
TEEP WG D. Thaler
Internet-Draft Microsoft
Intended status: Informational July 08, 2019
Expires: January 9, 2020

HTTP Transport for the Open Trust Protocol (OTrP)
draft-ietf-teep-otrp-over-http-01

Abstract

 This document specifies the HTTP transport for the Open Trust
 Protocol (OTrP), which is used to manage code and configuration data
 in a Trusted Execution Environment (TEE). An implementation of this
 document can run outside of any TEE, but interacts with an OTrP
 implementation that runs inside a TEE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thaler Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OTrP HTTP Transport July 2019

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Use of Abstract APIs . 3
4. Use of HTTP as a Transport 3
5. TEEP Broker Behavior . 4

 5.1. Receiving a request to install a new Trusted Application 4
5.1.1. Session Creation 5

5.2. Getting a message buffer back from an TEEP Agent 5
5.3. Receiving an HTTP response 6
5.4. Handling checks for policy changes 6
5.5. Error handling . 7

6. TAM Broker Behavior . 7
6.1. Receiving an HTTP POST request 7
6.2. Getting an empty buffer back from the TAM 7
6.3. Getting a message buffer from the TAM 7
6.4. Error handling . 7

7. Sample message flow . 7
8. Security Considerations 9
9. IANA Considerations . 10
10. References . 10
10.1. Normative References 10
10.2. Informative References 10

 Author's Address . 11

1. Introduction

 Trusted Execution Environments (TEEs), including Intel SGX, ARM
 TrustZone, Secure Elements, and others, enforce that only authorized
 code can execute within the TEE, and any memory used by such code is
 protected against tampering or disclosure outside the TEE. The Open
 Trust Protocol (OTrP) is designed to provision authorized code and
 configuration into TEEs.

 To be secure against malware, an OTrP implementation (referred to as
 an OTrP "Agent" on the client side, and a "Trusted Application
 Manager (TAM)" on the server side) must themselves run inside a TEE.
 However, the transport for OTrP, along with typical networking
 stacks, need not run inside a TEE. This split allows the set of
 highly trusted code to be kept as small as possible, including
 allowing code (e.g., TCP/IP) that only sees encrypted messages to be
 kept out of the TEE.

 The OTrP specification [I-D.ietf-teep-opentrustprotocol] describes
 the behavior of TEEP Agents and TAMs, but does not specify the
 details of the transport, an implementation of which is referred to
 as a "Broker". The purpose of this document is to provide such

Thaler Expires January 9, 2020 [Page 2]

Internet-Draft OTrP HTTP Transport July 2019

 details. That is, the HTTP transport for OTrP is implemented in a
 Broker (typically outside a TEE) that delivers messages up to an OTrP
 implementation, and accepts messages from the OTrP implementation to
 be sent over a network.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document also uses various terms defined in
 [I-D.ietf-teep-architecture], including Trusted Execution Environment
 (TEE), Trusted Application (TA), Trusted Application Manager (TAM),
 TEEP Agent, and TEEP Broker.

3. Use of Abstract APIs

 This document refers to various APIs between a Broker and an OTrP
 implementation in the abstract, meaning the literal syntax and
 programming language are not specified, so that various concrete APIs
 can be designed (outside of the IETF) that are compliant.

 It is common in some TEE architectures (e.g., SGX) to refer to calls
 into a Trusted Application (TA) as "ECALLs" (or enclave-calls), and
 calls out from a Trusted Application (TA) as "OCALLs" (or out-calls).

 In other TEE architectures, there may be no OCALLs, but merely data
 returned from calls into a TA. This document attempts to be agnostic
 as to the concrete API architecture. As such, abstract APIs used in
 this document will refer to calls into a TA as API calls, and will
 simply refer to "passing data" back out of the TA. A concrete API
 might pass data back via an OCALL or via data returned from an API
 call.

 This document will also refer to passing "no" data back out of a TA.
 In an OCALL-based architecture, this might be implemented by not
 making any such call. In a return-based architecture, this might be
 implemented by returning 0 bytes.

4. Use of HTTP as a Transport

 This document uses HTTP [I-D.ietf-httpbis-semantics] as a transport.
 When not called out explicitly in this document, all implementation
 recommendations in [I-D.ietf-httpbis-bcp56bis] apply to use of HTTP
 by OTrP.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Thaler Expires January 9, 2020 [Page 3]

Internet-Draft OTrP HTTP Transport July 2019

 Redirects MAY be automatically followed, and no additional request
 headers beyond those specified by HTTP need be modified or removed
 upon a following such a redirect.

 Content is not intended to be treated as active by browsers and so
 HTTP responses with content SHOULD have the following headers as
 explained in Section 4.12 of [I-D.ietf-httpbis-bcp56bis] (replacing
 the content type with the relevant OTrP content type per the OTrP
 specification):

 Content-Type: <content type>
 Cache-Control: no-store
 X-Content-Type-Options: nosniff
 Content-Security-Policy: default-src 'none'
 Referrer-Policy: no-referrer

 Only the POST method is specified for TAM resources exposed over
 HTTP. A URI of such a resource is referred to as a "TAM URI". A TAM
 URI can be any HTTP(S) URI. The URI to use is configured in an TEEP
 Agent via an out-of-band mechanism, as discussed in the next section.

 When HTTPS is used, TLS certificates MUST be checked according to
 [RFC2818].

5. TEEP Broker Behavior

5.1. Receiving a request to install a new Trusted Application

 When the TEEP Broker receives a notification (e.g., from an
 application installer) that an application has a dependency on a
 given Trusted Application (TA) being available in a given type of
 TEE, the notification will contain the following:

 - A unique identifier of the TA

 - Optionally, any metadata to pass to the TEEP Agent. This might
 include a TAM URI provided in the application manifest, for
 example.

 - Optionally, any requirements that may affect the choice of TEE, if
 multiple are available to the TEEP Broker.

 When such a notification is received, the TEEP Broker first
 identifies in an implementation-dependent way which TEE (if any) is
 most appropriate based on the constraints expressed. If there is
 only one TEE, the choice is obvious. Otherwise, the choice might be
 based on factors such as capabilities of available TEE(s) compared
 with TEE requirements in the notification.

https://datatracker.ietf.org/doc/html/rfc2818

Thaler Expires January 9, 2020 [Page 4]

Internet-Draft OTrP HTTP Transport July 2019

 The TEEP Broker then informs the TEEP Agent in that TEE by invoking
 an appropriate "RequestTA" API that identifies the TA needed and any
 other associated metadata. The TEEP Broker need not know whether the
 TEE already has such a TA installed or whether it is up to date.

 The TEEP Agent will either (a) pass no data back, (b) pass back a TAM
 URI to connect to, or (c) pass back a message buffer and TAM URI to
 send it to. The TAM URI passed back may or may not be the same as
 the TAM URI, if any, provided by the broker, depending on the TEEP
 Agent's configuration. If they differ, the TEEP Broker MUST use the
 TAM URI passed back.

5.1.1. Session Creation

 If no data is passed back, the TEEP Broker simply informs its client
 (e.g., the application installer) of success.

 If the TEEP Agent passes back a TAM URI with no message buffer, the
 TEEP Broker attempts to create session state, then sends an HTTP(S)
 POST to the TAM URI with an Accept header and an empty body. The
 HTTP request is then associated with the TEEP Broker's session state.

 If the TEEP Agent instead passes back a TAM URI with a message
 buffer, the TEEP Broker attempts to create session state and handles
 the message buffer as specified in Section 5.2.

 Session state consists of:

 - Any context (e.g., a handle) that identifies the API session with
 the TEEP Agent.

 - Any context that identifies an HTTP request, if one is
 outstanding. Initially, none exists.

5.2. Getting a message buffer back from an TEEP Agent

 When a message buffer (and TAM URI) is passed to a TEEP Broker from
 an TEEP Agent, the TEEP Broker MUST do the following, using the TEEP
 Broker's session state associated with its API call to the TEEP
 Agent.

 The TEEP Broker sends an HTTP POST request to the TAM URI with Accept
 and Content-Type headers with the OTrP media type in use, and a body
 containing the OTrP message buffer provided by the TEEP Agent. The
 HTTP request is then associated with the TEEP Broker's session state.

Thaler Expires January 9, 2020 [Page 5]

Internet-Draft OTrP HTTP Transport July 2019

5.3. Receiving an HTTP response

 When an HTTP response is received in response to a request associated
 with a given session state, the TEEP Broker MUST do the following.

 If the HTTP response body is empty, the TEEP Broker's task is
 complete, and it can delete its session state, and its task is done.

 If instead the HTTP response body is not empty, the TEEP Broker calls
 a "ProcessOTrPMessage" API (Section 6.2 of
 [I-D.ietf-teep-opentrustprotocol]) to pass the response body to the
 TEEP Agent associated with the session. The TEEP Agent will then
 pass no data back, or pass pack a message buffer.

 If no data is passed back, the TEEP Broker's task is complete, and it
 can delete its session state, and inform its client (e.g., the
 application installer) of success.

 If instead the TEEP Agent passes back a message buffer, the TEEP
 Broker handles the message buffer as specified in Section 5.2.

5.4. Handling checks for policy changes

 An implementation MUST provide a way to periodically check for OTrP
 policy changes. This can be done in any implementation-specific
 manner, such as:

 A) The TEEP Broker might call into the TEEP Agent at an interval
 previously specified by the TEEP Agent. This approach requires that
 the TEEP Broker be capable of running a periodic timer.

 B) The TEEP Broker might be informed when an existing TA is invoked,
 and call into the TEEP Agent if more time has passed than was
 previously specified by the TEEP Agent. This approach allows the
 device to go to sleep for a potentially long period of time.

 C) The TEEP Broker might be informed when any attestation attempt
 determines that the device is out of compliance, and call into the
 TEEP Agent to remediate.

 The TEEP Broker informs the TEEP Agent by invoking an appropriate
 "RequestPolicyCheck" API. The TEEP Agent will either (a) pass no
 data back, (b) pass back a TAM URI to connect to, or (c) pass back a
 message buffer and TAM URI to send it to. Processing then continues
 as specified in Section 5.1.1.

Thaler Expires January 9, 2020 [Page 6]

Internet-Draft OTrP HTTP Transport July 2019

5.5. Error handling

 If any local error occurs where the TEEP Broker cannot get a message
 buffer (empty or not) back from the TEEP Agent, the TEEP Broker
 deletes its session state, and informs its client (e.g., the
 application installer) of a failure.

 If any HTTP request results in an HTTP error response or a lower
 layer error (e.g., network unreachable), the TEEP Broker calls the
 TEEP Agent's "ProcessError" API, and then deletes its session state
 and informs its client of a failure.

6. TAM Broker Behavior

6.1. Receiving an HTTP POST request

 When an HTTP POST request is received with an empty body, the TAM
 Broker invokes the TAM's "ProcessConnect" API. The TAM will then
 pass back a (possibly empty) message buffer.

 When an HTTP POST request is received with a non-empty body, the TAM
 Broker calls the TAM's "ProcessOTrPMessage" API to pass it the
 request body. The TAM will then pass back a (possibly empty) message
 buffer.

6.2. Getting an empty buffer back from the TAM

 If the TAM passes back an empty buffer, the TAM Broker sends a
 successful (2xx) response with no body.

6.3. Getting a message buffer from the TAM

 If the TAM passes back a non-empty buffer, the TAM Broker generates a
 successful (2xx) response with a Content-Type header with the OTrP
 media type in use, and with the message buffer as the body.

6.4. Error handling

 If any error occurs where the TAM Broker cannot get a message buffer
 (empty or not) back from the TAM, the TAM Broker generates an
 appropriate HTTP error response.

7. Sample message flow

 The following shows a sample OTrP message flow that uses application/
 otrp+json as the Content-Type.

Thaler Expires January 9, 2020 [Page 7]

Internet-Draft OTrP HTTP Transport July 2019

 1. An application installer determines (e.g., from an app manifest)
 that the application has a dependency on TA "X", and passes this
 notification to the TEEP Broker. The TEEP Broker picks an TEEP
 Agent (e.g., the only one available) based on this notification.

 2. The TEEP Broker calls the TEEP Agent's "RequestTA" API, passing
 TA Needed = X.

 3. The TEEP Agent finds that no such TA is already installed, but
 that it can be obtained from a given TAM. The TEEP Agent passes
 the TAM URI (e.g., "https://example.com/tam") to the TEEP
 Broker. (If the TEEP Agent already had a cached TAM certificate
 that it trusts, it could skip to step 9 instead and generate a
 GetDeviceStateResponse.)

 4. The TEEP Broker sends an HTTP POST request to the TAM URI:

 POST /tam HTTP/1.1
 Host: example.com
 Accept: application/otrp+json
 Content-Length: 0
 User-Agent: Foo/1.0

 5. The TAM Broker receives the HTTP POST request, and calls the
 TAM's "ProcessConnect" API.

 6. The TAM generates an OTrP message (typically
 GetDeviceStateRequest is the first message) and passes it to the
 TAM Broker.

 7. The TAM Broker sends an HTTP successful response with the OTrP
 message in the body:

 HTTP/1.1 200 OK
 Content-Type: application/otrp+json
 Content-Length: [length of OTrP message here]
 Server: Bar/2.2
 Cache-Control: no-store
 X-Content-Type-Options: nosniff
 Content-Security-Policy: default-src 'none'
 Referrer-Policy: no-referrer

 [OTrP message here]

Thaler Expires January 9, 2020 [Page 8]

Internet-Draft OTrP HTTP Transport July 2019

 8. The TEEP Broker gets the HTTP response, extracts the OTrP
 message and calls the TEEP Agent's "ProcessOTrPMessage" API to
 pass it the message.

 9. The TEEP Agent processes the OTrP message, and generates an OTrP
 response (e.g., GetDeviceStateResponse) which it passes back to
 the TEEP Broker.

 10. The TEEP Broker gets the OTrP message buffer and sends an HTTP
 POST request to the TAM URI, with the OTrP message in the body:

 POST /tam HTTP/1.1
 Host: example.com
 Accept: application/otrp+json
 Content-Type: application/otrp+json
 Content-Length: [length of OTrP message here]
 User-Agent: Foo/1.0

 [OTrP message here]

 11. The TAM Broker receives the HTTP POST request, and calls the
 TAM's "ProcessOTrPMessage" API.

 12. Steps 6-11 are then repeated until the TAM passes no data back
 to the TAM Broker in step 6.

 13. The TAM Broker sends an HTTP successful response with no body:

 HTTP/1.1 204 No Content
 Server: Bar/2.2

 14. The TEEP Broker deletes its session state.

8. Security Considerations

 Although OTrP is protected end-to-end inside of HTTP, there is still
 value in using HTTPS for transport, since HTTPS can provide
 additional protections as discussed in Section 6 of
 [I-D.ietf-httpbis-bcp56bis]. As such, Broker implementations MUST
 support HTTPS. The choice of HTTP vs HTTPS at runtime is up to
 policy, where an administrator configures the TAM URI to be used, but
 it is expected that real deployments will always use HTTPS TAM URIs.

Thaler Expires January 9, 2020 [Page 9]

Internet-Draft OTrP HTTP Transport July 2019

9. IANA Considerations

 This document has no actions for IANA.

10. References

10.1. Normative References

 [I-D.ietf-httpbis-semantics]
 Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Semantics", draft-ietf-httpbis-semantics-05 (work in
 progress), July 2019.

 [I-D.ietf-teep-opentrustprotocol]
 Pei, M., Atyeo, A., Cook, N., Yoo, M., and H. Tschofenig,
 "The Open Trust Protocol (OTrP)", draft-ietf-teep-

opentrustprotocol-03 (work in progress), May 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000, <https://www.rfc-

editor.org/info/rfc2818>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [I-D.ietf-httpbis-bcp56bis]
 Nottingham, M., "Building Protocols with HTTP", draft-

ietf-httpbis-bcp56bis-08 (work in progress), November
 2018.

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Wheeler, D., Atyeo, A., and D.
 Liu, "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-02 (work in
 progress), March 2019.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-05
https://datatracker.ietf.org/doc/html/draft-ietf-teep-opentrustprotocol-03
https://datatracker.ietf.org/doc/html/draft-ietf-teep-opentrustprotocol-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-bcp56bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-bcp56bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-teep-architecture-02

Thaler Expires January 9, 2020 [Page 10]

Internet-Draft OTrP HTTP Transport July 2019

Author's Address

 Dave Thaler
 Microsoft

 EMail: dthaler@microsoft.com

Thaler Expires January 9, 2020 [Page 11]

