
TEEP M. Pei
Internet-Draft Symantec
Intended status: Informational H. Tschofenig
Expires: June 14, 2020 Arm Limited
 D. Thaler
 Microsoft
 D. Wheeler
 Intel
 December 12, 2019

Trusted Execution Environment Provisioning (TEEP) Architecture
draft-ietf-teep-architecture-05

Abstract

 A Trusted Execution Environment (TEE) is an environment that enforces
 that only authorized code can execute with that environment, and that
 any data used by such code cannot be read or tampered with by any
 code outside that environment. This architecture document motivates
 the design and standardization of a protocol for managing the
 lifecycle of trusted applications running inside a TEE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 14, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Pei, et al. Expires June 14, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TEEP Architecture December 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Use Cases . 7
3.1. Payment . 7
3.2. Authentication . 7
3.3. Internet of Things 7
3.4. Confidential Cloud Computing 7

4. Architecture . 8
4.1. System Components . 8
4.2. Different Renditions of TEEP Architecture 10
4.3. Multiple TAMs and Relationship to TAs 12

 4.4. Untrusted Apps, Trusted Apps, and Personalization Data . 13
 4.5. Examples of Application Delivery Mechanisms in Existing
 TEEs . 14

4.6. Entity Relations . 15
5. Keys and Certificate Types 17
5.1. Trust Anchors in TEE 18
5.2. Trust Anchors in TAM 19
5.3. Scalability . 19
5.4. Message Security . 19

6. TEEP Broker . 19
6.1. Role of the TEEP Broker 20
6.2. TEEP Broker Implementation Consideration 20
6.2.1. TEEP Broker APIs 20
6.2.2. TEEP Broker Distribution 21
6.2.3. Number of TEEP Brokers 21

7. Attestation . 22

Pei, et al. Expires June 14, 2020 [Page 2]

Internet-Draft TEEP Architecture December 2019

7.1. Information Required in TEEP Claims 23
8. Algorithm and Attestation Agility 24
9. Security Considerations 25
9.1. TA Trust Check at TEE 25
9.2. One TA Multiple SP Case 25
9.3. Broker Trust Model 25
9.4. Data Protection at TAM and TEE 25
9.5. Compromised CA . 26
9.6. Compromised TAM . 26
9.7. Certificate Renewal 26
9.8. Keeping Secrets from the TAM 26

10. IANA Considerations . 27
11. Contributors . 27
12. Acknowledgements . 27
13. Informative References 27

 Authors' Addresses . 28

1. Introduction

 Applications executing in a device are exposed to many different
 attacks intended to compromise the execution of the application, or
 reveal the data upon which those applications are operating. These
 attacks increase with the number of other applications on the device,
 with such other applications coming from potentially untrustworthy
 sources. The potential for attacks further increase with the
 complexity of features and applications on devices, and the
 unintended interactions among those features and applications. The
 danger of attacks on a system increases as the sensitivity of the
 applications or data on the device increases. As an example,
 exposure of emails from a mail client is likely to be of concern to
 its owner, but a compromise of a banking application raises even
 greater concerns.

 The Trusted Execution Environment (TEE) concept is designed to
 execute applications in a protected environment that enforces that
 only authorized code can execute with that environment, and that any
 data used by such code cannot be read or tampered with by any code
 outside that environment, including a commodity operating system (if
 present).

 This separation reduces the possibility of a successful attack on
 application components and the data contained inside the TEE.
 Typically, application components are chosen to execute inside a TEE
 because those application components perform security sensitive
 operations or operate on sensitive data. An application component
 running inside a TEE is referred to as a Trusted Application (TA),
 while an application running outside any TEE is referred to as an
 Untrusted Application (UA).

Pei, et al. Expires June 14, 2020 [Page 3]

Internet-Draft TEEP Architecture December 2019

 TEEs use hardware enforcement combined with software protection to
 secure TAs and its data. TEEs typically offer a more limited set of
 services to TAs than is normally available to Untrusted Applications.

 But not all TEEs are the same, and different vendors may have
 different implementations of TEEs with different security properties,
 different features, and different control mechanisms to operate on
 TAs. Some vendors may themselves market multiple different TEEs with
 different properties attuned to different markets. A device vendor
 may integrate one or more TEEs into their devices depending on market
 needs.

 To simplify the life of developers and service providers interacting
 with TAs in a TEE, an interoperable protocol for managing TAs running
 in different TEEs of various devices is needed. In this TEE
 ecosystem, there often arises a need for an external trusted party to
 verify the identity, claims, and rights of Service Providers (SP),
 devices, and their TEEs. This trusted third party is the Trusted
 Application Manager (TAM).

 The Trusted Execution Provisioning (TEEP) protocol addresses the
 following problems:

 - A Service Provider (SP) intending to provide services through a TA
 to users of a device needs to determine security-relevant
 information of a device before provisioning their TA to the TEE
 within the device. An example is the verification of the type of
 TEE included in a device and that it is capable of providing the
 security protections required by a particular TA.

 - A TEE in a device needs to determine whether a Service Provider
 (SP) that wants to manage a TA in the device is authorized to
 manage TAs in the TEE, and what TAs the SP is permitted to manage.

 - A Service Provider (SP) must be able to determine if a TA exists
 (is installed) on a device (in the TEE), and if not, install the
 TA in the TEE.

 - A Service Provider (SP) must be able to check whether a TA in a
 device's TEE is the most up-to-date version, and if not, update
 the TA in the TEE.

 - A Service Provider (SP) must be able to remove a TA in a device's
 TEE if the SP is no longer offering such services or the services
 are being revoked from a particular user (or device). For
 example, if a subscription or contract for a particular service
 has expired, or a payment by the user has not been completed or
 has been rescinded.

Pei, et al. Expires June 14, 2020 [Page 4]

Internet-Draft TEEP Architecture December 2019

 - A Service Provider (SP) must be able to define the relationship
 between cooperating TAs under the SP's control, and specify
 whether the TAs can communicate, share data, and/or share key
 material.

 Note: The Service Provider requires the help of a TAM to provision
 the Trusted Applications to remote devices and the TEEP protocol
 exchanges messages between a Trusted Application Manager (TAM) and a
 TEEP Agent via a TEEP Broker.

2. Terminology

 The following terms are used:

 - Untrusted Application: An application running in a Rich Execution
 Environment, such as an Android, Windows, or iOS application.

 - Trusted Application Manager (TAM): An entity that manages Trusted
 Applications (TAs) running in different TEEs of various devices.

 - Device: A physical piece of hardware that hosts one or more TEEs,
 often along with a Rich Execution Environment. A Device contains
 a default list of Trust Anchors that identify entities (e.g.,
 TAMs) that are trusted by the Device. This list is normally set
 by the Device Manufacturer, and may be governed by the Device's
 network carrier. The list of Trust Anchors is normally modifiable
 by the Device's owner or Device Administrator. However the Device
 manufacturer and network carrier may restrict some modifications,
 for example, by not allowing the manufacturer or carrier's Trust
 Anchor to be removed or disabled.

 - Rich Execution Environment (REE): An environment that is provided
 and governed by a typical OS (e.g., Linux, Windows, Android, iOS),
 potentially in conjunction with other supporting operating systems
 and hypervisors; it is outside of any TEE. This environment and
 applications running on it are considered untrusted.

 - Service Provider (SP): An entity that wishes to provide a service
 on Devices that requires the use of one or more Trusted
 Applications.

 - Device User: A human being that uses a device. Many devices have
 a single device user. Some devices have a primary device user
 with other human beings as secondary device users (e.g., parent
 allowing children to use their tablet or laptop). Other devices
 are not used by a human being and hence have no device user.
 Relates to Device Owner and Device Administrator.

Pei, et al. Expires June 14, 2020 [Page 5]

Internet-Draft TEEP Architecture December 2019

 - Device Owner: A device is always owned by someone. In some cases,
 it is common for the (primary) device user to also own the device,
 making the device user/owner also the device administrator. In
 enterprise environments it is more common for the enterprise to
 own the device, and any device user has no or limited
 administration rights. In this case, the enterprise appoints a
 device administrator that is not the device owner.

 - Device Administrator (DA): An entity that is responsible for
 administration of a Device, which could be the device owner. A
 Device Administrator has privileges on the Device to install and
 remove applications and TAs, approve or reject Trust Anchors, and
 approve or reject Service Providers, among possibly other
 privileges on the Device. A Device Administrator can manage the
 list of allowed TAMs by modifying the list of Trust Anchors on the
 Device. Although a Device Administrator may have privileges and
 Device-specific controls to locally administer a device, the
 Device Administrator may choose to remotely administrate a device
 through a TAM.

 - Trust Anchor: As defined in [RFC6024] and
 [I-D.ietf-suit-manifest], "A trust anchor represents an
 authoritative entity via a public key and associated data. The
 public key is used to verify digital signatures, and the
 associated data is used to constrain the types of information for
 which the trust anchor is authoritative." The Trust Anchor may be
 a certificate or it may be a raw public key along with additional
 data if necessary such as its public key algorithm and parameters.

 - Trust Anchor Store: As defined in [RFC6024], "A trust anchor store
 is a set of one or more trust anchors stored in a device. A
 device may have more than one trust anchor store, each of which
 may be used by one or more applications." As noted in
 [I-D.ietf-suit-manifest], a trust anchor store must resist
 modification against unauthorized insertion, deletion, and
 modification.

 - Trusted Application (TA): An application component that runs in a
 TEE.

 - Trusted Execution Environment (TEE): An execution environment that
 enforces that only authorized code can execute within the TEE, and
 data used by that code cannot be read or tampered with by code
 outside the TEE. A TEE also generally has a device unique
 credential that cannot be cloned. There are multiple technologies
 that can be used to implement a TEE, and the level of security
 achieved varies accordingly. In addition, TEEs typically use an
 isolation mechanism between Trusted Applications to ensure that

https://datatracker.ietf.org/doc/html/rfc6024
https://datatracker.ietf.org/doc/html/rfc6024

Pei, et al. Expires June 14, 2020 [Page 6]

Internet-Draft TEEP Architecture December 2019

 one TA cannot read, modify or delete the data and code of another
 TA.

3. Use Cases

3.1. Payment

 A payment application in a mobile device requires high security and
 trust about the hosting device. Payments initiated from a mobile
 device can use a Trusted Application to provide strong identification
 and proof of transaction.

 For a mobile payment application, some biometric identification
 information could also be stored in a TEE. The mobile payment
 application can use such information for unlocking the phone and for
 local identification of the user.

 A trusted user interface (UI) may be used in a mobile device to
 prevent malicious software from stealing sensitive user input data.
 Such an implementation often relies on a TEE for providing access to
 peripherals, such as PIN input.

3.2. Authentication

 For better security of authentication, a device may store its keys
 and cryptographic libraries inside a TEE limiting access to
 cryptographic functions via a well-defined interface and thereby
 reducing access to keying material.

3.3. Internet of Things

 The Internet of Things (IoT) has been posing threats to critical
 infrastructure because of weak security in devices. It is desirable
 that IoT devices can prevent malware from manipulating actuators
 (e.g., unlocking a door), or stealing or modifying sensitive data,
 such as authentication credentials in the device. A TEE can be the
 best way to implement such IoT security functions.

3.4. Confidential Cloud Computing

 A tenant can store sensitive data in a TEE in a cloud computing
 server such that only the tenant can access the data, preventing the
 cloud hosting provider from accessing the data. A tenant can run TAs
 inside a server TEE for secure operation and enhanced data security.
 This provides benefits not only to tenants with better data security
 but also to cloud hosting provider for reduced liability and
 increased cloud adoption.

Pei, et al. Expires June 14, 2020 [Page 7]

Internet-Draft TEEP Architecture December 2019

4. Architecture

4.1. System Components

 The following are the main components in the system. Full
 descriptions of components not previously defined are provided below.
 Interactions of all components are further explained in the following
 paragraphs.

 +---+
 | Device |
 | +--------+ | Service Provider
+-------------+		----------+					
	TEE-1		TEEP	---------+			
	+--------+	+----	Broker				+--------+
		TEEP					<---+
		Agent	<----+				
	+--------+			<-+		+->	
		+--------+				+--------+	
	+---+ +---+					TAM-2	
+-->	TA1		TA2		+-------+		
						<---------	App-2
		+---+ +---+	+-------+			Device Administrator	
	+-------------+	App-1					
+--------------------		---+					
		--------+					
+-------+							
 +---+

 Figure 1: Notional Architecture of TEEP

 - Service Providers (SP) and Device Administrators (DA) utilize the
 services of a TAM to manage TAs on Devices. SPs do not directly
 interact with devices. DAs may elect to use a TAM for remote
 administration of TAs instead of managing each device directly.

 - Trusted Application Manager (TAM): A TAM is responsible for
 performing lifecycle management activity on TA's on behalf of
 Service Providers and Device Administrators. This includes
 creation and deletion of TA's, and may include, for example, over-
 the-air updates to keep an SP's TAs up-to-date and clean up when a
 version should be removed. TAMs may provide services that make it
 easier for SPs or DAs to use the TAM's service to manage multiple
 devices, although that is not required of a TAM.

 The TAM performs its management of TA's through an interaction
 with a Device's TEEP Broker. As shown in Figure 1, the TAM cannot

Pei, et al. Expires June 14, 2020 [Page 8]

Internet-Draft TEEP Architecture December 2019

 directly contact a TEEP Agent, but must wait for the TEEP Broker
 to contact the TAM requesting a particular service. This
 architecture is intentional in order to accommodate network and
 application firewalls that normally protect user and enterprise
 devices from arbitrary connections from external network entities.

 A TAM may be publicly available for use by many SPs, or a TAM may
 be private, and accessible by only one or a limited number of SPs.
 It is expected that manufacturers and carriers will run their own
 private TAM. Another example of a private TAM is a TAM running as
 a Software-as-a-Service (SaaS) within an SP.

 A SP or Device Administrator chooses a particular TAM based on
 whether the TAM is trusted by a Device or set of Devices. The TAM
 is trusted by a device if the TAM's public key is an authorized
 Trust Anchor in the Device. A SP or Device Administrator may run
 their own TAM, however the Devices they wish to manage must
 include this TAM's pubic key in the Trust Anchor list.

 A SP or Device Administrator is free to utilize multiple TAMs.
 This may be required for a SP to manage multiple different types
 of devices from different manufacturers, or devices on different
 carriers, since the Trust Anchor list on these different devices
 may contain different TAMs. A Device Administrator may be able to
 add their own TAM's public key or certificate to the Trust Anchor
 list on all their devices, overcoming this limitation.

 Any entity is free to operate a TAM. For a TAM to be successful,
 it must have its public key or certificate installed in Devices
 Trust Anchor list. A TAM may set up a relationship with device
 manufacturers or carriers to have them install the TAM's keys in
 their device's Trust Anchor list. Alternatively, a TAM may
 publish its certificate and allow Device Administrators to install
 the TAM's certificate in their devices as an after-market-action.

 - TEEP Broker: The TEEP Broker is an application component running
 in a Rich Execution Environment (REE) that enables the message
 protocol exchange between a TAM and a TEE in a device. The TEEP
 Broker does not process messages on behalf of a TEE, but merely is
 responsible for relaying messages from the TAM to the TEE, and for
 returning the TEE's responses to the TAM.

 - TEEP Agent: the TEEP Agent is a processing module running inside a
 TEE that receives TAM requests that are relayed via a TEEP Broker
 that runs in an REE. A TEEP Agent in the TEE may parse requests
 or forward requests to other processing modules in a TEE, which is
 up to a TEE provider's implementation. A response message

Pei, et al. Expires June 14, 2020 [Page 9]

Internet-Draft TEEP Architecture December 2019

 corresponding to a TAM request is sent by a TEEP Agent back to a
 TEEP Broker.

 - Certification Authority (CA): Certificate-based credentials used
 for authenticating a device, a TAM and an SP. A device embeds a
 list of root certificates (Trust Anchors), from trusted CAs that a
 TAM will be validated against. A TAM will remotely attest a
 device by checking whether a device comes with a certificate from
 a CA that the TAM trusts. The CAs do not need to be the same;
 different CAs can be chosen by each TAM, and different device CAs
 can be used by different device manufacturers.

4.2. Different Renditions of TEEP Architecture

 There is nothing prohibiting a device from implementing multiple
 TEEs. In addition, some TEEs (for example, SGX) present themselves
 as separate containers within memory without a controlling manager
 within the TEE. In these cases, the Rich Execution Environment hosts
 multiple TEEP brokers, where each Broker manages a particular TEE or
 set of TEEs. Enumeration and access to the appropriate TEEP Broker
 is up to the Rich Execution Environment and the Untrusted
 Applications. Verification that the correct TA has been reached then
 becomes a matter of properly verifying TA attestations, which are
 unforgeable. The multiple TEEP Broker approach is shown in the
 diagram below. For brevity, TEEP Broker 2 is shown interacting with
 only one TAM and UA, but no such limitation is intended to be implied
 in the architecture.

Pei, et al. Expires June 14, 2020 [Page 10]

Internet-Draft TEEP Architecture December 2019

 +---+
 | Device |
 | +--------+ | Service Provider
		----------+					
+-------------+	TEEP	---------+					
	TEE-1	+---	Broker				+--------+
				1	<---+		+-->
	+-------+						
		TEEP					
		Agent	<------+				
		1					
	+-------+						
	+---+ +---+						+-
		TA1		TA2			
+-->				<---+ +--------+			
		+---+ +---+					
				+-------+			+--------+
	+-------------+ +-----	App-2	--+		^		
	+-------+				Device		
+--------------------	App-1					Administrator	
+------							
+-----------	-+		---+				
	TEE-2				--------+		
	+------+				------+		
		TEEP			+-------+		
		Agent	<-----+				
		2					
	+------+						
	+---+						
		TA3	<----+		+----------+		
						TEEP	<--+
	+---+	+--	Broker	----------------+			
			2				
+-------------+ +----------+							
 +---+

 Figure 2: Notional Architecture of TEEP with multiple TEEs

 In the diagram above, TEEP Broker 1 controls interactions with the
 TA's in TEE-1, and TEEP Broker 2 controls interactions with the TA's
 in TEE-2. This presents some challenges for a TAM in completely
 managing the device, since a TAM may not interact with all the TEEP
 Brokers on a particular platform. In addition, since TEE's may be
 physically separated, with wholly different resources, there may be
 no need for TEEP Brokers to share information on installed TAs or

Pei, et al. Expires June 14, 2020 [Page 11]

Internet-Draft TEEP Architecture December 2019

 resource usage. However, the architecture guarantees that the TAM
 will receive all the relevant information from the TEEP Broker to
 which it communicates.

4.3. Multiple TAMs and Relationship to TAs

 As shown in Figure 2, the TEEP Broker provides connections from the
 TEE and the Untrusted Application to one or more TAMs. The selection
 of which TAM to communicate with is dependent on information from the
 Untrusted Application and is directly related to the TA.

 When a SP offers a service which requires a TA, the SP associates
 that service with a specific TA. The TA itself is digitally signed,
 protecting its integrity, but the signature also links the TA back to
 the signer. The signer is usually the SP, but in some cases may be
 another party that the SP trusts. The SP selects one or more TAMs
 through which to offer their service, and communicates the
 information of the service and the specific Untrusted Applications
 and TAs to the TAM.

 The SP chooses TAMs based upon the markets into which the TAM can
 provide access. There may be TAMs that provide services to specific
 types of mobile devices, or mobile device operating systems, or
 specific geographical regions or network carriers. A SP may be
 motivated to utilize multiple TAMs for its service in order to
 maximize market penetration and availability on multiple types of
 devices. This likely means that the same service will be available
 through multiple TAMs.

 When the SP publishes the Untrusted Application to an app store or
 other app repositories, the SP binds the Untrusted Application with a
 manifest that identifies what TAMs can be contacted for the TA. In
 some situations, an SP may use only a single TAM - this is likely the
 case for enterprise applications or SPs serving a closed community.
 For broad public apps, there will likely be multiple TAMs in the
 manifest - one servicing one brand of mobile device and another
 servicing a different manufacturer, etc. Because different devices
 and different manufacturers trust different TAMs, the manifest will
 include different TAMs that support this SP's Untrusted Application
 and TA. Multiple TAMs allow the SP to provide their service and this
 app (and TA) to multiple different devices.

 When a TEEP Broker receives a request from an Untrusted Application
 to install a TA, a list of TAM URIs may be provided for that TA, and
 the request is passed to the TEEP Agent. If the TEEP Agent decides
 that the TA needs to be installed, the TEEP Agent selects a single
 TAM URI that is consistent with the list of trusted TAMs provisioned
 on the device invokes the HTTP transport for TEEP to connect to the

Pei, et al. Expires June 14, 2020 [Page 12]

Internet-Draft TEEP Architecture December 2019

 TAM URI and begins a TEEP protocol exchange. When the TEEP Agent
 subsequently receives the TA to install and the TA's manifest
 indicates dependencies on any other trusted components, each
 dependency can include a list of TAM URIs for the relevant
 dependency. If such dependencies exist that are prerequisites to
 install the TA, then the TEEP Agent recursively follows the same
 procedure for each dependency that needs to be installed or updated,
 including selecting a TAM URI that is consistent with the list of
 trusted TAMs provisioned on the device, and beginning a TEEP
 exchange. If multiple TAM URIs are considered trusted, only one
 needs to be contacted and they can be attempted in some order until
 one responds.

 Separate from the Untrusted Application's manifest, this framework
 relies on the use of the manifest format in [I-D.ietf-suit-manifest]
 for expressing how to install the TA as well as dependencies on other
 TEE components and versions. That is, dependencies from TAs on other
 TEE components can be expressed in a SUIT manifest, including
 dependencies on any other TAs, or trusted OS code (if any), or
 trusted firmware. Installation steps can also be expressed in a SUIT
 manifest.

 For example, TEE's compliant with Global Platform may have a notion
 of a "security domain" (which is a grouping of one or more TAs
 installed on a device, that can share information within such a
 group) that must be created and into which one or more TAs can then
 be installed. It is thus up to the SUIT manifest to express a
 dependency on having such a security domain existing or being created
 first, as appropriate.

 Updating a TA may cause compatibility issues with any Untrusted
 Applications or other components that depend on the updated TA, just
 like updating the OS or a shared library could impact an Untrusted
 Application. Thus, an implementation needs to take into account such
 issues.

4.4. Untrusted Apps, Trusted Apps, and Personalization Data

 In TEEP, there is an explicit relationship and dependence between the
 Untrusted Application in the REE and one or more TAs in the TEE, as
 shown in Figure 2. For most purposes, an Untrusted Application that
 uses one or more TA's in a TEE appears no different from any other
 Untrusted Application in the REE. However, the way the Untrusted
 Application and its corresponding TA's are packaged, delivered, and
 installed on the device can vary. The variations depend on whether
 the Untrusted Application and TA are bundled together or are provided
 separately, and this has implications to the management of the TAs in
 the TEE. In addition to the Untrusted Application and TA, the TA

Pei, et al. Expires June 14, 2020 [Page 13]

Internet-Draft TEEP Architecture December 2019

 and/or TEE may require some additional data to personalize the TA to
 the service provider or the device or a user. This personalization
 data is dependent on the TEE, the TA and the SP; an example of
 personalization data might be a secret symmetric key used by the TA
 to communicate with the SP. The personalization data must be
 encrypted to preserve the confidentiality of potentially sensitive
 data contained within it. Other than this requirement to support
 confidentiality, TEEP place no limitations or requirements on the
 personalization data.

 There are three possible cases for bundling of the Untrusted
 Application, TA, and personalization data:

 1. The Untrusted Application, TA, and personalization data are all
 bundled together in a single package by the SP and provided to
 the TEEP Broker through the TAM.

 2. The Untrusted Application and the TA are bundled together in a
 single package, which a TAM or a publicly accessible app store
 maintains, and the personalization data is separately provided by
 the SP's TAM.

 3. All components are independent. The Untrusted Application is
 installed through some independent or device-specific mechanism,
 and the TAM provides the TA and personalization data from the SP.
 Delivery of the TA and personalization data may be combined or
 separate.

 The TEEP protocol treats the TA, any dependencies the TA has, and
 personalization data as separate components with separate
 installation steps that are expressed in SUIT manifests, and a SUIT
 manifest might contain or reference multiple binaries (see {{I-
 D.ietf-suit-manifest} for more details). The TEEP Agent is
 responsible for handling any installation steps that need to be
 performed inside the TEE, such as decryption of private TA bianries
 or personalization data.

4.5. Examples of Application Delivery Mechanisms in Existing TEEs

 In order to better understand these cases, it is helpful to review
 actual implementations of TEEs and their application delivery
 mechanisms.

 In Intel Software Guard Extensions (SGX), the Untrusted Application
 and TA are typically bundled into the same package (Case 2). The TA
 exists in the package as a shared library (.so or .dll). The
 Untrusted Application loads the TA into an SGX enclave when the
 Untrusted Application needs the TA. This organization makes it easy

Pei, et al. Expires June 14, 2020 [Page 14]

Internet-Draft TEEP Architecture December 2019

 to maintain compatibility between the Untrusted Application and the
 TA, since they are updated together. It is entirely possible to
 create an Untrusted Application that loads an external TA into an SGX
 enclave and use that TA (Case 3). In this case, the Untrusted
 Application would require a reference to an external file or download
 such a file dynamically, place the contents of the file into memory,
 and load that as a TA. Obviously, such file or downloaded content
 must be properly formatted and signed for it to be accepted by the
 SGX TEE. In SGX, for Case 2 and Case 3, the personalization data is
 normally loaded into the SGX enclave (the TA) after the TA has
 started. Although Case 1 is possible with SGX, there are no
 instances of this known to be in use at this time, since such a
 construction would require a special installation program and SGX TA
 to receive the encrypted binary, decrypt it, separate it into the
 three different elements, and then install all three. This
 installation is complex, because the Untrusted Application decrypted
 inside the TEE must be passed out of the TEE to an installer in the
 REE which would install the Untrusted Application; this assumes that
 the Untrusted Application package includes the TA code also, since
 otherwise there is a significant problem in getting the SGX enclave
 code (the TA) from the TEE, through the installer and into the
 Untrusted Application in a trusted fashion. Finally, the
 personalization data would need to be sent out of the TEE (encrypted
 in an SGX encalve-to-enclave manner) to the REE's installation app,
 which would pass this data to the installed Untrusted Application,
 which would in turn send this data to the SGX enclave (TA). This
 complexity is due to the fact that each SGX enclave is separate and
 does not have direct communication to other SGX enclaves.

 In Arm TrustZone for A- and R-class devices, the Untrusted
 Application and TA may or may not be bundled together. This differs
 from SGX since in TrustZone the TA lifetime is not inherently tied to
 a specific Untrused Application process lifetime as occurs in SGX. A
 TA is loaded by a trusted OS running in the TEE, where the trusted OS
 is separate from the OS in the REE. Thus Cases 2 and 3 are equally
 applicable. In addition, it is possible for TAs to communicate with
 each other without involving the Untrusted Application, and so the
 complexity of Case 1 is lower than in the SGX example, and so Case 1
 is possible as well though still more complex than Cases 2 and 3.

4.6. Entity Relations

 This architecture leverages asymmetric cryptography to authenticate a
 device to a TAM. Additionally, a TEE in a device authenticates a TAM
 and TA signer. The provisioning of Trust Anchors to a device may be
 different from one use case to the other. A device administrator may
 want to have the capability to control what TAs are allowed. A
 device manufacturer enables verification of the TA signers and TAM

Pei, et al. Expires June 14, 2020 [Page 15]

Internet-Draft TEEP Architecture December 2019

 providers; it may embed a list of default Trust Anchors that the
 signer of an allowed TA's signer certificate should chain to. A
 device administrator may choose to accept a subset of the allowed TAs
 via consent or action of downloading.

 (App Developer) (App Store) (TAM) (Device with TEE) (CAs)
 | |
 | --> (Embedded TEE cert) <--
 | |
 | <------------------------------ Get an app cert ----- |
 | | <-- Get a TAM cert ------ |
 |
 1. Build two apps:
 Untrusted Application
 TA
 |
 |
 Untrusted Application -- 2a. --> | ----- 3. Install -------> |
 TA ----------------- 2b. Supply ------> | 4. Messaging-->|
 | | | |

 Figure 3: Developer Experience

 Note that Figure 3 shows the app developer as a TA signer and not the
 SP. However, the App Developer is either closely associated with the
 SP or the SP delegates the signing authority to the app developer.
 For the purpose of this document there is no difference between the
 SP and the app developer.

 Figure 3 shows an application developer building two applications: 1)
 an Untrusted Application; 2) a TA that provides some security
 functions to be run inside a TEE. At step 2, the application
 developer uploads the Untrusted Application (2a) to an Application
 Store. The Untrusted Application may optionally bundle the TA
 binary. Meanwhile, the application developer may provide its TA to a
 TAM provider that will be managing the TA in various devices. 3. A
 user will go to an Application Store to download the Untrusted
 Application. The Untrusted Application will trigger TA installation
 by initiating communication with a TAM. This is the step 4. The
 Untrusted Application will get messages from TAM, and interacts with
 device TEE via an Agent.

 The main components consist of a set of standard messages created by
 a TAM to deliver TA management commands to a device, and device
 attestation and response messages created by a TEE that responds to a
 TAM's message.

Pei, et al. Expires June 14, 2020 [Page 16]

Internet-Draft TEEP Architecture December 2019

 It should be noted that network communication capability is generally
 not available in TAs in today's TEE-powered devices. Trusted
 Applications need to rely on a broker in the REE to interact with a
 TEE for network message exchanges. Consequently, a TAM generally
 communicates with an Untrusted Application about how it gets messages
 that originate from a TEE inside a device. Similarly, a TA or TEE
 generally gets messages from a TAM via a TEEP Broker in this protocol
 architecture, not directly from the network.

 It is imperative to have an interoperable protocol to communicate
 with different TAMs and different TEEs in different devices. This is
 the role of the Broker, which is a software component that bridges
 communication between a TAM and a TEE. Furthermore the Broker
 communicates with a Agent inside a TEE that is responsible to process
 TAM requests. The Broker in REE does not need to know the actual
 content of messages except for the TEE routing information.

5. Keys and Certificate Types

 This architecture leverages the following credentials, which allow
 delivering end-to-end security between a TAM and a TEEP Agent.

 Figure 4 summarizes the relationships between various keys and where
 they are stored. Each public/private key identifies an SP, TAM, or
 TEE, and gets a certificate that chains up to some CA. A list of
 trusted certificates is then used to check a presented certificate
 against.

 Different CAs can be used for different types of certificates. TEEP
 messages are always signed, where the signer key is the message
 originator's private key such as that of a TAM, or a TEE's private
 key. In addition to the keys shown in Figure 4, there may be
 additional keys used for attestation. Refer to the RATS Architecture
 for more discussion.

 Cardinality & Location of
 Location of Private Key Corresponding
 Purpose Private Key Signs CA Certs
 ------------------ ----------- ------------- -------------
 Authenticating TEE 1 per TEE TEEP responses TAM

 Authenticating TAM 1 per TAM TEEP requests TEEP Agent

 Code Signing 1 per SP TA binary TEE

 Figure 4: Keys

Pei, et al. Expires June 14, 2020 [Page 17]

Internet-Draft TEEP Architecture December 2019

 Note that personalization data is not included in the table above.
 The use of personalization data is dependent on how TAs are used and
 what their security requirements are.

 The TEE key pair and certificate are used for authenticating the TEE
 to a remote TAM. Often, the key pair is burned into the TEE by the
 TEE manufacturer and the key pair and its certificate are valid for
 the expected lifetime of the TEE. A TAM provider is responsible for
 configuring its TAM with the manufacturer certificates or CAs that
 are used to sign TEE keys.

 The TAM key pair and certificate are used for authenticating a TAM to
 a remote TEE. A TAM provider is responsible for acquiring a
 certificate from a CA that is trusted by the TEEs it manages.

 The SP key pair and certificate are used to sign TAs that the TEE
 will consider authorized to execute. TEEs must be configured with
 the CAs that it considers authorized to sign TAs that it will
 execute.

5.1. Trust Anchors in TEE

 A TEEP Agent's Trust Anchor store contains a list of Trust Anchors,
 which are CA certificates that sign various TAM certificates. The
 list is typically preloaded at manufacturing time, and can be updated
 using the TEEP protocol if the TEE has some form of "Trust Anchor
 Manager TA" that has Trust Anchors in its configuration data. Thus,
 Trust Anchors can be updated similar to updating the configuration
 data for any other TA.

 When Trust Anchor update is carried out, it is imperative that any
 update must maintain integrity where only authentic Trust Anchor list
 from a device manufacturer or a Device Administrator is accepted.
 This calls for a complete lifecycle flow in authorizing who can make
 Trust Anchor update and whether a given Trust Anchor list are non-
 tampered from the original provider. The signing of a Trust Anchor
 list for integrity check and update authorization methods are
 desirable to be developed. This can be addressed outside of this
 architecture document.

 Before a TAM can begin operation in the marketplace to support a
 device with a particular TEE, it must obtain a TAM certificate from a
 CA that is listed in the Trust Anchor store of the TEE.

Pei, et al. Expires June 14, 2020 [Page 18]

Internet-Draft TEEP Architecture December 2019

5.2. Trust Anchors in TAM

 The Trust Anchor store in a TAM consists of a list of Trust Anchors,
 which are CA certificates that sign various device TEE certificates.
 A TAM will accept a device for TA management if the TEE in the device
 uses a TEE certificate that is chained to a CA that the TAM trusts.

5.3. Scalability

 This architecture uses a PKI. Trust Anchors exist on the devices to
 enable the TEE to authenticate TAMs, and TAMs use Trust Anchors to
 authenticate TEEs. Since a PKI is used, many intermediate CA
 certificates can chain to a root certificate, each of which can issue
 many certificates. This makes the protocol highly scalable. New
 factories that produce TEEs can join the ecosystem. In this case,
 such a factory can get an intermediate CA certificate from one of the
 existing roots without requiring that TAMs are updated with
 information about the new device factory. Likewise, new TAMs can
 join the ecosystem, providing they are issued a TAM certificate that
 chains to an existing root whereby existing TEEs will be allowed to
 be personalized by the TAM without requiring changes to the TEE
 itself. This enables the ecosystem to scale, and avoids the need for
 centralized databases of all TEEs produced or all TAMs that exist.

5.4. Message Security

 Messages created by a TAM are used to deliver TA management commands
 to a device, and device attestation and messages created by the
 device TEE to respond to TAM messages.

 These messages are signed end-to-end between a TEEP Agent and a TAM,
 and are typically encrypted such that only the targeted device TEE or
 TAM is able to decrypt and view the actual content.

6. TEEP Broker

 A TEE and TAs often do not have the capability to directly
 communicate outside of the hosting device. For example,
 GlobalPlatform [GPTEE] specifies one such architecture. This calls
 for a software module in the REE world to handle network
 communication with a TAM.

 A TEEP Broker is an application component running in the REE of the
 device or an SDK that facilitates communication between a TAM and a
 TEE. It also provides interfaces for Untrusted Applications to query
 and trigger TA installation that the application needs to use.

Pei, et al. Expires June 14, 2020 [Page 19]

Internet-Draft TEEP Architecture December 2019

 An Untrusted Application might communicate with the TEEP Broker at
 runtime to trigger TA installation itself. Or an Untrusted
 Application might simply have a metadata file that describes the TAs
 it depends on and the associated TAM(s) for each TA, and an REE
 Application Installer can inspect this application metadata file and
 invoke the TEEP Broker to trigger TA installation on behalf of the
 Untrusted Application without requiring the Untrusted Application to
 run first.

6.1. Role of the TEEP Broker

 A TEEP Broker abstracts the message exchanges with a TEE in a device.
 The input data is originated from a TAM or the first initialization
 call to trigger a TA installation.

 The Broker doesn't need to parse a message content received from a
 TAM that should be processed by a TEE. When a device has more than
 one TEE, one TEEP Broker per TEE could be present in REE. A TEEP
 Broker interacts with a TEEP Agent inside a TEE.

 A TAM message may indicate the target TEE where a TA should be
 installed. A compliant TEEP protocol should include a target TEE
 identifier for a TEEP Broker when multiple TEEs are present.

 The Broker relays the response messages generated from a TEEP Agent
 in a TEE to the TAM. The Broker is not expected to handle any
 network connection with an application or TAM.

 The Broker only needs to return an error message if the TEE is not
 reachable for some reason. Other errors are represented as response
 messages returned from the TEE which will then be passed to the TAM.

6.2. TEEP Broker Implementation Consideration

 A Provider should consider methods of distribution, scope and
 concurrency on devices and runtime options when implementing a TEEP
 Broker. Several non-exhaustive options are discussed below.
 Providers are encouraged to take advantage of the latest
 communication and platform capabilities to offer the best user
 experience.

6.2.1. TEEP Broker APIs

 The following conceptual APIs exist from a TEEP Broker to a TEEP
 Agent:

Pei, et al. Expires June 14, 2020 [Page 20]

Internet-Draft TEEP Architecture December 2019

 1. RequestTA: A notification from an REE application (e.g., an
 installer, or a normal application) that it depends on a given
 TA, which may or may not already be installed in the TEE.

 2. ProcessTeepMessage: A message arriving from the network, to be
 delivered to the TEEP Agent for processing.

 3. RequestPolicyCheck: A hint (e.g., based on a timer) that the TEEP
 Agent may wish to contact the TAM for any changes, without the
 device itself needing any particular change.

 4. ProcessError: A notification that the TEEP Broker could not
 deliver an outbound TEEP message to a TAM.

 For comparison, similar APIs may exist on the TAM side, where a
 Broker may or may not exist (depending on whether the TAM uses a TEE
 or not):

 1. ProcessConnect: A notification that an incoming TEEP session is
 being requested by a TEEP Agent.

 2. ProcessTeepMessage: A message arriving from the network, to be
 delivered to the TAM for processing.

 For further discussion on these APIs, see
 [I-D.ietf-teep-otrp-over-http].

6.2.2. TEEP Broker Distribution

 The Broker installation is commonly carried out at OEM time. A user
 can dynamically download and install a Broker on-demand.

6.2.3. Number of TEEP Brokers

 There should be generally only one shared TEEP Broker in a device.
 The device's TEE vendor will most probably supply one Broker. When
 multiple TEEs are present in a device, one TEEP Broker per TEE may be
 used.

 When only one Broker is used per device, the Broker provider is
 responsible to allow multiple TAMs and TEE providers to achieve
 interoperability. With a standard Broker interface, each TAM can
 implement its own SDK for its SP Untrusted Applications to work with
 this Broker.

 Multiple independent Broker providers can be used as long as they
 have standard interface to an Untrusted Application or TAM SDK. Only
 one Broker is generally expected in a device.

Pei, et al. Expires June 14, 2020 [Page 21]

Internet-Draft TEEP Architecture December 2019

7. Attestation

 Attestation is the process through which one entity (an Attester)
 presents "evidence", in the form of a series of claims, to another
 entity (a Verifier), and provides sufficient proof that the claims
 are true. Different verifiers may have different standards for
 attestation proofs and not all attestations are acceptable to every
 verifier. A third entity (a Relying Party) can then use "attestation
 results", in the form of another series of claims, from a Verifier to
 make authorization decisions.

 In TEEP, as depicted in Figure 5, the primary purpose of an
 attestation is to allow a device (the Attester) to prove to TAMs (the
 Relying Parties) that a TEE in the device has particular properties,
 was built by a particular manufacturer, or is executing a particular
 TA. Other claims are possible; TEEP does not limit the claims that
 may appear in evidence or attestation results, but defines a minimal
 set of attestation result claims required for TEEP to operate
 properly. Extensions to these claims are possible. Other standards
 or groups may define the format and semantics of extended claims.

 +----------------+
 | Device | +----------+
 | +------------+ | Evidence | TAM | Evidence +----------+
 | | TEE |------------->| (Relying |-------------->| Verifier |
 | | (Attester) | | | Party) |<--------------| |
 | +------------+ | +----------+ Attestation +----------+
 +----------------+ Result

 Figure 5: TEEP Attestation Roles

 As of the writing of this specification, device and TEE attestations
 have not been standardized across the market. Different devices,
 manufacturers, and TEEs support different attestation algorithms and
 mechanisms. In order for TEEP to be inclusive, it is agnostic to the
 format of evidence, allowing proprietary or standardized formats to
 be used between a TEE and a verifier (which may or may not be
 colocated in the TAM). However, it should be recognized that not all
 verifiers may be able to process all proprietary forms of attestation
 evidence. Similarly, the TEEP protocol is agnostic as to the format
 of attestation results, and the protocol (if any) used between the
 TAM and a verifier, as long as they convey at least the required set
 of claims in some format.

 The assumptions which may apply to an attestation have to do with the
 quality of the attestation and the quality and security provided by
 the TEE, the device, the manufacturer, or others involved in the

Pei, et al. Expires June 14, 2020 [Page 22]

Internet-Draft TEEP Architecture December 2019

 device or TEE ecosystem. Some of the assumptions that might apply to
 an attestations include (this may not be a comprehensive list):

 - Assumptions regarding the security measures a manufacturer takes
 when provisioning keys into devices/TEEs;

 - Assumptions regarding what hardware and software components have
 access to the Attestation keys of the TEE;

 - Assumptions related to the source or local verification of claims
 within an attestation prior to a TEE signing a set of claims;

 - Assumptions regarding the level of protection afforded to
 attestation keys against exfiltration, modification, and side
 channel attacks;

 - Assumptions regarding the limitations of use applied to TEE
 Attestation keys;

 - Assumptions regarding the processes in place to discover or detect
 TEE breeches; and

 - Assumptions regarding the revocation and recovery process of TEE
 attestation keys.

 TAMs must be comfortable with the assumptions that are inherently
 part of any attestation result they accept. Alternatively, any TAM
 may choose not to accept an attestation result generated using
 evidence from a particular manufacturer or device's TEE based on the
 inherent assumptions. The choice and policy decisions are left up to
 the particular TAM.

 Some TAMs may require additional claims in order to properly
 authorize a device or TEE. These additional claims may help clear up
 any assumptions for which the TAM wants to alleviate. The specific
 format for these additional claims are outside the scope of this
 specification, but the TEEP protocol allows these additional claims
 to be included in the attestation messages.

7.1. Information Required in TEEP Claims

 - Device Identifying Info: TEEP attestations may need to uniquely
 identify a device to the TAM and SP. Unique device identification
 allows the TAM to provide services to the device, such as managing
 installed TAs, and providing subscriptions to services, and
 locating device-specific keying material to communicate with or
 authenticate the device. In some use cases it may be sufficient
 to identify only the class of the device. The security and

Pei, et al. Expires June 14, 2020 [Page 23]

Internet-Draft TEEP Architecture December 2019

 privacy requirements regarding device identification will vary
 with the type of TA provisioned to the TEE.

 - TEE Identifying info: The type of TEE that generated this
 attestation must be identified. Standard TEE types are identified
 by an IANA number, but also must include version identification
 information such as the hardware, firmware, and software version
 of the TEE, as applicable by the TEE type. TEE manufacturer
 information for the TEE is required in order to disambiguate the
 same TEE type created by different manufacturers and resolve
 potential assumptions around manufacturer provisioning, keying and
 support for the TEE.

 - Liveness Proof: A claim that includes liveness information must be
 included, such as a nonce or timestamp.

 - Requested Components: A list of zero or more components (TAs or
 other dependencies needed by a TEE) that are requested by some
 depending app, but which are not currently installed in the TEE.

8. Algorithm and Attestation Agility

RFC 7696 [RFC7696] outlines the requirements to migrate from one
 mandatory-to-implement algorithm suite to another over time. This
 feature is also known as crypto agility. Protocol evolution is
 greatly simplified when crypto agility is already considered during
 the design of the protocol. In the case of the Trusted Execution
 Provisioning (TEEP) Protocol the diverse range of use cases, from
 trusted app updates for smart phones and tablets to updates of code
 on higher-end IoT devices, creates the need for different mandatory-
 to-implement algorithms already from the start.

 Crypto agility in TEEP concerns the use of symmetric as well as
 asymmetric algorithms. Symmetric algorithms are used for encryption
 of content whereas the asymmetric algorithms are mostly used for
 signing messages.

 In addition to the use of cryptographic algorithms in TEEP there is
 also the need to make use of different attestation technologies. A
 Device must provide techniques to inform a TAM about the attestation
 technology it supports. For many deployment cases it is more likely
 for the TAM to support one or more attestation techniques whereas the
 Device may only support one.

https://datatracker.ietf.org/doc/html/rfc7696
https://datatracker.ietf.org/doc/html/rfc7696

Pei, et al. Expires June 14, 2020 [Page 24]

Internet-Draft TEEP Architecture December 2019

9. Security Considerations

9.1. TA Trust Check at TEE

 A TA binary is signed by a TA signer certificate. This TA signing
 certificate/private key belongs to the SP, and may be self-signed
 (i.e., it need not participate in a trust hierarchy). It is the
 responsibility of the TAM to only allow verified TAs from trusted SPs
 into the system. Delivery of that TA to the TEE is then the
 responsibility of the TEE, using the security mechanisms provided by
 the protocol.

 We allow a way for an Untrusted Application to check the
 trustworthiness of a TA. A TEEP Broker has a function to allow an
 application to query the information about a TA.

 An Untrusted Application may perform verification of the TA by
 verifying the signature of the TA. An application can do additional
 trust checks on the certificate returned for this TA. It might trust
 the TAM, or require additional SP signer trust chaining.

9.2. One TA Multiple SP Case

 A TA for multiple SPs must have a different identifier per SP. They
 should appear as different TAs when they are installed in the same
 device.

9.3. Broker Trust Model

 A TEEP Broker could be malware in the vulnerable REE. An Untrusted
 Application will connect its TAM provider for required TA
 installation. It gets command messages from the TAM, and passes the
 message to the Broker.

 The architecture enables the TAM to communicate with the device's TEE
 to manage TAs. All TAM messages are signed and sensitive data is
 encrypted such that the TEEP Broker cannot modify or capture
 sensitive data.

9.4. Data Protection at TAM and TEE

 The TEE implementation provides protection of data on the device. It
 is the responsibility of the TAM to protect data on its servers.

Pei, et al. Expires June 14, 2020 [Page 25]

Internet-Draft TEEP Architecture December 2019

9.5. Compromised CA

 A root CA for TAM certificates might get compromised. Some TEE Trust
 Anchor update mechanism is expected from device OEMs. TEEs are
 responsible for validating certificate revocation about a TAM
 certificate chain.

 If the root CA of some TEE device certificates is compromised, these
 devices might be rejected by a TAM, which is a decision of the TAM
 implementation and policy choice. TAMs are responsible for
 validating any intermediate CA for TEE device certificates.

9.6. Compromised TAM

 Device TEEs are responsible for validating the supplied TAM
 certificates to determine that the TAM is trustworthy.

9.7. Certificate Renewal

 TEE device certificates are expected to be long lived, longer than
 the lifetime of a device. A TAM certificate usually has a moderate
 lifetime of 2 to 5 years. A TAM should get renewed or rekeyed
 certificates. The root CA certificates for a TAM, which are embedded
 into the Trust Anchor store in a device, should have long lifetimes
 that don't require device Trust Anchor update. On the other hand, it
 is imperative that OEMs or device providers plan for support of Trust
 Anchor update in their shipped devices.

9.8. Keeping Secrets from the TAM

 In some scenarios, it is desirable to protect the TA binary or
 configuration from being disclosed to the TAM that distributes them.
 In such a scenario, the files can be encrypted end-to-end between an
 SP and a TEE. However, there must be some means of provisioning the
 decryption key into the TEE and/or some means of the SP securely
 learning a public key of the TEE that it can use to encrypt. One way
 to do this is for the SP to run its own TAM, merely to distribute the
 decryption key via the TEEP protocol, and the key file can be a
 dependency in the manifest of the encrypted TA. Thus, the TEEP Agent
 would look at the TA manifest, determine there is a dependency with a
 TAM URI of the SP's TAM. The Agent would then install the
 dependency, and then continue with the TA installation steps,
 including decrypting the TA binary with the relevant key.

Pei, et al. Expires June 14, 2020 [Page 26]

Internet-Draft TEEP Architecture December 2019

10. IANA Considerations

 This document does not require actions by IANA.

11. Contributors

 - Andrew Atyeo

 - Intercede

 - andrew.atyeo@intercede.com

 - Liu Dapeng

 - Alibaba Group

 - maxpassion@gmail.com

12. Acknowledgements

 We would like to thank Nick Cook, Minho Yoo, Brian Witten, Tyler Kim,
 Alin Mutu, Juergen Schoenwaelder, Nicolae Paladi, Sorin Faibish, Ned
 Smith, Russ Housley, Jeremy O'Donoghue, and Anders Rundgren for their
 feedback.

13. Informative References

 [GPTEE] Global Platform, "GlobalPlatform Device Technology: TEE
 System Architecture, v1.1", Global Platform GPD_SPE_009,
 January 2017, <https://globalplatform.org/specs-library/

tee-system-architecture-v1-1/>.

 [I-D.ietf-suit-manifest]
 Moran, B., Tschofenig, H., and H. Birkholz, "A Concise
 Binary Object Representation (CBOR)-based Serialization
 Format for the Software Updates for Internet of Things
 (SUIT) Manifest", draft-ietf-suit-manifest-02 (work in
 progress), November 2019.

 [I-D.ietf-teep-otrp-over-http]
 Thaler, D., "HTTP Transport for Trusted Execution
 Environment Provisioning: Agent-to- TAM Communication",

draft-ietf-teep-otrp-over-http-03 (work in progress),
 November 2019.

 [RFC6024] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", RFC 6024, DOI 10.17487/RFC6024, October
 2010, <https://www.rfc-editor.org/info/rfc6024>.

https://globalplatform.org/specs-library/tee-system-architecture-v1-1/
https://globalplatform.org/specs-library/tee-system-architecture-v1-1/
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-02
https://datatracker.ietf.org/doc/html/draft-ietf-teep-otrp-over-http-03
https://datatracker.ietf.org/doc/html/rfc6024
https://www.rfc-editor.org/info/rfc6024

Pei, et al. Expires June 14, 2020 [Page 27]

Internet-Draft TEEP Architecture December 2019

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

Authors' Addresses

 Mingliang Pei
 Symantec

 EMail: mingliang_pei@symantec.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 Dave Thaler
 Microsoft

 EMail: dthaler@microsoft.com

 David Wheeler
 Intel

 EMail: david.m.wheeler@intel.com

https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696

Pei, et al. Expires June 14, 2020 [Page 28]

