
TLS Working Group Stephen Farrell
INTERNET-DRAFT SSE
Expires August 1998 February 28, 1998

TLS extensions for AttributeCertificate
based authorization

 <draft-ietf-tls-attr-cert-00.txt>

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are
 working documents of the Internet Engineering Task Force
 (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum
 of six months and may be updated, replaced, or
 obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft,
 please check the "1id-abstracts.txt" listing contained
 in the Internet-Drafts Shadow Directories on
 ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US
 East Coast), or ftp.isi.edu (US West Coast).

Abstract

 Authorization support is required for various internet
 protocols including TLS (and its cosumers), IPSEC and
 others. This document presents requirements for providing
 such support as well as an outline specification for
 AttributeCertificate based authorization as an extension
 to the TLS protocol.

 Future versions of this specification will define an
 encoding for the data structures required (ASN.1 or not)
 and will refine the description of the use
 AttributeCertificates in the TLS protocol.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-attr-cert-00.txt

Farrell, S. Expires Aug 28 1998 [Page 1]
INTERNET-DRAFT TLS AC February 28, 1998

1. Introduction

 The provision of authentication, data integrity and
 confidentiality services for current internet protocols
 is well understood and many secure transports are defined
 (e.g. TLS, IPSEC etc). In many applications these
 services are not sufficient to provide the type of
 authorization services required.

 AttributeCertificates (ACs) provide a method of
 overcoming these problems. An AC is a structure which is
 similar to an X.509 public key certificate with the main
 difference being that it contains no public key. The AC
 typically contains group membership, role, clearance and
 other access control information associated with the AC
 owner.

 In conjunction with authentication services ACs provide
 the means to securely transport authorization information
 to applications.

 The remainder of this document assumes that the reader is
 familiar with the problems with supporting authorization
 in a network environment.

2. Requirements

 The following are the requirements which ACs are intended
 to meet:

 R1. Support for short-lived ACs is required. Typical
 validity periods would be measured in hours, as opposed
 to months for X.509 certificates. This means that ACs can
 be used without mandating a revocation scheme.
 R2. ACs may be valid for a set of durations. For
 example, from 9am to 1pm and from 2pm to 6pm, but not
 between 1pm and 2pm.
 R3. Some standard attribute types should be defined
 which can be contained within ACs, for example "access
 identity", "group", "role" "clearance", etc.
 R4. Issuers of ACs should be able to define their own
 attribute types for use within closed domains.
 R5. It should be possible to "target" an AC. Effectively

 this means that a given AC may be "targetted" at one, or
 a number of, application servers/services in the sense
 that a trustworthy non-target will not use (parts of) the
 AC for authorization decisions.
 R6. It should be possible for a server to delegate an AC
 when it acts as a client (for another server) on behalf
 of the AC owner.

Farrell, S. Expires Aug 28 1998 [Page 2]
INTERNET-DRAFT TLS AC February 28, 1998

 R7. Delegation should be controlled, so that not every
 AC is delegatable and so that a given delegatable AC can
 only be delegated in a targetted fashion.
 R8. Delegation should support chains of delegation where
 more than one intermediate server is used.
 R9. ACs should support the encryption of some, or all,
 attributes (e.g. passwords for legacy applications). It
 should be possible for such an encrypted attribute to be
 deciphered by an appropriate server even where the AC has
 not been received directly from the AC owner (i.e. where
 the AC is delegated).
 R10. ACs should be defined so that they can either be
 "pushed" by the client to the server, or "pulled" by the
 server from a network service (whether the AC issuer or a
 directory service).
 R11. Attribute types should be defined so that it is
 possible for an AC verifier to distinguish between e.g.
 the "Administrators group" as defined by SSE and the
 "Administrators group" as defined by Widgets inc.
 R12. ACs should support anonymity in the sense that
 certain ACs should be usable even when they don=92t contain
 a name for the AC owner. (Note however, that some
 authentication services may still expose this information
 to the AC verifier.)
 R13. ACs should support audit mechanisms (e.g. through
 the use of audit identities).
 R14. ACs should support billing mechanisms (e.g. through
 the use of charging identities).

3. Operational Models

 Some internet protocols and environments may work best
 when a client "pushes" an AC to a server. In other cases
 it is more suitable for the client simply to authenticate
 to the server and for the server to request the client=92s
 AC from another network service.

 Each of the above is suitable in different circumstances.
 For example, the "pull" model can often be implemented
 without changes to the client, whilst the "push" model
 requires no new connections to be established (which may
 mean that firewalls don=92t have to be reconfigured).

 Supporting these requirements and operational models
 requires that we define some AC controls in addition to
 the AC contents.

Farrell, S. Expires Aug 28 1998 [Page 3]
INTERNET-DRAFT TLS AC February 28, 1998

4. AC contents

 The following describes contents of an AC.

 <<Current version is informally defined. Issues to do
 with encoding (e.g. ASN.1 or not) are for later>>

4.1 Overview

 An AC consists of the following fields:
 =

 attributecert ::=3D ISS issuer
 SER serial
 CRE creationtime
 VAL validity
 AID auditid
 [OWN owner]
 ATT attributes
 [TRG targetting]
 ALG algorithm
 SIG signature
 =

 Where the issuer is the name of the entity who produced
 (signed) the AC, the serial is a number so that the
 issuer & serial pair form a unique identifier for the AC.
 Note that there is no restriction that the issuer and
 owner be distinct - this specification allows entitites
 to simply assert that they possess certain attributes
 (the attribute values themselves could actually contain
 some proof about the association!).

 <<Information about the issuer public key certificate
 which should be used to verify the signature could be
 added to reduce searching at the server.>>

Farrell, S. Expires Aug 28 1998 [Page 4]
INTERNET-DRAFT TLS AC February 28, 1998

 The validity field contains a set of (possibly
 overlapping) durations during which the AC is potentially
 valid. The auditid is the identity, for audit purposes,
 of the entity with whom the attributes are associated.
 The (optional) owner field names the entity with whom the
 attributes are associated. The attributes field contains
 a set of attribute values associated with the AC owner.
 The optional targetting field allows for cases where the
 AC is not to be valid everywhere or for support of
 controlled delegation. The algorithm and signature fields
 contain the signing algorithm and signature of the AC
 issuer over the AC contents.
 =

 issuer ::=3D STRING
 serial ::=3D NUMBER
 creationtime ::=3D TIME
 validity ::=3D period [validity]
 period ::=3D notbefore notafter
 notafter ::=3D TIME
 notbefore ::=3D TIME
 auditid ::=3D STRING
 owner ::=3D STRING [NULL | owner]
 algorithm ::=3D STRING
 signature ::=3D BITS
 =

4.2 Attributes

 The AC contains an unordered set of attributes (i.e.
 more than one instance can occur). Each attribute has a
 type (e.g. group, role, clearance); an optional policy
 authority (defaulting to the AC issuer if not present); a
 criticality and an (unordered) set of values.

 The policy authority names the entity who defines the
 semantics for this attribute type and value. In this way
 RESTRICTED clearance as defined by Siemens can be
 distinguished from the RESTRICTED clearance as defined by
 NATO.

Farrell, S. Expires Aug 28 1998 [Page 5]
INTERNET-DRAFT TLS AC February 28, 1998

 The criticality flag (default FALSE) if set, indicates
 that this AC must be ignored for authorization purposes
 unless the processing entity can handle the semantics of
 the attribute. The criticality flag allows for the
 implementation of restrictions.

 attributes ::=3D attribute [attributes]
 attribute ::=3D AT type [policyauthority] =

 [CT criticality] atvalues
 type ::=3D STRING
 policyauthority ::=3D STRING
 criticality ::=3D BOOLEAN
 atvalues ::=3D atvalue [atvalues]
 atvalue ::=3D STRING
 =

4.2.1 Basic Attribute Types

 Some basic attribute types are defined in this section.

 The intention here is simply to promote interoperability
 (so servers know where to find the values in the AC) and
 not to define rigourous semantics for these attribute
 types.

 Unless otherwise stated, all the basic attribute types
 may be multi-valued. In all such cases, it is the
 responsibility of the server to select the appropriate
 value(s) when making access decisions.

 Unless otherwise stated, all the basic attribute types
 may be critical at the discretion of the AC issuer.

 <<there's no case so far where the type must be critical
 to be useful>>

 This specification only defines attribute types, there is
 (currently) no intention to define standard attribute
 values.

 <<Though some such values would be useful. Note also that
 their syntax is TBS as it depends on the ASN.1 or not
 issue.>>

4.2.1.1 audit identity

 An audit identity is the identity of the AC owner for
 audit purposes. This may be in the form of a name (e.g.
 "Stephen Farrell from SSE") or a number (e.g. "12357886
 from CN=3DAC Issuer;O=3Dsse;C=3DIE"). Only a single value of
 audit identity is allowed.

Farrell, S. Expires Aug 28 1998 [Page 6]
INTERNET-DRAFT TLS AC February 28, 1998

 Note that the latter form allows audit records to be
 written so that the cooperation of the AC issuer is
 required in order to identify the individual involved.
 (This may be required by data protection and labour law
 in some countries). Note that there is no requirement
 that such numbers are permanently associated with the
 individual.

4.2.1.2 access identity

 An access identity names the AC owner for authorization
 purposes. Examples are "stephen.farrell@sse.ie",
 "SFARRELL", "user123".

4.2.1.3 charging identity

 This attribute allows an AC to contain information =

 intended to be used for billing purposes (though this
 specification says nothing else about billing systems).
 Examples are "Stephen Farrell", "Security Business Unit".

4.2.1.4 group

 This attribute contains group membership information. The
 groups may be OS or application defined groups.

 <<might be more useful to define OS specific group
 atttributes, e.g. NTDOMAINGROUP "Administrators in
 SSE.IE" or unix groups "100">>

4.2.1.5 role

 This attribute contains information about the role(s) in
 which the AC owner may be acting. Examples are "Duty
 Officer", "Senior Accountant".

4.2.1.6 clearance

 The clearance attribute contains information about the
 clearance(s) of the AC owner. Examples are "SECRET",
 "COMPANY CONFIDENTIAL".

4.2.1.7 encrypted attributes

 Some environments call for the use of encrypted
 attributes. This is commonly required in order to
 centralise the administration of passwords for legacy

Farrell, S. Expires Aug 28 1998 [Page 7]
INTERNET-DRAFT TLS AC February 28, 1998

 applications which are accessed via the underlying secure
 transport.

 As attributes are encryted the issue of
 transporting/agreeing the attribute encryption key
 arises. Many different methods may be used for this,
 however, this specification defines one method, which
 allows the AC issuer to agree an attribute encryption key
 with a specific target. (This method is suitable for

 handling legacy passwords.)

 The method is as follows:

 For each (group of) attributes to be encrypted for a
 particular (set of) target(s):

 1 Encode the attributes to be encrypted (including
 type, policy authority, criticality and value(s))
 2 Generate a random attribute encryption key (AEK, triple-
 DES default)
 3 Encrypt encoded attributes
 4 For each target in the current set:
 4.1 Using issuer's and target's D-H keys agree a key
 encrypting key (KEK,triple-DES default)
 4.2 Use this KEK to encrypt the attribute encryption key
 5 The target name(s), D-H value, encrypted AEK and
 encrypted attribute(s) form a single value of the
 attribute EncryptedAttributes

 The encoding is illustrated below:

 Attrtibute Type::=3D EncryptedAttributes
 Policy Authority::=3D <<AC issuer>>
 Criticality::=3D <<according to policy but typically
 FALSE>>
 Value0::=3D TG <<target>> DH <<D-H>> <<encrypted AEK>>
 <<ciphertext >>
 Value1::=3D ...

 <<it may be best if pkcs#7/CMS structures are actually
 used for the values - same problem so why not re-use the
 solution? (basically, because it determines the encoding
 issue which should be dealt with later)>>

4.3 Targetting

 If an AC contains an owner field and no targetting field
 then the AC must only be used for authorization purposes
 when the AC is received directly from the owner via an
 authenticated transport mechanism. The server must
 therefore compare the client identity as provided by the
 (peer-entity) authentication service with the AC owner
 field.

Farrell, S. Expires Aug 28 1998 [Page 8]
INTERNET-DRAFT TLS AC February 28, 1998

 For cases where more fine grained control of
 authorization is required (e.g. an AC which should only
 be used by printing applications) or where delegation is
 to be supported (without granting all privileges to the

 delegate) then the targetting field allows the AC issuer
 to control the "coverage" of the AC (i.e. limit the
 places where the AC should be used for authorization).

 The targetting field can specify a set of "direct"
 targets. Only those services specified are intended to be
 able to use the AC for authorization purposes. Such
 direct targets are not allowed to delegate the AC.

 Sets of delegate services may also be named. Such
 services may use the AC for authorization purposes and
 are also allowed (by the issuer) to act as delegates
 (i.e. to re-use the AC) whenever they act as a client for
 another named service.

 In addition to naming specific servers (e.g.
 "http://www.sse.ie"), groups of servers may be named and
 used to control targetting (e.g. "SSE web servers"). The
 interpretation of such server group names is a local
 matter for the AC verifier. Such names are termed service
 group names.

 targetting ::=3D DR services [delegates]
 delegates ::=3D DG services [delegates]
 services ::=3D service [services]
 service ::=3D ALL | SG servicegroupname | SN
 servicename
 servicegroupname ::=3D STRING
 servicename ::=3D STRING

 <<handling of wildcards will probably need to be defined,
 or at least explicitly allowed>>

4.4 Delegation

 When an intermediate server delegates an AC to a
 target server then the target must be able to
 verify that the intermediate hasn't "stolen" the AC.
 This is achieved by having the each initiator and
 intermediate server in the chain of delegation sign #
 the following data structure:

 [initiator (I), target (T), AC-issuer,
 AC-serial, time, nonce]

 <<the time and nonce may not be needed, depending on the
 TLS encapsulation>>

Farrell, S. Expires Aug 28 1998 [Page 9]
INTERNET-DRAFT TLS AC February 28, 1998

 In terms of the above syntax a delegation proof is a
 "pairing proof" (which prooves which initiator-target
 pair are supposed to be involved in the connection):

 pairingproof ::=3D PPF initiator target
 issuer serial timestamp nonce
 algorithm signature
 initiator ::=3D STRING
 target ::=3D STRING
 timestamp ::=3D TIME
 nonce ::=3D BITS

 <<Question - is this a new signature or can it be part of
 the existing TLS handshake? Answer: existing if no need
 for traced delegation, otherwise a new signature is
 needed to provide the trace. The answer also depends on
 the encoding of ACs. For the present we assume a new
 signature is generated.>>

 <<note: a version of this which doesn=92t require the
 client to sign would be better (assuming all servers have
 signature keys is reasonable). We will still need to
 provide a trace of delegation starting with the client
 somehow.>>

 If traced delegation is required then a sequence of
 pairing proofs must be sent (with the current one left
 most):

 pairingproofs:: =3D pairingproof [pairingproofs]

 <<additional checks to be defined, e.g. initiator from
 current pair must be target from next pair. times
 shouldn=92t be out of whack by too much, etc.>>

 So long as TS can verify this data then it can check (via
 whatever targetting is included in the AC) that IS hasn=92t
 stolen the AC.

Farrell, S. Expires Aug 28 1998 [Page 10]

INTERNET-DRAFT TLS AC February 28, 1998

5. Sample ACs

 The following (illustrative) samples give an idea of use
 of the above syntax.

5.1 Simple Case

 Client has two attributes (two-valued role and
 employeeStatus). AC is =93anonymous=94, delegatable anywhere
 and not targetted.

 issuer: "CN=3DAC Iss;O=3Dsse;C=3DIE"
 serial: 1234
 validity: 19971220090000Z to 19971220180000Z
 auditid: 1293843944 from "CN=3DAC Iss;O=3Dsse;C=3DIE"
 attributes: role: developer techsupport
 employeeStatus: permanent
 algorithm: dsaWithSHA1
 signature: "89DC...0001"H

5.2 Delegation Case

 Owner named with same two attributes. AC is targetted and
 delegatable (to a group of local web server applications
 and two FTP servers).

 issuer: "CN=3DAcIss;O=3DSSE;C=3DIE"
 serial: 1234
 validity: 19971220090000Z to 19971220180000Z
 auditid: 1293843944
 owner: fred@sse.ie
 attributes: role: developer techsupport
 employeeStatus: permanent
 targetting: DR ALL
 DG =93SSE web servers=94
 DG ftp1.sse.ie ftp2.sse.ie
 algorithm: dsaWithSHA1
 signature: "89DC...0001"H

Farrell, S. Expires Aug 28 1998 [Page 11]

INTERNET-DRAFT TLS AC February 28, 1998

6. Use of ACs in protocols

 ACs occur at various steps in various protocols. In order
 to support a number of different transport protocols an
 AC carrier structure is defined which allows for requests
 for ACs, responses to same and for pushing ACs plus
 external controls (e.g. delegationProof) in a standard
 manner.

 acnfo is the data structure which is used to "push" or
 "pull" an AC (or error message) plus associated control
 information. A set of public key certificates may also be
 "pushed" with an acinfo in order to assist the recipient
 in certificate handling.

 acinfo ::=3D [attributecert] [pairingproofs]
 [pkcerts]
 pkcerts ::=3D OCTETS

 There are a number of possible exchanges which can occur
 and three entities involved (client, server and AC
 issuer). In addition the use of a directory service as a
 repository for AC retrieval may be supported. Of these
 exchanges, the most important to embed in the TLS
 protocol is that between client and server. AC
 acquisition (from an issuer or directory) is handled as a
 higher layer protocol (a payload protocol from the TLS
 perspective).

 The diagram below shows the exchanges defined which are
 further described in succeeding sections.

 +--------------+ +---------------+
AC Issuer +----+	Directory		
 +--+-----------+ | Server +-------+-------+
 | | Acquisition |
 |Client | |Server
 |Acquisition +----------------------+ |Lookup
 | | |
 | | |
 +--+-----------+ +--+----+-------+
 | | AC "push" | |
 | Client +------------------------+ Server |
 | | (part of TLS h/shake) | |
 +--------------+ +---------------+

 Figure 1: AC Exchanges

Farrell, S. Expires Aug 28 1998 [Page 12]

INTERNET-DRAFT TLS AC February 28, 1998

6.1 Client Acquisition

 This exchange occurs when a client requires a new AC from
 an issuer. The AC issuer MUST ensure that the client is
 the correct one, most simply via TLS with client
 authentication. This exchange may occur at network login
 time or may happen automatically during (or before) the
 client handshake with a TLS server (i.e. upon receipt of
 the ACRequest message from the server - see section 8
 below).

 This exchange requires that the client be authenticated
 and also that the server returns an AC to the client. For
 these reasons (and to allow for other AC acquisition
 methods), this exchange cannot be embedded in the TLS
 handshake and so is defined as a payload protocol which
 uses TLS for its underlying security.

 <<note: in the following TLS style message definitions
 are given, these are also subject to syntax choices>>

 The client sends the following message to the server:

 struct {
 opaque acinfo<1..2^24-1>
 } ClientACRequest

 ClientACRequest.acinfo may contain a template for the AC
 which the client wishes. The proofpairing component of
 the acinfo may contain the name of the server.

 <<above needs further study - perhaps specific fields
 from the acinfo should be explicitly part of this (and
 other) messages>>

 The server responds with:

 struct {
 enum {
 success(0),
 success_with_changes(1),
 failure(2),
 denied(3),
 (255)
 } acstatus;
 opaque acinfo<1..2^24-1>
 } ClientACResponse

 The ClientACResponse.acinfo is only valid if
 ClientACResponse.acstatus is success or

 success_with_changes.

Farrell, S. Expires Aug 28 1998 [Page 13]

INTERNET-DRAFT TLS AC February 28, 1998

6.2 Server Acquisition

 Server acquisition occurs where a client has established
 a TLS connection to the server, but hasn=92t provided (or
 can=92t provide) an AC. The case where the client provides
 a pairingproof is also supported.

 <<maybe there's no point in supporting the pairingproof
 only case as it=92ll only happen if the client is "AC
 aware" in some sense - in which case why didn=92t the
 client push the AC? Justification for this case is that
 the client may not know which AC is needed, whereas the
 server does, but the Issuer requires that the server
 proove that the client has made a fresh request for this
 server.>>

 The server sends the following message to the issuer:

 struct {
 opaque acinfo<1..s^24-1>
 } ServerACRequest

 The attriburecert part should contain a template for an
 AC which the server would like to get. The pairingproof
 (if present) should be signed by the client.

 The issuer responds with:

 struct {
 enum {
 success(0),
 success_with_changes(1),
 failure(2),
 denied(3),
 (255)
 } acstatus;
 opaque acinfo<1..2^24-1>
 } ServerACResponse

 The fields here are as described for the
 ClientACResponse.

6.3 Server Lookup

 <<TBS: just need to specify a standard directory
 attribute and possibly some matching rules - maybe better
 in another draft>>

Farrell, S. Expires Aug 28 1998 [Page 14]

INTERNET-DRAFT TLS AC February 28, 1998

6.4 AC "Push"

 This exchange is where the server requests that the
 client present its AC so that an authorization decision
 can be made. This exchange is suitable for inclusion
 within the TLS handshake since client and server
 authentication are not always required and, if required,
 can be validated after the TLS handshake is complete
 without loss of security. This exchange is specified in

section 8.

7. AC Validation (outline)

 It is assumed that the acinfo structure is received with
 data integrity and peer entity authentication.

 Validation of an AC requires that the checks described
 below be carried out. The output of the validation
 algorithm is a status (good/bad) and an optional set of
 attributes.

 1. Signature Validation. Validation of the AC signature
 and related X.509 certificates.
 2. Timeliness. Validation that the current time falls
 within one of the time periods of the AC.
 3. Issuer Trust. Verify that the issuer is trusted as
 an AC issuer
 4. Attribute Checking. For each type and policy
 authority verify that the issuer is trusted to determine
 values. Attributes which are untrusted do not cause a
 failure of the overall validation but MUST be ignored for
 access decision purposes. If the attribute is encrypted
 but the server does not have the decryption key then the
 attribute MUST NOT be used for access decisions. Critical
 attributes whose value cannot be interpreted MUST cause
 failure of the overall validation.
 5. Target/Owner checking. If no owner field is present
 and no targetting field is present then the AC is
 globally delegatable.
 If an owner field is present and no targetting field is
 present then a server MUST reject the AC if the sender is
 not the owner.
 When targetting is present we are essentially checking
 that the entity from which the AC was received was
 allowed to send it and that the AC is allowed to be used
 by this target.
 The targetting information consists of the direct
 information and an optional set of delegate information.

Farrell, S. Expires Aug 28 1998 [Page 15]

INTERNET-DRAFT TLS AC February 28, 1998

 If the direct check or any of the delegate checks passes
 then the targetting check as a whole is successful.
 The direct check passes if the identity as established by
 the underlying authentication service =93matches=94 the owner
 (or no owner is specified) and the services part is
 either "ALL" or the current server is named in the
 services part or the current server is a member of one of
 the servicegroupnames. (How membership is determined is
 out of scope here.)
 A delegate check succeeds if the server is named in the
 services part (of one of the sets) or if the server is a
 member of one of the servicegroupnames and the identity
 as established by the pairingproof is either the owner or
 another server from the same set of services.

8. TLS Encapsulation

 <<TLS references are to draft-ietf-tls-protocol-05.txt,
 this section is currently quite sketchy>>

 The basic requirement is to be able to include an acinfo
 structure into TLS handshakes.

8.1 Session Management

 The TLS session state (section 7, p22) now requires a new
 item:

 authorization information
 An acinfo structure containing the
 authorization information for the session. This
 element of the state may be null.

 <<may need more state info, e.g. "AC requested", "Client
 indicates AC to be read from directory", etc.>>

8.2 Use of TLS Alerts

 <<This section is TBS, but no new TLS alerts appear to be
 required. However the handling of some existing alerts
 may need to be extended, e.g. access_denied (49) could
 become non-fatal if a client has another AC which it
 could present.>>

https://datatracker.ietf.org/doc/html/draft-ietf-tls-protocol-05.txt

Farrell, S. Expires Aug 28 1998 [Page 16]

INTERNET-DRAFT TLS AC February 28, 1998

8.3 Handshake Protocol Extensions

 <<This section is currently a little different from
section 6 - we don=92t really allow the client to "push"

 the AC without the server asking. Additional text is also
 needed for C<->I and S<->I connections >>

 The basic approach is to handle the acinfo structure in
 the same way as X.509 certificates are handled. This
 means that we define an ACRequest which the server can
 send to the client and an ACInfo with which the client
 can respond. These are analagous to the existing
 CertificateRequest and CertificateResponse messages. The
 extension to the interworking diagram from TLS (section

7.3) is:

 Client Server
 =3D =
 =3D=
=3D=3D=3D=3D
 ClientHello -----> =

 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 ACRequest*
 <----- ServerHelloDone
 Certificate* =

 ACInfo*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -----> =

 [ChangeCipherSpec]
 Finished
 ApplicationData <----> ApplicationData

 <<note: the new messages could be avoided if the
 Certificate and CertificateRequest messages were
 extended, however, the syntax and handling of the
 ACRequest and ACInfo seem sufficiently different to
 warrant new messages.>>

 The following sections define the new messages in more
 detail.

Farrell, S. Expires Aug 28 1998 [Page 17]

INTERNET-DRAFT TLS AC February 28, 1998

8.3.1 ACRequest message

 When this message will be sent:
 A server can optionally request an AC from the
 client. This message, if sent, will immediately
 follow the CertificateRequest (if it is sent).

 Structure of this message:
 struct {
 opaque acinfo<1..2^24-1>
 } ACRequest

 <<note: the "opaque" above may change depending on the AC
 encoding decision - to an ASN.1blah or a set of TLS style
 fields.>>
 =

8.3.2 ACInfo message

 When this message will be sent:
 This messag must be sent if the client has received
 an ACRequest message from the server. If sent, it
 will immediately follow the Certificate message sent
 by the client (if sent).

 Structure of this message:
 struct {
 opaque acinfo<1..2^24-1>
 } ACInfo

8.4 AC Validation within TLS

 <<TBS - specify where in the handshake the AC validation
 can occur - looks like it can happen immediately, though
 the actual attributes can=92t be trusted until the client
 authentication (if done) is complete, which would mean
 after the client=92s finished message>>

8.5 Preconditions for use of ACs wihtin TLS

 <<TBS - specify any restrictions on ciphersuites, naming
 and other relevant TLS options>>

Farrell, S. Expires Aug 28 1998 [Page 18]

INTERNET-DRAFT TLS AC February 28, 1998

9. Conformance

 Servers MUST support both "push" and "pull". Clients MUST
 support "push".

 A signing algorithm is required. DSA-with-SHA-1 MUST be
 supported. For attribute encryption triple-DES-CBC-168
 MUST be supported for the KEK and attribute encryption
 key. D-H must be suported for ageement of the KEK.
 <<oids TBS, should be same as TLS & S/MIME "MUST"s>>

 Targetting MAY be supported. Servers which receive ACs
 containg targetting information but which do not support
 targetting MUST reject the AC unless a "direct check"
 succeeds. Client and Servers MUST however, be able to
 encode ACs containing targetting.

 Encrypted attributes MAY be supported. Servers which do
 not support encrypted attributes should ignore their
 presence for access control purposes.

10. Security Considerations

 For ACs to be used securely they should be transported
 with peer entity authentication and data integrity. The
 only exception is an AC which contains no owner nor
 targetting fields and which is therefore globally
 delegatable (and therefore easily stolen!).

 A server which is presented with an AC which is
 delegatable will be able to masquerade as the AC owner to
 any of the other servers to which the AC can be
 delegated. This means that the client is effectively
 trusting the server to the extent that the AC is
 delegatable. For this reason it is recommended to limit
 the delegation scope of ACs to the minimum required.

 A server which is presented with an encrypted attribute
 and the relevant decryption key will gain access to, and
 can possibly misuse, the plaintext attribute value(s). As
 the encryption key used is fixed for the duration of the
 AC lifetime, multiple servers may get access to the
 plaintext.

Farrell, S. Expires Aug 28 1998 [Page 19]

INTERNET-DRAFT TLS AC February 28, 1998

Author's Address

 Stephen Farrell,
 SSE Ltd.
 FItzwilliam Court,
 Leeson Close,
 Dublin 2,
 IRELAND

 tel: +353-1-676-9089
 email: stephen.farrell@sse.ie

Appendix A: Possible Extensions

 AC Translation: In order to provide for a scalable
 solution accross domains whilst at the same time
 supporting private attribute types an AC translation
 service could be specified.

 Delegation chains: Chains of delegation which involve
 server ACs are in priciple possible but are left for
 further study. Methods other than the pairingproof
 defined above can be defined for delegation protection
 (e.g. ECMA CV/PV method), these are for further study.

 Query API: An API for querying the secure transport would
 be useful in order to allow for appilcation layer access
 decisions.

 Delegation API: Some API will be requried in order to
 support delegation.

Farrell, S. Expires Aug 28 1998 [Page 20]

