
TLS D. Benjamin
Internet-Draft Google LLC
Intended status: Experimental January 13, 2020
Expires: July 16, 2020

Batch Signing for TLS
draft-ietf-tls-batch-signing-00

Abstract

 This document describes a mechanism for batch signing in TLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 16, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Benjamin Expires July 16, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Batch Signing for TLS January 2020

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 2
3. Batch SignatureSchemes 3
3.1. Signing . 4
3.2. Verifying . 6

4. Security Considerations 7
4.1. Correctness . 7
4.2. Domain Separation . 7
4.3. Payload Confidentiality 8
4.4. Information Leaks . 8

5. IANA Considerations . 9
6. Normative References . 9
Appendix A. Test Vectors . 10

 Acknowledgments . 10
 Author's Address . 10

1. Introduction

 TLS [RFC8446] clients and servers authenticating with certificates
 perform online signatures with the private key associated with their
 certificate. In some cases, signing throughput may be limited. For
 instance, RSA signing is CPU-intensive compared to many other
 algorithms used in TLS. The private key may also be stored on a
 hardware module or be accessed remotely on another server. Under
 load, this can result in DoS concerns or impact system performance.

 To mitigate these concerns, this document introduces a mechanism for
 batch signing in TLS. It allows TLS implementations to satisfy many
 concurrent requests with a single signing operation, at a logarithmic
 cost to signature size. A server under load could, for instance,
 preferentially serve batch-capable clients as part of its DoS
 strategy.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. All TLS notation comes from section 3 of
 [RFC8446].

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446#section-3
https://datatracker.ietf.org/doc/html/rfc8446#section-3

Benjamin Expires July 16, 2020 [Page 2]

Internet-Draft Batch Signing for TLS January 2020

3. Batch SignatureSchemes

 A batch SignatureScheme signs a number of input messages from
 different connections concurrently and returns a corresponding batch
 signature for each input message.

 Each SignatureScheme is parameterized by the following:

 o A base signature algorithm

 o A hash function

 This document defines the following values:

 enum {
 ecdsa_secp256r1_sha256_batch(TBD1),
 ecdsa_secp384r1_sha384_batch(TBD2),
 ecdsa_secp521r1_sha512_batch(TBD3),
 ed25519_batch(TBD4),
 ed448_batch(TBD5),
 rsa_pss_pss_sha256_batch(TBD6),
 rsa_pss_rsae_sha256_batch(TBD7),
 (65536)
 } SignatureScheme

 "ecdsa_secp256r1_sha256_batch", "ecdsa_secp384r1_sha384_batch", and
 "ecdsa_secp521r1_sha512_batch" use base signature algorithms of
 "ecdsa_secp256r1_sha256", "ecdsa_secp384r1_sha384", and
 "ecdsa_secp521r1_sha512" with SHA-256, SHA-384, and SHA-512 [SHS],
 respectively, as the hash function.

 "ed25519_batch" uses a base signature algorithm of "ed25519" with
 SHA-512 as the hash function. "ed448_batch" uses a base signature
 algorithm of "ed448" with 64 bytes (512 bits) of SHAKE256 [FIPS202]
 output as the hash function.

 "rsa_pss_pss_sha256_batch" and "rsa_pss_rsae_sha256_batch" use base
 signature algorithms of "rsa_pss_pss_sha256" and
 "rsa_pss_rsae_sha256" with SHA-256 as the hash function.

 Batch signing is only defined for use with TLS 1.3. If TLS 1.2 is
 negotiated, the above code points MUST NOT be used in
 ServerKeyExchange or CertificateVerify messages. Note, however, a
 client which supports both TLS 1.2 and TLS 1.3 MAY offer the code
 points in the ClientHello.

 These code points do not correspond to certificate signature
 algorithms. Implementations wishing to advertise support for the

Benjamin Expires July 16, 2020 [Page 3]

Internet-Draft Batch Signing for TLS January 2020

 base signature algorithm should send the base algorithm's
 corresponding code point.

3.1. Signing

 Signing is performed by building a Merkle tree on top of the signing
 inputs, interspersed with blinding values. An example tree for three
 messages is shown below:

 level 3: t30
 _____/ _____
 / \
 level 2: t20 t21
 / \ / \
 / \ / \
 level 1: t10 t11 t12 t13=t10
 / \ / \ / \
 level 0: t00 t01 t02 t03 t04 t05
 | | |
 m0 m1 m2

 In general, let n be the number of input messages. If n is greater
 than 2^31, the signing procedure fails and returns an error.
 Otherwise, it builds a tree with l levels numbered 0 to l-1, where l
 is ceil(log_2(n)) + 2. Hashes in the tree are built from the
 following functions:

 HashLeaf(msg) = Hash(0x00 || msg)
 HashNode(left, right) = Hash(0x01 || left || right)

 "0x00" and "0x01" denote byte strings containing a single byte with
 value zero and one, respectively. "||" denotes concatenation. "left"
 and "right" are byte strings with length Hash.length.

 Tree levels are computed iteratively as follows:

 1. Initialize level 0 with 2*n elements. For i between 0 and n-1,
 inclusive, set element 2*i to the output of HashLeaf(m[i]) and
 element 2*i+1 to a random string of Hash.length bytes. The
 random values placed at odd indices preserve signature payload
 confidentiality (see Section 4.3).

 2. For i between 1 and l-1, inclusive, compute level i from level
 i-1 as follows:

 * If level i-1 has an odd number of elements, pad it to an even
 number of elements with a copy of its first element. That is,

Benjamin Expires July 16, 2020 [Page 4]

Internet-Draft Batch Signing for TLS January 2020

 if the previous level contained three hashes, x, y, z, it
 should now contain four elements, x, y, z, x.

 * Initialize level i with half as many elements as level i-1.
 Set element j to the output of HashNode(left, right) where
 "left" is element 2*j of level i-1 and "right" is element
 2*j+1 of level i-1. "left" and "right" are the left and right
 children of element j.

 Level l-1 will contain a single element, the root of the tree. The
 signer then computes a digital signature using the base signature
 algorithm. This signature is computed over the concatenation of:

 o A string that consists of octet 32 (0x20) repeated 64 times

 o The context string "TLS batch signature"

 o A single 0 byte which serves as the separator

 o The batch signature algorithm's SignatureScheme code point,
 expressed as a big-endian 16-bit integer. Note this is the code
 point of the batch algorithm, not the original base algorithm.

 o The value at the root of the tree

 This structure is intended to provide key separation with other
 signatures in TLS (see Section 4.2).

 The signer then constructs a BatchSignature structure, as defined
 below, for each input message. It encodes each to bytes to obtain
 the final signatures.

 opaque Node[Hash.length];

 struct {
 uint32 index;
 Node path<Hash.length..2^16-1>;
 opaque root_signature<0..2^16-1>;
 } BatchSignature;

 To assemble the BatchSignature structure for message i:

 1. Set "index" to i. This will be a value between 0 and n-1,
 inclusive.

 2. Set "path" to an array of l-1 hashes. Set element j of this
 array to element k of level j, where k is ((2 * i) >> j) ^ 1.
 ">>" denotes a bitwise right-shift, and "^" denotes a bitwise

Benjamin Expires July 16, 2020 [Page 5]

Internet-Draft Batch Signing for TLS January 2020

 exclusive OR (XOR) operation. This element is the sibling of the
 ancestor of message i in the tree. Note the root is never
 included.

 3. Set "root_signature" to the digital signature computed above.

 For example, in the diagram below, the "path" field of the signature
 of "m2" contains the marked nodes, in order from bottom to top.

 level 3: t30
 _____/ _____
 / \
 level 2: *t20 t21
 / \ / \
 / \ / \
 level 1: t10 t11 t12 *t13=t10
 / \ / \ / \
 level 0: t00 t01 t02 t03 t04 *t05
 | | |
 m0 m1 m2

3.2. Verifying

 The signature is verified by recovering the root hash from the
 supplied "path" and "index" fields and then verifying the signature
 in the "root_signature" field. This is done as follows:

 1. If decoding the BatchSignature structure fails, terminate the
 algorithm and reject the signature.

 2. If the value of the "index" field is 2^31 or higher, or if the
 number of elements in the "path" field is higher than 32,
 terminate the algorithm and reject the signature. Otherwise, set
 "remaining" to double this value.

 3. Set "hash" to the output of HashLeaf(message).

 4. For each element "v" of the "path" field, in order:

 * If "remaining" is odd, set "hash" to the output of HashNode(v,
 hash). Otherwise, set "hash" to the output of HashNode(hash,
 v)

 * Set "remaining" to remaining >> 1.

 5. If "remaining" is non-zero, the signature is invalid. Terminate
 the algorithm and reject the signature.

Benjamin Expires July 16, 2020 [Page 6]

Internet-Draft Batch Signing for TLS January 2020

 6. As in the signing algorithm, concatenate the following:

 * A string that consists of octet 32 (0x20) repeated 64 times

 * The context string "TLS batch signature"

 * A single 0 byte which serves as the separator

 * The batch signature algorithm's SignatureScheme code point,
 expressed as a big-endian 16-bit integer. Note this is the
 code point of the batch algorithm, not the original base
 algorithm.

 * The value of "hash"

 7. Verify that the "root_signature" field is a valid signature for
 the concatenation, using the base signature algorithm. If it is
 invalid, terminate the algorithm and reject the signature.
 Otherwise, accept the signature.

 Note there are many possible valid signatures for a given message,
 depending on how many and what messages were batched together.

4. Security Considerations

4.1. Correctness

 Batch signatures sign the root of a Merkle tree (see Section 3.1) so,
 provided the hash is collision-resistant and the base algorithm is
 secure, an attacker can only forge signatures of messages in the
 leaves of the Merkle tree. These leaves are the input messages, with
 the exception of padding and blinding nodes, discussed below.

 When building the tree, this mechanism pads odd-length levels with
 extra copies of nodes already in the tree. This is equivalent to
 signing multiple copies of some input messages to bring the total to
 a power of two. This avoids introducing other messages for which the
 signature would also be valid. Verification (see Section 3.2)
 implicitly rejects odd indices in the tree to likewise ensure
 blinding values are not mistaken for message hashes.

4.2. Domain Separation

 Signatures made by the same key in different contexts should be
 separated to avoid potential cross-protocol attacks. Inputs to the
 batch signing algorithm include any existing context strings, such as
 TLS 1.3's distinct client and server labels or new labels that may be

Benjamin Expires July 16, 2020 [Page 7]

Internet-Draft Batch Signing for TLS January 2020

 allocated by future versions of TLS. By signing over those labels,
 batch signing preserves separation between those inputs.

 The root signature additionally includes its own context string.
 This separates it from unbatched TLS 1.3 signatures, defined in

section 4.4.3 of [RFC8446]. Like TLS 1.3, it additionally includes a
 64-byte padding prefix to clear the ClientHello.random and
 ServerHello.random prefixes in the TLS 1.2 ServerKeyExchange signing
 payload. This allows the same key to be used for batched and
 unbatched signatures, simplifying deployment.

 Finally, including the code point in the signature payload provides
 separation in case the same base signature algorithm is used in two
 batch constructions with, say, different hash functions.

4.3. Payload Confidentiality

 The signing payload in TLS 1.3 is the handshake transcript. This
 contains information which is normally encrypted, such as the server
 certificate. Path elements in a batch signature are computed from
 payloads from other connections in the same batch. A naive
 construction could permit one peer to learn confidential information
 in other connections' signing payloads, such as which server
 certificate was selected in response to an encrypted SNI.

 This mechanism avoids these attacks by pairing each input with a
 secret blinding value. An input's signature path will reveal the
 corresponding blinding value at level 0, but all other inputs in the
 path are incorporated in nodes at level 1 or higher. Provided the
 hash is preimage-resistant, these nodes do not reveal the original
 payload.

 In the event of entropy failure when generating the blinding values,
 signatures remain unforgeable. The blinding values are only needed
 for payload confidentiality.

4.4. Information Leaks

 A server observing multiple batched client signatures with the same
 root hash learns the two connections were created by the same client.
 However, the connections are already correlatable via the client
 certificate itself, so this does not reveal additional information in
 most deployments. Clients can partition the contexts in which
 signing requests may be batched to further mitigate these issues.

 Additionally, a single batch signature reveals the number of signing
 requests in that batch, rounded up to a power of two. This may
 reveal some information about a service's signing load.

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3

Benjamin Expires July 16, 2020 [Page 8]

Internet-Draft Batch Signing for TLS January 2020

5. IANA Considerations

 IANA is requested to create the following entries in the TLS
 SignatureScheme registry, defined in [RFC8446]. The "Reference"
 column should be set to this document.

 +-------+------------------------------+-------------+
 | Value | Description | Recommended |
 +-------+------------------------------+-------------+
 | TBD1 | ecdsa_secp256r1_sha256_batch | Y |
 | | | |
 | TBD2 | ecdsa_secp384r1_sha384_batch | Y |
 | | | |
 | TBD3 | ecdsa_secp521r1_sha512_batch | Y |
 | | | |
 | TBD4 | ed25519_batch | Y |
 | | | |
 | TBD5 | ed448_batch | Y |
 | | | |
 | TBD6 | rsa_pss_pss_sha256_batch | Y |
 | | | |
 | TBD7 | rsa_pss_rsae_sha256_batch | Y |
 +-------+------------------------------+-------------+

6. Normative References

 [FIPS202] Dworkin, M., "SHA-3 Standard: Permutation-Based Hash and
 Extendable-Output Functions", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.202, July 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [SHS] Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.180-4, July 2015.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Benjamin Expires July 16, 2020 [Page 9]

Internet-Draft Batch Signing for TLS January 2020

Appendix A. Test Vectors

 TODO: Include test vectors. Probably use
 ecdsa_secp256r1_sha256_batch. RSA signatures are big and Ed25519
 isn't as common. Include some negative examples for verifying as
 well as intermediate values so signing code can at least compare
 against the tree-building vectors. (Blinding values and most of our
 defined signature schemes are non-deterministic.)

Acknowledgments

 The mechanism described in this document is derived from a similar
 construction by Adam Langley in the Roughtime protocol. Adam also
 provided the initial suggestion to apply a similar technique to TLS.

Author's Address

 David Benjamin
 Google LLC

 Email: davidben@google.com

Benjamin Expires July 16, 2020 [Page 10]

