
TEEP H. Tschofenig
Internet-Draft Arm Ltd.
Intended status: Standards Track M. Pei
Expires: January 13, 2022 Broadcom
 D. Wheeler
 Amazon
 D. Thaler
 Microsoft
 A. Tsukamoto
 AIST
 July 12, 2021

Trusted Execution Environment Provisioning (TEEP) Protocol
draft-ietf-teep-protocol-06

Abstract

 This document specifies a protocol that installs, updates, and
 deletes Trusted Components in a device with a Trusted Execution
 Environment (TEE). This specification defines an interoperable
 protocol for managing the lifecycle of Trusted Components.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Tschofenig, et al. Expires January 13, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TEEP Protocol July 2021

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Message Overview . 4
4. Detailed Messages Specification 5
4.1. Creating and Validating TEEP Messages 5
4.1.1. Creating a TEEP message 5
4.1.2. Validating a TEEP Message 6

4.2. QueryRequest Message 6
4.3. QueryResponse Message 9
4.3.1. Evidence . 11

4.4. Update Message . 12
4.5. Success Message . 14
4.6. Error Message . 15

5. Mapping of TEEP Message Parameters to CBOR Labels 17
6. Behavior Specification 18
6.1. TAM Behavior . 18
6.2. TEEP Agent Behavior 19

7. Ciphersuites . 20
8. Freshness Mechanisms . 21
9. Security Considerations 21
10. IANA Considerations . 23
10.1. Media Type Registration 23
10.2. Ciphersuite Registry 24
10.3. Freshness Mechanism Registry 24
10.4. CBOR Tag Registry 25

11. References . 25
11.1. Normative References 25
11.2. Informative References 26

A. Contributors . 27
B. Acknowledgements . 27
C. Complete CDDL . 27
D. Examples of Diagnostic Notation and Binary Representation . . 31
D.1. Some assumptions in examples 31
D.2. QueryRequest Message 31
D.2.1. CBOR Diagnostic Notation 32
D.2.2. CBOR Binary Representation 32

D.3. Entity Attestation Token 32
D.3.1. CBOR Diagnostic Notation 33

D.4. QueryResponse Message 33

Tschofenig, et al. Expires January 13, 2022 [Page 2]

Internet-Draft TEEP Protocol July 2021

D.4.1. CBOR Diagnostic Notation 33
D.4.2. CBOR Binary Representation 34

D.5. Update Message . 35
D.5.1. CBOR Diagnostic Notation 35
D.5.2. CBOR Binary Representation 35

D.6. Success Message . 36
D.6.1. CBOR Diagnostic Notation 36
D.6.2. CBOR Binary Representation 36

D.7. Error Message . 36
D.7.1. CBOR Diagnostic Notation 36
D.7.2. CBOR binary Representation 37

 Authors' Addresses . 37

1. Introduction

 The Trusted Execution Environment (TEE) concept has been designed to
 separate a regular operating system, also referred as a Rich
 Execution Environment (REE), from security-sensitive applications.
 In a TEE ecosystem, device vendors may use different operating
 systems in the REE and may use different types of TEEs. When Trusted
 Component Developers or Device Administrators use Trusted Application
 Managers (TAMs) to install, update, and delete Trusted Applications
 and their dependencies on a wide range of devices with potentially
 different TEEs then an interoperability need arises.

 This document specifies the protocol for communicating between a TAM
 and a TEEP Agent.

 The Trusted Execution Environment Provisioning (TEEP) architecture
 document [I-D.ietf-teep-architecture] provides design guidance and
 introduces the necessary terminology.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification re-uses the terminology defined in
 [I-D.ietf-teep-architecture].

 As explained in Section 4.4 of that document, the TEEP protocol
 treats each Trusted Application (TA), any dependencies the TA has,
 and personalization data as separate components that are expressed in
 SUIT manifests, and a SUIT manifest might contain or reference
 multiple binaries (see [I-D.ietf-suit-manifest] for more details).

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Tschofenig, et al. Expires January 13, 2022 [Page 3]

Internet-Draft TEEP Protocol July 2021

 As such, the term Trusted Component (TC) in this document refers to a
 set of binaries expressed in a SUIT manifest, to be installed in a
 TEE. Note that a Trusted Component may include one or more TAs and/
 or configuration data and keys needed by a TA to operate correctly.

 Each Trusted Component is uniquely identified by a SUIT Component
 Identifier (see [I-D.ietf-suit-manifest] Section 8.7.2.2).

3. Message Overview

 The TEEP protocol consists of messages exchanged between a TAM and a
 TEEP Agent. The messages are encoded in CBOR and designed to provide
 end-to-end security. TEEP protocol messages are signed by the
 endpoints, i.e., the TAM and the TEEP Agent, but Trusted Applications
 may also be encrypted and signed by a Trusted Component Developer or
 Device Administrator. The TEEP protocol not only uses CBOR but also
 the respective security wrapper, namely COSE [RFC8152]. Furthermore,
 for software updates the SUIT manifest format
 [I-D.ietf-suit-manifest] is used, and for attestation the Entity
 Attestation Token (EAT) [I-D.ietf-rats-eat] format is supported
 although other attestation formats are also permitted.

 This specification defines five messages: QueryRequest,
 QueryResponse, Update, Success, and Error.

 A TAM queries a device's current state with a QueryRequest message.
 A TEEP Agent will, after authenticating and authorizing the request,
 report attestation information, list all Trusted Components, and
 provide information about supported algorithms and extensions in a
 QueryResponse message. An error message is returned if the request
 could not be processed. A TAM will process the QueryResponse message
 and determine whether to initiate subsequent message exchanges to
 install, update, or delete Trusted Applications.

 +------------+ +-------------+
 | TAM | |TEEP Agent |
 +------------+ +-------------+

 QueryRequest ------->

 QueryResponse

 <------- or

 Error

 With the Update message a TAM can instruct a TEEP Agent to install
 and/or delete one or more Trusted Components. The TEEP Agent will

https://datatracker.ietf.org/doc/html/rfc8152

Tschofenig, et al. Expires January 13, 2022 [Page 4]

Internet-Draft TEEP Protocol July 2021

 process the message, determine whether the TAM is authorized and
 whether the Trusted Component has been signed by an authorized
 Trusted Component Signer. A Success message is returned when the
 operation has been completed successfully, or an Error message
 otherwise.

 +------------+ +-------------+
 | TAM | |TEEP Agent |
 +------------+ +-------------+

 Update ---->

 Success

 <---- or

 Error

4. Detailed Messages Specification

 TEEP messages are protected by the COSE_Sign1 structure. The TEEP
 protocol messages are described in CDDL format [RFC8610] below.

 {
 teep-message => (query-request /
 query-response /
 update /
 teep-success /
 teep-error),
 }

4.1. Creating and Validating TEEP Messages

4.1.1. Creating a TEEP message

 To create a TEEP message, the following steps are performed.

 1. Create a TEEP message according to the description below and
 populate it with the respective content. TEEP messages sent by
 TAMs (QueryRequest and Update) can include a "token". The first
 usage of a token generated by a TAM MUST be randomly created.
 Subsequent token values MUST be different for each subsequent
 message created by a TAM.

 2. Create a COSE Header containing the desired set of Header
 Parameters. The COSE Header MUST be valid per the [RFC8152]
 specification.

https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8152

Tschofenig, et al. Expires January 13, 2022 [Page 5]

Internet-Draft TEEP Protocol July 2021

 3. Create a COSE_Sign1 object using the TEEP message as the
 COSE_Sign1 Payload; all steps specified in [RFC8152] for creating
 a COSE_Sign1 object MUST be followed.

 4. Prepend the COSE object with the TEEP CBOR tag to indicate that
 the CBOR-encoded message is indeed a TEEP message.

4.1.2. Validating a TEEP Message

 When TEEP message is received (see the ProcessTeepMessage conceptual
 API defined in [I-D.ietf-teep-architecture] section 6.2.1), the
 following validation steps are performed. If any of the listed steps
 fail, then the TEEP message MUST be rejected.

 1. Verify that the received message is a valid CBOR object.

 2. Remove the TEEP message CBOR tag and verify that one of the COSE
 CBOR tags follows it.

 3. Verify that the message contains a COSE_Sign1 structure.

 4. Verify that the resulting COSE Header includes only parameters
 and values whose syntax and semantics are both understood and
 supported or that are specified as being ignored when not
 understood.

 5. Follow the steps specified in Section 4 of [RFC8152] ("Signing
 Objects") for validating a COSE_Sign1 object. The COSE_Sign1
 payload is the content of the TEEP message.

 6. Verify that the TEEP message is a valid CBOR map and verify the
 fields of the TEEP message according to this specification.

4.2. QueryRequest Message

 A QueryRequest message is used by the TAM to learn information from
 the TEEP Agent, such as the features supported by the TEEP Agent,
 including ciphersuites, and protocol versions. Additionally, the TAM
 can selectively request data items from the TEEP Agent via the
 request parameter. Currently, the following features are supported:

 o Request for attestation information,

 o Listing supported extensions,

 o Querying installed Trusted Components, and

 o Listing supported SUIT commands.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-4

Tschofenig, et al. Expires January 13, 2022 [Page 6]

Internet-Draft TEEP Protocol July 2021

 Like other TEEP messages, the QueryRequest message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 query-request = [
 type: TEEP-TYPE-query-request,
 options: {
 ? token => bstr .size (8..64),
 ? supported-cipher-suites => [+ suite],
 ? supported-freshness-mechanisms => [+ freshness-mechanism],
 ? challenge => bstr .size (8..512),
 ? versions => [+ version],
 ? ocsp-data => bstr,
 * $$query-request-extensions
 * $$teep-option-extensions
 },
 data-item-requested: data-item-requested
]

 The message has the following fields:

 type
 The value of (1) corresponds to a QueryRequest message sent from
 the TAM to the TEEP Agent.

 token
 The value in the token parameter is used to match responses to
 requests. This is particularly useful when a TAM issues multiple
 concurrent requests to a TEEP Agent. The token MUST be present if
 and only if the attestation bit is clear in the data-item-
 requested value. The size of the token is at least 8 bytes (64
 bits) and maximum of 64 bytes, which is the same as in an EAT
 Nonce Claim (see [I-D.ietf-rats-eat] Section 3.3).

 data-item-requested
 The data-item-requested parameter indicates what information the
 TAM requests from the TEEP Agent in the form of a bitmap. Each
 value in the bitmap corresponds to an IANA registered information
 element. This specification defines the following initial set of
 information elements:

 attestation (1) With this value the TAM requests the TEEP Agent
 to return attestation evidence (e.g., an EAT) in the response.

 trusted-components (2) With this value the TAM queries the TEEP
 Agent for all installed Trusted Components.

Tschofenig, et al. Expires January 13, 2022 [Page 7]

Internet-Draft TEEP Protocol July 2021

 extensions (4) With this value the TAM queries the TEEP Agent for
 supported capabilities and extensions, which allows a TAM to
 discover the capabilities of a TEEP Agent implementation.

 suit-commands (8) With this value the TAM queries the TEEP Agent
 for supported commands offered by the SUIT manifest
 implementation.

 Further values may be added in the future via IANA registration.

 supported-cipher-suites
 The supported-cipher-suites parameter lists the ciphersuite(s)
 supported by the TAM. If this parameter is not present, it is to
 be treated the same as if it contained both ciphersuites defined
 in this document. Details about the ciphersuite encoding can be
 found in Section 7.

 supported-freshness-mechanisms
 The supported-freshness-mechanisms parameter lists the freshness
 mechanism(s) supported by the TAM. Details about the encoding can
 be found in Section 8. If this parameter is absent, it means only
 the nonce mechanism is supported.

 challenge
 The challenge field is an optional parameter used for ensuring the
 freshness of the attestation evidence returned with a
 QueryResponse message. It MUST be absent if the attestation bit
 is clear (since the token is used instead in that case). When a
 challenge is provided in the QueryRequest and an EAT is returned
 with the QueryResponse message then the challenge contained in
 this request MUST be copied into the nonce claim found in the EAT.
 If any format other than EAT is used, it is up to that format to
 define the use of the challenge field.

 versions
 The versions parameter enumerates the TEEP protocol version(s)
 supported by the TAM. A value of 0 refers to the current version
 of the TEEP protocol. If this field is not present, it is to be
 treated the same as if it contained only version 0.

 ocsp-data
 The ocsp-data parameter contains a list of OCSP stapling data
 respectively for the TAM certificate and each of the CA
 certificates up to, but not including, the trust anchor. The TAM
 provides OCSP data so that the TEEP Agent can validate the status
 of the TAM certificate chain without making its own external OCSP
 service call. OCSP data MUST be conveyed as a DER-encoded OCSP
 response (using the ASN.1 type OCSPResponse defined in [RFC6960]).

https://datatracker.ietf.org/doc/html/rfc6960

Tschofenig, et al. Expires January 13, 2022 [Page 8]

Internet-Draft TEEP Protocol July 2021

 The use of OCSP is OPTIONAL to implement for both the TAM and the
 TEEP Agent. A TAM can query the TEEP Agent for the support of
 this functionality via the capability discovery exchange, as
 described above.

4.3. QueryResponse Message

 The QueryResponse message is the successful response by the TEEP
 Agent after receiving a QueryRequest message.

 Like other TEEP messages, the QueryResponse message is signed, and
 the relevant CDDL snippet is shown below. The complete CDDL
 structure is shown in Appendix C.

 query-response = [
 type: TEEP-TYPE-query-response,
 options: {
 ? token => bstr .size (8..64),
 ? selected-cipher-suite => suite,
 ? selected-version => version,
 ? evidence-format => text,
 ? evidence => bstr,
 ? tc-list => [+ tc-info],
 ? requested-tc-list => [+ requested-tc-info],
 ? unneeded-tc-list => [+ SUIT_Component_Identifier],
 ? ext-list => [+ ext-info],
 * $$query-response-extensions,
 * $$teep-option-extensions
 }
]

 tc-info = {
 component-id => SUIT_Component_Identifier,
 ? tc-manifest-sequence-number => .within uint .size 8
 }

 requested-tc-info = {
 component-id => SUIT_Component_Identifier,
 ? tc-manifest-sequence-number => .within uint .size 8
 ? have-binary => bool
 }

 The QueryResponse message has the following fields:

 type
 The value of (2) corresponds to a QueryResponse message sent from
 the TEEP Agent to the TAM.

Tschofenig, et al. Expires January 13, 2022 [Page 9]

Internet-Draft TEEP Protocol July 2021

 token
 The value in the token parameter is used to match responses to
 requests. The value MUST correspond to the value received with
 the QueryRequest message if one was present, and MUST be absent if
 no token was present in the QueryRequest.

 selected-cipher-suite
 The selected-cipher-suite parameter indicates the selected
 ciphersuite. Details about the ciphersuite encoding can be found
 in Section 7.

 selected-version
 The selected-version parameter indicates the TEEP protocol version
 selected by the TEEP Agent. The absense of this parameter
 indicates the same as if it was present with a value of 0.

 evidence-format
 The evidence-format parameter indicates the IANA Media Type of the
 attestation evidence contained in the evidence parameter. It MUST
 be present if the evidence parameter is present and the format is
 not an EAT.

 evidence
 The evidence parameter contains the attestation evidence. This
 parameter MUST be present if the QueryResponse is sent in response
 to a QueryRequest with the attestation bit set. If the evidence-
 format parameter is absent, the attestation evidence contained in
 this parameter MUST be an Entity Attestation Token following the
 encoding defined in [I-D.ietf-rats-eat]. See Section 4.3.1 for
 further discussion.

 tc-list
 The tc-list parameter enumerates the Trusted Components installed
 on the device in the form of tc-info objects. This parameter MUST
 be present if the QueryResponse is sent in response to a
 QueryRequest with the trusted-components bit set.

 requested-tc-list
 The requested-tc-list parameter enumerates the Trusted Components
 that are not currently installed in the TEE, but which are
 requested to be installed, for example by an installer of an
 Untrusted Application that has a TA as a dependency, or by a
 Trusted Application that has another Trusted Component as a
 dependency. Requested Trusted Components are expressed in the
 form of requested-tc-info objects. A TEEP Agent can get this
 information from the UnrequestTA conceptual API defined in
 [I-D.ietf-teep-architecture] section 6.2.1.

Tschofenig, et al. Expires January 13, 2022 [Page 10]

Internet-Draft TEEP Protocol July 2021

 unneeded-tc-list
 The unneeded-tc-list parameter enumerates the Trusted Components
 that are currently installed in the TEE, but which are no longer
 needed by any other application. The TAM can use this information
 in determining whether a Trusted Component can be deleted. Each
 unneeded Trusted Component is identified by its SUIT Component
 Identifier. A TEEP Agent can get this information from the
 UnrequestTA conceptual API defined in [I-D.ietf-teep-architecture]

section 6.2.1.

 ext-list
 The ext-list parameter lists the supported extensions. This
 document does not define any extensions.

 The tc-info object has the following fields:

 component-id
 A SUIT Component Identifier.

 tc-manifest-sequence-number
 The suit-manifest-sequence-number value from the SUIT manifest for
 the Trusted Component, if a SUIT manifest was used.

 The requested-tc-info message has the following fields:

 component-id
 A SUIT Component Identifier.

 tc-manifest-sequence-number
 The minimum suit-manifest-sequence-number value from a SUIT
 manifest for the Trusted Component. If not present, indicates
 that any sequence number will do.

 have-binary
 If present with a value of true, indicates that the TEEP agent
 already has the Trusted Component binary and only needs an Update
 message with a SUIT manifest that authorizes installing it. If
 have-binary is true, the tc-manifest-sequence-number field MUST be
 present.

4.3.1. Evidence

 Section 7.1 of [I-D.ietf-teep-architecture] lists information that
 may be required in the evidence depend on the circumstance. When an
 Entity Attestation Token is used, the following claims can be used to
 meet those requirements:

Tschofenig, et al. Expires January 13, 2022 [Page 11]

Internet-Draft TEEP Protocol July 2021

 +------------+---------------------+--------------------------------+
 | Requiremen | Claim | Reference |
 | t | | |
 +------------+---------------------+--------------------------------+
Device	device-identifier	[I-D.birkholz-rats-suit-claims
unique] section 3.1.3
identifier		
Vendor of	vendor-identifier	[I-D.birkholz-rats-suit-claims
the device] section 3.1.1
Class of	class-identifier	[I-D.birkholz-rats-suit-claims
the device] section 3.1.2
TEE	chip-version-scheme	[I-D.ietf-rats-eat] section
hardware		3.7
type		
TEE	chip-version-scheme	[I-D.ietf-rats-eat] section
hardware		3.7
version		
TEE	component-	[I-D.birkholz-rats-suit-claims
firmware	identifier] section 3.1.4
type		
TEE	version	[I-D.birkholz-rats-suit-claims
firmware] section 3.1.8
version		
Freshness	nonce	[I-D.ietf-rats-eat] section
proof		3.3
 +------------+---------------------+--------------------------------+

4.4. Update Message

 The Update message is used by the TAM to install and/or delete one or
 more Trusted Components via the TEEP Agent.

 Like other TEEP messages, the Update message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 update = [
 type: TEEP-TYPE-update,
 options: {
 ? token => bstr .size (8..64),
 ? manifest-list => [+ bstr .cbor SUIT_Envelope],
 * $$update-extensions,
 * $$teep-option-extensions
 }
]

 The Update message has the following fields:

Tschofenig, et al. Expires January 13, 2022 [Page 12]

Internet-Draft TEEP Protocol July 2021

 type
 The value of (3) corresponds to an Update message sent from the
 TAM to the TEEP Agent. In case of successful processing, a
 Success message is returned by the TEEP Agent. In case of an
 error, an Error message is returned. Note that the Update message
 is used for initial Trusted Component installation as well as for
 updates and deletes.

 token
 The value in the token field is used to match responses to
 requests.

 manifest-list
 The manifest-list field is used to convey one or multiple SUIT
 manifests to install. A manifest is a bundle of metadata about a
 Trusted Component, such as where to find the code, the devices to
 which it applies, and cryptographic information protecting the
 manifest. The manifest may also convey personalization data.
 Trusted Component binaries and personalization data can be signed
 and encrypted by the same Trusted Component Signer. Other
 combinations are, however, possible as well. For example, it is
 also possible for the TAM to sign and encrypt the personalization
 data and to let the Trusted Component Developer sign and/or
 encrypt the Trusted Component binary.

 Note that an Update message carrying one or more SUIT manifests will
 inherently involve multiple signatures, one by the TAM in the TEEP
 message and one from a Trusted Component signer inside each manifest.
 This is intentional as they are for different purposes.

 The TAM is what authorizes apps to be installed, updated, and deleted
 on a given TEE and so the TEEP signature is checked by the TEEP Agent
 at protocol message processing time. (This same TEEP security
 wrapper is also used on messages like QueryRequest so that Agents
 only send potentially sensitive data such as evidence to trusted
 TAMs.)

 The Trusted Component signer on the other hand is what authorizes the
 Trusted Component to actually run, so the manifest signature could be
 checked at install time or load (or run) time or both, and this
 checking is done by the TEE independent of whether TEEP is used or
 some other update mechanism. See section 5 of
 [I-D.ietf-teep-architecture] for further discussion.

Tschofenig, et al. Expires January 13, 2022 [Page 13]

Internet-Draft TEEP Protocol July 2021

4.5. Success Message

 The Success message is used by the TEEP Agent to return a success in
 response to an Update message.

 Like other TEEP messages, the Success message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 teep-success = [
 type: TEEP-TYPE-teep-success,
 options: {
 ? token => bstr .size (8..64),
 ? msg => text .size (1..128),
 ? suit-reports => [+ suit-report],
 * $$teep-success-extensions,
 * $$teep-option-extensions
 }
]

 The Success message has the following fields:

 type
 The value of (5) corresponds to corresponds to a Success message
 sent from the TEEP Agent to the TAM.

 token
 The value in the token parameter is used to match responses to
 requests. It MUST match the value of the token parameter in the
 Update message the Success is in response to, if one was present.
 If none was present, the token MUST be absent in the Success
 message.

 msg
 The msg parameter contains optional diagnostics information
 encoded in UTF-8 [RFC3629] using Net-Unicode form [RFC5198] with
 max 128 bytes returned by the TEEP Agent.

 suit-reports
 If present, the suit-reports parameter contains a set of SUIT
 Reports as defined in Section 4 of [I-D.moran-suit-report]. If
 the suit-report-nonce field is present in the SUIT Report, is
 value MUST match the value of the token parameter in the Update
 message the Success message is in response to.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198

Tschofenig, et al. Expires January 13, 2022 [Page 14]

Internet-Draft TEEP Protocol July 2021

4.6. Error Message

 The Error message is used by the TEEP Agent to return an error in
 response to an Update message.

 Like other TEEP messages, the Error message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 teep-error = [
 type: TEEP-TYPE-teep-error,
 options: {
 ? token => bstr .size (8..64),
 ? err-msg => text .size (1..128),
 ? supported-cipher-suites => [+ suite],
 ? supported-freshness-mechanisms => [+ freshness-mechanism],
 ? versions => [+ version],
 ? suit-reports => [+ suit-report],
 * $$teep-error-extensions,
 * $$teep-option-extensions
 },
 err-code: uint (0..23)
]

 The Error message has the following fields:

 type
 The value of (6) corresponds to an Error message sent from the
 TEEP Agent to the TAM.

 token
 The value in the token parameter is used to match responses to
 requests. It MUST match the value of the token parameter in the
 Update message the Success is in response to, if one was present.
 If none was present, the token MUST be absent in the Error
 message.

 err-msg
 The err-msg parameter is human-readable diagnostic text that MUST
 be encoded using UTF-8 [RFC3629] using Net-Unicode form [RFC5198]
 with max 128 bytes.

 supported-cipher-suites
 The supported-cipher-suites parameter lists the ciphersuite(s)
 supported by the TEEP Agent. Details about the ciphersuite
 encoding can be found in Section 7. This field is optional but
 MUST be returned with the ERR_UNSUPPORTED_CRYPTO_ALG error
 message.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198

Tschofenig, et al. Expires January 13, 2022 [Page 15]

Internet-Draft TEEP Protocol July 2021

 supported-freshness-mechanisms
 The supported-freshness-mechanisms parameter lists the freshness
 mechanism(s) supported by the TEEP Agent. Details about the
 encoding can be found in Section 8. If this parameter is absent,
 it means only the nonce mechanism is supported.

 versions
 The versions parameter enumerates the TEEP protocol version(s)
 supported by the TEEP Agent. This otherwise optional parameter
 MUST be returned with the ERR_UNSUPPORTED_MSG_VERSION error
 message.

 suit-reports
 If present, the suit-reports parameter contains a set of SUIT
 Reports as defined in Section 4 of [I-D.moran-suit-report]. If
 the suit-report-nonce field is present in the SUIT Report, is
 value MUST match the value of the token parameter in the Update
 message the Error message is in response to.

 err-code
 The err-code parameter contains one of the error codes listed
 below). Only selected values are applicable to each message.

 This specification defines the following initial error messages:

 ERR_PERMANENT_ERROR (1)
 The TEEP request contained incorrect fields or fields that are
 inconsistent with other fields. For diagnosis purposes it is
 RECOMMMENDED to identify the failure reason in the error message.
 A TAM receiving this error might refuse to communicate further
 with the TEEP Agent for some period of time until it has reason to
 believe it is worth trying again, but it should take care not to
 give up on communication when there is no attestation evidence
 indicating that the error is genuine. In contrast,
 ERR_TEMPORARY_ERROR is an indication that a more agressive retry
 is warranted.

 ERR_UNSUPPORTED_EXTENSION (2)
 The TEEP Agent does not support an extension included in the
 request message. For diagnosis purposes it is RECOMMMENDED to
 identify the unsupported extension in the error message. A TAM
 receiving this error might retry the request without using
 extensions.

 ERR_UNSUPPORTED_MSG_VERSION (4)
 The TEEP Agent does not support the TEEP protocol version
 indicated in the request message. A TAM receiving this error
 might retry the request using a different TEEP protocol version.

Tschofenig, et al. Expires January 13, 2022 [Page 16]

Internet-Draft TEEP Protocol July 2021

 ERR_UNSUPPORTED_CRYPTO_ALG (5)
 The TEEP Agent does not support the cryptographic algorithm
 indicated in the request message. A TAM receiving this error
 might retry the request using a different cryptographic algorithm.

 ERR_BAD_CERTIFICATE (6)
 Processing of a certificate failed. For diagnosis purposes it is
 RECOMMMENDED to include information about the failing certificate
 in the error message. For example, the certificate was of an
 unsupported type, or the certificate was revoked by its signer. A
 TAM receiving this error might attempt to use an alternate
 certificate.

 ERR_CERTIFICATE_EXPIRED (9)
 A certificate has expired or is not currently valid. A TAM
 receiving this error might attempt to renew its certificate before
 using it again.

 ERR_TEMPORARY_ERROR (10)
 A miscellaneous temporary error, such as a memory allocation
 failure, occurred while processing the request message. A TAM
 receiving this error might retry the same request at a later point
 in time.

 ERR_MANIFEST_PROCESSING_FAILED (17)
 The TEEP Agent encountered one or more manifest processing
 failures. If the suit-reports parameter is present, it contains
 the failure details. A TAM receiving this error might still
 attempt to install or update other components that do not depend
 on the failed manifest.

 New error codes should be added sparingly, not for every
 implementation error. That is the intent of the err-msg field, which
 can be used to provide details meaningful to humans. New error codes
 should only be added if the TAM is expected to do something
 behaviorally different upon receipt of the error message, rather than
 just logging the event. Hence, each error code is responsible for
 saying what the behavioral difference is expected to be.

5. Mapping of TEEP Message Parameters to CBOR Labels

 In COSE, arrays and maps use strings, negative integers, and unsigned
 integers as their keys. Integers are used for compactness of
 encoding. Since the word "key" is mainly used in its other meaning,
 as a cryptographic key, this specification uses the term "label" for
 this usage as a map key.

 This specification uses the following mapping:

Tschofenig, et al. Expires January 13, 2022 [Page 17]

Internet-Draft TEEP Protocol July 2021

 +--------------------------------+-------+
 | Name | Label |
 +--------------------------------+-------+
 | supported-cipher-suites | 1 |
 | challenge | 2 |
 | version | 3 |
 | ocsp-data | 4 |
 | selected-cipher-suite | 5 |
 | selected-version | 6 |
 | evidence | 7 |
 | tc-list | 8 |
 | ext-list | 9 |
 | manifest-list | 10 |
 | msg | 11 |
 | err-msg | 12 |
 | evidence-format | 13 |
 | requested-tc-list | 14 |
 | unneeded-tc-list | 15 |
 | component-id | 16 |
 | tc-manifest-sequence-number | 17 |
 | have-binary | 18 |
 | suit-reports | 19 |
 | token | 20 |
 | supported-freshness-mechanisms | 21 |
 +--------------------------------+-------+

6. Behavior Specification

 Behavior is specified in terms of the conceptual APIs defined in
 section 6.2.1 of [I-D.ietf-teep-architecture].

6.1. TAM Behavior

 When the ProcessConnect API is invoked, the TAM sends a QueryRequest
 message.

 When the ProcessTeepMessage API is invoked, the TAM first does
 validation as specified in Section 4.1.2, and drops the message if it
 is not valid. Otherwise, it proceeds as follows.

 If the message includes a token, it can be used to match the response
 to a request previously sent by the TAM. The TAM MUST expire the
 token value after receiving the first response from the device that
 has a valid signature and ignore any subsequent messages that have
 the same token value. The token value MUST NOT be used for other
 purposes, such as a TAM to identify the devices and/or a device to
 identify TAMs or Trusted Components.

Tschofenig, et al. Expires January 13, 2022 [Page 18]

Internet-Draft TEEP Protocol July 2021

 If a QueryResponse message is received that contains evidence, the
 evidence is passed to an attestation Verifier (see
 [I-D.ietf-rats-architecture]) to determine whether the Agent is in a
 trustworthy state. Based on the results of attestation, and the
 lists of installed, requested, and unneeded Trusted Components
 reported in the QueryResponse, the TAM determines, in any
 implementation specific manner, which Trusted Components need to be
 installed, updated, or deleted, if any. If any Trusted Components
 need to be installed, updated, or deleted, the TAM sends an Update
 message containing SUIT Manifests with command sequences to do the
 relevant installs, updates, or deletes. It is important to note that
 the TEEP Agent's Update Procedure requires resolving and installing
 any dependencies indicated in the manifest, which may take some time,
 and the resulting Success or Error message is generated only after
 completing the Update Procedure. Hence, depending on the freshness
 mechanism in use, the TAM may need to store data (e.g., a nonce) for
 some time.

 If a Success or Error message is received containing one or more SUIT
 Reports, the TAM also validates that the nonce in any SUIT Report
 matches the token sent in the Update message, and drops the message
 if it does not match. Otherwise, the TAM handles the update in any
 implementation specific way, such as updating any locally cached
 information about the state of the TEEP Agent, or logging the
 results.

 If any other Error message is received, the TAM can handle it in any
 implementation specific way, but Section 4.6 provides recommendations
 for such handling.

6.2. TEEP Agent Behavior

 When the RequestTA API is invoked, the TEEP Agent first checks
 whether the requested TA is already installed. If it is already
 installed, the TEEP Agent passes no data back to the caller.
 Otherwise, if the TEEP Agent chooses to initiate the process of
 requesting the indicated TA, it determines (in any implementation
 specific way) the TAM URI based on any TAM URI provided by the
 RequestTA caller and any local configuration, and passes back the TAM
 URI to connect to.

 When the RequestPolicyCheck API is invoked, the TEEP Agent decides
 whether to initiate communication with any trusted TAMs (e.g., it
 might choose to do so for a given TAM unless it detects that it has
 already communicated with that TAM recently). If so, it passes back
 a TAM URI to connect to. If the TEEP Agent has multiple TAMs it
 needs to connect with, it just passes back one, with the expectation
 that RequestPolicyCheck API will be invoked to retrieve each one

Tschofenig, et al. Expires January 13, 2022 [Page 19]

Internet-Draft TEEP Protocol July 2021

 successively until there are no more and it can pass back no data at
 that time. Thus, once a TAM URI is returned, the TEEP Agent can
 remember that it has already initiated communication with that TAM.

 When the ProcessError API is invoked, the TEEP Agent can handle it in
 any implementation specific way, such as logging the error or using
 the information in future choices of TAM URI.

 When the ProcessTeepMessage API is invoked, the Agent first does
 validation as specified in Section 4.1.2, and drops the message if it
 is not valid. Otherwise, processing continues as follows based on
 the type of message.

 When a QueryRequest message is received, the Agent responds with a
 QueryResponse message if all fields were understood, or an Error
 message if any error was encountered.

 When an Update message is received, the Agent attempts to update the
 Trusted Components specified in the SUIT manifests by following the
 Update Procedure specified in [I-D.ietf-suit-manifest], and responds
 with a Success message if all SUIT manifests were successfully
 installed, or an Error message if any error was encountered. It is
 important to note that the Update Procedure requires resolving and
 installing any dependencies indicated in the manifest, which may take
 some time, and the Success or Error message is generated only after
 completing the Update Procedure.

7. Ciphersuites

 A ciphersuite consists of an AEAD algorithm, a MAC algorithm, and a
 signature algorithm. Each ciphersuite is identified with an integer
 value, which corresponds to an IANA registered ciphersuite (see

Section 10.2. This document specifies two ciphersuites.

 +-------+--+
 | Value | Ciphersuite |
 +-------+--+
 | 1 | AES-CCM-16-64-128, HMAC 256/256, X25519, EdDSA |
 | 2 | AES-CCM-16-64-128, HMAC 256/256, P-256, ES256 |
 +-------+--+

 A TAM MUST support both ciphersuites. A TEEP Agent MUST support at
 least one of the two but can choose which one. For example, a TEEP
 Agent might choose ciphersuite 2 if it has hardware support for it.

 Any ciphersuites without confidentiality protection can only be added
 if the associated specification includes a discussion of security
 considerations and applicability, since manifests may carry sensitive

Tschofenig, et al. Expires January 13, 2022 [Page 20]

Internet-Draft TEEP Protocol July 2021

 information. For example, Section 6 of [I-D.ietf-teep-architecture]
 permits implementations that terminate transport security inside the
 TEE and if the transport security provides confidentiality then
 additional encryption might not be needed in the manifest for some
 use cases. For most use cases, however, manifest confidentiality
 will be needed to protect sensitive fields from the TAM as discussed
 in Section 9.8 of [I-D.ietf-teep-architecture].

8. Freshness Mechanisms

 A freshness mechanism determines how a TAM can tell whether evidence
 provided in a Query Response is fresh. There are multiple ways this
 can be done as discussed in Section 10 of
 [I-D.ietf-rats-architecture].

 Each freshness mechanism is identified with an integer value, which
 corresponds to an IANA registered freshness mechanism (see

Section 10.3. This document defines the following freshness
 mechanisms:

 +-------+---------------------+
 | Value | Freshness mechanism |
 +-------+---------------------+
 | 1 | Nonce |
 | 2 | Timestamp |
 | 3 | Epoch ID |
 +-------+---------------------+

 In the Nonce mechanism, the evidence MUST include a nonce provided in
 the QueryRequest challenge. In other mechanisms, a timestamp or
 epoch ID determined via mechanisms outside the TEEP protocol is used,
 and the challenge is only needed in the QueryRequest message if a
 challenge is needed in generating evidence for reasons other than
 freshness.

9. Security Considerations

 This section summarizes the security considerations discussed in this
 specification:

 Cryptographic Algorithms
 TEEP protocol messages exchanged between the TAM and the TEEP
 Agent are protected using COSE. This specification relies on the
 cryptographic algorithms provided by COSE. Public key based
 authentication is used by the TEEP Agent to authenticate the TAM
 and vice versa.

 Attestation

Tschofenig, et al. Expires January 13, 2022 [Page 21]

Internet-Draft TEEP Protocol July 2021

 A TAM can rely on the attestation evidence provided by the TEEP
 Agent. To sign the attestation evidence, it is necessary for the
 device to possess a public key (usually in the form of a
 certificate [RFC5280]) along with the corresponding private key.
 Depending on the properties of the attestation mechanism, it is
 possible to uniquely identify a device based on information in the
 attestation evidence or in the certificate used to sign the
 attestation evidence. This uniqueness may raise privacy concerns.
 To lower the privacy implications the TEEP Agent MUST present its
 attestation evidence only to an authenticated and authorized TAM
 and when using EATS, it SHOULD use encryption as discussed in
 [I-D.ietf-rats-eat], since confidentiality is not provided by the
 TEEP protocol itself and the transport protocol under the TEEP
 protocol might be implemented outside of any TEE. If any
 mechanism other than EATs is used, it is up to that mechanism to
 specify how privacy is provided.

 Trusted Component Binaries
 Each Trusted Component binary is signed by a Trusted Component
 Signer. It is the responsibility of the TAM to relay only
 verified Trusted Components from authorized Trusted Component
 Signers. Delivery of a Trusted Component to the TEEP Agent is
 then the responsibility of the TAM, using the security mechanisms
 provided by the TEEP protocol. To protect the Trusted Component
 binary, the SUIT manifest format is used and it offers a variety
 of security features, including digitial signatures and symmetric
 encryption.

 Personalization Data
 A Trusted Component Signer or TAM can supply personalization data
 along with a Trusted Component. This data is also protected by a
 SUIT manifest. Personalization data signed and encrypted by a
 Trusted Component Signer other than the TAM is opaque to the TAM.

 TEEP Broker
 As discussed in section 6 of [I-D.ietf-teep-architecture], the
 TEEP protocol typically relies on a TEEP Broker to relay messages
 between the TAM and the TEEP Agent. When the TEEP Broker is
 compromised it can drop messages, delay the delivery of messages,
 and replay messages but it cannot modify those messages. (A
 replay would be, however, detected by the TEEP Agent.) A
 compromised TEEP Broker could reorder messages in an attempt to
 install an old version of a Trusted Component. Information in the
 manifest ensures that TEEP Agents are protected against such
 downgrade attacks based on features offered by the manifest
 itself.

 Trusted Component Signer Compromise

https://datatracker.ietf.org/doc/html/rfc5280

Tschofenig, et al. Expires January 13, 2022 [Page 22]

Internet-Draft TEEP Protocol July 2021

 The QueryRequest message from a TAM to the TEEP Agent can include
 OCSP stapling data for the TAM's certificate and for intermediate
 CA certificates up to, but not including, the trust anchor so that
 the TEEP Agent can verify the certificate's revocation status. A
 certificate revocation status check on a Trusted Component Signer
 certificate is OPTIONAL by a TEEP Agent. A TAM is responsible for
 vetting a Trusted Component and before distributing them to TEEP
 Agents, so TEEP Agents can instead simply trust that a Trusted
 Component Signer certificate's status was done by the TAM.

 CA Compromise
 The CA issuing certificates to a TAM or a Trusted Component Signer
 might get compromised. A compromised intermediate CA certificate
 can be detected by a TEEP Agent by using OCSP information,
 assuming the revocation information is available. Additionally,
 it is RECOMMENDED to provide a way to update the trust anchor
 store used by the TEE, for example using a firmware update
 mechanism. If the CA issuing certificates to devices gets
 compromised then these devices might be rejected by a TAM, if
 revocation is available to the TAM.

 Compromised TAM
 The TEEP Agent SHOULD use OCSP information to verify the validity
 of the TAM's certificate (as well as the validity of intermediate
 CA certificates). The integrity and the accuracy of the clock
 within the TEE determines the ability to determine an expired or
 revoked certificate. OCSP stapling data includes signature
 generation time, allowing certificate validity dates to be
 compared to the current time.

 Compromised Time Source
 As discussed above, certificate validity checks rely on comparing
 validity dates to the current time, which relies on having a
 trusted source of time, such as [RFC8915]. A compromised time
 source could thus be used to subvert such validity checks.

10. IANA Considerations

10.1. Media Type Registration

 IANA is requested to assign a media type for application/teep+cbor.

 Type name: application

 Subtype name: teep+cbor

 Required parameters: none

https://datatracker.ietf.org/doc/html/rfc8915

Tschofenig, et al. Expires January 13, 2022 [Page 23]

Internet-Draft TEEP Protocol July 2021

 Optional parameters: none

 Encoding considerations: Same as encoding considerations of
 application/cbor.

 Security considerations: See Security Considerations Section of this
 document.

 Interoperability considerations: Same as interoperability
 considerations of application/cbor as specified in [RFC7049].

 Published specification: This document.

 Applications that use this media type: TEEP protocol implementations

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person to contact for further information: teep@ietf.org

 Intended usage: COMMON

 Restrictions on usage: none

 Author: See the "Authors' Addresses" section of this document

 Change controller: IETF

10.2. Ciphersuite Registry

 IANA is also requested to create a new registry for ciphersuites, as
 defined in Section 7.

10.3. Freshness Mechanism Registry

 IANA is also requested to create a new registry for freshness
 mechanisms, as defined in Section 8.

https://datatracker.ietf.org/doc/html/rfc7049

Tschofenig, et al. Expires January 13, 2022 [Page 24]

Internet-Draft TEEP Protocol July 2021

10.4. CBOR Tag Registry

 IANA is requested to register a CBOR tag in the "CBOR Tags" registry
 for use with TEEP messages.

 The registry contents is:

 o CBOR Tag: TBD1

 o Data Item: TEEP Message

 o Semantics: TEEP Message, as defined in draft-ietf-teep-protocol
 (TODO: replace with RFC once published)

 o Reference: draft-ietf-teep-protocol (TODO: replace with RFC once
 published)

 o Point of Contact: TEEP working group (teep@ietf.org)

11. References

11.1. Normative References

 [I-D.ietf-rats-architecture]
 Birkholz, H., Thaler, D., Richardson, M., Smith, N., and
 W. Pan, "Remote Attestation Procedures Architecture",

draft-ietf-rats-architecture-12 (work in progress), April
 2021.

 [I-D.ietf-rats-eat]
 Mandyam, G., Lundblade, L., Ballesteros, M., and J.
 O'Donoghue, "The Entity Attestation Token (EAT)", draft-

ietf-rats-eat-10 (work in progress), June 2021.

 [I-D.ietf-suit-manifest]
 Moran, B., Tschofenig, H., Birkholz, H., and K. Zandberg,
 "A Concise Binary Object Representation (CBOR)-based
 Serialization Format for the Software Updates for Internet
 of Things (SUIT) Manifest", draft-ietf-suit-manifest-14
 (work in progress), July 2021.

 [I-D.moran-suit-report]
 Moran, B., "Secure Reporting of Update Status", draft-

moran-suit-report-01 (work in progress), February 2021.

https://datatracker.ietf.org/doc/html/draft-ietf-teep-protocol
https://datatracker.ietf.org/doc/html/draft-ietf-teep-protocol
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-12
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-10
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-10
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-14
https://datatracker.ietf.org/doc/html/draft-moran-suit-report-01
https://datatracker.ietf.org/doc/html/draft-moran-suit-report-01

Tschofenig, et al. Expires January 13, 2022 [Page 25]

Internet-Draft TEEP Protocol July 2021

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.birkholz-rats-suit-claims]
 Birkholz, H. and B. Moran, "Trustworthiness Vectors for
 the Software Updates of Internet of Things (SUIT) Workflow
 Model", draft-birkholz-rats-suit-claims-02 (work in
 progress), July 2021.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198
https://www.rfc-editor.org/info/rfc5198
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-birkholz-rats-suit-claims-02

Tschofenig, et al. Expires January 13, 2022 [Page 26]

Internet-Draft TEEP Protocol July 2021

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-15 (work in
 progress), July 2021.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/info/rfc8915>.

A. Contributors

 We would like to thank Brian Witten (Symantec), Tyler Kim (Solacia),
 Nick Cook (Arm), and Minho Yoo (IoTrust) for their contributions to
 the Open Trust Protocol (OTrP), which influenced the design of this
 specification.

B. Acknowledgements

 We would like to thank Eve Schooler for the suggestion of the
 protocol name.

 We would like to thank Kohei Isobe (TRASIO/SECOM), Kuniyasu Suzaki
 (TRASIO/AIST), Tsukasa Oi (TRASIO), and Yuichi Takita (SECOM) for
 their valuable implementation feedback.

 We would also like to thank Carsten Bormann and Henk Birkholz for
 their help with the CDDL.

C. Complete CDDL

 Valid TEEP messages MUST adhere to the following CDDL data
 definitions, except that "SUIT_Envelope" and
 "SUIT_Component_Identifier" are specified in
 [I-D.ietf-suit-manifest].

https://datatracker.ietf.org/doc/html/draft-ietf-teep-architecture-15
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://datatracker.ietf.org/doc/html/rfc8915
https://www.rfc-editor.org/info/rfc8915

Tschofenig, et al. Expires January 13, 2022 [Page 27]

Internet-Draft TEEP Protocol July 2021

 teep-message = $teep-message-type .within teep-message-framework

 SUIT_Envelope = any

 teep-message-framework = [
 type: uint (0..23) / $teep-type-extension,
 options: { * teep-option },
 * uint; further integers, e.g., for data-item-requested
]

 teep-option = (uint => any)

 ; messages defined below:
 $teep-message-type /= query-request
 $teep-message-type /= query-response
 $teep-message-type /= update
 $teep-message-type /= teep-success
 $teep-message-type /= teep-error

 ; message type numbers, uint (0..23)
 TEEP-TYPE-query-request = 1
 TEEP-TYPE-query-response = 2
 TEEP-TYPE-update = 3
 TEEP-TYPE-teep-success = 5
 TEEP-TYPE-teep-error = 6

 version = .within uint .size 4
 ext-info = .within uint .size 4

 ; data items as bitmaps
 data-item-requested = $data-item-requested .within uint .size 8
 attestation = 1
 $data-item-requested /= attestation
 trusted-components = 2
 $data-item-requested /= trusted-components
 extensions = 4
 $data-item-requested /= extensions
 suit-commands = 8
 $data-item-requested /= suit-commands

 query-request = [
 type: TEEP-TYPE-query-request,
 options: {
 ? token => bstr .size (8..64),
 ? supported-cipher-suites => [+ suite],
 ? supported-freshness-mechanisms => [+ freshness-mechanism],
 ? challenge => bstr .size (8..512),
 ? versions => [+ version],

Tschofenig, et al. Expires January 13, 2022 [Page 28]

Internet-Draft TEEP Protocol July 2021

 ? ocsp-data => bstr,
 * $$query-request-extensions
 * $$teep-option-extensions
 },
 data-item-requested: data-item-requested
]

 ; ciphersuites
 suite = $TEEP-suite .within uint .size 4

 TEEP-AES-CCM-16-64-128-HMAC256--256-X25519-EdDSA = 1
 TEEP-AES-CCM-16-64-128-HMAC256--256-P-256-ES256 = 2

 $TEEP-suite /= TEEP-AES-CCM-16-64-128-HMAC256--256-X25519-EdDSA
 $TEEP-suite /= TEEP-AES-CCM-16-64-128-HMAC256--256-P-256-ES256

 ; freshness-mechanisms

 freshness-mechanism = $TEEP-freshness-mechanism .within uint .size 4

 FRESHNESS_NONCE = 0
 FRESHNESS_TIMESTAMP = 1
 FRESHNESS_EPOCH_ID = 2

 $TEEP-freshness-mechanism /= FRESHNESS_NONCE
 $TEEP-freshness-mechanism /= FRESHNESS_TIMESTAMP
 $TEEP-freshness-mechanism /= FRESHNESS_EPOCH_ID

 query-response = [
 type: TEEP-TYPE-query-response,
 options: {
 ? token => bstr .size (8..64),
 ? selected-cipher-suite => suite,
 ? selected-version => version,
 ? evidence-format => text,
 ? evidence => bstr,
 ? tc-list => [+ tc-info],
 ? requested-tc-list => [+ requested-tc-info],
 ? unneeded-tc-list => [+ SUIT_Component_Identifier],
 ? ext-list => [+ ext-info],
 * $$query-response-extensions,
 * $$teep-option-extensions
 }
]

 tc-info = {
 component-id => SUIT_Component_Identifier,
 ? tc-manifest-sequence-number => .within uint .size 8

Tschofenig, et al. Expires January 13, 2022 [Page 29]

Internet-Draft TEEP Protocol July 2021

 }

 requested-tc-info = {
 component-id => SUIT_Component_Identifier,
 ? tc-manifest-sequence-number => .within uint .size 8
 ? have-binary => bool
 }

 update = [
 type: TEEP-TYPE-update,
 options: {
 ? token => bstr .size (8..64),
 ? manifest-list => [+ bstr .cbor SUIT_Envelope],
 * $$update-extensions,
 * $$teep-option-extensions
 }
]

 teep-success = [
 type: TEEP-TYPE-teep-success,
 options: {
 ? token => bstr .size (8..64),
 ? msg => text .size (1..128),
 ? suit-reports => [+ suit-report],
 * $$teep-success-extensions,
 * $$teep-option-extensions
 }
]

 teep-error = [
 type: TEEP-TYPE-teep-error,
 options: {
 ? token => bstr .size (8..64),
 ? err-msg => text .size (1..128),
 ? supported-cipher-suites => [+ suite],
 ? supported-freshness-mechanisms => [+ freshness-mechanism],
 ? versions => [+ version],
 ? suit-reports => [+ suit-report],
 * $$teep-error-extensions,
 * $$teep-option-extensions
 },
 err-code: uint (0..23)
]

 ; The err-code parameter, uint (0..23)
 ERR_PERMANENT_ERROR = 1
 ERR_UNSUPPORTED_EXTENSION = 2
 ERR_UNSUPPORTED_MSG_VERSION = 4

Tschofenig, et al. Expires January 13, 2022 [Page 30]

Internet-Draft TEEP Protocol July 2021

 ERR_UNSUPPORTED_CRYPTO_ALG = 5
 ERR_BAD_CERTIFICATE = 6
 ERR_CERTIFICATE_EXPIRED = 9
 ERR_TEMPORARY_ERROR = 10
 ERR_MANIFEST_PROCESSING_FAILED = 17

 ; labels of mapkey for teep message parameters, uint (0..23)
 supported-cipher-suites = 1
 challenge = 2
 versions = 3
 ocsp-data = 4
 selected-cipher-suite = 5
 selected-version = 6
 evidence = 7
 tc-list = 8
 ext-list = 9
 manifest-list = 10
 msg = 11
 err-msg = 12
 evidence-format = 13
 requested-tc-list = 14
 unneeded-tc-list = 15
 component-id = 16
 tc-manifest-sequence-number = 17
 have-binary = 18
 suit-reports = 19
 token = 20

D. Examples of Diagnostic Notation and Binary Representation

D.1. Some assumptions in examples

 o OCSP stapling data = h'010203'

 o TEEP Device will have two TCs with the following SUIT Component
 Identifiers:

 * [0x000102030405060708090a0b0c0d0e0f]

 * [0x100102030405060708090a0b0c0d0e0f]

 o SUIT manifest-list is set empty only for example purposes

D.2. QueryRequest Message

Tschofenig, et al. Expires January 13, 2022 [Page 31]

Internet-Draft TEEP Protocol July 2021

D.2.1. CBOR Diagnostic Notation

 / query-request = /
 [
 1, / type : TEEP-TYPE-query-request = 1 (uint (0..23)) /
 / options : /
 {
 20 : 0xa0a1a2a3a4a5a6a7a8a9aaabacadaeaf,
 / token = 20 (mapkey) :
 h'a0a1a2a3a4a5a6a7a8a9aaabacadaeaf' (bstr .size (8..64)),
 generated by TAM /
 1 : [1], / supported-cipher-suites = 1 (mapkey) :
 TEEP-AES-CCM-16-64-128-HMAC256--256-X25519-EdDSA =
 [1] (array of .within uint .size 4) /
 3 : [0], / version = 3 (mapkey) :
 [0] (array of .within uint .size 4) /
 4 : h'010203' / ocsp-data = 4 (mapkey) : 0x010203 (bstr) /
 },
 3 / data-item-requested :
 attestation | trusted-components = 3 (.within uint .size 8) /
]

D.2.2. CBOR Binary Representation

 83 # array(3)
 01 # unsigned(1) uint (0..23)
 A4 # map(4)
 14 # unsigned(20) uint (0..23)
 4F # bytes(16) (8..64)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 01 # unsigned(1) uint (0..23)
 81 # array(1)
 01 # unsigned(1) within uint .size 4
 03 # unsigned(3) uint (0..23)
 81 # array(1)
 00 # unsigned(0) within uint .size 4
 04 # unsigned(4) uint (0..23)
 43 # bytes(3)
 010203 # "\x01\x02\x03"
 03 # unsigned(3) .within uint .size 8

D.3. Entity Attestation Token

 This is shown below in CBOR diagnostic form. Only the payload signed
 by COSE is shown.

Tschofenig, et al. Expires January 13, 2022 [Page 32]

Internet-Draft TEEP Protocol July 2021

D.3.1. CBOR Diagnostic Notation

/ eat-claim-set = /
{
 / issuer / 1: "joe",
 / timestamp (iat) / 6: 1(1526542894)
 / nonce / 10: h'948f8860d13a463e8e',
 / secure-boot / 15: true,
 / debug-status / 16: 3, / disabled-permanently /
 / security-level / <TBD>: 3, / secure-restricted /
 / device-identifier / <TBD>: h'e99600dd921649798b013e9752dcf0c5',
 / vendor-identifier / <TBD>: h'2b03879b33434a7ca682b8af84c19fd4',
 / class-identifier / <TBD>: h'9714a5796bd245a3a4ab4f977cb8487f',
 / chip-version-scheme / <TBD>: "MyTEE v1.0",
 / component-identifier / <TBD>: h'60822887d35e43d5b603d18bcaa3f08d',
 / version / <TBD>: "v0.1"
}

D.4. QueryResponse Message

D.4.1. CBOR Diagnostic Notation

Tschofenig, et al. Expires January 13, 2022 [Page 33]

Internet-Draft TEEP Protocol July 2021

 / query-response = /
 [
 2, / type : TEEP-TYPE-query-response = 2 (uint (0..23)) /
 / options : /
 {
 20 : 0xa0a1a2a3a4a5a6a7a8a9aaabacadaeaf,
 / token = 20 (mapkey) :
 h'a0a1a2a3a4a5a6a7a8a9aaabacadaeaf' (bstr .size (8..64)),
 given from TAM's QueryRequest message /
 5 : 1, / selected-cipher-suite = 5 (mapkey) :
 TEEP-AES-CCM-16-64-128-HMAC256--256-X25519-EdDSA =
 1 (.within uint .size 4) /
 6 : 0, / selected-version = 6 (mapkey) :
 0 (.within uint .size 4) /
 7 : ... / evidence = 7 (mapkey) :
 Entity Attestation Token /
 8 : [/ tc-list = 8 (mapkey) : (array of tc-info) /
 {
 16 : [0x000102030405060708090a0b0c0d0e0f] / component-id =
 16 (mapkey) : [h'000102030405060708090a0b0c0d0e0f']
 (SUIT_Component_Identifier = [* bstr]) /
 },
 {
 16 : [0x100102030405060708090a0b0c0d0e0f] / component-id =
 16 (mapkey) : [h'100102030405060708090a0b0c0d0e0f']
 (SUIT_Component_Identifier = [* bstr]) /
 }
]
 }
]

D.4.2. CBOR Binary Representation

Tschofenig, et al. Expires January 13, 2022 [Page 34]

Internet-Draft TEEP Protocol July 2021

 82 # array(2)
 02 # unsigned(2) uint (0..23)
 A5 # map(5)
 14 # unsigned(20) uint (0..23)
 4F # bytes(16) (8..64)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 05 # unsigned(5) uint (0..23)
 01 # unsigned(1) .within uint .size 4
 06 # unsigned(6) uint (0..23)
 00 # unsigned(0) .within uint .size 4
 07 # unsigned(7) uint (0..23)
 ... # Entity Attestation Token
 08 # unsigned(8) uint (0..23)
 82 # array(2)
 81 # array(1)
 4F # bytes(16)
 000102030405060708090A0B0C0D0E0F
 81 # array(1)
 4F # bytes(16)
 100102030405060708090A0B0C0D0E0F

D.5. Update Message

D.5.1. CBOR Diagnostic Notation

/ update = /
[
 3, / type : TEEP-TYPE-update = 3 (uint (0..23)) /
 / options : /
 {
 20 : 0xa0a1a2a3a4a5a6a7a8a9aaabacadaeaf,
 / token = 20 (mapkey) :
 h'a0a1a2a3a4a5a6a7a8a9aaabacadaeaf' (bstr .size (8..64)),
 generated by TAM /
 10 : [] / manifest-list = 10 (mapkey) :
 [] (array of bstr wrapped SUIT_Envelope(any)) /
 / empty, example purpose only /
 }
]

D.5.2. CBOR Binary Representation

Tschofenig, et al. Expires January 13, 2022 [Page 35]

Internet-Draft TEEP Protocol July 2021

 82 # array(2)
 03 # unsigned(3) uint (0..23)
 A3 # map(3)
 14 # unsigned(20) uint (0..23)
 4F # bytes(16) (8..64)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 0A # unsigned(10) uint (0..23)
 80 # array(0)

D.6. Success Message

D.6.1. CBOR Diagnostic Notation

/ teep-success = /
[
 5, / type : TEEP-TYPE-teep-success = 5 (uint (0..23)) /
 / options : /
 {
 20 : 0xa0a1a2a3a4a5a6a7a8a9aaabacadaeaf,
 / token = 20 (mapkey) :
 h'a0a1a2a3a4a5a6a7a8a9aaabacadaeaf' (bstr .size (8..64)),
 given from TAM's Update message /
 }
]

D.6.2. CBOR Binary Representation

 82 # array(2)
 05 # unsigned(5) uint (0..23)
 A1 # map(1)
 14 # unsigned(20) uint (0..23)
 4F # bytes(16) (8..64)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

D.7. Error Message

D.7.1. CBOR Diagnostic Notation

Tschofenig, et al. Expires January 13, 2022 [Page 36]

Internet-Draft TEEP Protocol July 2021

 / teep-error = /
 [
 6, / type : TEEP-TYPE-teep-error = 6 (uint (0..23)) /
 / options : /
 {
 20 : 0xa0a1a2a3a4a5a6a7a8a9aaabacadaeaf,
 / token = 20 (mapkey) :
 h'a0a1a2a3a4a5a6a7a8a9aaabacadaeaf' (bstr .size (8..64)),
 given from TAM's Update message /
 12 : "disk-full" / err-msg = 12 (mapkey) :
 "disk-full" (text .size (1..128)) /
 },
 17, / err-code : ERR_MANIFEST_PROCESSING_FAILED = 17 (uint (0..23)) /
]

D.7.2. CBOR binary Representation

 83 # array(3)
 06 # unsigned(6) uint (0..23)
 A2 # map(2)
 14 # unsigned(20) uint (0..23)
 4F # bytes(16) (8..64)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 0C # unsigned(12) uint (0..23)
 69 # text(9) (1..128)
 6469736B2D66756C6C # "disk-full"
 11 # unsigned(17) uint (0..23)

Authors' Addresses

 Hannes Tschofenig
 Arm Ltd.
 Absam, Tirol 6067
 Austria

 Email: hannes.tschofenig@arm.com

 Mingliang Pei
 Broadcom
 350 Ellis St
 Mountain View, CA 94043
 USA

 Email: mingliang.pei@broadcom.com

Tschofenig, et al. Expires January 13, 2022 [Page 37]

Internet-Draft TEEP Protocol July 2021

 David Wheeler
 Amazon
 US

 Email: davewhee@amazon.com

 Dave Thaler
 Microsoft
 US

 Email: dthaler@microsoft.com

 Akira Tsukamoto
 AIST
 JP

 Email: akira.tsukamoto@aist.go.jp

Tschofenig, et al. Expires January 13, 2022 [Page 38]

