
INTERNET-DRAFT S. Santesson (3xA Security)
Intended Status: Proposed Standard
Expires: October 1, 2010 March 30, 2010

Transport Layer Security (TLS) Cached Information Extension
<draft-ietf-tls-cached-info-07.txt>

Abstract

 This document defines a Transport Layer Security (TLS) extension for
 cached information. This extension allows the TLS client to inform a
 server of cached information from previous TLS sessions, allowing the
 server to omit sending cached static information to the client during
 the TLS handshake protocol exchange.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Santesson Expires October 1, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-07.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

Copyright and License Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3

2. Cached Information Extension 4
3. Extension Exchange . 5

3.1. Reconnaissance . 5
3.2. Cached Information . 5

4. Data Substitution . 6
4.1. Data Substitution Syntax for certificate_chain 6
4.2. Data Substitution Syntax for trusted_cas 7

5. Security Considerations . 8
6. IANA Considerations . 8
7. Acknowledgements . 8
8. Normative References . 9

 Annex A - 64 bit FNV-1a digest 10
A.1. Definition (Normative) 10
A.2 Java code sample (Informative) 11
A.3. C code sample (Informative) 12
A.4. Digest samples (Informative) 13

 Authors' Addresses . 14

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Santesson Expires October 1, 2010 [Page 2]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

1. Introduction

 TLS handshakes often include fairly static information such as server
 certificate and a list of trusted Certification Authorities (CAs).
 Static information such as a server certificate can be of
 considerable size. This is the case in particular if the server
 certificate is bundled with a complete certificate path, including
 all intermediary certificates up to the trust anchor public key.

 Significant benefits can be achieved in low bandwidth and high
 latency networks, in particular if the communication channel also has
 a relatively high rate of transmission errors, if a known and
 previously cached server certificate path can be omitted from the TLS
 handshake.

 This specification defines the Cached Information TLS extension,
 which may be used by a client and a server to exclude transmission of
 known cached parameters from the TLS handshake.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Santesson Expires October 1, 2010 [Page 3]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

2. Cached Information Extension

 A new extension type (cached_information(TBD)) is defined and used in
 both the client hello and server hello messages. The extension type
 is specified as follows.

 enum {
 cached_information(TBD), (65535)
 } ExtensionType;

 The "extension_data" field of this extension, when included in the
 client hello, SHALL contain "CachedInformation" according to the
 following structure:

 enum {
 certificate_chain(1), trusted_cas(2), (255)
 } CachedInformationType;

 struct {
 CachedInformationType type;
 opaque digest_value<0..8>;
 } CachedObject;

 struct {
 CachedObject cached_info<1..2^16-1>;
 } CachedInformation;

 The digest_value of a CachedObject MUST either be empty (0 bytes) or
 contain a 64 bit FNV digest (8 bytes) as specified in Annex A. The 64
 bit integer is represented as an 8 byte digest_value in big-endian
 order (with most significant bits in the first byte and least
 significant bits in the last byte).

 When CachedInformationType identifies certificate_chain, then
 digest_value MUST include a digest calculated over the
 certificate_list element of a server side Certificate message,
 excluding the three length bytes of the certificate_list vector.

 When CachedInformationType identifies trusted_cas, then digest_value
 MUST include a digest calculated over the certificate_authorities
 element of a server side CertificateRequest message, excluding the
 two length bytes of the certificate_authorities vector.

Santesson Expires October 1, 2010 [Page 4]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

 Other specifications MAY define more CachedInformationType types.

3. Extension Exchange

3.1. Reconnaissance

 A client MAY include an empty cached_information extension (with
 empty extension_data field) in its (extended) client hello to query
 whether the server supports cached information.

 A server indicates that it supports cached information in handshakes
 according to section 3.2. by including a cached_information extension
 in its (extended) server hello.

3.2. Cached Information

 Clients MAY specify cached information from previous handshakes by
 including a "cached_information" extension in the (extended) client
 hello, which contains at least one cached object (CachedObject) for
 each present object type (CachedInformationType), as specified in

section 2. Clients MAY need the ability to cache different values
 depending on other information in the Client Hello that modify what
 values the server uses, in particular the Server Name Indication
 [RFC4366] value. Clients sending a non-empty cached_information
 extension MUST provide a 64 bit (8 byte) digest_value for each cached
 object.

 Servers that receive an extended client hello containing a
 "cached_information" extension, MAY indicate that they support
 caching of information objects by including an cached_information
 extension in their (extended) server hello.

 A cached_information extension provided in the server hello has the
 following semantics:

 o An empty cached_information extension indicates that the server
 supports information caching but provides no information about
 what information types it supports.

 o A non-empty cached information extension indicates that the
 server supports only those CachedInformationType types that are
 identified by each present CachedObject.

 o A CachedObject with an empty digest_value indicates that the
 server supports caching of the specified object type
 (CachedInformationType), but does not specify any digest values
 it will accept.

https://datatracker.ietf.org/doc/html/rfc4366

Santesson Expires October 1, 2010 [Page 5]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

 o A present non-empty digest_value indicates that the server will
 honor caching of objects of the specified type that matches the
 present digest value.

4. Data Substitution

 Following a successful exchange of "cached_information" extensions,
 the server may substitute data objects in the handshake exchange with
 a matching digest_value representing a matching object type. received
 from the client in its client hello.

 The handshake protocol will proceed using the cached data as if it
 was provided in the handshake protocol. The Finished message will
 however be calculated over the actual data exchanged in the handshake
 protocol. That is, the Finished message will be calculated over the
 digest values of cached information objects and not over the cached
 objects that were omitted from transmission.

 Each CachedInformationType MUST specify how actual data is replaced
 by a digest in a way that does not violate the defined syntax of
 existing handshake messages. the data exchange syntax for
 certificate_chain(1) and trusted_cas(2) are provided below.

 The server MUST NOT provide more than one digest value as
 substitution for the cached data.

4.1. Data Substitution Syntax for certificate_chain

 When a digest for an object of type certificate_chain is provided in
 the client hello, the server MAY substitute the cached data with a
 matching digest value received from the client by expanding the
 Certificate handshake message as follows.

 Original handshake message syntax defined in RFC 5246 [RFC5246]:

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 ASN.1Cert certificate_list<0..2^24-1>;
 } Certificate;

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Santesson Expires October 1, 2010 [Page 6]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

 Substitution syntax is defined by expanding the definition of the
 opaque ASN.1Cert structure:

 DigestInfo ASN.1Cert<1..2^24-1>;

 struct {
 opaque digest_value<0..8>;
 } DigestInfo;

4.2. Data Substitution Syntax for trusted_cas

 When a digest for an object of type trusted_cas is provided in the
 client hello, the server MAY substitute the cached data with a
 matching digest value received from the client by expanding the
 CertificateRequest handshake message as follows.

 Original handshake message syntax defined in RFC 5246 [RFC5246]:

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 SignatureAndHashAlgorithm
 supported_signature_algorithms<2^16-1>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest

 The substitution syntax is defined by expanding the definition of the
 opaque DistinguishedName structure:

 DigestInfo DistinguishedName<1..2^16-1>;

 struct {
 opaque digest_value<0..8>;
 } DigestInfo;

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Santesson Expires October 1, 2010 [Page 7]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

5. Security Considerations

 The digest algorithm used in this specification is required to have
 reasonable random properties in order to provide reasonably unique
 identifiers. There is no requirement that this digest algorithm must
 have strong collision resistance. A non unique digest may at most
 lead to a failed TLS handshake followed by a new attempt without the
 cached information extension. There are no identified security
 threats that require the selected digest algorithm to have strong
 collision resistance.

6. IANA Considerations

 1) Create an entry, cached_information(TBD), in the existing registry
 for ExtensionType (defined in RFC 5246 [RFC5246]).

 2) Establish a registry for TLS CachedInformationType values. The
 first entries in the registry are certificate_chain(1) and
 trusted_cas(2). TLS CachedInformationType values in the inclusive
 range 0-63 (decimal) are assigned via RFC 5226 [RFC5226] Standards
 Action. Values from the inclusive range 64-223 (decimal) are
 assigned via RFC 5226 Specification Required. Values from the
 inclusive range 224-255 (decimal) are reserved for RFC 5226
 Private Use.

7. Acknowledgements

 The author acknowledge input from many members of the TLS working
 group, Martin Rex for extensive review and input, Marsh Ray and Simon
 Josefsson for coding and test vectors.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Santesson Expires October 1, 2010 [Page 8]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

8. Normative References

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997

 [RFC5226] T. Narten, H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", RFC 5226, May 2008

 [RFC5246] T. Dierks, E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008

 [RFC4366] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, T.
 Wright, "Transport Layer Security (TLS) Extensions", RFC

4366, April 2006

 NOTE: RFC 4366 will be updated by RFC4366bis, currently in IESG
 process.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366

Santesson Expires October 1, 2010 [Page 9]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

Annex A - 64 bit FNV-1a digest

A.1. Definition (Normative)

 FNV-1 digest algorithm is a non-cryptographic hash function created
 by Glenn Fowler, Landon Curt Noll, and Phong Vo. The FNV digest
 algorithms and sample FNV source code have been released into the
 public domain. FNV-1 has two defined variants, FNV-1 and FNV-1a. The
 algorithm specified in this annex specifies the FNV-1a variant.

 The FNV-1a digest is generated as follows:

 digest = FNV_offset_basis
 for each octet_of_data to be digested {
 digest = digest XOR octet_of_data
 digest = digest * FNV_prime }
 return digest

 In the above pseudocode, all variables are unsigned integers. All
 variables, except for octet_of_data, have the same number of bits as
 the FNV digest (64 Bits). The variable, octet_of_data, is an 8 bit
 unsigned integer. Specifically for a 64 bit FNV-1a digest the
 following applies:

 o All variables, except for octet_of_data, are 64-bit unsigned
 integers.

 o The variable, octet_of_data, is an 8 bit unsigned integer.

 o The FNV_offset_basis is the 64-bit FNV offset basis value:
 14695981039346656037.

 o The FNV_prime is the 64-bit FNV prime value: 1099511628211.

 o The multiply function (indicated by the '*' symbol) returns the
 lower 64-bits of the product.

 o The XOR is an 8-bit operation that modifies only the lower 8-bits
 of the digest value.

 o The digest value returned is an 64-bit unsigned integer.

Santesson Expires October 1, 2010 [Page 10]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

A.2 Java code sample (Informative)

 /**
 * Java code sample, implementing 64 bit FNV-1a
 * By Stefan Santesson
 */

 import java.math.BigInteger;

 public class FNV {

 static public BigInteger getFNV1a64Digest (String inpString) {

 BigInteger m = new BigInteger("2").pow(64);
 BigInteger fnvPrime = new BigInteger("1099511628211");
 BigInteger fnvOffsetBasis = new BigInteger
 ("14695981039346656037");

 BigInteger digest = fnvOffsetBasis;

 for (int i = 0; i < inpString.length(); i++) {
 digest = digest.xor(BigInteger.valueOf(
 (int) inpString.charAt(i)));
 digest = digest.multiply(fnvPrime).mod(m);
 }

 return (digest);

 }
 }

Santesson Expires October 1, 2010 [Page 11]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

A.3. C code sample (Informative)

 fnv1a64.h:

 #ifndef FNV1A64_H
 #define FNV1A64_H

 #include <string.h> /* For size_t */
 #include <stdint.h> /* For uint64_t */

 extern uint64_t fnv1a64 (const uint8_t *buffer, size_t len);

 #endif

 fnv1a64.c:

 /* fnv1a.c -- Implementation of the FNV-1A non-cryptographic
 * hash function.
 * By Simon Josefsson <simon@josefsson.org> on 2010-03-30.
 */

 #include "fnv1a64.h"

 #define FNV1A64_OFFSET_BASIS 14695981039346656037ULL
 #define FNV1A64_PRIME 1099511628211ULL

 uint64_t
 fnv1a64 (const uint8_t *buffer, size_t len)
 {
 uint64_t hash;
 size_t i;

 hash = FNV1A64_OFFSET_BASIS;
 for (i = 0; i < len; i++)
 {
 hash = hash ^ buffer[i];
 hash = hash * FNV1A64_PRIME;
 }

 return hash;
 }

Santesson Expires October 1, 2010 [Page 12]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

A.4. Digest samples (Informative)

 Digest samples for 64 bit FNV-1a

 For input data:
 null ("")
 0 bytes

 Digest is: CB F2 9C E4 84 22 23 25

 For input data:
 hex: 61 ("a")
 1 byte

 Digest is: AF 63 DC 4C 86 01 EC 8C

 For input data:
 hex: FF 00 00 01
 4 bytes

 Digest is: 69 61 19 64 91 CC 68 2D

 For input data:
 hex: 68 74 74 70 3A 2F 2F 65 6E 2E 77 69 6B 69 70 65
 64 69 61 2E 6F 72 67 2F 77 69 6B 69 2F 46 6F 77
 6C 65 72 5F 4E 6F 6C 6C 5F 56 6F 5F 68 61 73 68
 ("http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash")
 48 bytes

 Digest is: D9 B9 57 FB 7F E7 94 C5

Santesson Expires October 1, 2010 [Page 13]

INTERNET DRAFT TLS Cached Information Extension March 30, 2010

Authors' Addresses

 Stefan Santesson

 3xA Security AB
 Bjornstorp 744
 247 98 Genarp
 Sweden

 EMail: sts@aaa-sec.com

Santesson Expires October 1, 2010 [Page 14]

