
TEEP WG D. Thaler
Internet-Draft Microsoft
Intended status: Informational October 09, 2020
Expires: April 12, 2021

HTTP Transport for Trusted Execution Environment Provisioning: Agent-to-
 TAM Communication

draft-ietf-teep-otrp-over-http-08

Abstract

 The Trusted Execution Environment Provisioning (TEEP) Protocol is
 used to manage code and configuration data in a Trusted Execution
 Environment (TEE). This document specifies the HTTP transport for
 TEEP communication where a Trusted Application Manager (TAM) service
 is used to manage code and data in TEEs on devices that can initiate
 communication to the TAM. An implementation of this document can (if
 desired) run outside of any TEE, but interacts with a TEEP
 implementation that runs inside a TEE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 12, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Thaler Expires April 12, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-teep-otrp-over-http-08
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TEEP HTTP Transport October 2020

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. TEEP Broker . 4
3.1. Use of Abstract APIs 4

4. Use of HTTP as a Transport 5
5. TEEP/HTTP Client Behavior 6

 5.1. Receiving a request to install a new Trusted Application 6
5.1.1. Session Creation 6

5.2. Getting a message buffer back from a TEEP Agent 7
5.3. Receiving an HTTP response 7
5.4. Handling checks for policy changes 8
5.5. Error handling . 8

6. TEEP/HTTP Server Behavior 9
6.1. Receiving an HTTP POST request 9
6.2. Getting an empty buffer back from the TAM 9
6.3. Getting a message buffer from the TAM 9
6.4. Error handling . 9

7. Sample message flow . 9
8. Security Considerations 11
9. IANA Considerations . 12
10. References . 12
10.1. Normative References 12
10.2. Informative References 13

 Author's Address . 13

1. Introduction

 A Trusted Execution Environment (TEE) is an environment that enforces
 that any code within that environment cannot be tampered with, and
 that any data used by such code cannot be read or tampered with by
 any code outside that environment. The Trusted Execution Environment
 Provisioning (TEEP) protocol is designed to provision authorized code
 and configuration into TEEs.

 To be secure against malware, a TEEP implementation (referred to as a
 TEEP "Agent" on the client side, and a "Trusted Application Manager
 (TAM)" on the server side) SHOULD themselves run inside a TEE,
 although a TAM running outside a TEE is also supported. However, the
 transport for TEEP, along with the underlying TCP/IP stack, does not
 necessarily run inside a TEE. This split allows the set of highly
 trusted code to be kept as small as possible, including allowing code

Thaler Expires April 12, 2021 [Page 2]

Internet-Draft TEEP HTTP Transport October 2020

 (e.g., TCP/IP or QUIC [I-D.ietf-quic-transport]) that only sees
 encrypted messages, to be kept out of the TEE.

 The TEEP specification [I-D.ietf-teep-protocol] (like its
 predecessors [I-D.ietf-teep-opentrustprotocol] and [GP-OTrP])
 describes the behavior of TEEP Agents and TAMs, but does not specify
 the details of the transport. The purpose of this document is to
 provide such details. That is, a TEEP-over-HTTP (TEEP/HTTP)
 implementation delivers messages up to a TEEP implementation, and
 accepts messages from the TEEP implementation to be sent over a
 network. The TEEP-over-HTTP implementation can be implemented either
 outside a TEE (i.e., in a TEEP "Broker") or inside a TEE.

 There are two topological scenarios in which TEEP could be deployed:

 1. TAMs are reachable on the Internet, and Agents are on networks
 that might be behind a firewall or stateful NAT, so that
 communication must be initiated by an Agent. Thus, the Agent has
 an HTTP Client and the TAM has an HTTP Server.

 2. Agents are reachable on the Internet, and TAMs are on networks
 that might be behind a firewall or stateful NAT, so that
 communication must be initiated by a TAM. Thus, the Agent has an
 HTTP Server and the TAM has an HTTP Client.

 The remainder of this document focuses primarily on the first
 scenario as depicted in Figure 1, but some sections (Section 4 and

Section 8) may apply to the second scenario as well. A fuller
 discussion of the second scenario may be handled by a separate
 document.

 +------------------+ TEEP +------------------+
 | TEEP Agent | <----------------------> | TAM |
 +------------------+ +------------------+
 | |
 +------------------+ TEEP-over-HTTP +------------------+
 | TEEP/HTTP Client | <----------------------> | TEEP/HTTP Server |
 +------------------+ +------------------+
 | |
 +------------------+ HTTP +------------------+
 | HTTP Client | <----------------------> | HTTP Server |
 +------------------+ +------------------+

 Figure 1: Agent-to-TAM Communication

 This document specifies the middle layer (TEEP-over-HTTP), whereas
 the top layer (TEEP) is specified in [I-D.ietf-teep-protocol].

Thaler Expires April 12, 2021 [Page 3]

Internet-Draft TEEP HTTP Transport October 2020

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document also uses various terms defined in
 [I-D.ietf-teep-architecture], including Trusted Execution Environment
 (TEE), Trusted Application (TA), Trusted Application Manager (TAM),
 TEEP Agent, TEEP Broker, and Rich Execution Environment (REE).

3. TEEP Broker

Section 6 of the TEEP architecture [I-D.ietf-teep-architecture]
 defines a TEEP "Broker" as being a component on the device, but
 outside the TEE, that facilitates communication with a TAM. That
 document further explains that the protocol layer at which the TEEP
 broker operates may vary by implementation, and it depicts several
 exemplary models. An implementation is free to choose any of these
 models, although model A is the one we will use in our examples.

 Passing information from an REE component to a TEE component is
 typically spoken of as being passed "in" to the TEE, and informaton
 passed in the opposite direction is spoken of as being passed "out".
 In the protocol layering sense, information is typically spoken of as
 being passed "up" or "down" the stack. Since the layer at which
 information is passed in/out may vary by implementation, we will
 generally use "up" and "down" in this document.

3.1. Use of Abstract APIs

 This document refers to various APIs between a TEEP implementation
 and a TEEP/HTTP implementation in the abstract, meaning the literal
 syntax and programming language are not specified, so that various
 concrete APIs can be designed (outside of the IETF) that are
 compliant.

 Some TEE architectures (e.g., SGX) may support API calls both into
 and out of a TEE. In other TEE architectures, there may be no calls
 out from a TEE, but merely data returned from calls into a TEE. This
 document attempts to be agnostic as to the concrete API architecture
 for Broker/Agent communication. Since in model A, the Broker/Agent
 communication is done at the layer between the TEEP and TEEP/HTTP
 implementations, and there may be some architectures that do not
 support calls out of the TEE (which would be downcalls from TEEP in
 model A), we will refer to passing information up to the TEEP

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Thaler Expires April 12, 2021 [Page 4]

Internet-Draft TEEP HTTP Transport October 2020

 implementation as API calls, but will simply refer to "passing data"
 back down from a TEEP implementation. A concrete API might pass data
 back via an API downcall or via data returned from an API upcall.

 This document will also refer to passing "no" data back out of a TEEP
 implementation. In a concrete API, this might be implemented by not
 making any downcall, or by returning 0 bytes from an upcall, for
 example.

4. Use of HTTP as a Transport

 This document uses HTTP [I-D.ietf-httpbis-semantics] as a transport.
 For the motivation behind the HTTP recommendations in this document,
 see the discussion of HTTP as a transport in
 [I-D.ietf-httpbis-bcp56bis].

 Redirects MUST NOT be automatically followed. Cookies are not used.

 Content is not intended to be treated as active by browsers and so
 HTTP responses with content SHOULD have the following headers as
 explained in Section 4.12 of [I-D.ietf-httpbis-bcp56bis] (using the
 relevant TEEP content type defined in [I-D.ietf-teep-protocol]):

 Content-Type: application/teep+cbor
 X-Content-Type-Options: nosniff
 Content-Security-Policy: default-src 'none'
 Referrer-Policy: no-referrer

 Only the POST method is specified for TAM resources exposed over
 HTTP. A URI of such a resource is referred to as a "TAM URI". A TAM
 URI can be any HTTP(S) URI. The URI to use is configured in a TEEP
 Agent via an out-of-band mechanism, as discussed in the next section.

 It is strongly RECOMMENDED that implementations use HTTPS. Although
 TEEP is protected end-to-end inside of HTTP, there is still value in
 using HTTPS for transport, since HTTPS can provide additional
 protections as discussed in Sections 4.4.2 and 6 of
 [I-D.ietf-httpbis-bcp56bis].

 However, there may be constrained nodes where code space is an issue.
 [RFC7925] provides TLS profiles that can be used in many constrained
 nodes, but in rare cases the most constrained nodes might need to use
 HTTP without a TLS stack, relying on the end-to-end security provided
 by the TEEP protocol.

 When HTTPS is used, TLS certificates MUST be checked according to
 [RFC2818], as well as [RFC6125] if PKIX certificates are used. See

https://datatracker.ietf.org/doc/html/rfc7925
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125

Thaler Expires April 12, 2021 [Page 5]

Internet-Draft TEEP HTTP Transport October 2020

 [BCP195] for additional TLS recommendations and [RFC7925] for TLS
 recommandations related to IoT devices.

5. TEEP/HTTP Client Behavior

5.1. Receiving a request to install a new Trusted Application

 In some environments, an application installer can determine (e.g.,
 from an app manifest) that the application being installed or updated
 has a dependency on a given Trusted Application (TA) being available
 in a given type of TEE. In such a case, it will notify a TEEP
 Broker, where the notification will contain the following:

 - A unique identifier of the TA

 - Optionally, any metadata to provide to the TEEP Agent. This might
 include a TAM URI provided in the application manifest, for
 example.

 - Optionally, any requirements that may affect the choice of TEE, if
 multiple are available to the TEEP Broker.

 When a TEEP Broker receives such a notification, it first identifies
 in an implementation-dependent way which TEE (if any) is most
 appropriate based on the constraints expressed. If there is only one
 TEE, the choice is obvious. Otherwise, the choice might be based on
 factors such as capabilities of available TEE(s) compared with TEE
 requirements in the notification. Once the TEEP Broker picks a TEE,
 it passes the notification to the TEEP/HTTP Client for that TEE.

 The TEEP/HTTP Client then informs the TEEP Agent in that TEE by
 invoking an appropriate "RequestTA" API that identifies the TA needed
 and any other associated metadata. The TEEP/HTTP Client need not
 know whether the TEE already has such a TA installed or whether it is
 up to date.

 The TEEP Agent will either (a) pass no data back, (b) pass back a TAM
 URI to connect to, or (c) pass back a message buffer and TAM URI to
 send it to. The TAM URI passed back may or may not be the same as
 the TAM URI, if any, provided by the TEEP/HTTP Client, depending on
 the TEEP Agent's configuration. If they differ, the TEEP/HTTP Client
 MUST use the TAM URI passed back.

5.1.1. Session Creation

 If no data is passed back, the TEEP/HTTP Client simply informs its
 caller (e.g., the application installer) of success.

https://datatracker.ietf.org/doc/html/rfc7925

Thaler Expires April 12, 2021 [Page 6]

Internet-Draft TEEP HTTP Transport October 2020

 If the TEEP Agent passes back a TAM URI with no message buffer, the
 TEEP/HTTP Client attempts to create session state, then sends an
 HTTP(S) POST to the TAM URI with an Accept header with the TEEP media
 type requested, and an empty body. The HTTP request is then
 associated with the TEEP/HTTP Client's session state.

 If the TEEP Agent instead passes back a TAM URI with a message
 buffer, the TEEP/HTTP Client attempts to create session state and
 handles the message buffer as specified in Section 5.2.

 Session state consists of:

 - Any context (e.g., a handle) that identifies the API session with
 the TEEP Agent.

 - Any context that identifies an HTTP request, if one is
 outstanding. Initially, none exists.

5.2. Getting a message buffer back from a TEEP Agent

 When a TEEP Agent passes a message buffer (and TAM URI) to a TEEP/
 HTTP Client, the TEEP/HTTP Client MUST do the following, using the
 TEEP/HTTP Client's session state associated with its API call to the
 TEEP Agent.

 The TEEP/HTTP Client sends an HTTP POST request to the TAM URI with
 Accept and Content-Type headers with the TEEP media type in use, and
 a body containing the TEEP message buffer provided by the TEEP Agent.
 The HTTP request is then associated with the TEEP/HTTP Client's
 session state.

5.3. Receiving an HTTP response

 When an HTTP response is received in response to a request associated
 with a given session state, the TEEP/HTTP Client MUST do the
 following.

 If the HTTP response body is empty, the TEEP/HTTP Client's task is
 complete, and it can delete its session state, and its task is done.

 If instead the HTTP response body is not empty, the TEEP/HTTP Client
 passes (e.g., using "ProcessTeepMessage" API as mentioned in
 Section 6.2.1 of [I-D.ietf-teep-architecture]) the response body up
 to the TEEP Agent associated with the session. The TEEP Agent will
 then either pass no data back, or pass back a message buffer.

Thaler Expires April 12, 2021 [Page 7]

Internet-Draft TEEP HTTP Transport October 2020

 If no data is passed back, the TEEP/HTTP Client's task is complete,
 and it can delete its session state, and inform its caller (e.g., the
 application installer) of success.

 If instead the TEEP Agent passes back a message buffer, the TEEP/HTTP
 Client handles the message buffer as specified in Section 5.2.

5.4. Handling checks for policy changes

 An implementation MUST provide a way to periodically check for TAM
 policy changes, such as a Trusted Application needing to be deleted
 from a TEE because it is no longer permitted, or needing to be
 updated to a later version. This can be done in any implementation-
 specific manner, such as:

 A) The TEEP/HTTP Client might call up to the TEEP Agent at an
 interval previously specified by the TEEP Agent. This approach
 requires that the TEEP/HTTP Client be capable of running a periodic
 timer.

 B) The TEEP/HTTP Client might be informed when an existing TA is
 invoked, and call up to the TEEP Agent if more time has passed than
 was previously specified by the TEEP Agent. This approach allows the
 device to go to sleep for a potentially long period of time.

 C) The TEEP/HTTP Client might be informed when any attestation
 attempt determines that the device is out of compliance, and call up
 to the TEEP Agent to remediate.

 The TEEP/HTTP Client informs the TEEP Agent by invoking an
 appropriate "RequestPolicyCheck" API. The TEEP Agent will either (a)
 pass no data back, (b) pass back a TAM URI to connect to, or (c) pass
 back a message buffer and TAM URI to send it to. Processing then
 continues as specified in Section 5.1.1.

5.5. Error handling

 If any local error occurs where the TEEP/HTTP Client cannot get a
 message buffer (empty or not) back from the TEEP Agent, the TEEP/HTTP
 Client deletes its session state, and informs its caller (e.g., the
 application installer) of a failure.

 If any HTTP request results in an HTTP error response or a lower
 layer error (e.g., network unreachable), the TEEP/HTTP Client calls
 the TEEP Agent's "ProcessError" API, and then deletes its session
 state and informs its caller of a failure.

Thaler Expires April 12, 2021 [Page 8]

Internet-Draft TEEP HTTP Transport October 2020

6. TEEP/HTTP Server Behavior

6.1. Receiving an HTTP POST request

 If the TAM does not receive the appropriate Content-Type header
 fields, the TAM SHOULD fail the request, returning a 415 Unsupported
 Media Type response. Similarly, if an appropriate Accept header
 field is not present, the TAM SHOULD fail the request with an
 appropriate error response. (This is for consistency with common
 implementation practice to allow the HTTP server to choose a default
 error response, since in some implementations the choice is done at
 the HTTP layer rather than the layer at which TEEP-over-HTTP would be
 implemented.) Otherwise, processing continues as follows.

 When an HTTP POST request is received with an empty body, the TEEP/
 HTTP Server invokes the TAM's "ProcessConnect" API. The TAM will
 then pass back a (possibly empty) message buffer.

 When an HTTP POST request is received with a non-empty body, the
 TEEP/HTTP Server passes the request body to the TAM (e.g., using the
 "ProcessTeepMessage" API mentioned in [I-D.ietf-teep-architecture]).
 The TAM will then pass back a (possibly empty) message buffer.

6.2. Getting an empty buffer back from the TAM

 If the TAM passes back an empty buffer, the TEEP/HTTP Server sends a
 successful (2xx) response with no body. It SHOULD be status 204 (No
 Content).

6.3. Getting a message buffer from the TAM

 If the TAM passes back a non-empty buffer, the TEEP/HTTP Server
 generates a successful (2xx) response with a Content-Type header with
 the appropriate media type in use, and with the message buffer as the
 body.

6.4. Error handling

 If any error occurs where the TEEP/HTTP Server cannot get a message
 buffer (empty or not) back from the TAM, the TEEP/HTTP Server
 generates an appropriate HTTP 5xx error response.

7. Sample message flow

 The following shows a sample TEEP message flow that uses application/
 teep+cbor as the Content-Type.

Thaler Expires April 12, 2021 [Page 9]

Internet-Draft TEEP HTTP Transport October 2020

 1. An application installer determines (e.g., from an app manifest)
 that the application has a dependency on TA "X", and passes this
 notification to the TEEP Broker. The TEEP Broker picks a TEE
 (e.g., the only one available) based on this notification, and
 passes the information to the TEEP/HTTP Cient for that TEE.

 2. The TEEP/HTTP Client calls the TEEP Agent's "RequestTA" API,
 passing TA Needed = X.

 3. The TEEP Agent finds that no such TA is already installed, but
 that it can be obtained from a given TAM. The TEEP Agent passes
 the TAM URI (e.g., "https://example.com/tam") to the TEEP/HTTP
 Client.

 4. The TEEP/HTTP Client sends an HTTP POST request to the TAM URI:

 POST /tam HTTP/1.1
 Host: example.com
 Accept: application/teep+cbor
 Content-Length: 0
 User-Agent: Foo/1.0

 where the TEEP/HTTP Client fills in an implementation-specific
 value in the User-Agent header.

 5. On the TAM side, the TEEP/HTTP Server receives the HTTP POST
 request, and calls the TAM's "ProcessConnect" API.

 6. The TAM generates a TEEP message (where typically QueryRequest
 is the first message) and passes it to the TEEP/HTTP Server.

 7. The TEEP/HTTP Server sends an HTTP successful response with the
 TEEP message in the body:

 HTTP/1.1 200 OK
 Content-Type: application/teep+cbor
 Content-Length: [length of TEEP message here]
 Server: Bar/2.2
 X-Content-Type-Options: nosniff
 Content-Security-Policy: default-src 'none'
 Referrer-Policy: no-referrer

 [TEEP message here]

Thaler Expires April 12, 2021 [Page 10]

Internet-Draft TEEP HTTP Transport October 2020

 where the TEEP/HTTP Server fills in an implementation-specific
 value in the Server header.

 8. Back on the TEEP Agent side, the TEEP/HTTP Client gets the HTTP
 response, extracts the TEEP message and pass it up to the TEEP
 Agent.

 9. The TEEP Agent processes the TEEP message, and generates a TEEP
 response (e.g., QueryResponse) which it passes back to the TEEP/
 HTTP Client.

 10. The TEEP/HTTP Client gets the TEEP message buffer and sends an
 HTTP POST request to the TAM URI, with the TEEP message in the
 body:

 POST /tam HTTP/1.1
 Host: example.com
 Accept: application/teep+cbor
 Content-Type: application/teep+cbor
 Content-Length: [length of TEEP message here]
 User-Agent: Foo/1.0

 [TEEP message here]

 11. The TEEP/HTTP Server receives the HTTP POST request, and passes
 the payload up to the TAM.

 12. Steps 6-11 are then repeated until the TAM passes no data back
 to the TEEP/HTTP Server in step 6.

 13. The TEEP/HTTP Server sends an HTTP successful response with no
 body:

 HTTP/1.1 204 No Content
 Server: Bar/2.2

 14. The TEEP/HTTP Client deletes its session state.

8. Security Considerations

Section 4 discussed security recommendations for HTTPS transport of
 TEEP messages. See Section 6 of [I-D.ietf-httpbis-bcp56bis] for
 additional discussion of HTTP(S) security considerations.

Thaler Expires April 12, 2021 [Page 11]

Internet-Draft TEEP HTTP Transport October 2020

9. IANA Considerations

 This document has no actions for IANA.

10. References

10.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [I-D.ietf-httpbis-semantics]
 Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Semantics", draft-ietf-httpbis-semantics-12 (work in
 progress), October 2020.

 [I-D.ietf-teep-protocol]
 Tschofenig, H., Pei, M., Wheeler, D., Thaler, D., and A.
 Tsukamoto, "Trusted Execution Environment Provisioning
 (TEEP) Protocol", draft-ietf-teep-protocol-03 (work in
 progress), July 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000, <https://www.rfc-

editor.org/info/rfc2818>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016, <https://www.rfc-

editor.org/info/rfc7925>.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-12
https://datatracker.ietf.org/doc/html/draft-ietf-teep-protocol-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925

Thaler Expires April 12, 2021 [Page 12]

Internet-Draft TEEP HTTP Transport October 2020

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [GP-OTrP] Global Platform, "TEE Management Framework: Open Trust
 Protocol (OTrP) Profile Version 1.0", Global
 Platform GPD_SPE_123, May 2019,
 <https://globalplatform.org/specs-library/tee-management-

framework-open-trust-protocol/>.

 [I-D.ietf-httpbis-bcp56bis]
 Nottingham, M., "Building Protocols with HTTP", draft-

ietf-httpbis-bcp56bis-09 (work in progress), November
 2019.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-31 (work
 in progress), September 2020.

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-12 (work in
 progress), July 2020.

 [I-D.ietf-teep-opentrustprotocol]
 Pei, M., Atyeo, A., Cook, N., Yoo, M., and H. Tschofenig,
 "The Open Trust Protocol (OTrP)", draft-ietf-teep-

opentrustprotocol-03 (work in progress), May 2019.

Author's Address

 Dave Thaler
 Microsoft

 EMail: dthaler@microsoft.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol/
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-bcp56bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-bcp56bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-31
https://datatracker.ietf.org/doc/html/draft-ietf-teep-architecture-12
https://datatracker.ietf.org/doc/html/draft-ietf-teep-opentrustprotocol-03
https://datatracker.ietf.org/doc/html/draft-ietf-teep-opentrustprotocol-03

Thaler Expires April 12, 2021 [Page 13]

