
Workgroup: TEEP WG

Internet-Draft:

draft-ietf-teep-otrp-over-http-13

Published: 28 February 2022

Intended Status: Standards Track

Expires: 1 September 2022

Authors: D. Thaler

Microsoft

HTTP Transport for Trusted Execution Environment Provisioning: Agent

Initiated Communication

Abstract

The Trusted Execution Environment Provisioning (TEEP) Protocol is

used to manage code and configuration data in a Trusted Execution

Environment (TEE). This document specifies the HTTP transport for

TEEP communication where a Trusted Application Manager (TAM) service

is used to manage code and data in TEEs on devices that can initiate

communication to the TAM. An implementation of this document can (if

desired) run outside of any TEE, but interacts with a TEEP

implementation that runs inside a TEE.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. TEEP Broker

3.1. Use of Abstract APIs

4. Use of HTTP as a Transport

5. TEEP/HTTP Client Behavior

5.1. Receiving a request to install a new Trusted Application

5.1.1. Session Creation

5.2. Receiving a notification that a Trusted Application is no

longer needed

5.3. Getting a TAM URI and message buffer back from a TEEP Agent

5.4. Receiving an HTTP response

5.5. Handling checks for policy changes

5.6. Error handling

6. TEEP/HTTP Server Behavior

6.1. Receiving an HTTP POST request

6.2. Getting an empty buffer back from the TAM

6.3. Getting a message buffer from the TAM

6.4. Error handling

7. Sample message flow

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Author's Address

1. Introduction

A Trusted Execution Environment (TEE) is an environment that

enforces that any code within that environment cannot be tampered

with, and that any data used by such code cannot be read or tampered

with by any code outside that environment. The Trusted Execution

Environment Provisioning (TEEP) protocol is designed to provision

authorized code and configuration into TEEs.

To be secure against malware, a TEEP implementation (referred to as

a TEEP "Agent" on the client side, and a "Trusted Application

Manager (TAM)" on the server side) SHOULD themselves run inside a

TEE, although a TAM running outside a TEE is also supported.

However, the transport for TEEP, along with the underlying TCP/IP

stack, does not necessarily run inside a TEE. This split allows the

¶

¶

set of highly trusted code to be kept as small as possible,

including allowing code (e.g., TCP/IP or QUIC [RFC9000]) that only

sees encrypted messages, to be kept out of the TEE.

The TEEP specification [I-D.ietf-teep-protocol] (like its

predecessors [I-D.ietf-teep-opentrustprotocol] and [GP-OTrP])

describes the behavior of TEEP Agents and TAMs, but does not specify

the details of the transport. The purpose of this document is to

provide such details. That is, a TEEP-over-HTTP (TEEP/HTTP)

implementation delivers messages up to a TEEP implementation, and

accepts messages from the TEEP implementation to be sent over a

network. The TEEP-over-HTTP implementation can be implemented either

outside a TEE (i.e., in a TEEP "Broker") or inside a TEE.

There are two topological scenarios in which TEEP could be deployed:

TAMs are reachable on the Internet, and Agents are on networks

that might be behind a firewall or stateful NAT, so that

communication must be initiated by an Agent. Thus, the Agent

has an HTTP Client and the TAM has an HTTP Server.

Agents are reachable on the Internet, and TAMs are on networks

that might be behind a firewall or stateful NAT, so that

communication must be initiated by a TAM. Thus, the Agent has

an HTTP Server and the TAM has an HTTP Client.

The remainder of this document focuses primarily on the first

scenario as depicted in Figure 1, but some sections (Section 4 and

Section 8) may apply to the second scenario as well. A fuller

discussion of the second scenario may be handled by a separate

document.

Figure 1: Agent Initiated Communication

This document specifies the middle layer (TEEP-over-HTTP), whereas

the top layer (TEEP) is specified in [I-D.ietf-teep-protocol].

¶

¶

¶

1.

¶

2.

¶

¶

 +------------------+ TEEP +------------------+

 | TEEP Agent | <----------------------> | TAM |

 +------------------+ +------------------+

 | |

 +------------------+ TEEP-over-HTTP +------------------+

 | TEEP/HTTP Client | <----------------------> | TEEP/HTTP Server |

 +------------------+ +------------------+

 | |

 +------------------+ HTTP +------------------+

 | HTTP Client | <----------------------> | HTTP Server |

 +------------------+ +------------------+

¶

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document also uses various terms defined in [I-D.ietf-teep-

architecture], including Trusted Execution Environment (TEE),

Trusted Application (TA), Trusted Application Manager (TAM), TEEP

Agent, TEEP Broker, and Rich Execution Environment (REE).

3. TEEP Broker

Section 6 of the TEEP architecture [I-D.ietf-teep-architecture]

defines a TEEP "Broker" as being a component on the device, but

outside the TEE, that facilitates communication with a TAM. That

document further explains that the protocol layer at which the TEEP

broker operates may vary by implementation, and it depicts several

exemplary models. An implementation is free to choose any of these

models, although model A is the one we will use in our examples.

Passing information from an REE component to a TEE component is

typically spoken of as being passed "in" to the TEE, and information

passed in the opposite direction is spoken of as being passed "out".

In the protocol layering sense, information is typically spoken of

as being passed "up" or "down" the stack. Since the layer at which

information is passed in/out may vary by implementation, we will

generally use "up" and "down" in this document.

3.1. Use of Abstract APIs

This document refers to various APIs between a TEEP implementation

and a TEEP/HTTP implementation in the abstract, meaning the literal

syntax and programming language are not specified, so that various

concrete APIs can be designed (outside of the IETF) that are

compliant.

Some TEE architectures (e.g., SGX) may support API calls both into

and out of a TEE. In other TEE architectures, there may be no calls

out from a TEE, but merely data returned from calls into a TEE. This

document attempts to be agnostic as to the concrete API architecture

for Broker/Agent communication. Since in model A, the Broker/Agent

communication is done at the layer between the TEEP and TEEP/HTTP

implementations, and there may be some architectures that do not

support calls out of the TEE (which would be downcalls from TEEP in

model A), we will refer to passing information up to the TEEP

implementation as API calls, but will simply refer to "passing data"

¶

¶

¶

¶

¶

back down from a TEEP implementation. A concrete API might pass data

back via an API downcall or via data returned from an API upcall.

This document will also refer to passing "no" data back out of a

TEEP implementation. In a concrete API, this might be implemented by

not making any downcall, or by returning 0 bytes from an upcall, for

example.

4. Use of HTTP as a Transport

This document uses HTTP [I-D.ietf-httpbis-semantics] as a transport.

For the motivation behind the HTTP recommendations in this document,

see the discussion of HTTP as a transport in [I-D.ietf-httpbis-

bcp56bis].

Redirects MUST NOT be automatically followed. Cookies are not used.

Content is not intended to be treated as active by browsers and so

HTTP responses with content SHOULD have the following header fields

as explained in Section 4.13 of [I-D.ietf-httpbis-bcp56bis] (using

the TEEP media type defined in [I-D.ietf-teep-protocol]):

Only the POST method is specified for TAM resources exposed over

HTTP. A URI of such a resource is referred to as a "TAM URI". A TAM

URI can be any HTTP(S) URI. The URI to use is configured in a TEEP

Agent via an out-of-band mechanism, as discussed in the next

section.

It is strongly RECOMMENDED that implementations use HTTPS. Although

TEEP is protected end-to-end inside of HTTP, there is still value in

using HTTPS for transport, since HTTPS can provide additional

protections as discussed in Sections 4.4.2 and 6 of [I-D.ietf-

httpbis-bcp56bis].

However, there may be constrained nodes where code space is an

issue. [RFC7925] provides TLS profiles that can be used in many

constrained nodes, but in rare cases the most constrained nodes

might need to use HTTP without a TLS stack, relying on the end-to-

end security provided by the TEEP protocol.

When HTTPS is used, clients MUST use the procedures detailed in

Section 4.3.4 of [I-D.ietf-httpbis-semantics] to verify the

authenticity of the server. See [BCP195] for additional TLS

recommendations and [RFC7925] for TLS recommendations related to IoT

devices.

¶

¶

¶

¶

¶

 Content-Type: application/teep+cbor

 X-Content-Type-Options: nosniff

 Content-Security-Policy: default-src 'none'

 Referrer-Policy: no-referrer

¶

¶

¶

¶

¶

5. TEEP/HTTP Client Behavior

5.1. Receiving a request to install a new Trusted Application

In some environments, an application installer can determine (e.g.,

from an application manifest) that the application being installed

or updated has a dependency on a given Trusted Application (TA)

being available in a given type of TEE. In such a case, it will

notify a TEEP Broker, where the notification will contain the

following:

A unique identifier of the TA

Optionally, any metadata to provide to the TEEP Agent. This might

include a TAM URI provided in the application manifest, for

example.

Optionally, any requirements that may affect the choice of TEE,

if multiple are available to the TEEP Broker.

When a TEEP Broker receives such a notification, it first identifies

in an implementation-dependent way which TEE (if any) is most

appropriate based on the constraints expressed. If there is only one

TEE, the choice is obvious. Otherwise, the choice might be based on

factors such as capabilities of available TEE(s) compared with TEE

requirements in the notification. Once the TEEP Broker picks a TEE,

it passes the notification to the TEEP/HTTP Client for that TEE.

The TEEP/HTTP Client then informs the TEEP Agent in that TEE by

invoking an appropriate "RequestTA" API that identifies the TA

needed and any other associated metadata. The TEEP/HTTP Client need

not know whether the TEE already has such a TA installed or whether

it is up to date.

The TEEP Agent will either (a) pass no data back, (b) pass back a

TAM URI to connect to, or (c) pass back a message buffer and TAM URI

to send it to. The TAM URI passed back may or may not be the same as

the TAM URI, if any, provided by the TEEP/HTTP Client, depending on

the TEEP Agent's configuration. If they differ, the TEEP/HTTP Client

MUST use the TAM URI passed back.

5.1.1. Session Creation

If no data is passed back, the TEEP/HTTP Client simply informs its

caller (e.g., the application installer) of success.

If the TEEP Agent passes back a TAM URI with no message buffer, the

TEEP/HTTP Client attempts to create session state, then sends an

HTTP(S) POST to the TAM URI with an Accept header field with the

TEEP media type specified in [I-D.ietf-teep-protocol], and an empty

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

body. The HTTP request is then associated with the TEEP/HTTP

Client's session state.

If the TEEP Agent instead passes back a TAM URI with a message

buffer, the TEEP/HTTP Client attempts to create session state and

handles the message buffer as specified in Section 5.3.

Session state consists of:

Any context (e.g., a handle) that identifies the API session with

the TEEP Agent.

Any context that identifies an HTTP request, if one is

outstanding. Initially, none exists.

5.2. Receiving a notification that a Trusted Application is no longer

needed

In some environments, an application installer can determine (e.g.,

from an application manifest) that a given Trusted Application is no

longer needed, such as if the application that previously depended

on the TA is uninstalled or updated in a way that removes the

dependency. In such a case, it will notify a TEEP Broker, where the

notification will contain the following:

A unique identifier of the TA

Optionally, any metadata to provide to the TEEP Agent. This might

include a TAM URI provided in the original application manifest,

for example.

Optionally, any requirements that may affect the choice of TEE,

if multiple are available to the TEEP Broker.

When a TEEP Broker receives such a notification, it first identifies

in an implementation-dependent way which TEE (if any) is believed to

contain the TA that is no longer needed, similar to the process in

Section 5.1. Once the TEEP Broker picks a TEE, it passes the

notification to the TEEP/HTTP Client for that TEE.

The TEEP/HTTP Client then informs the TEEP Agent in that TEE by

invoking an appropriate "UnrequestTA" API that identifies the

unneeded TA. The TEEP/HTTP Client need not know whether the TEE

actually has the TA installed.

The TEEP Agent will either (a) pass no data back, (b) pass back a

TAM URI to connect to, or (c) pass back a message buffer and TAM URI

to send it to. The TAM URI passed back may or may not be the same as

the TAM URI, if any, provided by the TEEP/HTTP Client, depending on

¶

¶

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

¶

¶

the TEEP Agent's configuration. If they differ, the TEEP/HTTP Client

MUST use the TAM URI passed back.

Processing then continues as in Section 5.1.1.

5.3. Getting a TAM URI and message buffer back from a TEEP Agent

When a TEEP Agent passes a TAM URI and optionally a message buffer

to a TEEP/HTTP Client, the TEEP/HTTP Client MUST do the following,

using the TEEP/HTTP Client's session state associated with its API

call to the TEEP Agent.

The TEEP/HTTP Client sends an HTTP POST request to the TAM URI with

Accept and Content-Type header fields with the TEEP media type, and

a body containing the TEEP message buffer (if any) provided by the

TEEP Agent. The HTTP request is then associated with the TEEP/HTTP

Client's session state.

5.4. Receiving an HTTP response

When an HTTP response is received in response to a request

associated with a given session state, the TEEP/HTTP Client MUST do

the following.

If the HTTP response body is empty, the TEEP/HTTP Client's task is

complete, and it can delete its session state, and its task is done.

If instead the HTTP response body is not empty, the TEEP/HTTP Client

passes (e.g., using the "ProcessTeepMessage" API as mentioned in

Section 6.2.1 of [I-D.ietf-teep-architecture]) the response body up

to the TEEP Agent associated with the session. The TEEP Agent will

then either pass no data back, or pass back a message buffer.

If no data is passed back, the TEEP/HTTP Client's task is complete,

and it can delete its session state, and inform its caller (e.g.,

the application installer) of success.

If instead the TEEP Agent passes back a message buffer, the TEEP/

HTTP Client handles the message buffer as specified in Section 5.3.

5.5. Handling checks for policy changes

An implementation MUST provide a way to periodically check for TAM

policy changes, such as a Trusted Application needing to be deleted

from a TEE because it is no longer permitted, or needing to be

updated to a later version. This can be done in any implementation-

specific manner, such as any of the following or a combination

thereof:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A) The TEEP/HTTP Client might call up to the TEEP Agent at an

interval previously specified by the TEEP Agent. This approach

requires that the TEEP/HTTP Client be capable of running a periodic

timer.

B) The TEEP/HTTP Client might be informed when an existing TA is

invoked, and call up to the TEEP Agent if more time has passed than

was previously specified by the TEEP Agent. This approach allows the

device to go to sleep for a potentially long period of time.

C) The TEEP/HTTP Client might be informed when any attestation

attempt determines that the device is out of compliance, and call up

to the TEEP Agent to remediate.

The TEEP/HTTP Client informs the TEEP Agent by invoking an

appropriate "RequestPolicyCheck" API. The TEEP Agent will either (a)

pass no data back, (b) pass back a TAM URI to connect to, or (c)

pass back a message buffer and TAM URI to send it to. Processing

then continues as specified in Section 5.1.1.

The TEEP Agent might need to talk to multiple TAMs, however, as

shown in Figure 1 of [I-D.ietf-teep-architecture]. To accomplish

this, the TEEP/HTTP Client keeps invoking the "RequestPolicyCheck"

API until the TEEP Agent passes no data back, so that the TEEP Agent

can return each TAM URI in response to a separate API call.

5.6. Error handling

If any local error occurs where the TEEP/HTTP Client cannot get a

message buffer (empty or not) back from the TEEP Agent, the TEEP/

HTTP Client deletes its session state, and informs its caller (if

any, e.g., the application installer) of a failure.

If any HTTP request results in an HTTP error response or a lower

layer error (e.g., network unreachable), the TEEP/HTTP Client calls

the TEEP Agent's "ProcessError" API, and then deletes its session

state and informs its caller of a failure.

6. TEEP/HTTP Server Behavior

6.1. Receiving an HTTP POST request

If the TAM does not receive the appropriate Content-Type header

field value, the TAM SHOULD fail the request, returning a 415

Unsupported Media Type response. Similarly, if an appropriate Accept

header field is not present, the TAM SHOULD fail the request with an

appropriate error response. (This is for consistency with common

implementation practice to allow the HTTP server to choose a default

error response, since in some implementations the choice is done at

¶

¶

¶

¶

¶

¶

¶

the HTTP layer rather than the layer at which TEEP-over-HTTP would

be implemented.) Otherwise, processing continues as follows.

When an HTTP POST request is received with an empty body, this

indicates a request for a new TEEP session, and the TEEP/HTTP Server

invokes the TAM's "ProcessConnect" API. The TAM will then pass back

a message buffer.

When an HTTP POST request is received with a non-empty body, this

indicates a message on an existing TEEP session, and the TEEP/HTTP

Server passes the request body to the TAM (e.g., using the

"ProcessTeepMessage" API mentioned in [I-D.ietf-teep-architecture]).

The TAM will then pass back a (possibly empty) message buffer.

6.2. Getting an empty buffer back from the TAM

If the TAM passes back an empty buffer, the TEEP/HTTP Server sends a

successful (2xx) response with no body. It SHOULD be status 204 (No

Content).

6.3. Getting a message buffer from the TAM

If the TAM passes back a non-empty buffer, the TEEP/HTTP Server

generates a successful (2xx) response with a Content-Type header

field with the TEEP media type, and with the message buffer as the

body.

6.4. Error handling

If any error occurs where the TEEP/HTTP Server cannot get a message

buffer (empty or not) back from the TAM, the TEEP/HTTP Server

generates an appropriate HTTP 5xx error response.

7. Sample message flow

The following shows a sample TEEP message flow that uses

application/teep+cbor as the Content-Type.

An application installer determines (e.g., from an application

manifest) that the application has a dependency on TA "X", and

passes this notification to the TEEP Broker. The TEEP Broker

picks a TEE (e.g., the only one available) based on this

notification, and passes the information to the TEEP/HTTP Cient

for that TEE.

The TEEP/HTTP Client calls the TEEP Agent's "RequestTA" API,

passing TA Needed = X.

The TEEP Agent finds that no such TA is already installed, but

that it can be obtained from a given TAM. The TEEP Agent passes

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

back the TAM URI (e.g., "https://example.com/tam") to the TEEP/

HTTP Client.

The TEEP/HTTP Client sends an HTTP POST request to the TAM URI:

where the TEEP/HTTP Client fills in an implementation-specific

value in the User-Agent header field.

On the TAM side, the TEEP/HTTP Server receives the HTTP POST

request, and calls the TAM's "ProcessConnect" API.

The TAM generates a TEEP message (where typically QueryRequest

is the first message) and passes it to the TEEP/HTTP Server.

The TEEP/HTTP Server sends an HTTP successful response with the

TEEP message in the body:

where the TEEP/HTTP Server fills in an implementation-specific

value in the Server header field.

Back on the TEEP Agent side, the TEEP/HTTP Client gets the HTTP

response, extracts the TEEP message and pass it up to the TEEP

Agent.

The TEEP Agent processes the TEEP message, and generates a TEEP

response (e.g., QueryResponse) which it passes back to the

TEEP/HTTP Client.

The TEEP/HTTP Client gets the TEEP message buffer and sends an

HTTP POST request to the TAM URI, with the TEEP message in the

body:

¶

4. ¶

 POST /tam HTTP/1.1

 Host: example.com

 Accept: application/teep+cbor

 Content-Length: 0

 User-Agent: Foo/1.0

¶

¶

5.

¶

6.

¶

7.

¶

 HTTP/1.1 200 OK

 Content-Type: application/teep+cbor

 Content-Length: [length of TEEP message here]

 Server: Bar/2.2

 X-Content-Type-Options: nosniff

 Content-Security-Policy: default-src 'none'

 Referrer-Policy: no-referrer

 [TEEP message here]

¶

¶

8.

¶

9.

¶

10.

¶

[BCP195]

[I-D.ietf-httpbis-semantics]

The TEEP/HTTP Server receives the HTTP POST request, and passes

the payload up to the TAM.

Steps 6-11 are then repeated until the TAM passes no data back

to the TEEP/HTTP Server in step 6.

The TEEP/HTTP Server sends an HTTP successful response with no

body:

The TEEP/HTTP Client deletes its session state.

8. Security Considerations

Section 4 discussed security recommendations for HTTPS transport of

TEEP messages. See Section 6 of [I-D.ietf-httpbis-bcp56bis] for

additional discussion of HTTP(S) security considerations. See

section 9 of [I-D.ietf-teep-architecture] for security

considerations specific to the use of TEEP.

9. IANA Considerations

This document has no actions for IANA.

10. References

10.1. Normative References

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Fielding, R. T., Nottingham, M., and J.

Reschke, "HTTP Semantics", Work in Progress, Internet-

Draft, draft-ietf-httpbis-semantics-19, 12 September

2021, <https://www.ietf.org/archive/id/draft-ietf-

httpbis-semantics-19.txt>.

 POST /tam HTTP/1.1

 Host: example.com

 Accept: application/teep+cbor

 Content-Type: application/teep+cbor

 Content-Length: [length of TEEP message here]

 User-Agent: Foo/1.0

 [TEEP message here]

¶

11.

¶

12.

¶

13.

¶

 HTTP/1.1 204 No Content

 Server: Bar/2.2

¶

14. ¶

¶

¶

https://www.rfc-editor.org/info/rfc7525
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-19.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-19.txt

[I-D.ietf-teep-protocol]

[RFC2119]

[RFC7925]

[RFC8174]

[GP-OTrP]

[I-D.ietf-httpbis-bcp56bis]

[I-D.ietf-teep-architecture]

[I-D.ietf-teep-opentrustprotocol]

Tschofenig, H., Pei, M., Wheeler, D.,

Thaler, D., and A. Tsukamoto, "Trusted Execution

Environment Provisioning (TEEP) Protocol", Work in

Progress, Internet-Draft, draft-ietf-teep-protocol-07, 25

October 2021, <https://www.ietf.org/archive/id/draft-

ietf-teep-protocol-07.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Tschofenig, H., Ed. and T. Fossati, "Transport Layer

Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, DOI

10.17487/RFC7925, July 2016, <https://www.rfc-editor.org/

info/rfc7925>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

Global Platform, "TEE Management Framework: Open Trust

Protocol (OTrP) Profile Version 1.0", Global Platform

GPD_SPE_123, May 2019, <https://globalplatform.org/specs-

library/tee-management-framework-open-trust-protocol/>.

Nottingham, M., "Building Protocols with HTTP", Work in

Progress, Internet-Draft, draft-ietf-httpbis-bcp56bis-15,

27 August 2021, <https://www.ietf.org/archive/id/draft-

ietf-httpbis-bcp56bis-15.txt>.

Pei, M., Tschofenig, H., Thaler, D.,

and D. Wheeler, "Trusted Execution Environment

Provisioning (TEEP) Architecture", Work in Progress,

Internet-Draft, draft-ietf-teep-architecture-15, 12 July

2021, <https://www.ietf.org/archive/id/draft-ietf-teep-

architecture-15.txt>.

Pei, M., Atyeo, A., Cook, N., Yoo,

M., and H. Tschofenig, "The Open Trust Protocol (OTrP)",

Work in Progress, Internet-Draft, draft-ietf-teep-

https://www.ietf.org/archive/id/draft-ietf-teep-protocol-07.txt
https://www.ietf.org/archive/id/draft-ietf-teep-protocol-07.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8174
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol/
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol/
https://www.ietf.org/archive/id/draft-ietf-httpbis-bcp56bis-15.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-bcp56bis-15.txt
https://www.ietf.org/archive/id/draft-ietf-teep-architecture-15.txt
https://www.ietf.org/archive/id/draft-ietf-teep-architecture-15.txt

[RFC9000]

opentrustprotocol-03, 15 May 2019, <https://www.ietf.org/

archive/id/draft-ietf-teep-opentrustprotocol-03.txt>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Author's Address

Dave Thaler

Microsoft

Email: dthaler@microsoft.com

https://www.ietf.org/archive/id/draft-ietf-teep-opentrustprotocol-03.txt
https://www.ietf.org/archive/id/draft-ietf-teep-opentrustprotocol-03.txt
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
mailto:dthaler@microsoft.com

	HTTP Transport for Trusted Execution Environment Provisioning: Agent Initiated Communication
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. TEEP Broker
	3.1. Use of Abstract APIs

	4. Use of HTTP as a Transport
	5. TEEP/HTTP Client Behavior
	5.1. Receiving a request to install a new Trusted Application
	5.1.1. Session Creation

	5.2. Receiving a notification that a Trusted Application is no longer needed
	5.3. Getting a TAM URI and message buffer back from a TEEP Agent
	5.4. Receiving an HTTP response
	5.5. Handling checks for policy changes
	5.6. Error handling

	6. TEEP/HTTP Server Behavior
	6.1. Receiving an HTTP POST request
	6.2. Getting an empty buffer back from the TAM
	6.3. Getting a message buffer from the TAM
	6.4. Error handling

	7. Sample message flow
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Author's Address

