
Workgroup: TEEP

Internet-Draft: draft-ietf-teep-protocol-11

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: H. Tschofenig

Arm Ltd.

M. Pei

Broadcom

D. Wheeler

Amazon

D. Thaler

Microsoft

A. Tsukamoto

AIST

Trusted Execution Environment Provisioning (TEEP) Protocol

Abstract

This document specifies a protocol that installs, updates, and

deletes Trusted Components in a device with a Trusted Execution

Environment (TEE). This specification defines an interoperable

protocol for managing the lifecycle of Trusted Components.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. Message Overview

4. Detailed Messages Specification

4.1. Creating and Validating TEEP Messages

4.1.1. Creating a TEEP message

4.1.2. Validating a TEEP Message

4.2. QueryRequest Message

4.3. QueryResponse Message

4.3.1. Evidence and Attestation Results

4.4. Update Message

4.4.1. Scenario 1: Having one SUIT Manifest pointing to a URI

of a Trusted Component Binary

4.4.2. Scenario 2: Having a SUIT Manifest include the Trusted

Component Binary

4.4.3. Scenario 3: Supplying Personalization Data for the

Trusted Component Binary

4.4.4. Scenario 4: Unlinking a Trusted Component

4.5. Success Message

4.6. Error Message

5. EAT Profile

6. Mapping of TEEP Message Parameters to CBOR Labels

7. Behavior Specification

7.1. TAM Behavior

7.1.1. Handling a QueryResponse Message

7.1.1.1. Handling an Attestation Result

7.1.2. Handling a Success or Error Message

7.2. TEEP Agent Behavior

8. Cipher Suites

9. Freshness Mechanisms

10. Security Considerations

11. Privacy Considerations

12. IANA Considerations

12.1. Media Type Registration

13. References

13.1. Normative References

13.2. Informative References

A. Contributors

B. Acknowledgements

C. Complete CDDL

D. Examples of Diagnostic Notation and Binary Representation

D.1. QueryRequest Message

D.1.1. CBOR Diagnostic Notation

D.1.2. CBOR Binary Representation

D.2. Entity Attestation Token

D.2.1. CBOR Diagnostic Notation

D.3. QueryResponse Message

D.3.1. CBOR Diagnostic Notation

D.3.2. CBOR Binary Representation

D.4. Update Message

D.4.1. CBOR Diagnostic Notation

D.4.2. CBOR Binary Representation

D.5. Success Message

D.5.1. CBOR Diagnostic Notation

D.5.2. CBOR Binary Representation

D.6. Error Message

D.6.1. CBOR Diagnostic Notation

D.6.2. CBOR binary Representation

E. Examples of SUIT Manifests

Example 1: SUIT Manifest pointing to URI of the Trusted Component

Binary

CBOR Diagnostic Notation of SUIT Manifest

CBOR Binary in Hex

Example 2: SUIT Manifest including the Trusted Component Binary

CBOR Diagnostic Notation of SUIT Manifest

CBOR Binary in Hex

Example 3: Supplying Personalization Data for Trusted Component

Binary

CBOR Diagnostic Notation of SUIT Manifest

CBOR Binary in Hex

E.4. Example 4: Unlink a Trusted Component

CBOR Diagnostic Notation of SUIT Manifest

CBOR Binary in Hex

F. Examples of SUIT Reports

F.1. Example 1: Success

F.2. Example 2: Faiure

Authors' Addresses

1. Introduction

The Trusted Execution Environment (TEE) concept has been designed to

separate a regular operating system, also referred as a Rich

Execution Environment (REE), from security-sensitive applications.

In a TEE ecosystem, device vendors may use different operating

systems in the REE and may use different types of TEEs. When Trusted

Component Developers or Device Administrators use Trusted

Application Managers (TAMs) to install, update, and delete Trusted

Applications and their dependencies on a wide range of devices with

potentially different TEEs then an interoperability need arises.

This document specifies the protocol for communicating between a TAM

and a TEEP Agent.

¶

¶

The Trusted Execution Environment Provisioning (TEEP) architecture

document [I-D.ietf-teep-architecture] provides design guidance and

introduces the necessary terminology.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification re-uses the terminology defined in

[I-D.ietf-teep-architecture].

As explained in Section 4.4 of that document, the TEEP protocol

treats each Trusted Application (TA), any dependencies the TA has,

and personalization data as separate components that are expressed

in SUIT manifests, and a SUIT manifest might contain or reference

multiple binaries (see [I-D.ietf-suit-manifest] for more details).

As such, the term Trusted Component (TC) in this document refers to

a set of binaries expressed in a SUIT manifest, to be installed in a

TEE. Note that a Trusted Component may include one or more TAs and/

or configuration data and keys needed by a TA to operate correctly.

Each Trusted Component is uniquely identified by a SUIT Component

Identifier (see [I-D.ietf-suit-manifest] Section 8.7.2.2).

Attestation related terms, such as Evidence and Attestation Results,

are as defined in [I-D.ietf-rats-architecture].

3. Message Overview

The TEEP protocol consists of messages exchanged between a TAM and a

TEEP Agent. The messages are encoded in CBOR and designed to provide

end-to-end security. TEEP protocol messages are signed by the

endpoints, i.e., the TAM and the TEEP Agent, but Trusted

Applications may also be encrypted and signed by a Trusted Component

Developer or Device Administrator. The TEEP protocol not only uses

CBOR but also the respective security wrapper, namely COSE

[RFC8152]. Furthermore, for software updates the SUIT manifest

format [I-D.ietf-suit-manifest] is used, and for attestation the

Entity Attestation Token (EAT) [I-D.ietf-rats-eat] format is

supported although other attestation formats are also permitted.

This specification defines five messages: QueryRequest,

QueryResponse, Update, Success, and Error.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A TAM queries a device's current state with a QueryRequest message.

A TEEP Agent will, after authenticating and authorizing the request,

report attestation information, list all Trusted Components, and

provide information about supported algorithms and extensions in a

QueryResponse message. An error message is returned if the request

could not be processed. A TAM will process the QueryResponse message

and determine whether to initiate subsequent message exchanges to

install, update, or delete Trusted Applications.

With the Update message a TAM can instruct a TEEP Agent to install

and/or delete one or more Trusted Components. The TEEP Agent will

process the message, determine whether the TAM is authorized and

whether the Trusted Component has been signed by an authorized

Trusted Component Signer. A Success message is returned when the

operation has been completed successfully, or an Error message

otherwise.

4. Detailed Messages Specification

TEEP messages are protected by the COSE_Sign1 structure. The TEEP

protocol messages are described in CDDL format [RFC8610] below.

¶

 +------------+ +-------------+

 | TAM | |TEEP Agent |

 +------------+ +-------------+

 QueryRequest ------->

 QueryResponse

 <------- or

 Error

¶

¶

 +------------+ +-------------+

 | TAM | |TEEP Agent |

 +------------+ +-------------+

 Update ---->

 Success

 <---- or

 Error

¶

¶

4.1. Creating and Validating TEEP Messages

4.1.1. Creating a TEEP message

To create a TEEP message, the following steps are performed.

Create a TEEP message according to the description below and

populate it with the respective content. TEEP messages sent by

TAMs (QueryRequest and Update) can include a "token". The TAM

can decide, in any implementation-specific way, whether to

include a token in a message. The first usage of a token

generated by a TAM MUST be randomly created. Subsequent token

values MUST be different for each subsequent message created by

a TAM.

Create a COSE Header containing the desired set of Header

Parameters. The COSE Header MUST be valid per the [RFC8152]

specification.

Create a COSE_Sign1 object using the TEEP message as the

COSE_Sign1 Payload; all steps specified in [RFC8152] for

creating a COSE_Sign1 object MUST be followed.

teep-message = $teep-message-type .within teep-message-framework

teep-message-framework = [

 type: $teep-type / $teep-type-extension,

 options: { * teep-option },

 * any; further elements, e.g., for data-item-requested

]

teep-option = (uint => any)

; messages defined below:

$teep-message-type /= query-request

$teep-message-type /= query-response

$teep-message-type /= update

$teep-message-type /= teep-success

$teep-message-type /= teep-error

; message type numbers, uint (0..23)

$teep-type = uint .size 1

TEEP-TYPE-query-request = 1

TEEP-TYPE-query-response = 2

TEEP-TYPE-update = 3

TEEP-TYPE-teep-success = 5

TEEP-TYPE-teep-error = 6

¶

¶

1.

¶

2.

¶

3.

¶

4.1.2. Validating a TEEP Message

When TEEP message is received (see the ProcessTeepMessage conceptual

API defined in [I-D.ietf-teep-architecture] section 6.2.1), the

following validation steps are performed. If any of the listed steps

fail, then the TEEP message MUST be rejected.

Verify that the received message is a valid CBOR object.

Verify that the message contains a COSE_Sign1 structure.

Verify that the resulting COSE Header includes only parameters

and values whose syntax and semantics are both understood and

supported or that are specified as being ignored when not

understood.

Follow the steps specified in Section 4 of [RFC8152] ("Signing

Objects") for validating a COSE_Sign1 object. The COSE_Sign1

payload is the content of the TEEP message.

Verify that the TEEP message is a valid CBOR map and verify the

fields of the TEEP message according to this specification.

4.2. QueryRequest Message

A QueryRequest message is used by the TAM to learn information from

the TEEP Agent, such as the features supported by the TEEP Agent,

including cipher suites and protocol versions. Additionally, the TAM

can selectively request data items from the TEEP Agent via the

request parameter. Currently, the following features are supported:

Request for attestation information,

Listing supported extensions,

Querying installed Trusted Components, and

Listing supported SUIT commands.

Like other TEEP messages, the QueryRequest message is signed, and

the relevant CDDL snippet is shown below. The complete CDDL

structure is shown in Appendix C.

¶

1. ¶

2. ¶

3.

¶

4.

¶

5.

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

type

token

The message has the following fields:

The value of (1) corresponds to a QueryRequest message sent from

the TAM to the TEEP Agent.

The value in the token parameter is used to match responses to

requests, such as to look up any implementation-specific state it

might have saved about that request, or to ignore responses to

older QueryRequest messages before some configuration changes

were made that affected their content. This is particularly

useful when a TAM issues multiple concurrent requests to a TEEP

Agent. The token MUST be present if and only if the attestation

bit is clear in the data-item-requested value. The size of the

token is at least 8 bytes (64 bits) and maximum of 64 bytes,

which is the same as in an EAT Nonce Claim (see

[I-D.ietf-rats-eat] Section 3.3). The first usage of a token

generated by a TAM MUST be randomly created. Subsequent token

values MUST be different for each request message to distinguish

the correct response from multiple requests. The token value MUST

NOT be used for other purposes, such as a TAM to identify the

devices and/or a device to identify TAMs or Trusted Components.

The TAM SHOULD set an expiration time for each token and MUST

ignore any messages with expired tokens. The TAM MUST expire the

token value after receiving the first response containing the

query-request = [

 type: TEEP-TYPE-query-request,

 options: {

 ? token => bstr .size (8..64),

 ? supported-freshness-mechanisms => [+ $freshness-mechanism],

 ? challenge => bstr .size (8..512),

 ? versions => [+ version],

 * $$query-request-extensions,

 * $$teep-option-extensions

 },

 supported-cipher-suites: [+ $cipher-suite],

 data-item-requested: uint .bits data-item-requested

]

¶

¶

¶

supported-cipher-suites

data-item-requested

attestation (1)

trusted-components (2)

extensions (4)

suit-reports (8)

supported-freshness-mechanisms

challenge

token value and ignore any subsequent messages that have the same

token value.

The supported-cipher-suites parameter lists the cipher suites

supported by the TAM. Details about the cipher suite encoding can

be found in Section 8.

The data-item-requested parameter indicates what information the

TAM requests from the TEEP Agent in the form of a bitmap.

With this value the TAM requests the TEEP Agent

to return an attestation payload, whether Evidence (e.g., an

EAT) or an Attestation Result, in the response.

With this value the TAM queries the TEEP

Agent for all installed Trusted Components.

With this value the TAM queries the TEEP Agent

for supported capabilities and extensions, which allows a TAM

to discover the capabilities of a TEEP Agent implementation.

With this value the TAM requests the TEEP Agent

to return SUIT Reports in the response.

Further values may be added in the future.

The supported-freshness-mechanisms parameter lists the freshness

mechanism(s) supported by the TAM. Details about the encoding can

be found in Section 9. If this parameter is absent, it means only

the nonce mechanism is supported. It MUST be absent if the

attestation bit is clear.

The challenge field is an optional parameter used for ensuring

the freshness of the attestation payload returned with a

QueryResponse message. It MUST be absent if the attestation bit

is clear (since the token is used instead in that case). When a

challenge is provided in the QueryRequest and an EAT is returned

with a QueryResponse message then the challenge contained in this

request MUST be used to generate the EAT, such as by copying the

challenge into the nonce claim found in the EAT if using the

Nonce freshness mechanism. For more details see Section 9. If any

¶

¶

¶

¶

¶

¶

¶

¶

¶

versions

type

format other than EAT is used, it is up to that format to define

the use of the challenge field.

The versions parameter enumerates the TEEP protocol version(s)

supported by the TAM. A value of 0 refers to the current version

of the TEEP protocol. If this field is not present, it is to be

treated the same as if it contained only version 0.

4.3. QueryResponse Message

The QueryResponse message is the successful response by the TEEP

Agent after receiving a QueryRequest message. As discussed in

Section 7.2, it can also be sent unsolicited if the contents of the

QueryRequest are already known and do not vary per message.

Like other TEEP messages, the QueryResponse message is signed, and

the relevant CDDL snippet is shown below. The complete CDDL

structure is shown in Appendix C.

The QueryResponse message has the following fields:

The value of (2) corresponds to a QueryResponse message sent from

the TEEP Agent to the TAM.

¶

¶

¶

¶

query-response = [

 type: TEEP-TYPE-query-response,

 options: {

 ? token => bstr .size (8..64),

 ? selected-cipher-suite => $cipher-suite,

 ? selected-version => version,

 ? attestation-payload-format => text,

 ? attestation-payload => bstr,

 ? suit-reports => [+ SUIT_Report],

 ? tc-list => [+ system-property-claims],

 ? requested-tc-list => [+ requested-tc-info],

 ? unneeded-manifest-list => [+ bstr .cbor SUIT_Digest],

 ? ext-list => [+ ext-info],

 * $$query-response-extensions,

 * $$teep-option-extensions

 }

]

requested-tc-info = {

 component-id => SUIT_Component_Identifier,

 ? tc-manifest-sequence-number => .within uint .size 8,

 ? have-binary => bool

}

¶

¶

¶

token

selected-cipher-suite

selected-version

attestation-payload-format

attestation-payload

suit-reports

The value in the token parameter is used to match responses to

requests. The value MUST correspond to the value received with

the QueryRequest message if one was present, and MUST be absent

if no token was present in the QueryRequest.

The selected-cipher-suite parameter indicates the selected cipher

suite. If this parameter is not present, it is to be treated as

if the TEEP Agent accepts any cipher suites listed in the

QueryRequest, so the TAM can select one. Details about the cipher

suite encoding can be found in Section 8.

The selected-version parameter indicates the TEEP protocol

version selected by the TEEP Agent. The absence of this parameter

indicates the same as if it was present with a value of 0.

The attestation-payload-format parameter indicates the IANA Media

Type of the attestation-payload parameter, where media type

parameters are permitted after the media type. For protocol

version 0, the absence of this parameter indicates that the

format is "application/eat-cwt; eat_profile=https://

datatracker.ietf.org/doc/html/draft-ietf-teep-protocol-10" (see

[I-D.lundblade-rats-eat-media-type] for further discussion).

(RFC-editor: upon RFC publication, replace URI above with

"https://www.rfc-editor.org/info/rfcXXXX" where XXXX is the RFC

number of this document.) It MUST be present if the attestation-

payload parameter is present and the format is not an EAT in CWT

format with the profile defined below in Section 5.

The attestation-payload parameter contains Evidence or an

Attestation Result. This parameter MUST be present if the

QueryResponse is sent in response to a QueryRequest with the

attestation bit set. If the attestation-payload-format parameter

is absent, the attestation payload contained in this parameter

MUST be an Entity Attestation Token following the encoding

defined in [I-D.ietf-rats-eat]. See Section 4.3.1 for further

discussion.

If present, the suit-reports parameter contains a set of "boot"

(including starting an executable in an OS context) time SUIT

Reports as defined in Section 4 of [I-D.ietf-suit-report]. If a

token parameter was present in the QueryRequest message the

QueryResponse message is in response to, the suit-report-nonce

field MUST be present in the SUIT Report with a value matching

¶

¶

¶

¶

¶

tc-list

requested-tc-list

unneeded-manifest-list

ext-list

the token parameter in the QueryRequest message. SUIT Reports can

be useful in QueryResponse messages to pass information to the

TAM without depending on a Verifier including the relevant

information in Attestation Results.

The tc-list parameter enumerates the Trusted Components installed

on the device in the form of system-property-claims objects, as

defined in Section 4 of [I-D.ietf-suit-report]. The system-

property-claims can be used to learn device identifying

information and TEE identifying information for distinguishing

which Trusted Components to install in the TEE. This parameter

MUST be present if the QueryResponse is sent in response to a

QueryRequest with the trusted-components bit set.

The requested-tc-list parameter enumerates the Trusted Components

that are not currently installed in the TEE, but which are

requested to be installed, for example by an installer of an

Untrusted Application that has a TA as a dependency, or by a

Trusted Application that has another Trusted Component as a

dependency. Requested Trusted Components are expressed in the

form of requested-tc-info objects. A TEEP Agent can get this

information from the RequestTA conceptual API defined in

[I-D.ietf-teep-architecture] section 6.2.1.

The unneeded-manifest-list parameter enumerates the SUIT

manifests whose components are currently installed in the TEE,

but which are no longer needed by any other application. The TAM

can use this information in determining whether a SUIT manifest

can be unlinked. Each unneeded SUIT manifest is identified by its

SUIT Digest. A TEEP Agent can get this information from the

UnrequestTA conceptual API defined in

[I-D.ietf-teep-architecture] section 6.2.1.

The ext-list parameter lists the supported extensions. This

document does not define any extensions. This parameter MUST be

present if the QueryResponse is sent in response to a

QueryRequest with the extensions bit set.

The requested-tc-info message has the following fields:

¶

¶

¶

¶

¶

¶

component-id

tc-manifest-sequence-number

have-binary

A SUIT Component Identifier.

The minimum suit-manifest-sequence-number value from a SUIT

manifest for the Trusted Component. If not present, indicates

that any sequence number will do.

If present with a value of true, indicates that the TEEP agent

already has the Trusted Component binary and only needs an Update

message with a SUIT manifest that authorizes installing it. If

have-binary is true, the tc-manifest-sequence-number field MUST

be present.

4.3.1. Evidence and Attestation Results

Section 7 of [I-D.ietf-teep-architecture] lists information that may

appear in Evidence depending on the circumstance. However, the

Evidence is opaque to the TEEP protocol and there are no formal

requirements on the contents of Evidence.

TAMs however consume Attestation Results and do need enough

information therein to make decisions on how to remediate a TEE that

is out of compliance, or update a TEE that is requesting an

authorized change. To do so, the information in Section 7 of

[I-D.ietf-teep-architecture] is often required depending on the

policy.

Attestation Results SHOULD use Entity Attestation Tokens (EATs). Use

of any other format, such as a widely implemented format for a

specific processor vendor, is permitted but increases the complexity

of the TAM by requiring it to understand the format for each such

format rather than only the common EAT format so is not recommended.

When an EAT is used, the following claims can be used to meet those

requirements, whether these claims appear in Attestation Results, or

in Evidence for the Verifier to use when generating Attestation

Results of some form:

Requirement Claim Reference

Freshness proof nonce
[I-D.ietf-rats-eat] section

4.1

Device unique

identifier
ueid

[I-D.ietf-rats-eat] section

4.2.1

Vendor of the device oemid
[I-D.ietf-rats-eat] section

4.2.3

Class of the device hardware-model
[I-D.ietf-rats-eat] section

4.2.4

¶

¶

¶

¶

¶

¶

¶

Requirement Claim Reference

TEE hardware type
hardware-

version

[I-D.ietf-rats-eat] section

4.2.5

TEE hardware version
hardware-

version

[I-D.ietf-rats-eat] section

4.2.5

TEE firmware type manifests
[I-D.ietf-rats-eat] section

4.2.16

TEE firmware version manifests
[I-D.ietf-rats-eat] section

4.2.16

Table 1

The "manifests" claim should include information about the TEEP

Agent as well as any of its dependencies such as firmware.

4.4. Update Message

The Update message is used by the TAM to install and/or delete one

or more Trusted Components via the TEEP Agent. It can also be used

to pass a successful Attestation Report back to the TEEP Agent when

the TAM is configured as an intermediary between the TEEP Agent and

a Verifier, as shown in the figure below, where the Attestation

Result passed back to the Attester can be used as a so-called

"passport" (see section 5.1 of [I-D.ietf-rats-architecture]) that

can be presented to other Relying Parties.

Like other TEEP messages, the Update message is signed, and the

relevant CDDL snippet is shown below. The complete CDDL structure is

shown in Appendix C.

¶

¶

 +---------------+

 | Verifier |

 +---------------+

 ^ | Attestation

 Evidence | v Result

 +---------------+

 | TAM / |

 | Relying Party |

 +---------------+

 QueryResponse ^ | Update

 (Evidence) | | (Attestation

 | v Result)

 +---------------+ +---------------+

 | TEEP Agent |------------>| Other |

 | / Attester | Attestation | Relying Party |

 +---------------+ Result +---------------+

 Figure 1: Example use of TEEP and attestation

¶

¶

type

token

unneeded-manifest-list

manifest-list

attestation-payload-format

The Update message has the following fields:

The value of (3) corresponds to an Update message sent from the

TAM to the TEEP Agent. In case of successful processing, a

Success message is returned by the TEEP Agent. In case of an

error, an Error message is returned. Note that the Update message

is used for initial Trusted Component installation as well as for

updates and deletes.

The value in the token field is used to match responses to

requests.

The unneeded-manifest-list parameter enumerates the SUIT

manifests to be unlinked. Each unneeded SUIT manifest is

identified by its SUIT Digest.

The manifest-list field is used to convey one or multiple SUIT

manifests to install. A manifest is a bundle of metadata about a

Trusted Component, such as where to find the code, the devices to

which it applies, and cryptographic information protecting the

manifest. The manifest may also convey personalization data.

Trusted Component binaries and personalization data can be signed

and encrypted by the same Trusted Component Signer. Other

combinations are, however, possible as well. For example, it is

also possible for the TAM to sign and encrypt the personalization

data and to let the Trusted Component Developer sign and/or

encrypt the Trusted Component binary.

The attestation-payload-format parameter indicates the IANA Media

Type of the attestation-payload parameter, where media type

parameters are permitted after the media type. The absence of

update = [

 type: TEEP-TYPE-update,

 options: {

 ? token => bstr .size (8..64),

 ? unneeded-manifest-list => [+ bstr .cbor SUIT_Digest],

 ? manifest-list => [+ bstr .cbor SUIT_Envelope],

 ? attestation-payload-format => text,

 ? attestation-payload => bstr,

 * $$update-extensions,

 * $$teep-option-extensions

 }

]

¶

¶

¶

¶

¶

¶

attestation-payload

this parameter indicates that the format is "application/eat-cwt;

eat_profile=https://datatracker.ietf.org/doc/html/draft-ietf-

teep-protocol-10" (see [I-D.lundblade-rats-eat-media-type] for

further discussion). (RFC-editor: upon RFC publication, replace

URI above with "https://www.rfc-editor.org/info/rfcXXXX" where

XXXX is the RFC number of this document.) It MUST be present if

the attestation-payload parameter is present and the format is

not an EAT in CWT format with the profile defined below in

Section 5.

The attestation-payload parameter contains an Attestation Result.

This parameter If the attestation-payload-format parameter is

absent, the attestation payload contained in this parameter MUST

be an Entity Attestation Token following the encoding defined in

[I-D.ietf-rats-eat]. See Section 4.3.1 for further discussion.

Note that an Update message carrying one or more SUIT manifests will

inherently involve multiple signatures, one by the TAM in the TEEP

message and one from a Trusted Component Signer inside each

manifest. This is intentional as they are for different purposes.

The TAM is what authorizes apps to be installed, updated, and

deleted on a given TEE and so the TEEP signature is checked by the

TEEP Agent at protocol message processing time. (This same TEEP

security wrapper is also used on messages like QueryRequest so that

Agents only send potentially sensitive data such as Evidence to

trusted TAMs.)

The Trusted Component signer on the other hand is what authorizes

the Trusted Component to actually run, so the manifest signature

could be checked at install time or load (or run) time or both, and

this checking is done by the TEE independent of whether TEEP is used

or some other update mechanism. See section 5 of

[I-D.ietf-teep-architecture] for further discussion.

The Update Message has a SUIT_Envelope containing SUIT manifests.

Following are some example scenarios using SUIT manifests in the

Update Message.

4.4.1. Scenario 1: Having one SUIT Manifest pointing to a URI of a

Trusted Component Binary

In this scenario, a SUIT Manifest has a URI pointing to a Trusted

Component Binary.

A Trusted Component Developer creates a new Trusted Component Binary

and hosts it at a Trusted Component Developer's URI. Then the

Trusted Component Developer generates an associated SUIT manifest

¶

¶

¶

¶

¶

¶

¶

with the filename "tc-uuid.suit" that contains the URI. The filename

"tc-uuid.suit" is used in Scenario 3 later.

The TAM receives the latest SUIT manifest from the Trusted Component

Developer, and the URI it contains will not be changeable by the TAM

since the SUIT manifest is signed by the Trusted Component

Developer.

Pros:

The Trusted Component Developer can ensure that the intact

Trusted Component Binary is downloaded by devices

The TAM does not have to send large Update messages containing

the Trusted Component Binary

Cons:

The Trusted Component Developer must host the Trusted Component

Binary server

The device must fetch the Trusted Component Binary in another

connection after receiving an Update message

A device's IP address and therefore location may be revealed to

the Trusted Component Binary server

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

For the full SUIT Manifest example binary, see

Appendix "Example 1: SUIT Manifest pointing to URI of the Trusted Component Binary".

 +------------+ +-------------+

 | TAM | | TEEP Agent |

 +------------+ +-------------+

 Update ---->

 +=================== teep-protocol(TAM) ==================+

 | TEEP_Message([|

 | TEEP-TYPE-update, |

 | options: { |

 | manifest-list: [|

 | += suit-manifest "tc-uuid.suit" (TC Developer) =+ |

 | | SUIT_Envelope({ | |

 | | manifest: { | |

 | | install: { | |

 | | override-parameters: { | |

 | | uri: "https://example.org/tc-uuid.ta" | |

 | | }, | |

 | | fetch | |

 | | } | |

 | | } | |

 | | }) | |

 | +===+ |

 |] |

 | } |

 |]) |

 +===+

 and then,

 +-------------+ +--------------+

 | TEEP Agent | | TC Developer |

 +-------------+ +--------------+

 <----

 fetch "https://example.org/tc-uuid.ta"

 +======= tc-uuid.ta =======+

 | 48 65 6C 6C 6F 2C 20 ... |

 +==========================+

 Figure 2: URI of the Trusted Component Binary

¶

¶

4.4.2. Scenario 2: Having a SUIT Manifest include the Trusted

Component Binary

In this scenario, the SUIT manifest contains the entire Trusted

Component Binary as an integrated payload (see

[I-D.ietf-suit-manifest] Section 7.5).

A Trusted Component Developer delegates the task of delivering the

Trusted Component Binary to the TAM inside the SUIT manifest. The

Trusted Component Developer creates a SUIT manifest and embeds the

Trusted Component Binary, which is referenced in the suit-

integrated-payload element containing the fragment-only reference

"#tc", in the envelope. The Trusted Component Developer transmits

the entire bundle to the TAM.

The TAM serves the SUIT manifest containing the Trusted Component

Binary to the device in an Update message.

Pros:

The device can obtain the Trusted Component Binary and the SUIT

manifest in one Update message.

The Trusted Component Developer does not have to host a server to

deliver the Trusted Component Binary to devices.

Cons:

The TAM must host the Trusted Component Binary rather than

delegating storage to the Trusted Component Developer.

The TAM must deliver Trusted Component Binaries in Update

messages, which increases the size of the Update message.

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

For the full SUIT Manifest example binary, see

Appendix "Example 2: SUIT Manifest including the Trusted Component Binary".

4.4.3. Scenario 3: Supplying Personalization Data for the Trusted

Component Binary

In this scenario, Personalization Data is associated with the

Trusted Component Binary "tc-uuid.suit" from Scenario 1.

The Trusted Component Developer places Personalization Data in a

file named "config.json" and hosts it on an HTTPS server. The

Trusted Component Developer then creates a SUIT manifest with the

URI, specifying which Trusted Component Binary it correlates to in

the parameter 'dependency-resolution', and signs the SUIT manifest.

The TAM delivers the SUIT manifest of the Personalization Data which

depends on the Trusted Component Binary from Scenario 1.

 +------------+ +-------------+

 | TAM | | TEEP Agent |

 +------------+ +-------------+

 Update ---->

 +=========== teep-protocol(TAM) ============+

 | TEEP_Message([|

 | TEEP-TYPE-update, |

 | options: { |

 | manifest-list: [|

 | +== suit-manifest(TC Developer) ==+ |

 | | SUIT_Envelope({ | |

 | | manifest: { | |

 | | install: { | |

 | | override-parameters: { | |

 | | uri: "#tc" | |

 | | }, | |

 | | fetch | |

 | | } | |

 | | }, | |

 | | "#tc": h'48 65 6C 6C ...' | |

 | | }) | |

 | +=================================+ |

 |] |

 | } |

 |]) |

 +===+

 Figure 3: Integrated Payload with Trusted Component Binary

¶

¶

¶

¶

¶

 +------------+ +-------------+

 | TAM | | TEEP Agent |

 +------------+ +-------------+

 Update ---->

 +================= teep-protocol(TAM) ======================+

 | TEEP_Message([|

 | TEEP-TYPE-update, |

 | options: { |

 | manifest-list: [|

 | +======== suit-manifest(TC Developer) ============+ |

 | | SUIT_Envelope({ | |

 | | manifest: { | |

 | | common: { | |

 | | dependencies: [| |

 | | {{digest-of-tc.suit}} | |

 | |] | |

 | | } | |

 | | dependency-resolution: { | |

 | | override-parameters: { | |

 | | uri: "https://example.org/tc-uuid.suit" | |

 | | } | |

 | | fetch | |

 | | } | |

 | | install: { | |

 | | override-parameters: { | |

 | | uri: "https://example.org/config.json" | |

 | | }, | |

 | | fetch | |

 | | set-dependency-index | |

 | | process-dependency | |

 | | } | |

 | | } | |

 | | }) | |

 | +===+ |

 |] |

 | } |

 |]) |

 +===+

 and then,

 +-------------+ +--------------+

 | TEEP Agent | | TC Developer |

 +-------------+ +--------------+

 <----

 fetch "https://example.org/config.json"

 +=======config.json========+

 | 7B 22 75 73 65 72 22 ... |

 +==========================+

 Figure 4: Personalization Data

¶

For the full SUIT Manifest example binary, see

Appendix "Example 3: Supplying Personalization Data for Trusted Component Binary".

4.4.4. Scenario 4: Unlinking a Trusted Component

A Trusted Component Developer can also generate a SUIT Manifest that

unlinks the installed Trusted Component. The TAM delivers it when

the TAM wants to uninstall the component.

The suit-directive-unlink (see [I-D.ietf-suit-trust-domains]

Section-6.5.4) is located in the manifest to unlink the Trusted

Component, meaning that the reference count is decremented and the

component is deleted when the reference count becomes zero. (If

other Trusted Components depend on it, the reference count will not

be zero.)

For the full SUIT Manifest example binary, see Appendix E. SUIT

Example 4 (Appendix "E.4. Example 4: Unlink a Trusted Component")

¶

¶

¶

 +------------+ +-------------+

 | TAM | | TEEP Agent |

 +------------+ +-------------+

 Update ---->

 +=========== teep-protocol(TAM) ============+

 | TEEP_Message([|

 | TEEP-TYPE-update, |

 | options: { |

 | manifest-list: [|

 | +== suit-manifest(TC Developer) ==+ |

 | | SUIT_Envelope({ | |

 | | manifest: { | |

 | | install: [| |

 | | unlink | |

 | |] | |

 | | } | |

 | | }) | |

 | +=================================+ |

 |] |

 | } |

 |]) |

 +===+

 Figure 5: Unlink Trusted Component example (summary)

¶

¶

type

token

msg

suit-reports

4.5. Success Message

The Success message is used by the TEEP Agent to return a success in

response to an Update message.

Like other TEEP messages, the Success message is signed, and the

relevant CDDL snippet is shown below. The complete CDDL structure is

shown in Appendix C.

The Success message has the following fields:

The value of (5) corresponds to corresponds to a Success message

sent from the TEEP Agent to the TAM.

The value in the token parameter is used to match responses to

requests. It MUST match the value of the token parameter in the

Update message the Success is in response to, if one was present.

If none was present, the token MUST be absent in the Success

message.

The msg parameter contains optional diagnostics information

encoded in UTF-8 [RFC3629] using Net-Unicode form [RFC5198] with

max 128 bytes returned by the TEEP Agent.

If present, the suit-reports parameter contains a set of SUIT

Reports as defined in Section 4 of [I-D.ietf-suit-report]. If a

token parameter was present in the Update message the Success

message is in response to, the suit-report-nonce field MUST be

present in the SUIT Report with a value matching the token

parameter in the Update message.

4.6. Error Message

The Error message is used by the TEEP Agent to return an error in

response to a message from the TAM.

¶

¶

teep-success = [

 type: TEEP-TYPE-teep-success,

 options: {

 ? token => bstr .size (8..64),

 ? msg => text .size (1..128),

 ? suit-reports => [+ SUIT_Report],

 * $$teep-success-extensions,

 * $$teep-option-extensions

 }

]

¶

¶

¶

¶

¶

¶

¶

type

token

err-msg

supported-cipher-suites

supported-freshness-mechanisms

Like other TEEP messages, the Error message is signed, and the

relevant CDDL snippet is shown below. The complete CDDL structure is

shown in Appendix C.

The Error message has the following fields:

The value of (6) corresponds to an Error message sent from the

TEEP Agent to the TAM.

The value in the token parameter is used to match responses to

requests. It MUST match the value of the token parameter in the

message the Success is in response to, if one was present. If

none was present, the token MUST be absent in the Error message.

The err-msg parameter is human-readable diagnostic text that MUST

be encoded using UTF-8 [RFC3629] using Net-Unicode form [RFC5198]

with max 128 bytes.

The supported-cipher-suites parameter lists the cipher suite(s)

supported by the TEEP Agent. Details about the cipher suite

encoding can be found in Section 8. This otherwise optional

parameter MUST be returned if err-code is

ERR_UNSUPPORTED_CIPHER_SUITES.

The supported-freshness-mechanisms parameter lists the freshness

mechanism(s) supported by the TEEP Agent. Details about the

encoding can be found in Section 9. This otherwise optional

parameter MUST be returned if err-code is

ERR_UNSUPPORTED_FRESHNESS_MECHANISMS.

¶

teep-error = [

 type: TEEP-TYPE-teep-error,

 options: {

 ? token => bstr .size (8..64),

 ? err-msg => text .size (1..128),

 ? supported-cipher-suites => [+ $cipher-suite],

 ? supported-freshness-mechanisms => [+ $freshness-mechanism],

 ? versions => [+ version],

 ? suit-reports => [+ SUIT_Report],

 * $$teep-error-extensions,

 * $$teep-option-extensions

 },

 err-code: 0..23

]

¶

¶

¶

¶

¶

¶

¶

versions

suit-reports

err-code

ERR_PERMANENT_ERROR (1)

ERR_UNSUPPORTED_EXTENSION (2)

ERR_UNSUPPORTED_FRESHNESS_MECHANISMS (3)

ERR_UNSUPPORTED_MSG_VERSION (4)

ERR_UNSUPPORTED_CIPHER_SUITES (5)

The versions parameter enumerates the TEEP protocol version(s)

supported by the TEEP Agent. This otherwise optional parameter

MUST be returned if err-code is ERR_UNSUPPORTED_MSG_VERSION.

If present, the suit-reports parameter contains a set of SUIT

Reports as defined in Section 4 of [I-D.ietf-suit-report]. If a

token parameter was present in the Update message the Error

message is in response to, the suit-report-nonce field MUST be

present in the SUIT Report with a value matching the token

parameter in the Update message.

The err-code parameter contains one of the error codes listed

below). Only selected values are applicable to each message.

This specification defines the following initial error messages:

The TEEP request contained incorrect fields or fields that are

inconsistent with other fields. For diagnosis purposes it is

RECOMMMENDED to identify the failure reason in the error message.

A TAM receiving this error might refuse to communicate further

with the TEEP Agent for some period of time until it has reason

to believe it is worth trying again, but it should take care not

to give up on communication. In contrast, ERR_TEMPORARY_ERROR is

an indication that a more aggressive retry is warranted.

The TEEP Agent does not support an extension included in the

request message. For diagnosis purposes it is RECOMMMENDED to

identify the unsupported extension in the error message. A TAM

receiving this error might retry the request without using

extensions.

The TEEP Agent does not support any freshness algorithm

mechanisms in the request message. A TAM receiving this error

might retry the request using a different set of supported

freshness mechanisms in the request message.

The TEEP Agent does not support the TEEP protocol version

indicated in the request message. A TAM receiving this error

might retry the request using a different TEEP protocol version.

The TEEP Agent does not support any cipher suites indicated in

the request message. A TAM receiving this error might retry the

¶

¶

¶

¶

¶

¶

¶

¶

ERR_BAD_CERTIFICATE (6)

ERR_CERTIFICATE_EXPIRED (9)

ERR_TEMPORARY_ERROR (10)

ERR_MANIFEST_PROCESSING_FAILED (17)

request using a different set of supported cipher suites in the

request message.

Processing of a certificate failed. For diagnosis purposes it is

RECOMMMENDED to include information about the failing certificate

in the error message. For example, the certificate was of an

unsupported type, or the certificate was revoked by its signer. A

TAM receiving this error might attempt to use an alternate

certificate.

A certificate has expired or is not currently valid. A TAM

receiving this error might attempt to renew its certificate

before using it again.

A miscellaneous temporary error, such as a memory allocation

failure, occurred while processing the request message. A TAM

receiving this error might retry the same request at a later

point in time.

The TEEP Agent encountered one or more manifest processing

failures. If the suit-reports parameter is present, it contains

the failure details. A TAM receiving this error might still

attempt to install or update other components that do not depend

on the failed manifest.

New error codes should be added sparingly, not for every

implementation error. That is the intent of the err-msg field, which

can be used to provide details meaningful to humans. New error codes

should only be added if the TAM is expected to do something

behaviorally different upon receipt of the error message, rather

than just logging the event. Hence, each error code is responsible

for saying what the behavioral difference is expected to be.

5. EAT Profile

The TEEP protocol operates between a TEEP Agent and a TAM. While the

TEEP protocol does not require use of EAT, use of EAT is encouraged

and Section 4.3 explicitly defines a way to carry an Entity

Attestation Token in a QueryResponse.

As discussed in Section 4.3.1, the content of Evidence is opaque to

the TEEP architecture, but the content of Attestation Results is

not, where Attestation Results flow between a Verifier and a TAM (as

the Relying Party). Although Attestation Results required by a TAM

are separable from the TEEP protocol per se, this section is

¶

¶

¶

¶

¶

¶

¶

included as part of the requirements for building a compliant TAM

that uses EATs for Attestation Results.

Section 7 of [I-D.ietf-rats-eat] defines the requirement for Entity

Attestation Token profiles. This section defines an EAT profile for

use with TEEP.

profile-label: The profile-label for this specification is the

URI

https://datatracker.ietf.org/doc/html/draft-ietf-teep-protocol-10.

(RFC-editor: upon RFC publication, replace string with "https://

www.rfc-editor.org/info/rfcXXXX" where XXXX is the RFC number of

this document.)

Use of JSON, CBOR, or both: CBOR only.

CBOR Map and Array Encoding: Only definite length arrays and

maps.

CBOR String Encoding: Only definite-length strings are allowed.

CBOR Preferred Serialization: Encoders must use preferred

serialization, and decoders need not accept non-preferred

serialization.

COSE/JOSE Protection: See Section 8.

Detached EAT Bundle Support: DEB use is permitted.

Verification Key Identification: COSE Key ID (kid) is used, where

the key ID is the hash of a public key (where the public key may

be used as a raw public key, or in a certificate).

Endorsement Identification: Optional, but semantics are the same

as in Verification Key Identification.

Freshness: See Section 9.

Required Claims: None.

Prohibited Claims: None.

Additional Claims: Optional claims are those listed in

Section 4.3.1.

Refined Claim Definition: None.

CBOR Tags: CBOR Tags are not used.

¶

¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-teep-protocol-10

Manifests and Software Evidence Claims: The sw-name claim for a

Trusted Component holds the URI of the SUIT manifest for that

component.

A TAM implementation might simply accept a TEEP Agent as trustworthy

based on a successful Attestation Result, and if not then attempt to

update the TEEP Agent and all of its dependencies. This logic is

simple but it might result in updating some components that do not

need to be updated.

An alternate TAM implementation might use any Additional Claims to

determine whether the TEEP Agent or any of its dependencies are

trustworthy, and only update the specific components that are out of

date.

6. Mapping of TEEP Message Parameters to CBOR Labels

In COSE, arrays and maps use strings, negative integers, and

unsigned integers as their keys. Integers are used for compactness

of encoding. Since the word "key" is mainly used in its other

meaning, as a cryptographic key, this specification uses the term

"label" for this usage as a map key.

This specification uses the following mapping:

Name Label

supported-cipher-suites 1

challenge 2

versions 3

selected-cipher-suite 5

selected-version 6

attestation-payload 7

tc-list 8

ext-list 9

manifest-list 10

msg 11

err-msg 12

attestation-payload-format 13

requested-tc-list 14

unneeded-manifest-list 15

component-id 16

tc-manifest-sequence-number 17

have-binary 18

suit-reports 19

token 20

supported-freshness-mechanisms 21

Table 2

*

¶

¶

¶

¶

¶

7. Behavior Specification

Behavior is specified in terms of the conceptual APIs defined in

section 6.2.1 of [I-D.ietf-teep-architecture].

7.1. TAM Behavior

When the ProcessConnect API is invoked, the TAM sends a QueryRequest

message.

When the ProcessTeepMessage API is invoked, the TAM first does

validation as specified in Section 4.1.2, and drops the message if

it is not valid. Otherwise, it proceeds as follows.

If the message includes a token, it can be used to match the

response to a request previously sent by the TAM. The TAM MUST

expire the token value after receiving the first response from the

device that has a valid signature and ignore any subsequent messages

that have the same token value. The token value MUST NOT be used for

other purposes, such as a TAM to identify the devices and/or a

device to identify TAMs or Trusted Components.

7.1.1. Handling a QueryResponse Message

If a QueryResponse message is received, the TAM verifies the

presence of any parameters required based on the data-items-

requested in the QueryRequest, and also validates that the nonce in

any SUIT Report matches the token send in the QueryRequest message

if a token was present. If these requirements are not met, the TAM

drops the message. It may also do additional implementation specific

actions such as logging the results. If the requirements are met,

processing continues as follows.

If a QueryResponse message is received that contains an attestation-

payload, the TAM checks whether it contains Evidence or an

Attestation Result by inspecting the attestation-payload-format

parameter. The media type defined in Section 5 indicates an

Attestation Result, though future extensions might also indicate

other Attestation Result formats in the future. Any other

unrecognized value indicates Evidence. If it contains an Attestation

Result, processing continues as in Section 7.1.1.1.

If the QueryResponse is instead determined to contain Evidence, the

TAM passes the Evidence (via some mechanism out of scope of this

document) to an attestation Verifier (see

[I-D.ietf-rats-architecture]) to determine whether the Agent is in a

trustworthy state. Once the TAM receives an Attestation Result from

the Verifier, processing continues as in Section 7.1.1.1.

¶

¶

¶

¶

¶

¶

¶

7.1.1.1. Handling an Attestation Result

Based on the results of attestation (if any), any SUIT Reports, and

the lists of installed, requested, and unneeded Trusted Components

reported in the QueryResponse, the TAM determines, in any

implementation specific manner, which Trusted Components need to be

installed, updated, or deleted, if any. There are in typically three

cases:

Attestation failed. This indicates that the rest of the

information in the QueryResponse cannot necessarily be trusted,

as the TEEP Agent may not be healthy (or at least up to date).

In this case, the TAM can attempt to use TEEP to update any

Trusted Components (e.g., firmware, the TEEP Agent itself,

etc.) needed to get the TEEP Agent back into an up-to-date

state that would allow attestation to succeed.

Attestation succeeded (so the QueryResponse information can be

accepted as valid), but the set of Trusted Components needs to

be updated based on TAM policy changes or requests from the

TEEP Agent.

Attestation succeeded, and no changes are needed.

If any Trusted Components need to be installed, updated, or deleted,

the TAM sends an Update message containing SUIT Manifests with

command sequences to do the relevant installs, updates, or deletes.

It is important to note that the TEEP Agent's Update Procedure

requires resolving and installing any dependencies indicated in the

manifest, which may take some time, and the resulting Success or

Error message is generated only after completing the Update

Procedure. Hence, depending on the freshness mechanism in use, the

TAM may need to store data (e.g., a nonce) for some time. For

example, if a mobile device needs an unmetered connection to

download a dependency, it may take hours or longer before the device

has sufficient access. A different freshness mechanism, such as

timestamps, might be more appropriate in such cases.

If no Trusted Components need to be installed, updated, or deleted,

but the QueryRequest included Evidence, the TAM MAY (e.g., based on

attestation-payload-format parameters received from the TEEP Agent

in the QueryResponse) still send an Update message with no SUIT

Manifests, to pass the Attestation Result back to the TEEP Agent.

7.1.2. Handling a Success or Error Message

If a Success or Error message is received containing one or more

SUIT Reports, the TAM also validates that the nonce in any SUIT

Report matches the token sent in the Update message, and drops the

message if it does not match. Otherwise, the TAM handles the update

¶

1.

¶

2.

¶

3. ¶

¶

¶

in any implementation specific way, such as updating any locally

cached information about the state of the TEEP Agent, or logging the

results.

If any other Error message is received, the TAM can handle it in any

implementation specific way, but Section 4.6 provides

recommendations for such handling.

7.2. TEEP Agent Behavior

When the RequestTA API is invoked, the TEEP Agent first checks

whether the requested TA is already installed. If it is already

installed, the TEEP Agent passes no data back to the caller.

Otherwise, if the TEEP Agent chooses to initiate the process of

requesting the indicated TA, it determines (in any implementation

specific way) the TAM URI based on any TAM URI provided by the

RequestTA caller and any local configuration, and passes back the

TAM URI to connect to. It MAY also pass back a QueryResponse message

if all of the following conditions are true:

The last QueryRequest message received from that TAM contained no

token or challenge,

The ProcessError API was not invoked for that TAM since the last

QueryResponse message was received from it, and

The public key or certificate of the TAM is cached and not

expired.

When the RequestPolicyCheck API is invoked, the TEEP Agent decides

whether to initiate communication with any trusted TAMs (e.g., it

might choose to do so for a given TAM unless it detects that it has

already communicated with that TAM recently). If so, it passes back

a TAM URI to connect to. If the TEEP Agent has multiple TAMs it

needs to connect with, it just passes back one, with the expectation

that RequestPolicyCheck API will be invoked to retrieve each one

successively until there are no more and it can pass back no data at

that time. Thus, once a TAM URI is returned, the TEEP Agent can

remember that it has already initiated communication with that TAM.

When the ProcessError API is invoked, the TEEP Agent can handle it

in any implementation specific way, such as logging the error or

using the information in future choices of TAM URI.

When the ProcessTeepMessage API is invoked, the Agent first does

validation as specified in Section 4.1.2, and if it is not valid

then the Agent responds with an Error message. Otherwise, processing

continues as follows based on the type of message.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

When a QueryRequest message is received, the Agent responds with a

QueryResponse message if all fields were understood, or an Error

message if any error was encountered.

When an Update message is received, the Agent attempts to unlink any

SUIT manifests listed in the unneeded-manifest-list field of the

message, and responds with an Error message if any error was

encountered. If the unneeded-manifest-list was empty, or no error

was encountered processing it, the Agent attempts to update the

Trusted Components specified in the SUIT manifests by following the

Update Procedure specified in [I-D.ietf-suit-manifest], and responds

with a Success message if all SUIT manifests were successfully

installed, or an Error message if any error was encountered. It is

important to note that the Update Procedure requires resolving and

installing any dependencies indicated in the manifest, which may

take some time, and the Success or Error message is generated only

after completing the Update Procedure.

8. Cipher Suites

The TEEP protocol uses COSE for protection of TEEP messages in both

directions. To negotiate cryptographic mechanisms and algorithms,

the TEEP protocol defines the following cipher suite structure,

which is used to specify an ordered set of operations (e.g., sign)

done as part of composing a TEEP message. Although this

specification only specifies the use of signing and relies on

payload encryption to protect sensitive information, future

extensions might specify support for encryption and/or MAC

operations if needed.

¶

¶

¶

$cipher-suite /= teep-cipher-suite-sign1-es256

$cipher-suite /= teep-cipher-suite-sign1-eddsa

; The following two cipher suites have only a single operation each.

; Other cipher suites may be defined to have multiple operations.

teep-cipher-suite-sign1-es256 = [teep-operation-sign1-es256]

teep-cipher-suite-sign1-eddsa = [teep-operation-sign1-eddsa]

teep-operation-sign1-es256 = [cose-sign1, cose-alg-es256]

teep-operation-sign1-eddsa = [cose-sign1, cose-alg-eddsa]

cose-sign1 = 18 ; CoAP Content-Format value

cose-alg-es256 = -7 ; ECDSA w/ SHA-256

cose-alg-eddsa = -8 ; EdDSA

¶

Each operation in a given cipher suite has two elements:

a COSE-type defined in Section 2 of [RFC8152] that identifies the

type of operation, and

a specific cryptographic algorithm as defined in the COSE

Algorithms registry [COSE.Algorithm] to be used to perform that

operation.

A TAM MUST support both of the cipher suites defined above. A TEEP

Agent MUST support at least one of the two but can choose which one.

For example, a TEEP Agent might choose a given cipher suite if it

has hardware support for it. A TAM or TEEP Agent MAY also support

any other algorithms in the COSE Algorithms registry in addition to

the mandatory ones listed above. It MAY also support use with

COSE_Sign or other COSE types in additional cipher suites.

Any cipher suites without confidentiality protection can only be

added if the associated specification includes a discussion of

security considerations and applicability, since manifests may carry

sensitive information. For example, Section 6 of

[I-D.ietf-teep-architecture] permits implementations that terminate

transport security inside the TEE and if the transport security

provides confidentiality then additional encryption might not be

needed in the manifest for some use cases. For most use cases,

however, manifest confidentiality will be needed to protect

sensitive fields from the TAM as discussed in Section 9.8 of

[I-D.ietf-teep-architecture].

The cipher suites defined above do not do encryption at the TEEP

layer, but permit encryption of the SUIT payload (e.g., using

[I-D.ietf-suit-firmware-encryption]). See Section 10 for more

discussion of specific payloads.

For the initial QueryRequest message, unless the TAM has more

specific knowledge about the TEEP Agent (e.g., if the QueryRequest

is sent in response to some underlying transport message that

contains a hint), the message does not use COSE_Sign1 with one of

the above cipher suites, but instead uses COSE_Sign with multiple

signatures, one for each algorithm used in any of the cipher suites

listed in the supported-cipher-suites parameter of the QueryRequest,

so that a TEEP Agent supporting any one of them can verify a

signature. If the TAM does have specific knowledge about which

cipher suite the TEEP Agent supports, it MAY instead use that cipher

suite with the QueryRequest.

For an Error message with code ERR_UNSUPPORTED_CIPHER_SUITES, the

TEEP Agent MUST protect it with one of the cipher suites mandatory

for the TAM.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Cryptographic Algorithms

For all other messages between the TAM and TEEP Agent, the selected

cipher suite MUST be used in both directions.

9. Freshness Mechanisms

A freshness mechanism determines how a TAM can tell whether an

attestation payload provided in a QueryResponse is fresh. There are

multiple ways this can be done as discussed in Section 10 of

[I-D.ietf-rats-architecture].

Each freshness mechanism is identified with an integer value, which

corresponds to an IANA registered freshness mechanism (see the IANA

Considerations section of

[I-D.ietf-rats-reference-interaction-models]). This document uses

the following freshness mechanisms which may be added to in the

future by TEEP extensions:

An implementation MUST support the Nonce mechanism and MAY support

additional mechanisms.

In the Nonce mechanism, the attestation payload MUST include a nonce

provided in the QueryRequest challenge. The timestamp mechanism uses

a timestamp determined via mechanisms outside the TEEP protocol, and

the challenge is only needed in the QueryRequest message if a

challenge is needed in generating the attestation payload for

reasons other than freshness.

If a TAM supports multiple freshness mechanisms that require

different challenge formats, the QueryRequest message can currently

only send one such challenge. This situation is expected to be rare,

but should it occur, the TAM can choose to prioritize one of them

and exclude the other from the supported-freshness-mechanisms in the

QueryRequest, and resend the QueryRequest with the other mechanism

if an ERR_UNSUPPORTED_FRESHNESS_MECHANISMS Error is received that

indicates the TEEP Agent supports the other mechanism.

10. Security Considerations

This section summarizes the security considerations discussed in

this specification:

TEEP protocol messages exchanged between the TAM and the TEEP

Agent are protected using COSE. This specification relies on the

¶

¶

¶

FRESHNESS_NONCE = 0

FRESHNESS_TIMESTAMP = 1

$freshness-mechanism /= FRESHNESS_NONCE

$freshness-mechanism /= FRESHNESS_TIMESTAMP

¶

¶

¶

¶

¶

Attestation

Trusted Component Binaries

Personalization Data

TEEP Broker

Trusted Component Signer Compromise

cryptographic algorithms provided by COSE. Public key based

authentication is used by the TEEP Agent to authenticate the TAM

and vice versa.

A TAM relies on signed Attestation Results provided by a

Verifier, either obtained directly using a mechanism outside the

TEEP protocol (by using some mechanism to pass Evidence obtained

in the attestation payload of a QueryResponse, and getting back

the Attestation Results), or indirectly via the TEEP Agent

forwarding the Attestation Results in the attestation payload of

a QueryResponse. See the security considerations of the specific

mechanism in use (e.g., EAT) for more discussion.

Each Trusted Component binary is signed by a Trusted Component

Signer. It is the responsibility of the TAM to relay only

verified Trusted Components from authorized Trusted Component

Signers. Delivery of a Trusted Component to the TEEP Agent is

then the responsibility of the TAM, using the security mechanisms

provided by the TEEP protocol. To protect the Trusted Component

binary, the SUIT manifest format is used and it offers a variety

of security features, including digitial signatures and can

support symmetric encryption if a SUIT mechanism such as

[I-D.ietf-suit-firmware-encryption] is used.

A Trusted Component Signer or TAM can supply personalization data

along with a Trusted Component. This data is also protected by a

SUIT manifest. Personalization data signed and encrypted (e.g.,

via [I-D.ietf-suit-firmware-encryption]) by a Trusted Component

Signer other than the TAM is opaque to the TAM.

As discussed in section 6 of [I-D.ietf-teep-architecture], the

TEEP protocol typically relies on a TEEP Broker to relay messages

between the TAM and the TEEP Agent. When the TEEP Broker is

compromised it can drop messages, delay the delivery of messages,

and replay messages but it cannot modify those messages. (A

replay would be, however, detected by the TEEP Agent.) A

compromised TEEP Broker could reorder messages in an attempt to

install an old version of a Trusted Component. Information in the

manifest ensures that TEEP Agents are protected against such

downgrade attacks based on features offered by the manifest

itself.

A TAM is responsible for vetting a Trusted Component and before

distributing them to TEEP Agents.

¶

¶

¶

¶

¶

¶

CA Compromise

TAM Certificate Expiry

Compromised Time Source

It is RECOMMENDED to provide a way to update the trust anchor

store used by the TEE, for example using a firmware update

mechanism such as [I-D.wallace-rats-concise-ta-stores]. Thus, if

a Trusted Component Signer is later compromised, the TAM can

update the trust anchor store used by the TEE, for example using

a firmware update mechanism.

The CA issuing certificates to a TEE or a Trusted Component

Signer might get compromised. It is RECOMMENDED to provide a way

to update the trust anchor store used by the TEE, for example

using a firmware update mechanism such as

[I-D.wallace-rats-concise-ta-stores]. If the CA issuing

certificates to devices gets compromised then these devices might

be rejected by a TAM, if revocation is available to the TAM.

The integrity and the accuracy of the clock within the TEE

determines the ability to determine an expired TAM certificate,

if certificates are used.

As discussed above, certificate validity checks rely on comparing

validity dates to the current time, which relies on having a

trusted source of time, such as [RFC8915]. A compromised time

source could thus be used to subvert such validity checks.

11. Privacy Considerations

Depending on the properties of the attestation mechanism, it is

possible to uniquely identify a device based on information in the

attestation payload or in the certificate used to sign the

attestation payload. This uniqueness may raise privacy concerns. To

lower the privacy implications the TEEP Agent MUST present its

attestation payload only to an authenticated and authorized TAM and

when using an EAT, it SHOULD use encryption as discussed in

[I-D.ietf-rats-eat], since confidentiality is not provided by the

TEEP protocol itself and the transport protocol under the TEEP

protocol might be implemented outside of any TEE. If any mechanism

other than EAT is used, it is up to that mechanism to specify how

privacy is provided.

In addition, in the usage scenario discussed in Section 4.4.1, a

device reveals its IP address to the Trusted Component Binary

server. This can reveal to that server at least a clue as to its

location, which might be sensitive information in some cases.

¶

¶

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

12. IANA Considerations

12.1. Media Type Registration

IANA is requested to assign a media type for application/teep+cbor.

application

teep+cbor

none

none

Same as encoding considerations of

application/cbor.

See Security Considerations Section of

this document.

Same as interoperability

considerations of application/cbor as specified in [RFC7049].

This document.

TEEP protocol

implementations

N/A

N/A

N/A

N/A

N/A

teep@ietf.org

COMMON

none

See the "Authors' Addresses" section of this document

IETF

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[COSE.Algorithm]

[I-D.ietf-rats-architecture]

[I-D.ietf-rats-eat]

[I-D.ietf-rats-reference-interaction-models]

[I-D.ietf-suit-manifest]

[I-D.ietf-suit-report]

[I-D.ietf-suit-trust-domains]

[RFC2119]

13. References

13.1. Normative References

IANA, "COSE Algorithms", n.d., <https://

www.iana.org/assignments/cose/cose.xhtml#algorithms>.

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-22, 28 September 2022, <https://

www.ietf.org/archive/id/draft-ietf-rats-

architecture-22.txt>.

Lundblade, L., Mandyam, G., O'Donoghue, J., and

C. Wallace, "The Entity Attestation Token (EAT)", Work in

Progress, Internet-Draft, draft-ietf-rats-eat-17, 22

October 2022, <https://www.ietf.org/archive/id/draft-

ietf-rats-eat-17.txt>.

Birkholz, H., Eckel,

M., Pan, W., and E. Voit, "Reference Interaction Models

for Remote Attestation Procedures", Work in Progress,

Internet-Draft, draft-ietf-rats-reference-interaction-

models-06, 7 September 2022, <https://www.ietf.org/

archive/id/draft-ietf-rats-reference-interaction-

models-06.txt>.

Moran, B., Tschofenig, H., Birkholz, H.,

Zandberg, K., and O. Rønningstad, "A Concise Binary

Object Representation (CBOR)-based Serialization Format

for the Software Updates for Internet of Things (SUIT)

Manifest", Work in Progress, Internet-Draft, draft-ietf-

suit-manifest-20, 7 October 2022, <https://www.ietf.org/

archive/id/draft-ietf-suit-manifest-20.txt>.

Moran, B. and H. Birkholz, "Secure Reporting

of Update Status", Work in Progress, Internet-Draft,

draft-ietf-suit-report-04, 24 October 2022, <https://

www.ietf.org/archive/id/draft-ietf-suit-report-04.txt>.

Moran, B. and K. Takayama, "SUIT

Manifest Extensions for Multiple Trust Domains", Work in

Progress, Internet-Draft, draft-ietf-suit-trust-

domains-01, 24 October 2022, <https://www.ietf.org/

archive/id/draft-ietf-suit-trust-domains-01.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.ietf.org/archive/id/draft-ietf-rats-architecture-22.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-17.txt
https://www.ietf.org/archive/id/draft-ietf-rats-eat-17.txt
https://www.ietf.org/archive/id/draft-ietf-rats-reference-interaction-models-06.txt
https://www.ietf.org/archive/id/draft-ietf-rats-reference-interaction-models-06.txt
https://www.ietf.org/archive/id/draft-ietf-rats-reference-interaction-models-06.txt
https://www.ietf.org/archive/id/draft-ietf-suit-manifest-20.txt
https://www.ietf.org/archive/id/draft-ietf-suit-manifest-20.txt
https://www.ietf.org/archive/id/draft-ietf-suit-report-04.txt
https://www.ietf.org/archive/id/draft-ietf-suit-report-04.txt
https://www.ietf.org/archive/id/draft-ietf-suit-trust-domains-01.txt
https://www.ietf.org/archive/id/draft-ietf-suit-trust-domains-01.txt

[RFC3629]

[RFC5198]

[RFC7049]

[RFC8152]

[RFC8174]

[I-D.ietf-suit-firmware-encryption]

[I-D.ietf-teep-architecture]

[I-D.lundblade-rats-eat-media-type]

[I-D.wallace-rats-concise-ta-stores]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Klensin, J. and M. Padlipsky, "Unicode Format for Network

Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,

<https://www.rfc-editor.org/info/rfc5198>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

Tschofenig, H., Housley, R., Moran, B., Brown, D., and K.

Takayama, "Encrypted Payloads in SUIT Manifests", Work in

Progress, Internet-Draft, draft-ietf-suit-firmware-

encryption-09, 24 October 2022, <https://www.ietf.org/

archive/id/draft-ietf-suit-firmware-encryption-09.txt>.

Pei, M., Tschofenig, H., Thaler, D.,

and D. M. Wheeler, "Trusted Execution Environment

Provisioning (TEEP) Architecture", Work in Progress,

Internet-Draft, draft-ietf-teep-architecture-19, 24

October 2022, <https://www.ietf.org/archive/id/draft-

ietf-teep-architecture-19.txt>.

Lundblade, L., Birkholz, H.,

and T. Fossati, "EAT Media Types", Work in Progress,

Internet-Draft, draft-lundblade-rats-eat-media-type-00,

26 May 2022, <https://www.ietf.org/archive/id/draft-

lundblade-rats-eat-media-type-00.txt>.

Wallace, C., Housley, R.,

Fossati, T., and Y. Deshpande, "Concise TA Stores

(CoTS)", Work in Progress, Internet-Draft, draft-wallace-

rats-concise-ta-stores-01, 10 October 2022, <https://

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5198
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8174
https://www.ietf.org/archive/id/draft-ietf-suit-firmware-encryption-09.txt
https://www.ietf.org/archive/id/draft-ietf-suit-firmware-encryption-09.txt
https://www.ietf.org/archive/id/draft-ietf-teep-architecture-19.txt
https://www.ietf.org/archive/id/draft-ietf-teep-architecture-19.txt
https://www.ietf.org/archive/id/draft-lundblade-rats-eat-media-type-00.txt
https://www.ietf.org/archive/id/draft-lundblade-rats-eat-media-type-00.txt
https://www.ietf.org/archive/id/draft-wallace-rats-concise-ta-stores-01.txt

[RFC8610]

[RFC8915]

www.ietf.org/archive/id/draft-wallace-rats-concise-ta-

stores-01.txt>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.

Sundblad, "Network Time Security for the Network Time

Protocol", RFC 8915, DOI 10.17487/RFC8915, September

2020, <https://www.rfc-editor.org/info/rfc8915>.

A. Contributors

We would like to thank Brian Witten (Symantec), Tyler Kim (Solacia),

Nick Cook (Arm), and Minho Yoo (IoTrust) for their contributions to

the Open Trust Protocol (OTrP), which influenced the design of this

specification.

B. Acknowledgements

We would like to thank Eve Schooler for the suggestion of the

protocol name.

We would like to thank Kohei Isobe (TRASIO/SECOM), Ken Takayama

(SECOM) Kuniyasu Suzaki (TRASIO/AIST), Tsukasa Oi (TRASIO), and

Yuichi Takita (SECOM) for their valuable implementation feedback.

We would also like to thank Carsten Bormann and Henk Birkholz for

their help with the CDDL.

C. Complete CDDL

Valid TEEP messages adhere to the following CDDL data definitions,

except that SUIT_Envelope and SUIT_Component_Identifier are

specified in [I-D.ietf-suit-manifest].

This section is informative and merely summarizes the normative CDDL

snippets in the body of this document.

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-wallace-rats-concise-ta-stores-01.txt
https://www.ietf.org/archive/id/draft-wallace-rats-concise-ta-stores-01.txt
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8915

teep-message = $teep-message-type .within teep-message-framework

teep-message-framework = [

 type: $teep-type / $teep-type-extension,

 options: { * teep-option },

 * any; further elements, e.g., for data-item-requested

]

teep-option = (uint => any)

; messages defined below:

$teep-message-type /= query-request

$teep-message-type /= query-response

$teep-message-type /= update

$teep-message-type /= teep-success

$teep-message-type /= teep-error

; message type numbers, uint (0..23)

$teep-type = uint .size 1

TEEP-TYPE-query-request = 1

TEEP-TYPE-query-response = 2

TEEP-TYPE-update = 3

TEEP-TYPE-teep-success = 5

TEEP-TYPE-teep-error = 6

version = uint .size 4

ext-info = uint .size 4

; data items as bitmaps

data-item-requested = &(

 attestation: 0,

 trusted-components: 1,

 extensions: 2,

 suit-reports: 3,

)

query-request = [

 type: TEEP-TYPE-query-request,

 options: {

 ? token => bstr .size (8..64),

 ? supported-freshness-mechanisms => [+ $freshness-mechanism],

 ? challenge => bstr .size (8..512),

 ? versions => [+ version],

 * $$query-request-extensions,

 * $$teep-option-extensions

 },

 supported-cipher-suites: [+ $cipher-suite],

 data-item-requested: uint .bits data-item-requested

]

;MANDATORY for TAM and TEEP Agent to support the following COSE

;operations, and OPTIONAL to support additional ones such as

;COSE_Sign_Tagged, COSE_Encrypt0_Tagged, etc.

cose-sign1 = 18 ; CoAP Content-Format value

;MANDATORY for TAM to support the following, and OPTIONAL to implement

;any additional algorithms from the IANA COSE Algorithms registry.

cose-alg-eddsa = -8 ; EdDSA

cose-alg-es256 = -7 ; ECDSA w/ SHA-256

;MANDATORY for TAM to support the following cipher-suites, and OPTIONAL

;to support any additional ones that use COSE_Sign_Tagged, or other

;signing, encryption, or MAC algorithms.

teep-operation-sign1-eddsa = [cose-sign1, cose-alg-eddsa]

teep-operation-sign1-es256 = [cose-sign1, cose-alg-es256]

teep-cipher-suite-sign1-eddsa = [teep-operation-sign1-eddsa]

teep-cipher-suite-sign1-es256 = [teep-operation-sign1-es256]

$cipher-suite /= teep-cipher-suite-sign1-eddsa

$cipher-suite /= teep-cipher-suite-sign1-es256

; freshness-mechanisms

FRESHNESS_NONCE = 0

FRESHNESS_TIMESTAMP = 1

FRESHNESS_EPOCH_ID = 2

$freshness-mechanism /= FRESHNESS_NONCE

$freshness-mechanism /= FRESHNESS_TIMESTAMP

$freshness-mechanism /= FRESHNESS_EPOCH_ID

query-response = [

 type: TEEP-TYPE-query-response,

 options: {

 ? token => bstr .size (8..64),

 ? selected-cipher-suite => $cipher-suite,

 ? selected-version => version,

 ? attestation-payload-format => text,

 ? attestation-payload => bstr,

 ? suit-reports => [+ SUIT_Report],

 ? tc-list => [+ system-property-claims],

 ? requested-tc-list => [+ requested-tc-info],

 ? unneeded-manifest-list => [+ bstr .cbor SUIT_Digest],

 ? ext-list => [+ ext-info],

 * $$query-response-extensions,

 * $$teep-option-extensions

 }

]

requested-tc-info = {

 component-id => SUIT_Component_Identifier,

 ? tc-manifest-sequence-number => uint .size 8,

 ? have-binary => bool

}

update = [

 type: TEEP-TYPE-update,

 options: {

 ? token => bstr .size (8..64),

 ? unneeded-manifest-list => [+ bstr .cbor SUIT_Digest],

 ? manifest-list => [+ bstr .cbor SUIT_Envelope],

 * $$update-extensions,

 * $$teep-option-extensions

 }

]

teep-success = [

 type: TEEP-TYPE-teep-success,

 options: {

 ? token => bstr .size (8..64),

 ? msg => text .size (1..128),

 ? suit-reports => [+ SUIT_Report],

 * $$teep-success-extensions,

 * $$teep-option-extensions

 }

]

teep-error = [

 type: TEEP-TYPE-teep-error,

 options: {

 ? token => bstr .size (8..64),

 ? err-msg => text .size (1..128),

 ? supported-cipher-suites => [+ $cipher-suite],

 ? supported-freshness-mechanisms => [+ $freshness-mechanism],

 ? versions => [+ version],

 ? suit-reports => [+ SUIT_Report],

 * $$teep-error-extensions,

 * $$teep-option-extensions

 },

 err-code: 0..23

]

; The err-code parameter, uint (0..23)

ERR_PERMANENT_ERROR = 1

ERR_UNSUPPORTED_EXTENSION = 2

ERR_UNSUPPORTED_FRESHNESS_MECHANISMS = 3

ERR_UNSUPPORTED_MSG_VERSION = 4

ERR_UNSUPPORTED_CIPHER_SUITES = 5

ERR_BAD_CERTIFICATE = 6

ERR_CERTIFICATE_EXPIRED = 9

ERR_TEMPORARY_ERROR = 10

ERR_MANIFEST_PROCESSING_FAILED = 17

; labels of mapkey for teep message parameters, uint (0..23)

supported-cipher-suites = 1

challenge = 2

versions = 3

selected-cipher-suite = 5

selected-version = 6

attestation-payload = 7

tc-list = 8

ext-list = 9

manifest-list = 10

msg = 11

err-msg = 12

attestation-payload-format = 13

requested-tc-list = 14

unneeded-manifest-list = 15

component-id = 16

tc-manifest-sequence-number = 17

have-binary = 18

suit-reports = 19

token = 20

supported-freshness-mechanisms = 21

¶

D. Examples of Diagnostic Notation and Binary Representation

This section includes some examples with the following assumptions:

The device will have two TCs with the following SUIT Component

Identifiers:

[0x000102030405060708090a0b0c0d0e0f]

[0x100102030405060708090a0b0c0d0e0f]

SUIT manifest-list is set empty only for example purposes (see

Appendix E for actual manifest examples)

D.1. QueryRequest Message

D.1.1. CBOR Diagnostic Notation

¶

*

¶

- ¶

- ¶

*

¶

/ query-request = /

[

 / type: / 1 / TEEP-TYPE-query-request /,

 / options: /

 {

 / token / 20 : h'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF',

 / versions / 3 : [0] / 0 is current TEEP Protocol /

 },

 / supported-cipher-suites: / [[[18, -7]], / Sign1 using ES256 /

 [[18, -8]] / Sign1 using EdDSA /

],

 / data-item-requested: / 3 / attestation | trusted-components /

]

¶

D.1.2. CBOR Binary Representation

D.2. Entity Attestation Token

This is shown below in CBOR diagnostic form. Only the payload signed

by COSE is shown.

D.2.1. CBOR Diagnostic Notation

84 # array(4)

 01 # unsigned(1) / TEEP-TYPE-query-request /

 A2 # map(2)

 14 # unsigned(20) / token: /

 50 # bytes(16)

 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

 03 # unsigned(3) / versions: /

 81 # array(1) / [0] /

 00 # unsigned(0)

 82 # array(2) /* supported-cipher-suites /

 81 # array(1)

 82 # array(2)

 12 # unsigned(18) / cose-sign1 /

 26 # negative(6) / -7 = cose-alg-es256 /

 81 # array(1)

 82 # array(2)

 12 # unsigned(18) / cose-sign1 /

 27 # negative(7) / -8 = cose-alg-eddsa /

 03 # unsigned(3) / attestation | trusted-components /

¶

¶

/ eat-claim-set = /

{

 / issuer / 1: "joe",

 / timestamp (iat) / 6: 1(1526542894)

 / nonce / 10: h'948f8860d13a463e8e',

 / secure-boot / 15: true,

 / debug-status / 16: 3, / disabled-permanently /

 / security-level / 14: 3, / secure-restricted /

 / device-identifier / <TBD>: h'e99600dd921649798b013e9752dcf0c5',

 / vendor-identifier / <TBD>: h'2b03879b33434a7ca682b8af84c19fd4',

 / class-identifier / <TBD>: h'9714a5796bd245a3a4ab4f977cb8487f',

 / chip-version / 26: ["MyTEE", 1],

 / component-identifier / <TBD>: h'60822887d35e43d5b603d18bcaa3f08d',

 / version / <TBD>: "v0.1"

}

¶

D.3. QueryResponse Message

D.3.1. CBOR Diagnostic Notation

/ query-response = /

[

 / type: / 2 / TEEP-TYPE-query-response /,

 / options: /

 {

 / token / 20 : h'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF',

 / selected-cipher-suite / 5 : [[18, -7]] / only use ES256 /,

 / selected-version / 6 : 0,

 / attestation-payload / 7 : h'' / empty only for example purpose /,

 / tc-list / 8 : [

 {

 / system-component-id / 0 : [h'0102030405060708090A0B0C0D0E0F']

 },

 {

 / system-component-id / 0 : [h'1102030405060708090A0B0C0D0E0F']

 }

]

 }

]

¶

D.3.2. CBOR Binary Representation

82 # array(2)

 02 # unsigned(2) / TEEP-TYPE-query-response /

 A5 # map(5)

 14 # unsigned(20) / token: /

 50 # bytes(16)

 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

 05 # unsigned(5) / selected-cipher-suite: /

 81 # array(1)

 82 # array(2)

 12 # unsigned(18) / cose-sign1 /

 26 # negative(6) / -7 = cose-alg-es256 /

 06 # unsigned(6) / selected-version: /

 00 # unsigned(0)

 07 # unsigned(7) / attestation-payload: /

 40 # bytes(0)

 # ""

 08 # unsigned(8) / tc-list: /

 82 # array(2)

 A1 # map(1)

 00 # unsigned(0) / system-component-id: /

 81 # array(1)

 4F # bytes(15)

 0102030405060708090A0B0C0D0E0F

 A1 # map(1)

 00 # unsigned(0) / system-component-id: /

 81 # array(1)

 4F # bytes(15)

 1102030405060708090A0B0C0D0E0F

¶

D.4. Update Message

D.4.1. CBOR Diagnostic Notation

/ update = /

[

 / type: / 3 / TEEP-TYPE-update /,

 / options: /

 {

 / token / 20 : h'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF',

 / manifest-list / 10 : [

 <<

 / SUIT_Envelope / {

 / suit-authentication-wrapper / 2: << [

 << [

 / suit-digest-algorithm-id: / -16 / suit-cose-alg-sha256 /,

 / suit-digest-bytes: / h'DB601ADE73092B58532CA03FBB663DE49532435336F1558B49BB622726A2FEDD'

] >>,

 << / COSE_Sign1_Tagged / 18([

 / protected: / << {

 / algorithm-id / 1: -7 / ES256 /

 } >>,

 / unprotected: / {},

 / payload: / null,

 / signature: / h'5B2D535A2B6D5E3C585C1074F414DA9E10BD285C99A33916DADE3ED38812504817AC48B62B8E984EC622785BD1C411888BE531B1B594507816B201F6F28579A4'

]) >>

] >>,

 / suit-manifest / 3: << {

 / suit-manifest-version / 1: 1,

 / suit-manifest-sequence-number / 2: 3,

 / suit-common / 3: << {

 / suit-components / 2: [

 [

 h'544545502D446576696365', / "TEEP-Device" /

 h'5365637572654653', / "SecureFS" /

 h'8D82573A926D4754935332DC29997F74', / tc-uuid /

 h'7461' / "ta" /

]

],

 / suit-common-sequence / 4: << [

 / suit-directive-override-parameters / 20, {

 / suit-parameter-vendor-identifier / 1: h'C0DDD5F15243566087DB4F5B0AA26C2F',

 / suit-parameter-class-identifier / 2: h'DB42F7093D8C55BAA8C5265FC5820F4E',

 / suit-parameter-image-digest / 3: << [

 / suit-digest-algorithm-id: / -16 / suit-cose-alg-sha256 /,

 / suit-digest-bytes: / h'8CF71AC86AF31BE184EC7A05A411A8C3A14FD9B77A30D046397481469468ECE8'

] >>,

 / suit-parameter-image-size / 14: 20

 },

 / suit-condition-vendor-identifier / 1, 15,

 / suit-condition-class-identifier / 2, 15

] >>

 } >>,

 / suit-install / 9: << [

 / suit-directive-override-parameters / 20, {

 / suit-parameter-uri / 21: "https://example.org/8d82573a-926d-4754-9353-32dc29997f74.ta"

 },

 / suit-directive-fetch / 21, 15,

 / suit-condition-image-match / 3, 15

] >>

 } >>

 }

 >>

] / array of bstr wrapped SUIT_Envelope /

 }

]

¶

D.4.2. CBOR Binary Representation

D.5. Success Message

D.5.1. CBOR Diagnostic Notation

D.5.2. CBOR Binary Representation

82 # array(2)

 03 # unsigned(3) / TEEP-TYPE-update /

 A2 # map(2)

 14 # unsigned(20) / token: /

 50 # bytes(16)

 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

 0A # unsigned(10) / manifest-list: /

 81 # array(1)

 59 014E # bytes(336)

 A2025873825824822F5820DB601ADE73092B58532CA03FBB663DE495

 32435336F1558B49BB622726A2FEDD584AD28443A10126A0F658405B2D53

 5A2B6D5E3C585C1074F414DA9E10BD285C99A33916DADE3ED38812504817

 AC48B62B8E984EC622785BD1C411888BE531B1B594507816B201F6F28579

 A40358D4A401010203035884A20281844B544545502D4465766963654853

 65637572654653508D82573A926D4754935332DC29997F74427461045854

 8614A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42F7093D8C55

 BAA8C5265FC5820F4E035824822F58208CF71AC86AF31BE184EC7A05A411

 A8C3A14FD9B77A30D046397481469468ECE80E14010F020F0958458614A1

 15783B68747470733A2F2F6578616D706C652E6F72672F38643832353733

 612D393236642D343735342D393335332D3332646332393939376637342E

 7461150F030F

¶

/ teep-success = /

[

 / type: / 5 / TEEP-TYPE-teep-success /,

 / options: /

 {

 / token / 20 : h'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF'

 }

]

¶

82 # array(2)

 05 # unsigned(5) / TEEP-TYPE-teep-success /

 A1 # map(1)

 14 # unsigned(20) / token: /

 50 # bytes(16)

 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

¶

D.6. Error Message

D.6.1. CBOR Diagnostic Notation

D.6.2. CBOR binary Representation

E. Examples of SUIT Manifests

This section shows some examples of SUIT manifests described in

Section 4.4.

The examples are signed using the following ECDSA secp256r1 key with

SHA256 as the digest function.

COSE_Sign1 Cryptographic Key:

The corresponding public key can be used to verify these examples:

/ teep-error = /

[

 / type: / 6 / TEEP-TYPE-teep-error /,

 / options: /

 {

 / token / 20 : h'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF',

 / err-msg / 12 : "disk-full"

 },

 / err-code: / 17 / ERR_MANIFEST_PROCESSING_FAILED /

]

¶

83 # array(3)

 06 # unsigned(6) / TEEP-TYPE-teep-error /

 A2 # map(2)

 14 # unsigned(20) / token: /

 50 # bytes(16)

 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

 0C # unsigned(12) / err-msg: /

 69 # text(9)

 6469736B2D66756C6C # "disk-full"

 11 # unsigned(17) / ERR_MANIFEST_PROCESSING_FAILED /

¶

¶

¶

¶

-----BEGIN PRIVATE KEY-----

MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgApZYjZCUGLM50VBC

CjYStX+09jGmnyJPrpDLTz/hiXOhRANCAASEloEarguqq9JhVxie7NomvqqL8Rtv

P+bitWWchdvArTsfKktsCYExwKNtrNHXi9OB3N+wnAUtszmR23M4tKiW

-----END PRIVATE KEY-----

¶

¶

-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhJaBGq4LqqvSYVcYnuzaJr6qi/Eb

bz/m4rVlnIXbwK07HypLbAmBMcCjbazR14vTgdzfsJwFLbM5kdtzOLSolg==

-----END PUBLIC KEY-----

¶

Example 1: SUIT Manifest pointing to URI of the Trusted Component

Binary

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {

 / suit-authentication-wrapper / 2: << [

 << [

 / suit-digest-algorithm-id: / -16 / suit-cose-alg-sha256 /,

 / suit-digest-bytes: / h'DB601ADE73092B58532CA03FBB663DE49532435336F1558B49BB622726A2FEDD'

] >>,

 << / COSE_Sign1_Tagged / 18([

 / protected: / << {

 / algorithm-id / 1: -7 / ES256 /

 } >>,

 / unprotected: / {},

 / payload: / null,

 / signature: / h'5B2D535A2B6D5E3C585C1074F414DA9E10BD285C99A33916DADE3ED38812504817AC48B62B8E984EC622785BD1C411888BE531B1B594507816B201F6F28579A4'

]) >>

] >>,

 / suit-manifest / 3: << {

 / suit-manifest-version / 1: 1,

 / suit-manifest-sequence-number / 2: 3,

 / suit-common / 3: << {

 / suit-components / 2: [

 [

 h'544545502D446576696365', / "TEEP-Device" /

 h'5365637572654653', / "SecureFS" /

 h'8D82573A926D4754935332DC29997F74', / tc-uuid /

 h'7461' / "ta" /

]

],

 / suit-common-sequence / 4: << [

 / suit-directive-override-parameters / 20, {

 / suit-parameter-vendor-identifier / 1: h'C0DDD5F15243566087DB4F5B0AA26C2F',

 / suit-parameter-class-identifier / 2: h'DB42F7093D8C55BAA8C5265FC5820F4E',

 / suit-parameter-image-digest / 3: << [

 / suit-digest-algorithm-id: / -16 / suit-cose-alg-sha256 /,

 / suit-digest-bytes: / h'8CF71AC86AF31BE184EC7A05A411A8C3A14FD9B77A30D046397481469468ECE8'

] >>,

 / suit-parameter-image-size / 14: 20

 },

 / suit-condition-vendor-identifier / 1, 15,

 / suit-condition-class-identifier / 2, 15

] >>

 } >>,

 / suit-install / 9: << [

 / suit-directive-override-parameters / 20, {

 / suit-parameter-uri / 21: "https://example.org/8d82573a-926d-4754-9353-32dc29997f74.ta"

 },

 / suit-directive-fetch / 21, 15,

 / suit-condition-image-match / 3, 15

] >>

 } >>

}

¶

CBOR Binary in Hex

A2025873825824822F5820DB601ADE73092B58532CA03FBB663DE495

32435336F1558B49BB622726A2FEDD584AD28443A10126A0F658405B2D53

5A2B6D5E3C585C1074F414DA9E10BD285C99A33916DADE3ED38812504817

AC48B62B8E984EC622785BD1C411888BE531B1B594507816B201F6F28579

A40358D4A401010203035884A20281844B544545502D4465766963654853

65637572654653508D82573A926D4754935332DC29997F74427461045854

8614A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42F7093D8C55

BAA8C5265FC5820F4E035824822F58208CF71AC86AF31BE184EC7A05A411

A8C3A14FD9B77A30D046397481469468ECE80E14010F020F0958458614A1

15783B68747470733A2F2F6578616D706C652E6F72672F38643832353733

612D393236642D343735342D393335332D3332646332393939376637342E

7461150F030F

¶

Example 2: SUIT Manifest including the Trusted Component Binary

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {

 / suit-authentication-wrapper / 2: << [

 / digest: / << [

 / suit-digest-algorithm-id: / -16 / SHA-256 /,

 / suit-digest-bytes: / h'E8B5EC4510260B42B489FDEC4B4918E8E97EB6E135C1B3B40E82419BF79224DE'

] >>,

 / signatures: / << / COSE_Sign1_Tagged / 18([

 / protected: / << {

 / alg / 1: -7 / ES256 /

 } >>,

 / unprotected: / {},

 / payload: / null,

 / signature: / h'C3C646030A93EC39E3F27111BE73A2810A9F7A57BB34E9C9916FC0601EAB8EB506B96C70864149664C1D090757714ACE153FBB982DFDA5B3FC150D89581E3994'

]) >>

] >>,

 / manifest / 3: << {

 / manifest-version / 1: 1,

 / manifest-sequence-number / 2: 3,

 / common / 3: << {

 / components / 2: [

 [

 h'544545502D446576696365', / "TEEP-Device" /

 h'5365637572654653', / "SecureFS" /

 h'8D82573A926D4754935332DC29997F74', / tc-uuid /

 h'7461' / "ta" /

]

],

 / common-sequence / 4: << [

 / directive-override-parameters / 20, {

 / vendor-id / 1: h'C0DDD5F15243566087DB4F5B0AA26C2F' / c0ddd5f1-5243-5660-87db-4f5b0aa26c2f /,

 / class-id / 2: h'DB42F7093D8C55BAA8C5265FC5820F4E' / db42f709-3d8c-55ba-a8c5-265fc5820f4e /,

 / image-digest / 3: << [

 / algorithm-id: / -16 / SHA-256 /,

 / digest-bytes: / h'8CF71AC86AF31BE184EC7A05A411A8C3A14FD9B77A30D046397481469468ECE8'

] >>,

 / image-size / 14: 20

 },

 / condition-vendor-identifier / 1, 15,

 / condition-class-identifier / 2, 15

] >>

 } >>,

 / install / 17: << [

 / directive-override-parameters / 20, {

 / uri / 21: "#tc"

 },

 / directive-fetch / 21, 15,

 / condition-image-match / 3, 15

] >>

 } >>,

 "#tc" : h'48656C6C6F2C2053656375726520576F726C6421' / "Hello, Secure World!" /

}

¶

CBOR Binary in Hex

A3025873825824822F5820E8B5EC4510260B42B489FDEC4B4918E8E9

7EB6E135C1B3B40E82419BF79224DE584AD28443A10126A0F65840C3C646

030A93EC39E3F27111BE73A2810A9F7A57BB34E9C9916FC0601EAB8EB506

B96C70864149664C1D090757714ACE153FBB982DFDA5B3FC150D89581E39

9403589AA401010203035884A20281844B544545502D4465766963654853

65637572654653508D82573A926D4754935332DC29997F74427461045854

8614A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42F7093D8C55

BAA8C5265FC5820F4E035824822F58208CF71AC86AF31BE184EC7A05A411

A8C3A14FD9B77A30D046397481469468ECE80E14010F020F114C8614A115

63237463150F030F632374635448656C6C6F2C2053656375726520576F72

6C6421

¶

Example 3: Supplying Personalization Data for Trusted Component Binary

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {

 / authentication-wrapper / 2: << [

 / digest: / << [

 / algorithm-id: / -16 / SHA-256 /,

 / digest-bytes: / h'B2967C80D2DA2C9C226331AC4CF4C147F1D9E059C4EB6D165AB43E4C86275B9C'

] >>,

 / signatures: / << 18([

 / protected: / << {

 / alg / 1: -7 / ES256 /

 } >>,

 / unprotected: / {

 },

 / payload: / null,

 / signature: / h'BE370C83AAF922A2D2A807D068879EE3D1F1781750181EEE0251E96D320356B6E6D9553B9E33E4D250C52BCD446272F22A00AF6F3C43DAA7F263EF375307F646'

]) >>

] >>,

 / manifest / 3: << {

 / manifest-version / 1: 1,

 / manifest-sequence-number / 2: 3,

 / common / 3: << {

 / dependencies / 1: [

 / dependency-digest / 1: [

 / algorithm-id: / -16 / SHA-256 /,

 / digest-bytes: / h'549B1BF2E6F662167342A91E2CD16A695BE2ECFB7C325639189D0EA8EBA57D0A'

]

],

 / components / 2: [

 [

 h'544545502D446576696365', / "TEEP-Device" /

 h'5365637572654653', / "SecureFS" /

 h'636F6E6669672E6A736F6E' / "config.json" /

]

],

 / common-sequence / 4: << [

 / directive-set-component-index / 12, 0,

 / directive-override-parameters / 20, {

 / vendor-id / 1: h'C0DDD5F15243566087DB4F5B0AA26C2F' / c0ddd5f1-5243-5660-87db-4f5b0aa26c2f /,

 / class-id / 2: h'DB42F7093D8C55BAA8C5265FC5820F4E' / db42f709-3d8c-55ba-a8c5-265fc5820f4e /,

 / image-digest / 3: << [

 / algorithm-id: / -16 / SHA-256 /,

 / digest-bytes: / h'AAABCCCDEEEF00012223444566678889ABBBCDDDEFFF01112333455567778999'

] >>,

 / image-size / 14: 64

 },

 / condition-vendor-identifier / 1, 15,

 / condition-class-identifier / 2, 15

] >>

 } >>,

 / validate / 7: << [

 / directive-set-component-index / 12, 0,

 / condition-image-match / 3, 15

] >>,

 / dependency-resolution / 15: << [

 / directive-set-dependency-index / 13, 0,

 / directive-override-parameters / 20, {

 / uri / 21: "https://example.org/8d82573a-926d-4754-9353-32dc29997f74.suit"

 },

 / directive-fetch / 21, 2,

 / condition-image-match / 3, 15

] >>,

 / install / 17: << [

 / directive-set-dependency-index / 13, 0,

 / directive-process-dependency / 18, 0,

 / directive-set-component-index / 12, 0,

 / directive-override-parameters / 20, {

 / uri / 21: "https://example.org/config.json"

 },

 / directive-fetch / 21, 2,

 / condition-image-match / 3, 15

] >>

 } >>

}

¶

CBOR Binary in Hex

A2025873825824822F5820B2967C80D2DA2C9C226331AC4CF4C147F1

D9E059C4EB6D165AB43E4C86275B9C584AD28443A10126A0F65840BE370C

83AAF922A2D2A807D068879EE3D1F1781750181EEE0251E96D320356B6E6

D9553B9E33E4D250C52BCD446272F22A00AF6F3C43DAA7F263EF375307F6

4603590134A6010102030358A7A30181A101822F5820549B1BF2E6F66216

7342A91E2CD16A695BE2ECFB7C325639189D0EA8EBA57D0A0281834B5445

45502D4465766963654853656375726546534B636F6E6669672E6A736F6E

045857880C0014A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42

F7093D8C55BAA8C5265FC5820F4E035824822F5820AAABCCCDEEEF000122

23444566678889ABBBCDDDEFFF011123334555677789990E1840010F020F

0745840C00030F0F5849880D0014A115783D68747470733A2F2F6578616D

706C652E6F72672F38643832353733612D393236642D343735342D393335

332D3332646332393939376637342E737569741502030F11582F8C0D0012

000C0014A115781F68747470733A2F2F6578616D706C652E6F72672F636F

6E6669672E6A736F6E1502030F

¶

E.4. Example 4: Unlink a Trusted Component

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {

 / authentication-wrapper / 2: << [

 / digest: / << [

 / algorithm-id: / -16 / SHA-256 /,

 / digest-bytes: / h'54EA3D80AAF5370527E8C4FC9E0D91FF0BD0FED26AEAB602CA516541FEF7F15A'

] >>,

 / signatures: / << / COSE_Sign1_Tagged / 18([

 / protected: / << {

 / alg / 1: -7 / ES256 /

 } >>,

 / unprotected: / {

 },

 / payload: / null,

 / signature: / h'436A36C33A3300D13ACF0075BA751B419FE1E8CCAB6CFB7952C2E97FD5DA70278EA3D8A8377D247CF8FE7F2874DF5A0F31B042C659A98DD57A0DC23F094666E8'

]) >>

] >>,

 / manifest / 3: << {

 / manifest-version / 1: 1,

 / manifest-sequence-number / 2: 18446744073709551615 / UINT64_MAX /,

 / common / 3: << {

 / components / 2: [

 [

 h'544545502D446576696365', / "TEEP-Device" /

 h'5365637572654653', / "SecureFS" /

 h'8D82573A926D4754935332DC29997F74', / tc-uuid /

 h'7461' / "ta" /

]

],

 / common-sequence / 4: << [

 / directive-override-parameters / 20, {

 / vendor-id / 1: h'C0DDD5F15243566087DB4F5B0AA26C2F' / c0ddd5f1-5243-5660-87db-4f5b0aa26c2f /,

 / class-id / 2: h'DB42F7093D8C55BAA8C5265FC5820F4E' / db42f709-3d8c-55ba-a8c5-265fc5820f4e /

 },

 / condition-vendor-identifier / 1, 15,

 / condition-class-identifier / 2, 15

] >>

 } >>,

 / install / 17: << [

 / directive-set-component-index / 12, 0,

 / directive-unlink / 33, 0

] >>

 } >>

}

¶

CBOR Binary in Hex

F. Examples of SUIT Reports

This section shows some examples of SUIT reports.

F.1. Example 1: Success

SUIT Reports have no records if no conditions have failed. The URI

in this example is the reference URI provided in the SUIT manifest.

F.2. Example 2: Faiure

where the dependency-resolution refers to:

A2025873825824822F582054EA3D80AAF5370527E8C4FC9E0D91FF0B

D0FED26AEAB602CA516541FEF7F15A584AD28443A10126A0F65840436A36

C33A3300D13ACF0075BA751B419FE1E8CCAB6CFB7952C2E97FD5DA70278E

A3D8A8377D247CF8FE7F2874DF5A0F31B042C659A98DD57A0DC23F094666

E8035873A40101021BFFFFFFFFFFFFFFFF03585BA20281844B544545502D

446576696365485365637572654653508D82573A926D4754935332DC2999

7F7442746104582B8614A20150C0DDD5F15243566087DB4F5B0AA26C2F02

50DB42F7093D8C55BAA8C5265FC5820F4E010F020F1146840C00182100

¶

¶

¶

{

 / suit-report-manifest-digest / 1:<<[

 / algorithm-id / -16 / "sha256" /,

 / digest-bytes / h'a7fd6593eac32eb4be578278e6540c5c'

 h'09cfd7d4d234973054833b2b93030609'

]>>,

 / suit-report-manifest-uri / 2: "tam.teep.example/personalisation.suit",

 / suit-report-records / 4: []

}

¶

{

 / suit-report-manifest-digest / 1:<<[

 / algorithm-id / -16 / "sha256" /,

 / digest-bytes / h'a7fd6593eac32eb4be578278e6540c5c09cfd7d4d234973054833b2b93030609'

]>>,

 / suit-report-manifest-uri / 2: "tam.teep.example/personalisation.suit",

 / suit-report-records / 4: [

 {

 / suit-record-manifest-id / 1:[],

 / suit-record-manifest-section / 2: 7 / dependency-resolution /,

 / suit-record-section-offset / 3: 66,

 / suit-record-dependency-index / 5: 0,

 / suit-record-failure-reason / 6: 404

 }

]

}

¶

¶

and the suit-record-section-offset refers to:

Authors' Addresses

Hannes Tschofenig

Arm Ltd.

6067 Absam

Austria

Email: hannes.tschofenig@arm.com

Mingliang Pei

Broadcom

United States of America

Email: mingliang.pei@broadcom.com

David Wheeler

Amazon

United States of America

Email: davewhee@amazon.com

Dave Thaler

Microsoft

United States of America

107({

 authentication-wrapper,

 / manifest / 3:<<{

 / manifest-version / 1:1,

 / manifest-sequence-number / 2:3,

 common,

 dependency-resolution,

 install,

 validate,

 run,

 text

 }>>,

})

¶

¶

<<[

 / directive-set-dependency-index / 13,0 ,

 / directive-set-parameters / 19,{

 / uri / 21:'tam.teep.example/'

 'edd94cd8-9d9c-4cc8-9216-b3ad5a2d5b8a.suit',

 } ,

 / directive-fetch / 21,2 ,

 / condition-image-match / 3,15

]>>,

¶

mailto:hannes.tschofenig@arm.com
mailto:mingliang.pei@broadcom.com
mailto:davewhee@amazon.com

Email: dthaler@microsoft.com

Akira Tsukamoto

AIST

Japan

Email: akira.tsukamoto@aist.go.jp

mailto:dthaler@microsoft.com
mailto:akira.tsukamoto@aist.go.jp

	Trusted Execution Environment Provisioning (TEEP) Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Message Overview
	4. Detailed Messages Specification
	4.1. Creating and Validating TEEP Messages
	4.1.1. Creating a TEEP message
	4.1.2. Validating a TEEP Message

	4.2. QueryRequest Message
	4.3. QueryResponse Message
	4.3.1. Evidence and Attestation Results

	4.4. Update Message
	4.4.1. Scenario 1: Having one SUIT Manifest pointing to a URI of a Trusted Component Binary
	4.4.2. Scenario 2: Having a SUIT Manifest include the Trusted Component Binary
	4.4.3. Scenario 3: Supplying Personalization Data for the Trusted Component Binary
	4.4.4. Scenario 4: Unlinking a Trusted Component

	4.5. Success Message
	4.6. Error Message

	5. EAT Profile
	6. Mapping of TEEP Message Parameters to CBOR Labels
	7. Behavior Specification
	7.1. TAM Behavior
	7.1.1. Handling a QueryResponse Message
	7.1.1.1. Handling an Attestation Result

	7.1.2. Handling a Success or Error Message

	7.2. TEEP Agent Behavior

	8. Cipher Suites
	9. Freshness Mechanisms
	10. Security Considerations
	11. Privacy Considerations
	12. IANA Considerations
	12.1. Media Type Registration

	13. References
	13.1. Normative References
	13.2. Informative References

	A. Contributors
	B. Acknowledgements
	C. Complete CDDL
	D. Examples of Diagnostic Notation and Binary Representation
	D.1. QueryRequest Message
	D.1.1. CBOR Diagnostic Notation
	D.1.2. CBOR Binary Representation

	D.2. Entity Attestation Token
	D.2.1. CBOR Diagnostic Notation

	D.3. QueryResponse Message
	D.3.1. CBOR Diagnostic Notation
	D.3.2. CBOR Binary Representation

	D.4. Update Message
	D.4.1. CBOR Diagnostic Notation
	D.4.2. CBOR Binary Representation

	D.5. Success Message
	D.5.1. CBOR Diagnostic Notation
	D.5.2. CBOR Binary Representation

	D.6. Error Message
	D.6.1. CBOR Diagnostic Notation
	D.6.2. CBOR binary Representation

	E. Examples of SUIT Manifests
	Example 1: SUIT Manifest pointing to URI of the Trusted Component Binary
	CBOR Diagnostic Notation of SUIT Manifest
	CBOR Binary in Hex

	Example 2: SUIT Manifest including the Trusted Component Binary
	CBOR Diagnostic Notation of SUIT Manifest
	CBOR Binary in Hex

	Example 3: Supplying Personalization Data for Trusted Component Binary
	CBOR Diagnostic Notation of SUIT Manifest
	CBOR Binary in Hex

	E.4. Example 4: Unlink a Trusted Component
	CBOR Diagnostic Notation of SUIT Manifest
	CBOR Binary in Hex

	F. Examples of SUIT Reports
	F.1. Example 1: Success
	F.2. Example 2: Faiure

	Authors' Addresses

