 [Page 5]

Internet-Draft TEEP Architecture July 2019

 - Rich Execution Environment (REE): An environment that is provided
 and governed by a typical OS (e.g., Linux, Windows, Android, iOS),
 potentially in conjunction with other supporting operating systems
 and hypervisors; it is outside of the TEE. This environment and
 applications running on it are considered un-trusted.

 - Service Provider (SP): An entity that wishes to provide a service
 on Devices that requires the use of one or more Trusted
 Applications. A Service Provider requires the help of a TAM in
 order to provision the Trusted Applications to remote devices.

 - Device User: A human being that uses a device. Many devices have
 a single device user. Some devices have a primary device user
 with other human beings as secondary device users (e.g., parent
 allowing children to use their tablet or laptop). Relates to
 Device Owner and Device Administrator.

 - Device Owner: A device is always owned by someone. It is common
 for the (primary) device user to also own the device, making the
 device user/owner also the device administrator. In enterprise
 environments it is more common for the enterprise to own the
 device, and device users have no or limited administration rights.
 In this case, the enterprise appoints a device administrator that
 is not the device owner.

 - Device Administrator (DA): An entity that is responsible for
 administration of a Device, which could be the device owner. A
 Device Administrator has privileges on the Device to install and
 remove applications and TAs, approve or reject Trust Anchors, and
 approve or reject Service Providers, among possibly other
 privileges on the Device. A Device Administrator can manage the
 list of allowed TAMs by modifying the list of Trust Anchors on the
 Device. Although a Device Administrator may have privileges and
 Device-specific controls to locally administer a device, the
 Device Administrator may choose to remotely administrate a device
 through a TAM.

 - Trust Anchor: A public key in a device whose corresponding private
 key is held by an entity implicitly trusted by the device. The
 Trust Anchor may be a certificate or it may be a raw public key
 along with additional data if necessary such as its public key
 algorithm and parameters. The Trust Anchor is normally stored in
 a location that resists unauthorized modification, insertion, or
 replacement. The digital fingerprint of a Trust Anchor may be
 stored along with the Trust Anchor certificate or public key. A
 device can use the fingerprint to uniquely identify a Trust
 Anchor. The Trust Anchor private key owner can sign certificates
 of other public keys, which conveys trust about those keys to the

Pei, et al. Expires January 9, 2020 [Page 6]

Internet-Draft TEEP Architecture July 2019

 device. A certificate signed by the Trust Anchor communicates
 that the private key holder of the signed certificate is trusted
 by the Trust Anchor holder, and can therefore be trusted by the
 device. Trust Anchors in a device may be updated by an authorized
 party when a Trust Anchor should be deprecated or a new Trust
 Anchor should be added.

 - Trusted Application (TA): An application component that runs in a
 TEE.

 - Trusted Execution Environment (TEE): An execution environment that
 runs alongside of, but is isolated from, an REE. A TEE has
 security capabilities and meets certain security-related
 requirements. It protects TEE assets from general software
 attacks, defines rigid safeguards as to data and functions that a
 program can access, and resists a set of defined threats. It
 should have at least the following three properties:

 (a) A device unique credential that cannot be cloned;

 (b) Assurance that only authorized code can run in the TEE;

 (c) Memory that cannot be read by code outside the TEE.

 There are multiple technologies that can be used to implement a
 TEE, and the level of security achieved varies accordingly.

 - Root-of-Trust (RoT): A hardware or software component in a device
 that is inherently trusted to perform a certain security-critical
 function. A RoT should be secure by design, small, and protected
 by hardware against modification or interference. Examples of
 RoTs include software/firmware measurement and verification using
 a Trust Anchor (RoT for Verification), provide signed assertions
 using a protected attestation key (RoT for Reporting), or protect
 the storage and/or use of cryptographic keys (RoT for Storage).
 Other RoTs are possible, including RoT for Integrity, and RoT for
 Measurement. Reference: NIST SP800-164 (Draft).

 - Trusted Firmware (TFW): A firmware in a device that can be
 verified with a Trust Anchor by RoT for Verification.

 - Bootloader key: This symmetric key is protected by
 electronic fuse (eFUSE) technology. In this context it is used to
 decrypt a
 TFW private key, which belongs to a device-unique private/public
 key pair. Not every device is equipped with a bootloader key.

 This document uses the following abbreviations:

Pei, et al. Expires January 9, 2020 [Page 7]

Internet-Draft TEEP Architecture July 2019

 - CA: Certificate Authority

 - REE: Rich Execution Environment

 - RoT: Root of Trust

 - SD: Security Domain

 - SP: Service Provider

 - TA: Trusted Application

 - TAM: Trusted Application Manager

 - TEE: Trusted Execution Environment

 - TFW: Trusted Firmware

3. Assumptions

 This specification assumes that an applicable device is equipped with
 one or more TEEs and each TEE is pre-provisioned with a device-unique
 public/private key pair, which is securely stored.

 A TEE uses an isolation mechanism between Trusted Applications to
 ensure that one TA cannot read, modify or delete the data and code of
 another TA.

4. Use Cases

4.1. Payment

 A payment application in a mobile device requires high security and
 trust about the hosting device. Payments initiated from a mobile
 device can use a Trusted Application to provide strong identification
 and proof of transaction.

 For a mobile payment application, some biometric identification
 information could also be stored in a TEE. The mobile payment
 application can use such information for authentication.

 A secure user interface (UI) may be used in a mobile device to
 prevent malicious software from stealing sensitive user input data.
 Such an application implementation often relies on a TEE for user
 input protection.

Pei, et al. Expires January 9, 2020 [Page 8]

Internet-Draft TEEP Architecture July 2019

4.2. Authentication

 For better security of authentication, a device may store its
 sensitive authentication keys inside a TEE, providing hardware-
 protected security key strength and trusted code execution.

4.3. Internet of Things

 The Internet of Things (IoT) has been posing threats to networks and
 national infrastructures because of existing weak security in
 devices. It is very desirable that IoT devices can prevent malware
 from manipulating actuators (e.g., unlocking a door), or stealing or
 modifying sensitive data such as authentication credentials in the
 device. A TEE can be the best way to implement such IoT security
 functions.

 TEEs could be used to store variety of sensitive data for IoT
 devices. For example, a TEE could be used in smart door locks to
 store a user's biometric information for identification, and for
 protecting access the locking mechanism.

4.4. Confidential Cloud Computing

 A tenant can store sensitive data in a TEE in a cloud computing
 server such that only the tenant can access the data, preventing the
 cloud hosting provider from accessing the data. A tenant can run TAs
 inside a server TEE for secure operation and enhanced data security.
 This provides benefits not only to tenants with better data security
 but also to cloud hosting provider for reduced liability and
 increased cloud adoption.

5. Architecture

5.1. System Components

 The following are the main components in the system. Full
 descriptions of components not previously defined are provided below.
 Interactions of all components are further explained in the following
 paragraphs.

Pei, et al. Expires January 9, 2020 [Page 9]

Internet-Draft TEEP Architecture July 2019

 +---+
 | Device |
 | +--------+ | Service Provider
+-------------+		----------+					
	TEE-1		TEEP	---------+			
	+--------+	+----	Broker				+--------+
		TEEP					<---+
		Agent	<----+				
	+--------+			<-+		+->	
		+--------+				+--------+	
	+---+ +---+					TAM-2	
+-->	TA1		TA2		+-------+		
						<---------	App-2
		+---+ +---+	+-------+			Device Administrator	
	+-------------+	App-1					
+--------------------		---+					
		--------+					
+-------+							
 +---+

 Figure 1: Notional Architecture of TEEP

 - Service Providers (SP) and Device Administrators (DA) utilize the
 services of a TAM to manage TAs on Devices. SPs do not directly
 interact with devices. DAs may elect to use a TAM for remote
 administration of TAs instead of managing each device directly.

 - TAM: A TAM is responsible for performing lifecycle management
 activity on TA's on behalf of Service Providers and Device
 Administrators. This includes creation and deletion of TA's, and
 may include, for example, over-the-air updates to keep an SP's TAs
 up-to-date and clean up when a version should be removed. TAMs
 may provide services that make it easier for SPs or DAs to use the
 TAM's service to manage multiple devices, although that is not
 required of a TAM.

 The TAM performs its management of TA's through an interaction
 with a Device's TEEP Broker. As shown in #notionalarch, the TAM
 cannot directly contact a Device, but must wait for a the TEEP
 Broker or a Client Application to contact the TAM requesting a
 particular service. This architecture is intentional in order to
 accommodate network and application firewalls that normally
 protect user and enterprise devices from arbitrary connections
 from external network entities.

 A TAM may be publicly available for use by many SPs, or a TAM may
 be private, and accessible by only one or a limited number of SPs.

Pei, et al. Expires January 9, 2020 [Page 10]

Internet-Draft TEEP Architecture July 2019

 It is expected that manufacturers and carriers will run their own
 private TAM. Another example of a private TAM is a TAM running as
 a Software-as-a-Service (SaaS) within an SP.

 A SP or Device Administrator chooses a particular TAM based on
 whether the TAM is trusted by a Device or set of Devices. The TAM
 is trusted by a device if the TAM's public key is an authorized
 Trust Anchor in the Device. A SP or Device Administrator may run
 their own TAM, however the Devices they wish to manage must
 include this TAM's pubic key in the Trust Anchor list.

 A SP or Device Administrator is free to utilize multiple TAMs.
 This may be required for a SP to manage multiple different types
 of devices from different manufacturers, or devices on different
 carriers, since the Trust Anchor list on these different devices
 may contain different TAMs. A Device Administrator may be able to
 add their own TAM's public key or certificate to the Trust Anchor
 list on all their devices, overcoming this limitation.

 Any entity is free to operate a TAM. For a TAM to be successful,
 it must have its public key or certificate installed in Devices
 Trust Anchor list. A TAM may set up a relationship with device
 manufacturers or carriers to have them install the TAM's keys in
 their device's Trust Anchor list. Alternatively, a TAM may
 publish its certificate and allow Device Administrators to install
 the TAM's certificate in their devices as an after-market-action.

 - TEEP Broker: The TEEP Broker is an application running in a Rich
 Execution Environment (REE) that enables the message protocol
 exchange between a TAM and a TEE in a device. The TEEP Broker
 does not process messages on behalf of a TEE, but merely is
 responsible for relaying messages from the TAM to the TEE, and for
 returning the TEE's responses to the TAM.

 A Client Application is expected to communicate with a TAM to
 request TAs that it needs to use. The Client Application needs to
 pass the messages from the TAM to TEEs in the device. This calls
 for a component in the REE that Client Applications can use to
 pass messages to TEEs. The TEEP Broker is thus an application in
 the REE or software library that can relay messages from a Client
 Application to a TEE in the device. A device usually comes with
 only one active TEE. A TEE may provide such a Broker to the
 device manufacturer to be bundled in devices. Such a TEE must
 also include a Broker counterpart, namely, a TEEP Agent inside the
 TEE, to parse TAM messages sent through the Broker. A TEEP Broker
 is generally acting as a dummy relaying box with just the TEE
 interacting capability; it doesn't need and shouldn't parse
 protocol messages.

Pei, et al. Expires January 9, 2020 [Page 11]

Internet-Draft TEEP Architecture July 2019

 - TEEP Agent: the TEEP Agent is a processing module running inside a
 TEE that receives TAM requests that are relayed via a TEEP Broker
 that runs in an REE. A TEEP Agent in the TEE may parse requests
 or forward requests to other processing modules in a TEE, which is
 up to a TEE provider's implementation. A response message
 corresponding to a TAM request is sent by a TEEP Agent back to a
 TEEP Broker.

 - Certification Authority (CA): Certificate-based credentials used
 for authenticating a device, a TAM and an SP. A device embeds a
 list of root certificates (Trust Anchors), from trusted CAs that a
 TAM will be validated against. A TAM will remotely attest a
 device by checking whether a device comes with a certificate from
 a CA that the TAM trusts. The CAs do not need to be the same;
 different CAs can be chosen by each TAM, and different device CAs
 can be used by different device manufacturers.

5.2. Different Renditions of TEEP Architecture

 There is nothing prohibiting a device from implementing multiple
 TEEs. In addition, some TEEs (for example, SGX) present themselves
 as separate containers within memory without a controlling manager
 within the TEE. In these cases, the rich operating system hosts
 multiple TEEP brokers, where each broker manages a particular TEE or
 set of TEEs. Enumeration and access to the appropriate broker is up
 to the rich OS and the applications. Verification that the correct
 TA has been reached then becomes a matter of properly verifying TA
 attestations, which are unforgeable. The multiple TEE approach is
 shown in the diagram below. For brevity, TEEP Broker 2 is shown
 interacting with only one TAM and UA, but no such limitation is
 intended to be implied in the architecture.

Pei, et al. Expires January 9, 2020 [Page 12]

Internet-Draft TEEP Architecture July 2019

 +---+
 | Device |
 | +--------+ | Service Provider
		----------+					
+-------------+	TEEP	---------+					
	TEE-1	+---	Broker				+--------+
				1	<---+		+-->
	+-------+						
		TEEP					
		Agent	<------+				
		1					
	+-------+						
	+---+ +---+						+-
		TA1		TA2			
+-->				<---+ +--------+			
		+---+ +---+					
				+-------+			+--------+
	+-------------+ +-----	App-2	--+		^		
	+-------+				Device		
+--------------------	App-1					Administrator	
+------							
+-----------	-+		---+				
	TEE-2				--------+		
	+------+				------+		
		TEEP			+-------+		
		Agent	<-----+				
		2					
	+------+						
	+---+						
		TA3	<----+		+----------+		
						TEEP	<--+
	+---+	+--	Broker	----------------+			
			2				
+-------------+ +----------+							
 +---+

 Figure 2: Notional Architecture of TEEP wtih multiple TEEs

 In the diagram above, TEEP Broker 1 controls interactions with the
 TA's in TEE-1, and TEEP Broker 2 controls interactions with the TA's
 in TEE-2. This presents some challenges for a TAM in completely
 managing the device, since a TAM may not interact with all the TEEP
 Brokers on a particular platform. In addition, since TEE's may be
 physically separated, with wholly different resources, there may be
 no need for TEEP Brokers to share information on installed TAs or

Pei, et al. Expires January 9, 2020 [Page 13]

Internet-Draft TEEP Architecture July 2019

 resource usage. However, the architecture guarantees that the TAM
 will receive all the relevant information from the TEEP Broker to
 which it communicates.

5.3. Multiple TAMs and Relationship to TAs

 As shown in Figure 2, the TEEP Broker provides connections from the
 TEE and the Client App to one or more TAMs. The selection of which
 TAM to communicate with is dependent on information from the Client
 App and is directly related to the TA.

 When a SP offers a service which requires a TA, the SP associates
 that service with a specific TA. The TA itself is digitally signed,
 protecting its integrity, but the signature also links the TA back to
 the signer. The signer is usually the SP, but in some cases may be
 another party that the SP trusts. The SP selects one or more TAMs
 through which to offer their service, and communicates the
 information of the service and the specific client apps and TAs to
 the TAM.

 The SP chooses TAMs based upon the markets into which the TAM can
 provide access. There may be TAMs that provide services to specific
 types of mobile devices, or mobile device operating systems, or
 specific geographical regions or network carriers. A SP may be
 motivated to utilize multiple TAMs for its service in order to
 maximize market penetration and availability on multiple types of
 devices. This likely means that the same service will be available
 through multiple TAMs.

 When the SP publishes the Client App to an app store or other app
 repositories, the SP binds the Client App with a manifest that
 identifies what TAMs can be contacted for the TA. In some
 situations, an SP may use only a single TAM - this is likely the case
 for enterprise applications or SPs serving a closed community. For
 broad public apps, there will likely be multiple TAMs in the manifest
 - one servicing one brand of mobile device and another servicing a
 different manufacturer, etc. Because different devices and different
 manufacturers trust different TAMs, the manifest will include
 different TAMs that support this SP's client app and TA. Multiple
 TAMs allow the SP to provide thier service and this app (and TA) to
 multiple different devices.

 When the TEEP Broker receives a request to contact the TAM for a
 Client App in order to install a TA, a list of TAMs may be provided.
 The TEEP Broker selects a single TAM that is consistent with the list
 of trusted TAMs (trust anchors) provisioned on the device. For any
 client app, there should be only a single TAM for the TEEP Broker to
 contact. This is also the case when a Client App uses multiple TAs,

Pei, et al. Expires January 9, 2020 [Page 14]

Internet-Draft TEEP Architecture July 2019

 or when one TA depends on anther TA in a software dependency (see
 section TBD). The reason is that the SP should provide each TAM that
 it places in the Client App's manifest all the TAs that the app
 requires. There is no benefit to going to multiple different TAMs,
 and there is no need for a special TAM to be contacted for a specific
 TA.

 [Note: This should always be the case. When a particular device or
 TEE supports only a special proprietary attestation mechanism, then a
 specific TAM will be needed that supports that attestation scheme.
 The TAM should also support standard atttestation signatures as well.
 It is highly unlikely that a set of TAs would use different
 proprietary attestation mechanisms since a TEE is likley to support
 only one such proprietary scheme.]

 [Note: This situation gets more complex in situations where a Client
 App expects another application or a device to already have a
 specific TA installed. This situation does not occur with SGX, but
 could occur in situations where the secure world maintains an trusted
 operating system and runs an entire trusted system with multiple TAs
 running. This requires more discussion.]

5.4. Client Apps, Trusted Apps, and Personalization Data

 In TEEP, there is an explicit relationship and dependence between the
 client app in the REE and one or more TAs in the TEE, as shown in
 Figure 2. From the perspective of a device user, a client app that
 uses one or more TA's in a TEE appears no different from any other
 untrusted application in the REE. However, the way the client app
 and its corresponding TA's are packaged, delivered, and installed on
 the device can vary. The variations depend on whether the client app
 and TA are bundled together or are provided separately, and this has
 implications to the management of the TAs in the TEE. In addition to
 the client app and TA, the TA and/or TEE may require some additional
 data to personalize the TA to the service provider or the device
 user. This personalization data is dependent on the TEE, the TA and
 the SP; an example of personalization data might be username and
 password of the device user's account with the SP, or a secret
 symmetric key used to by the TA to communicate with the SP. The
 personalization data must be encrypted to preserve the
 confidentiality of potentially sensitive data contained within it.
 Other than this requirement to support confidentiality, TEEP place no
 limitations or requirements on the personalization data.

 There are three possible cases for bundling of the Client App, TA,
 and personalization data:

Pei, et al. Expires January 9, 2020 [Page 15]

Internet-Draft TEEP Architecture July 2019

 1. The Client App, TA, and personalization data are all bundled
 together in a single package by the SP and provided to the TEEP
 Broker through the TAM.

 2. The Client App and the TA are bundled together in a single
 binary, which the TAM or a publicly accessible app store
 maintains in repository, and the personalization data is
 separately provided by the SP. In this case, the personalization
 data is collected by the TAM and included in the InstallTA
 message to the TEEP Broker.

 3. All components are independent. The device user installs the
 Client App through some independent or device-specific mechanism,
 and the TAM provides the TA and personalization data from the SP.
 Delivery of the TA and personalization data may be combined or
 separate.

5.5. Examples of Application Delivery Mechanisms in Existing TEEs

 In order to better understand these cases, it is helpful to review
 actual implementations of TEEs and their application delivery
 mechanisms.

 In Intel Software Guard Extensions (SGX), the Client App and TA are
 typically bound into the same binary (Case 2). The TA is compiled
 into the Client App binary using SGX tools, and exists in the binary
 as a shared library (.so or .dll). The Client App loads the TA into
 an SGX enclave when the client needs the TA. This organization makes
 it easy to maintain compatibility between the Client App and the TA,
 since they are updated together. It is entirely possible to create a
 Client App that loads an external TA into an SGX enclave and use that
 TA (Case 3). In this case, the Client App would require a reference
 to an external file or download such a file dynamically, place the
 contents of the file into memory, and load that as a TA. Obviously,
 such file or downloaded content must be properly formatted and signed
 for it to be accepted by the SGX TEE. In SGX, for Case 2 and Case 3,
 the personalization data is normally loaded into the SGX enclave (the
 TA) after the TA has started. Although Case 1 is possible with SGX,
 there are no instances of this known to be in use at this time, since
 such a construction would required a special installation program and
 SGX TA to recieve the encrypted binary, decrypt it, separate it into
 the three different elements, and then install all three. This
 installation is complex, because the Client App decrypted inside the
 TEE must be passed out of the TEE to an installer in the REE which
 would install the Client App; this assumes that the Client App binary
 includes the TA code also, otherwise there is a significant problem
 in getting the SGX encalve code (the TA) from the TEE, through the
 installer and into the Client App in a trusted fashion. Finally, the

Pei, et al. Expires January 9, 2020 [Page 16]

Internet-Draft TEEP Architecture July 2019

 personalization data would need to be sent out of the TEE (encrypted
 in an SGX encalve-to-enclave manner) to the REE's installation app,
 which would pass this data to the installed Client App, which would
 in turn send this data to the SGX enclave (TA). This complexity is
 due to the fact that each SGX enclave is separate and does not have
 direct communication to one another.

 [NOTE: Need to add an equivalent discussion for an ARM/TZ
 implementation]

5.6. TEEP Architectural Support for Client App, TA, and Personalization
 Data Delivery

 This section defines TEEP support for the three different cases for
 delivery of the Client App, TA, and personalization data.

 [Note: discussion of format of this single binary, and who/what is
 responsible for splitting these things apart, and installing the
 client app into the REE, the TA into the TEE, and the personalization
 data into the TEE or TA. Obviously the decryption must be done by
 the TEE but this may not be supported by all TAs.]

5.7. Entity Relations

 This architecture leverages asymmetric cryptography to authenticate a
 device to a TAM. Additionally, a TEE in a device authenticates a TAM
 and TA signer. The provisioning of Trust Anchors to a device may
 different from one use case to the other. A device administrator may
 want to have the capability to control what TAs are allowed. A
 device manufacturer enables verification of the TA signers and TAM
 providers; it may embed a list of default Trust Anchors that the
 signer of an allowed TA's signer certificate should chain to. A
 device administrator may choose to accept a subset of the allowed TAs
 via consent or action of downloading.

Pei, et al. Expires January 9, 2020 [Page 17]

Internet-Draft TEEP Architecture July 2019

 PKI CA -- CA CA --
 | | |
 | | |
 | | |
 Device | | --- Agent / Client App --- |
 SW | | | | |
 | | | | |
 | | | | |
 | -- TEE TAM-------
 |
 |
 FW

 Figure 3: Entities

 (App Developer) (App Store) (TAM) (Device with TEE) (CAs)
 | |
 | --> (Embedded TEE cert) <--
 | |
 | <------------------------------ Get an app cert ----- |
 | | <-- Get a TAM cert ------ |
 |
 1. Build two apps:
 Client App
 TA
 |
 |
 Client App -- 2a. --> | ----- 3. Install -------> |
 TA ------- 2b. Supply ------> | 4. Messaging-->|
 | | | |

 Figure 4: Developer Experience

 Figure 4 shows an application developer building two applications: 1)
 a rich Client Application; 2) a TA that provides some security
 functions to be run inside a TEE. At step 2, the application
 developer uploads the Client Application (2a) to an Application
 Store. The Client Application may optionally bundle the TA binary.
 Meanwhile, the application developer may provide its TA to a TAM
 provider that will be managing the TA in various devices. 3. A user
 will go to an Application Store to download the Client Application.
 The Client Application will trigger TA installation by initiating
 communication with a TAM. This is the step 4. The Client
 Application will get messages from TAM, and interacts with device TEE
 via an Agent.

 The following diagram shows a system diagram about the entity
 relationships between CAs, TAMs, SPs and devices.

Pei, et al. Expires January 9, 2020 [Page 18]

Internet-Draft TEEP Architecture July 2019

 ------- Message Protocol -----
 | |
 | |
 -------------------- --------------- ----------
 | REE | TEE | | TAM | | SP | |
 | --- | --- | | --- | | -- |
 | | | | | | |
 | Client | TEEP | | TA | | TA |
 | Apps | Agent | | Mgmt | | |
 | | | | | | | |
 | | | TAs | | | | |
 | TEEP | | | | | |
 | Broker | List of | | List of | | |
 | | Trusted | | Trusted | | |
 | | TAM/SP | | FW/TEE | | |
 | | CAs | | CAs | | |
 | | | | | | |
 | |TEE Key/ | | TAM Key/ | |SP Key/ |
 | | Cert | | Cert | | Cert |
 | | FW Key/ | | | | |
 | | Cert | | | | |
 -------------------- --------------- ----------
 | | |
 | | |
 ------------- ---------- ---------
 | TEE CA | | TAM CA | | SP CA |
 ------------- ---------- ---------

 Figure 5: Keys

 In the previous diagram, different CAs can be used for different
 types of certificates. Messages are always signed, where the signer
 key is the message originator's private key such as that of a TAM,
 the private key of trusted firmware (TFW), or a TEE's private key.

 The main components consist of a set of standard messages created by
 a TAM to deliver TA management commands to a device, and device
 attestation and response messages created by a TEE that responds to a
 TAM's message.

 It should be noted that network communication capability is generally
 not available in TAs in today's TEE-powered devices. The networking
 functionality must be delegated to a rich Client Application. Client
 Applications will need to rely on an agent in the REE to interact
 with a TEE for message exchanges. Consequently, a TAM generally
 communicates with a Client Application about how it gets messages
 that originate from a TEE inside a device. Similarly, a TA or TEE
 generally gets messages from a TAM via some Client Application,

Pei, et al. Expires January 9, 2020 [Page 19]

Internet-Draft TEEP Architecture July 2019

 namely, a TEEP Broker in this protocol architecture, not directly
 from the network.

 It is imperative to have an interoperable protocol to communicate
 with different TAMs and different TEEs in different devices. This is
 the role of the Broker, which is a software component that bridges
 communication between a TAM and a TEE. Furthermore the Broker
 communicates with a Agent inside a TEE that is responsible to process
 TAM requests. The Broker in REE does not need to know the actual
 content of messages except for the TEE routing information.

5.8. Trust Anchors in TEE

 Each TEE comes with a trust store that contains a whitelist of Trust
 Anchors that are used to validate a TAM's certificate. A TEE will
 accept a TAM to create new Security Domains and install new TAs on
 behalf of an SP only if the TAM's certificate is chained to one of
 the root CA certificates in the TEE's trust store.

 A TEE's trust store is typically preloaded at manufacturing time. It
 is out of the scope in this document to specify how the trust anchors
 should be updated when a new root certificate should be added or
 existing one should be updated or removed. A device manufacturer is
 expected to provide its TEE trust anchors live update or out-of-band
 update to Device Administrators.

 When trust anchor update is carried out, it is imperative that any
 update must maintain integrity where only authentic trust anchor list
 from a device manufacturer or a Device Administrator is accepted.
 This calls for a complete lifecycle flow in authorizing who can make
 trust anchor update and whether a given trust anchor list are non-
 tampered from the original provider. The signing of a trust anchor
 list for integrity check and update authorization methods are
 desirable to be developed. This can be addressed outside of this
 architecture document.

 Before a TAM can begin operation in the marketplace to support a
 device with a particular TEE, it must obtain a TAM certificate from a
 CA that is listed in the trust store of the TEE.

5.9. Trust Anchors in TAM

 The Trust Anchor store in a TAM consists of a list of CA certificates
 that sign various device TEE certificates. A TAM will accept a
 device for TA management if the TEE in the device uses a TEE
 certificate that is chained to a CA that the TAM trusts.

Pei, et al. Expires January 9, 2020 [Page 20]

Internet-Draft TEEP Architecture July 2019

5.10. Keys and Certificate Types

 This architecture leverages the following credentials, which allow
 delivering end-to-end security without relying on any transport
 security.

 +-------------+----------+--------+-------------------+-------------+
 | Key Entity | Location | Issuer | Checked Against | Cardinality |
 | Name | | | | |
 +-------------+----------+--------+-------------------+-------------+
1. TFW key	Device	FW CA	A whitelist of	1 per
pair and	secure		FW root CA	device
certificate	storage		trusted by TAMs	
2. TEE key	Device	TEE CA	A whitelist of	1 per
pair and	TEE	under	TEE root CA	device
certificate		a root	trusted by TAMs	
		CA		
3. TAM key	TAM	TAM CA	A whitelist of	1 or
pair and	provider	under	TAM root CA	multiple
certificate		a root	embedded in TEE	can be used
		CA		by a TAM
4. SP key	SP	SP	A SP uses a TAM.	1 or
pair and		signer	TA is signed by a	multiple
certificate		CA	SP signer. TEE	can be used
			delegates trust	by a TAM
			of TA to TAM. SP	
			signer is	
			associated with a	
			TA as the owner.	
 +-------------+----------+--------+-------------------+-------------+

 Figure 6: Key and Certificate Types

 1. TFW key pair and certificate: A key pair and certificate for
 evidence of trustworthy firmware in a device. This key pair is
 optional for TEEP architecture. Some TEE may present its trusted
 attributes to a TAM using signed attestation with a TFW key. For
 example, a platform that uses a hardware based TEE can have
 attestation data signed by a hardware protected TFW key.

 o Location: Device secure storage

 o Supported Key Type: RSA and ECC

 o Issuer: OEM CA

Pei, et al. Expires January 9, 2020 [Page 21]

Internet-Draft TEEP Architecture July 2019

 o Checked Against: A whitelist of FW root CA trusted by TAMs

 o Cardinality: One per device

 2. TEE key pair and certificate: It is used for device attestation
 to a remote TAM and SP.

 o This key pair is burned into the device by the device
 manufacturer. The key pair and its certificate are valid for
 the expected lifetime of the device.

 o Location: Device TEE

 o Supported Key Type: RSA and ECC

 o Issuer: A CA that chains to a TEE root CA

 o Checked Against: A whitelist of TEE root CAs trusted by TAMs

 o Cardinality: One per device

 3. TAM key pair and certificate: A TAM provider acquires a
 certificate from a CA that a TEE trusts.

 o Location: TAM provider

 o Supported Key Type: RSA and ECC.

 o Supported Key Size: RSA 2048-bit, ECC P-256 and P-384. Other
 sizes should be anticipated in future.

 o Issuer: TAM CA that chains to a root CA

 o Checked Against: A whitelist of TAM root CAs embedded in a TEE

 o Cardinality: One or multiple can be used by a TAM

 4. SP key pair and certificate: An SP uses its own key pair and
 certificate to sign a TA.

 o Location: SP

 o Supported Key Type: RSA and ECC

 o Supported Key Size: RSA 2048-bit, ECC P-256 and P-384. Other
 sizes should be anticipated in future.

 o Issuer: An SP signer CA that chains to a root CA

Pei, et al. Expires January 9, 2020 [Page 22]

Internet-Draft TEEP Architecture July 2019

 o Checked Against: An SP uses a TAM. A TEE trusts an SP by
 validating trust against a TAM that the SP uses. A TEE trusts
 a TAM to ensure that a TA is trustworthy.

 o Cardinality: One or multiple can be used by an SP

5.11. Scalability

 This architecture uses a PKI. Trust Anchors exist on the devices to
 enable the TEE to authenticate TAMs, and TAMs use Trust Anchors to
 authenticate TEEs. Since a PKI is used, many intermediate CA
 certificates can chain to a root certificate, each of which can issue
 many certificates. This makes the protocol highly scalable. New
 factories that produce TEEs can join the ecosystem. In this case,
 such a factory can get an intermediate CA certificate from one of the
 existing roots without requiring that TAMs are updated with
 information about the new device factory. Likewise, new TAMs can
 join the ecosystem, providing they are issued a TAM certificate that
 chains to an existing root whereby existing TEEs will be allowed to
 be personalized by the TAM without requiring changes to the TEE
 itself. This enables the ecosystem to scale, and avoids the need for
 centralized databases of all TEEs produced or all TAMs that exist.

5.12. Message Security

 Messages created by a TAM are used to deliver TA management commands
 to a device, and device attestation and messages created by the
 device TEE to respond to TAM messages.

 These messages are signed end-to-end and are typically encrypted such
 that only the targeted device TEE or TAM is able to decrypt and view
 the actual content.

5.13. Security Domain

 No security domain (SD) is explicitly assumed in a TEE for TA
 management. Some TEE, for example, some TEE compliant with Global
 Platform (GP), may continue to choose to use SD to organize resource
 partition and security boundaries. It is up to a TEE implementation
 to decide how a SD is attached to a TA installation, for example, one
 SD could be created per TA.

5.14. A Sample Device Setup Flow

 Step 1: Prepare Images for Devices

 1. [TEE vendor] Deliver TEE Image (CODE Binary) to device OEM

Pei, et al. Expires January 9, 2020 [Page 23]

Internet-Draft TEEP Architecture July 2019

 2. [CA] Deliver root CA Whitelist

 3. [Soc] Deliver TFW Image

 Step 2: Inject Key Pairs and Images to Devices

 1. [OEM] Generate TFW Key Pair (May be shared among multiple
 devices)

 2. [OEM] Flash signed TFW Image and signed TEE Image onto devices
 (signed by TFW Key)

 Step 3: Set up attestation key pairs in devices

 1. [OEM] Flash TFW Public Key and a bootloader key.

 2. [TFW/TEE] Generate a unique attestation key pair and get a
 certificate for the device.

 Step 4: Set up Trust Anchors in devices

 1. [TFW/TEE] Store the key and certificate encrypted with the
 bootloader key

 2. [TEE vendor or OEM] Store trusted CA certificate list into
 devices

6. TEEP Broker

 A TEE and TAs do not generally have the capability to communicate to
 the outside of the hosting device. For example, GlobalPlatform
 [GPTEE] specifies one such architecture. This calls for a software
 module in the REE world to handle the network communication. Each
 Client Application in the REE might carry this communication
 functionality but such functionality must also interact with the TEE
 for the message exchange.
 The TEE interaction will vary according to different TEEs. In order
 for a Client Application to transparently support different TEEs, it
 is imperative to have a common interface for a Client Application to
 invoke for exchanging messages with TEEs.

 A shared module in REE comes to meet this need. A TEEP broker is an
 application running in the REE of the device or an SDK that
 facilitates communication between a TAM and a TEE. It also provides
 interfaces for Client Applications to query and trigger TA
 installation that the application needs to use.

Pei, et al. Expires January 9, 2020 [Page 24]

Internet-Draft TEEP Architecture July 2019

 It isn't always that a Client Application directly calls such a
 Broker to interact with a TEE. A REE Application Installer might
 carry out TEE and TAM interaction to install all required TAs that a
 Client Application depends. A Client Application may have a metadata
 file that describes the TAs it depends on and the associated TAM that
 each TA installation goes to use. The REE Application Installer can
 inspect the application metadata file and installs TAs on behalf of
 the Client Application without requiring the Client Application to
 run first.

 This interface for Client Applications or Application Installers may
 be commonly in a form of an OS service call for an REE OS. A Client
 Application or an Application Installer interacts with the device TEE
 and the TAMs.

6.1. Role of the TEEP Broker

 A TEEP Broker abstracts the message exchanges with a TEE in a device.
 The input data is originated from a TAM or the first initialization
 call to trigger a TA installation.

 The Broker doesn't need to parse a message content received from a
 TAM that should be processed by a TEE. When a device has more than
 one TEE, one TEEP Broker per TEE could be present in REE. A TEEP
 Broker interacts with a TEEP Agent inside a TEE.

 A TAM message may indicate the target TEE where a TA should be
 installed. A compliant TEEP protocol should include a target TEE
 identifier for a TEEP Broker when multiple TEEs are present.

 The Broker relays the response messages generated from a TEEP Agent
 in a TEE to the TAM. The Broker is not expected to handle any
 network connection with an application or TAM.

 The Broker only needs to return an error message if the TEE is not
 reachable for some reason. Other errors are represented as response
 messages returned from the TEE which will then be passed to the TAM.

6.2. TEEP Broker Implementation Consideration

 A Provider should consider methods of distribution, scope and
 concurrency on devices and runtime options when implementing a TEEP
 Broker. Several non-exhaustive options are discussed below.
 Providers are encouraged to take advantage of the latest
 communication and platform capabilities to offer the best user
 experience.

Pei, et al. Expires January 9, 2020 [Page 25]

Internet-Draft TEEP Architecture July 2019

6.2.1. TEEP Broker Distribution

 The Broker installation is commonly carried out at OEM time. A user
 can dynamically download and install a Broker on-demand.

6.2.2. Number of TEEP Brokers

 There should be generally only one shared TEEP Broker in a device.
 The device's TEE vendor will most probably supply one Broker. When
 multiple TEEs are present in a device, one TEEP Broker per TEE may be
 used.

 When only one Broker is used per device, the Broker provider is
 responsible to allow multiple TAMs and TEE providers to achieve
 interoperability. With a standard Broker interface, each TAM can
 implement its own SDK for its SP Client Applications to work with
 this Broker.

 Multiple independent Broker providers can be used as long as they
 have standard interface to a Client Application or TAM SDK. Only one
 Broker is generally expected in a device.

7. Attestation

 Attestation is the process through which one entity (an attestor)
 presents a series of claims to another entity (a verifier), and
 provides sufficient proof that the claims are true. Different
 verifiers may have different standards for attestation proofs and not
 all attestations are acceptable to every verifier. TEEP attestations
 are based upon the use of an asymmetric key pair under the control of
 the TEE to create digital signatures across a well-defined claim set.

 In TEEP, the primary purpose of an attestation is to allow a device
 to prove to TAMs and SPs that a TEE in the device has particular
 properties, was built by a particular manufacturer, or is executing a
 particular TA. Other claims are possible; this architecture
 specification does not limit the attestation claims, but defines a
 minimal set of claims required for TEEP to operate properly.
 Extensions to these claims are possible, but are not defined in the
 TEEP specifications. Other standards or groups may define the format
 and semantics of extended claims. The TEEP specification defines the
 claims format such that these extended claims may be easily included
 in a TEEP attestation message.

 As of the writing of this specification, device and TEE attestations
 have not been standardized across the market. Different devices,
 manufacturers, and TEEs support different attestation algorithms and
 mechanisms. In order for TEEP to be inclusive, the attestation

Pei, et al. Expires January 9, 2020 [Page 26]

Internet-Draft TEEP Architecture July 2019

 format shall allow for both proprietary attestation signatures, as
 well as a standardized form of attestation signature. Either form of
 attestation signature may be applied to a set of TEEP claims, and
 both forms of attestation shall be considered conformant with TEEP.
 However, it should be recognized that not all TAMs or SPs may be able
 to process all proprietary forms of attestations. All TAMs and SPs
 MUST be able to process the TEEP standard attestation format and
 attached signature.

 The attestation formats and mechanisms described and mandated by TEEP
 shall convey a particular set of cryptographic properties based on
 minimal assumptions. The cryptographic properties are conveyed by
 the attestation; however the assumptions are not conveyed within the
 attestation itself.

 The assumptions which may apply to an attestation have to do with the
 quality of the attestation and the quality and security provided by
 the TEE, the device, the manufacturer, or others involved in the
 device or TEE ecosystem. Some of the assumptions that might apply to
 an attestations include (this may not be a comprehensive list):

 - Assumptions regarding the security measures a manufacturer takes
 when provisioning keys into devices/TEEs;

 - Assumptions regarding what hardware and software components have
 access to the Attestation keys of the TEE;

 - Assumptions related to the source or local verification of claims
 within an attestation prior to a TEE signing a set of claims;

 - Assumptions regarding the level of protection afforded to
 attestation keys against exfiltration, modification, and side
 channel attacks;

 - Assumptions regarding the limitations of use applied to TEE
 Attestation keys;

 - Assumptions regarding the processes in place to discover or detect
 TEE breeches; and

 - Assumptions regarding the revocation and recovery process of TEE
 attestation keys.

 TAMs and SPs must be comfortable with the assumptions that are
 inherently part of any attestation they accept. Alternatively, any
 TAM or SP may choose not to accept an attestation generated from a
 particular manufacturer or device's TEE based on the inherent

Pei, et al. Expires January 9, 2020 [Page 27]

Internet-Draft TEEP Architecture July 2019

 assumptions. The choice and policy decisions are left up to the
 particular TAM/SP.

 Some TAMs or SPs may require additional claims in order to properly
 authorize a device or TEE. These additional claims may help clear up
 any assumptions for which the TAM/SP wants to alleviate. The
 specific format for these additional claims are outside the scope of
 this specification, but the OTrP protocol SHALL allow these
 additional claims to be included in the attestation messages.

 The following sub-sections define the cryptographic properties
 conveyed by the TEEP attestation, the basic set of TEEP claims
 required in a TEEP attestation, the TEEP attestation flow between the
 TAM the device TEE, and some implementation examples of how an
 attestation key may be realized in a real TEEP device.

7.1. Attestation Cryptographic Properties

 The attestation constructed by TEEP must convey certain cryptographic
 properties from the attestor to the verifier; in the case of TEEP,
 the attestation must convey properties from the device to the TAM
 and/or SP. The properties required by TEEP include:

 - Non-repudiation, Unique Proof of Source - the cryptographic
 digital signature across the attestation, and optionally along
 with information in the attestion itself SHALL uniquely identify a
 specific TEE in a specific device.

 - Integrity of claims - the cryptographic digital signature across
 the attestation SHALL cover the entire attestation including all
 meta data and all the claims in the attestation, ensuring that the
 attestation has not be modified since the TEE signed the
 attestation.

 Standard public key algorithms such as RSA and ECDSA digital
 signatures convey these properties. Group public key algorithms such
 as EPID can also convey these properties, if the attestation includes
 a unique device identifier and an identifier for the TEE. Other
 cryptographic operations used in other attestation schemes may also
 convey these properties.

 The TEEP standard attestation format SHALL use one of the following
 digital signature formats:

 - RSA-2048 with SHA-256 or SHA-384 in RSASSA-PKCS1-v1_5 or PSS
 format

Pei, et al. Expires January 9, 2020 [Page 28]

Internet-Draft TEEP Architecture July 2019

 - RSA-3072 with SHA-256 or SHA-384 in RSASSA-PKCS1-v1_5 or PSS
 format

 - ECDSA-256 using NIST P256 curve using SHA-256

 - ECDSA-384 using NIST P384 curve using SHA-384

 - HashEdDSA using Ed25519 with SHA-512 (Ed25519ph in RFC8032) and
 context="TEEP Attestation"

 - EdDSA using Ed448 with SHAK256 (Ed448ph in RFC8032) and
 context="TEEP Attestation"

 All TAMs and SPs MUST be able to accept attestations using these
 algorithms, contingent on their acceptance of the assumptions implied
 by the attestations.

7.2. TEEP Attestation Structure

 For a TEEP attestation to be useful, it must contain an information
 set allowing the TAM and/or SP to assess the attestation and make a
 related security policy decision. The structure of the TEEP
 attestation is shown in the diagram below.

 +------(Signed By)-----------+
 | |
 /--------------------------\ V
 +---------------+-------------+--------------------------+
 | Attestation | The | The |
 | Header | Claims | Attestation Signature(s) |
 +---------------+-------------+--------------------------+
 |
 |
 +------------+--(Contains)------+-----------------+--------------+
 | | | | |
 V V V V V
 +-------------+ +-------------+ +----------+ +-----------------+
+------------+
 | Device | | TEE | | | | Action or | |
Additional |
 | Identifying | | Identifying | | Liveness | | Operation | |
or optional|
 | Info | | Info | | Proof | | Specific claims | |
Claims |
 +-------------+ +-------------+ +----------+ +-----------------+
+------------+

 Figure 7: Structure of TEEP Attestation

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032

 The Attestation Header SHALL identify the "Attestation Type" and the
 "Attestation Signature Type" along with an "Attestation Format
 Version Number." The "Attestation Type" identifies the minimal set
 of claims that MUST be included in the attestation; this is an

Pei, et al. Expires January 9, 2020 [Page 29]

Internet-Draft TEEP Architecture July 2019

 identifier for a profile that defines the claims that should be
 included in the attestation as part of the "Action or Operation
 Specific Claims." The "Attestation Signature Type" identifies the
 type of attestation signature that is attached. The type of
 attestation signature SHALL be one of the standard signatures types
 identified by an IANA number, a proprietary signature type identified
 by an IANA number, or the generic "Proprietary Signature" with an
 accompanying proprietary identifier. Not all TAMs may be able to
 process proprietary signatures.

 The claims in the attestation are set of mandatory and optional
 claims. The claims themselves SHALL be defined in an attestation
 claims dictionary. See the next section on TEEP Attestation Claims.
 Claims are grouped in profiles under an identifier (Attestation
 Type), however all attestations require a minimal set of claims which
 includes:

 - Device Identifying Info: TEEP attestations must uniquely identify
 a device to the TAM and SP. This identifier allows the TAM/SP to
 provide services unique to the device, such as managing installed
 TAs, and providing subscriptions to services, and locating device-
 specific keying material to communicate wiht or authenticate the
 device. Additionally, device manufacturer information must be
 provided to provide better universal uniqueness qualities without
 requiring globally unique identifiers for all devices.

 - TEE Identifying info: The type of TEE that generated this
 attestation must be identified. Standard TEE types are identified
 by an IANA number, but also must include version identification
 information such as the hardware, firmware, and software version
 of the TEE, as applicable by the TEE type. Structure to the
 version number is required.TEE manufacturer information for the
 TEE is required in order to disambiguate the same TEE type created
 by different manufacturers and resolve potential assumptions
 around manufacturer provisioning, keying and support for the TEE.

 - Liveness Proof: a claim that includes liveness information SHALL
 be included which may be a large nonce or may be a timestamp and
 short nonce.

 - Action Specific Claims: Certain attestation types shall include
 specific claims. For example an attestation from a specific TA
 shall include a measurement, version and signing public key for
 the TA.

 - Additional Claims: (Optional - May be empty set) A TAM or SP may
 require specific additional claims in order to address potential
 assumptions, such as the requirement that a device's REE performed

Pei, et al. Expires January 9, 2020 [Page 30]

Internet-Draft TEEP Architecture July 2019

 a secure boot, or that the device is not currenlty in a debug or
 non-productions state. A TAM may require a device to provide a
 device health attestation that may include some claims or
 measurements about the REE. These claims are TAM specific.

7.3. TEEP Attestation Claims

 TEEP requires a set of attestation claims that provide sufficient
 evidence to the TAM and/or SP that the device and its TEE meet
 certain minimal requirements. Because attestation formats are not
 yet broadly standardized across the industry, standardization work is
 currently ongoing, and it is expected that extensions to the
 attestation claims will be required as new TEEs and devices are
 created, the set of attestation claims required by TEEP SHALL be
 defined in an IANA registry. That registry SHALL be defined in the
 OTrP protocol with sufficient elements to address basic TEEP claims,
 expected new standard claims (for example from

https://www.ietf.org/id/draft-mandyam-eat-01.txt), and proprietary
 claim sets.

7.4. TEEP Attestation Flow

 Attesations are required in TEEP under the following flows:

 - When a TEE responds with device state information (dsi) to the TAM
 or SP, including a "GetDeviceState" response, "InstallTA"
 response, etc.

 - When a new key pair is generated for a TA-to-TAM or TA-to-SP
 communication, the keypair must be covered by an attestation,
 including "CreateSecurityDomain" response, "UpdateSecurityDomain"
 response, etc.

7.5. Attestation Key Example

 The attestation hierarchy and seed required for TAM protocol
 operation must be built into the device at manufacture. Additional
 TEEs can be added post-manufacture using the scheme proposed, but it
 is outside of the current scope of this document to detail that.

 It should be noted that the attestation scheme described is based on
 signatures. The only decryption that may take place is through the
 use of a bootloader key.

 A boot module generated attestation can be optional where the
 starting point of device attestation can be at TEE certificates. A
 TAM can define its policies on what kinds of TEE it trusts if TFW
 attestation is not included during the TEE attestation.

https://www.ietf.org/id/draft-mandyam-eat-01.txt

Pei, et al. Expires January 9, 2020 [Page 31]

Internet-Draft TEEP Architecture July 2019

7.5.1. Attestation Hierarchy Establishment: Manufacture

 During manufacture the following steps are required:

 1. A device-specific TFW key pair and certificate are burnt into the
 device. This key pair will be used for signing operations
 performed by the boot module.

 2. TEE images are loaded and include a TEE instance-specific key
 pair and certificate. The key pair and certificate are included
 in the image and covered by the code signing hash.

 3. The process for TEE images is repeated for any subordinate TEEs,
 which are additional TEEs after the root TEE that some devices
 have.

7.5.2. Attestation Hierarchy Establishment: Device Boot

 During device boot the following steps are required:

 1. The boot module releases the TFW private key by decrypting it
 with the bootloader key.

 2. The boot module verifies the code-signing signature of the active
 TEE and places its TEE public key into a signing buffer, along
 with its identifier for later access. For a TEE non-compliant to
 this architecture, the boot module leaves the TEE public key
 field blank.

 3. The boot module signs the signing buffer with the TFW private
 key.

 4. Each active TEE performs the same operation as the boot module,
 building up their own signed buffer containing subordinate TEE
 information.

7.5.3. Attestation Hierarchy Establishment: TAM

 Before a TAM can begin operation in the marketplace, it must obtain a
 TAM certificate from a CA that is registered in the trust store of
 devices. In this way, the TEE can check the intermediate and root CA
 and verify that it trusts this TAM to perform operations on the TEE.

8. Algorithm and Attestation Agility

RFC 7696 [RFC7696] outlines the requirements to migrate from one
 mandatory-to-implement algorithm suite to another over time. This
 feature is also known as crypto agility. Protocol evolution is

https://datatracker.ietf.org/doc/html/rfc7696
https://datatracker.ietf.org/doc/html/rfc7696

Pei, et al. Expires January 9, 2020 [Page 32]

Internet-Draft TEEP Architecture July 2019

 greatly simplified when crypto agility is already considered during
 the design of the protocol. In the case of the Open Trust Protocol
 (OTrP) the diverse range of use cases, from trusted app updates for
 smart phones and tablets to updates of code on higher-end IoT
 devices, creates the need for different mandatory-to-implement
 algorithms already from the start.

 Crypto agility in the OTrP concerns the use of symmetric as well as
 asymmetric algorithms. Symmetric algorithms are used for encryption
 of content whereas the asymmetric algorithms are mostly used for
 signing messages.

 In addition to the use of cryptographic algorithms in OTrP there is
 also the need to make use of different attestation technologies. A
 Device must provide techniques to inform a TAM about the attestation
 technology it supports. For many deployment cases it is more likely
 for the TAM to support one or more attestation techniques whereas the
 Device may only support one.

9. Security Considerations

9.1. TA Trust Check at TEE

 A TA binary is signed by a TA signer certificate. This TA signing
 certificate/private key belongs to the SP, and may be self-signed
 (i.e., it need not participate in a trust hierarchy). It is the
 responsibility of the TAM to only allow verified TAs from trusted SPs
 into the system. Delivery of that TA to the TEE is then the
 responsibility of the TEE, using the security mechanisms provided by
 the protocol.

 We allow a way for an (untrusted) application to check the
 trustworthiness of a TA. A TEEP Broker has a function to allow an
 application to query the information about a TA.

 An application in the Rich O/S may perform verification of the TA by
 verifying the signature of the TA. The GetTAInformation function is
 available to return the TEE supplied TA signer and TAM signer
 information to the application. An application can do additional
 trust checks on the certificate returned for this TA. It might trust
 the TAM, or require additional SP signer trust chaining.

9.2. One TA Multiple SP Case

 A TA for multiple SPs must have a different identifier per SP. They
 should appear as different TAs when they are installed in the same
 device.

Pei, et al. Expires January 9, 2020 [Page 33]

Internet-Draft TEEP Architecture July 2019

9.3. Broker Trust Model

 A TEEP Broker could be malware in the vulnerable REE. A Client
 Application will connect its TAM provider for required TA
 installation. It gets command messages from the TAM, and passes the
 message to the Broker.

 The architecture enables the TAM to communicate with the device's TEE
 to manage TAs. All TAM messages are signed and sensitive data is
 encrypted such that the TEEP Broker cannot modify or capture
 sensitive data.

9.4. Data Protection at TAM and TEE

 The TEE implementation provides protection of data on the device. It
 is the responsibility of the TAM to protect data on its servers.

9.5. Compromised CA

 A root CA for TAM certificates might get compromised. Some TEE trust
 anchor update mechanism is expected from device OEMs. A compromised
 intermediate CA is covered by OCSP stapling and OCSP validation check
 in the protocol. A TEE should validate certificate revocation about
 a TAM certificate chain.

 If the root CA of some TEE device certificates is compromised, these
 devices might be rejected by a TAM, which is a decision of the TAM
 implementation and policy choice. Any intermediate CA for TEE device
 certificates SHOULD be validated by TAM with a Certificate Revocation
 List (CRL) or Online Certificate Status Protocol (OCSP) method.

9.6. Compromised TAM

 The TEE SHOULD use validation of the supplied TAM certificates and
 OCSP stapled data to validate that the TAM is trustworthy.

 Since PKI is used, the integrity of the clock within the TEE
 determines the ability of the TEE to reject an expired TAM
 certificate, or revoked TAM certificate. Since OCSP stapling
 includes signature generation time, certificate validity dates are
 compared to the current time.

9.7. Certificate Renewal

 TFW and TEE device certificates are expected to be long lived, longer
 than the lifetime of a device. A TAM certificate usually has a
 moderate lifetime of 2 to 5 years. A TAM should get renewed or
 rekeyed certificates. The root CA certificates for a TAM, which are

Pei, et al. Expires January 9, 2020 [Page 34]

Internet-Draft TEEP Architecture July 2019

 embedded into the Trust Anchor store in a device, should have long
 lifetimes that don't require device Trust Anchor update. On the
 other hand, it is imperative that OEMs or device providers plan for
 support of Trust Anchor update in their shipped devices.

10. IANA Considerations

 This document does not require actions by IANA.

11. Acknowledgements

 The authors thank Dave Thaler for his very thorough review and many
 important suggestions. Most content of this document is split from a
 previously combined OTrP protocol document
 [I-D.ietf-teep-opentrustprotocol]. We thank the former co-authors
 Nick Cook and Minho Yoo for the initial document content, and
 contributors Brian Witten, Tyler Kim, and Alin Mutu.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [GPTEE] Global Platform, "GlobalPlatform Device Technology: TEE
 System Architecture, v1.1", Global Platform GPD_SPE_009,
 January 2017, <https://globalplatform.org/specs-library/

tee-system-architecture-v1-1/>.

 [I-D.ietf-teep-opentrustprotocol]
 Pei, M., Atyeo, A., Cook, N., Yoo, M., and H. Tschofenig,
 "The Open Trust Protocol (OTrP)", draft-ietf-teep-

opentrustprotocol-03 (work in progress), May 2019.

 [RFC6024] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", RFC 6024, DOI 10.17487/RFC6024, October
 2010, <https://www.rfc-editor.org/info/rfc6024>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://globalplatform.org/specs-library/tee-system-architecture-v1-1/
https://globalplatform.org/specs-library/tee-system-architecture-v1-1/
https://datatracker.ietf.org/doc/html/draft-ietf-teep-opentrustprotocol-03
https://datatracker.ietf.org/doc/html/draft-ietf-teep-opentrustprotocol-03
https://datatracker.ietf.org/doc/html/rfc6024
https://www.rfc-editor.org/info/rfc6024

Pei, et al. Expires January 9, 2020 [Page 35]

Internet-Draft TEEP Architecture July 2019

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

Pei, et al. Expires January 9, 2020 [Page 36]

https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696

Internet-Draft TEEP Architecture July 2019

Appendix A. History

 RFC EDITOR: PLEASE REMOVE THIS SECTION

 IETF Drafts

draft-00: - Initial working group document

Authors' Addresses

 Mingliang Pei
 Symantec

 EMail: mingliang_pei@symantec.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 David Wheeler
 Intel

 EMail: david.m.wheeler@intel.com

 Andrew Atyeo
 Intercede

 EMail: andrew.atyeo@intercede.com

 Liu Dapeng
 Alibaba Group

 EMail: maxpassion@gmail.com

https://datatracker.ietf.org/doc/html/draft-00

Pei, et al. Expires January 9, 2020 [Page 37]

