
TLS S. Santesson
Internet-Draft 3xA Security AB
Intended status: Standards Track H. Tschofenig
Expires: April 21, 2016 ARM Ltd.
 October 19, 2015

Transport Layer Security (TLS) Cached Information Extension
draft-ietf-tls-cached-info-20.txt

Abstract

 Transport Layer Security (TLS) handshakes often include fairly static
 information, such as the server certificate and a list of trusted
 certification authorities (CAs). This information can be of
 considerable size, particularly if the server certificate is bundled
 with a complete certificate chain (i.e., the certificates of
 intermediate CAs up to the root CA).

 This document defines an extension that allows a TLS client to inform
 a server of cached information, allowing the server to omit already
 available information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Santesson & Tschofenig Expires April 21, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS Cached Information Extension October 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Cached Information Extension 3
4. Exchange Specification 5
4.1. Server Certificate Message 5
4.2. CertificateRequest Message 6

5. Fingerprint Calculation 7
6. Example . 8
7. Security Considerations 9
8. IANA Considerations . 10
8.1. New Entry to the TLS ExtensionType Registry 10
8.2. New Registry for CachedInformationType 10

9. Acknowledgments . 11
10. References . 11
10.1. Normative References 11
10.2. Informative References 12

Appendix A. Example . 12
 Authors' Addresses . 17

1. Introduction

 Reducing the amount of information exchanged during a Transport Layer
 Security handshake to a minimum helps to improve performance in
 environments where devices are connected to a network with a low
 bandwidth, and lossy radio technology. With Internet of Things such
 environments exist, for example, when devices use IEEE 802.15.4 or
 Bluetooth Smart. For more information about the challenges with
 smart object deployments please see [RFC6574].

 This specification defines a TLS extension that allows a client and a
 server to exclude transmission information cached in an earlier TLS
 handshake.

 A typical example exchange may therefore look as follows. First, the
 client and the server executes the full TLS handshake. The client
 then caches the certificate provided by the server. When the TLS
 client connects to the TLS server some time in the future, without
 using session resumption, it then attaches the cached_info extension
 defined in this document to the client hello message to indicate that

https://datatracker.ietf.org/doc/html/rfc6574

Santesson & Tschofenig Expires April 21, 2016 [Page 2]

Internet-Draft TLS Cached Information Extension October 2015

 it had cached the certificate, and it provides the fingerprint of it.
 If the server's certificate has not changed then the TLS server does
 not need to send its' certificate and the corresponding certificate
 chain again. In case information has changed, which can be seen from
 the fingerprint provided by the client, the certificate payload is
 transmitted to the client to allow the client to update the cache.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "MUST", "MUST NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document refers to the TLS protocol but the description is
 equally applicable to DTLS as well.

3. Cached Information Extension

 This document defines a new extension type (cached_info(TBD)), which
 is used in client hello and server hello messages. The extension
 type is specified as follows.

 enum {
 cached_info(TBD), (65535)
 } ExtensionType;

 The extension_data field of this extension, when included in the
 client hello, MUST contain the CachedInformation structure. The
 client MAY send multiple CachedObjects of the same
 CachedInformationType. This may, for example, be the case when the
 client has cached multiple certificates from a server.

https://datatracker.ietf.org/doc/html/rfc2119

Santesson & Tschofenig Expires April 21, 2016 [Page 3]

Internet-Draft TLS Cached Information Extension October 2015

 enum {
 cert(1), cert_req(2) (255)
 } CachedInformationType;

 struct {
 select (type) {
 case client:
 CachedInformationType type;
 opaque hash_value<1..255>;
 case server:
 CachedInformationType type;
 } body;
 } CachedObject;

 struct {
 CachedObject cached_info<1..2^16-1>;
 } CachedInformation;

 This document defines the following two types:

 'cert' Type for not sending the complete Server Certificate Message:

 With the type field set to 'cert', the client MUST include the
 fingerprint of the Certificate message in the hash_value field.
 For this type the fingerprint MUST be calculated using the
 procedure described in Section 5 with the Certificate message as
 input data.

 'cert_req' Type for not sending the complete CertificateRequest
 Message:

 With the type set to 'cert_req', the client MUST include the
 fingerprint of the CertificateRequest message in the hash_value
 field. For this type the fingerprint MUST be calculated using the
 procedure described in Section 5 with the CertificateRequest
 message as input data..

 New cached info types can be added following the policy described in
 the IANA considerations section, see Section 8. New message digest
 algorithms for use with these types can also be added by registering
 a new type that makes use of the updated message digest algorithm.
 There are no specific requirements for the use of specific hash
 algorithms but for practical reason it is useful to re-use algorithms
 already available with TLS ciphersuites to avoid additional code and
 to keep the collision probably low.

Santesson & Tschofenig Expires April 21, 2016 [Page 4]

Internet-Draft TLS Cached Information Extension October 2015

4. Exchange Specification

 Clients supporting this extension MAY include the "cached_info"
 extension in the (extended) client hello. If the client includes the
 extension then it MUST contain one or more CachedObject attributes.

 A server supporting this extension MAY include the "cached_info"
 extension in the (extended) server hello. By returning the
 "cached_info" extension the server indicates that it supports the
 cached info types. For each indicated cached info type the server
 MUST alter the transmission of respective payloads, according to the
 rules outlined with each type. If the server includes the extension
 it MUST only include CachedObjects of a type also supported by the
 client (as expressed in the client hello). For example, if a client
 indicates support for 'cert' and 'cert_req' then the server cannot
 respond with a "cached_info" attribute containing support for ('foo-
 bar'.

 Since the client includes a fingerprint of information it cached (for
 each indicated type) the server is able to determine whether cached
 information is stale. If the server supports this specification and
 notices a mismatch between the data cached by the client and its own
 information then the server MUST include the information in full and
 MUST NOT list the respective type in the "cached_info" extension.

 Note: If a server is part of a hosting environment then the client
 may have cached multiple data items for a single server. To allow
 the client to select the appropriate information from the cache it is
 RECOMMENDED that the client utilizes the Server Name Indication
 extension [RFC6066].

 Following a successful exchange of the "cached_info" extension in the
 client and server hello, the server alters sending the corresponding
 handshake message. How information is altered from the handshake
 messages is defined in Section 4.1, and in Section 4.2 for the types
 defined in this specification.

Appendix A shows an example hash calculation and Section 6 shows an
 example protocol exchange.

4.1. Server Certificate Message

 When a ClientHello message contains the "cached_info" extension with
 a type set to 'cert' then the server MAY send the Certificate message
 shown in Figure 1 under the following conditions:

 o The server software implements the "cached_info" extension defined
 in this specification.

https://datatracker.ietf.org/doc/html/rfc6066

Santesson & Tschofenig Expires April 21, 2016 [Page 5]

Internet-Draft TLS Cached Information Extension October 2015

 o The 'cert' cached info extension is enabled (for example, a policy
 allows the use of this extension).

 o The server compared the value in the hash_value field of the
 client-provided "cached_info" extension with the fingerprint of
 the Certificate message it normally sends to clients. This check
 ensures that the information cached by the client is current. The
 procedure for calculating the fingerprint is described in

Section 5.

 The original Certificate handshake message syntax is defined in RFC
5246 [RFC5246] and has been extended with RFC 7250 [RFC7250]. RFC
7250 allows the certificate payload to contain only the

 SubjectPublicKeyInfo instead of the full information typically found
 in a certificate. Hence, when this specification is used in
 combination with [RFC7250] and the negotiated certificate type is a
 raw public key then the TLS server omits sending a Certificate
 payload that contains an ASN.1 Certificate structure with the
 included SubjectPublicKeyInfo rather than the full certificate chain.
 As such, this extension is compatible with the raw public key
 extension defined in RFC 7250.

 When the cached info specification is used then a modified version of
 the Certificate message is exchanged. The modified structure is
 shown in Figure 1.

 struct {
 opaque hash_value[1..255];
 } Certificate;

 Figure 1: Cached Info Certificate Message.

4.2. CertificateRequest Message

 When a fingerprint for an object of type 'cert_req' is provided in
 the client hello, the server MAY send the CertificateRequest message
 shown in Figure 2 message under the following conditions:

 o The server software implements the "cached_info" extension defined
 in this specification.

 o The 'cert_req' cached info extension is enabled (for example, a
 policy allows the use of this extension).

 o The server compared the value in the hash_value field of the
 client-provided "cached_info" extension with the fingerprint of
 the CertificateRequest message it normally sends to clients. This

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7250

Santesson & Tschofenig Expires April 21, 2016 [Page 6]

Internet-Draft TLS Cached Information Extension October 2015

 check ensures that the information cached by the client is
 current. The procedure for calculating the fingerprint is
 described in Section 5.

 o The server wants to request a certificate from the client.

 The original CertificateRequest handshake message syntax is defined
 in RFC 5246 [RFC5246]. The modified structure of the
 CertificateRequest message is shown in Figure 2.

 struct {
 opaque hash_value<1..255>;
 } CertificateRequest;

 Figure 2: Cached Info CertificateRequest Message.

 The CertificateRequest payload is the input parameter to the
 fingerprint calculation described in Section 5.

5. Fingerprint Calculation

 The fingerprint MUST be computed as follows:

 1. Compute the SHA-256 [RFC4634] hash of the input data. The input
 data depends on the cached info type. This document defines two
 cached info types, described in Section 4.1 and in Section 4.2.
 Note that the computed hash only covers the input data structure
 (and not any type and length information of the record layer).

 2. Truncate the output of the SHA-256 hash. When a hash value is
 truncated to 32 bits, the leftmost 32 bits (that is, the most
 significant 32 bits in network byte order) from the binary
 representation of the hash value MUST be used as the truncated
 value. An example of a 256-bit hash output truncated to 32 bits
 is shown in Figure 3.

 256-bit hash:
 0x265357902fe1b7e2a04b897c6025d7a2265357902fe1b7e2a04b897c6025d7a2

 32-bit truncated hash:
 0x26535790

 Figure 3: Truncated Hash Example.

 The purpose of the fingerprint provided by the client is to help the
 server select the correct information. For example, in case of the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4634

Santesson & Tschofenig Expires April 21, 2016 [Page 7]

Internet-Draft TLS Cached Information Extension October 2015

 certificate message the fingerprint identifies the server certificate
 (and the corresponding private key) for use for with the rest of the
 handshake. Servers may have more than one certificate and therefore
 a hash needs to be long enough to keep the probably of hash
 collisions low. On the other hand, the cached info design aims to
 reduce the amount of data being exchanged. The security of the
 handshake depends on the private key and not on the size of the
 fingerprint. Hence, the fingerprint is a way to prevent the server
 from accidentally selecting the wrong information. If an attacker
 injects an incorrect fingerprint then two outcomes are possible: (1)
 The fingerprint does not relate to any cached state and the server
 has to fall back to a full exchange. (2) If the attacker manages to
 inject a fingerprint that refers to data the client has not cached
 then the exchange will fail later when the client continues with the
 handshake and aims to verify the digital signature. The signature
 verification will fail since the public key cached by the client will
 not correspond to the private key that was used by server to sign the
 message.

6. Example

 Figure 4 illustrates an example exchange using the TLS cached info
 extension. In the normal TLS handshake exchange shown in flow (A)
 the TLS server provides its certificate in the Certificate payload to
 the client, see step [1]. This allows the client to store the
 certificate for future use. After some time the TLS client again
 interacts with the same TLS server and makes use of the TLS cached
 info extension, as shown in flow (B). The TLS client indicates
 support for this specification via the "cached_info" extension, see
 [2], and indicates that it has stored the certificate from the
 earlier exchange (by indicating the 'cert' type). With [3] the TLS
 server acknowledges the supports of the 'cert' type and by including
 the value in the server hello informs the client that the content of
 the certificate payload contains the fingerprint of the certificate
 instead of the RFC 5246-defined payload of the certificate message in
 message [4].

https://datatracker.ietf.org/doc/html/rfc5246

Santesson & Tschofenig Expires April 21, 2016 [Page 8]

Internet-Draft TLS Cached Information Extension October 2015

 (A) Initial (full) Exchange

 ClientHello ->
 <- ServerHello
 Certificate* // [1]
 ServerKeyExchange*
 CertificateRequest*
 ServerHelloDone

 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished ->

 <- [ChangeCipherSpec]
 Finished

 Application Data <-------> Application Data

 (B) TLS Cached Extension Usage

 ClientHello
 cached_info=(cert) -> // [2]
 <- ServerHello
 cached_info=(cert) [3]
 Certificate [4]
 ServerKeyExchange*
 ServerHelloDone

 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished ->

 <- [ChangeCipherSpec]
 Finished

 Application Data <-------> Application Data

 Figure 4: Example Message Exchange

7. Security Considerations

 This specification defines a mechanism to reference stored state
 using a fingerprint. Sending a fingerprint of cached information in
 an unencrypted handshake, as the client and server hello is, may

Santesson & Tschofenig Expires April 21, 2016 [Page 9]

Internet-Draft TLS Cached Information Extension October 2015

 allow an attacker or observer to correlate independent TLS exchanges.
 While some information elements used in this specification, such as
 server certificates, are public objects and usually do not contain
 sensitive information, other not yet defined types may. Those who
 implement and deploy this specification should therefore make an
 informed decision whether the cached information is inline with their
 security and privacy goals. In case of concerns, it is advised to
 avoid sending the fingerprint of the data objects in clear.

 The use of the cached info extension allows the server to send
 significantly smaller TLS messages. Consequently, these omitted
 parts of the messages are not included in the transcript of the
 handshake in the TLS Finish message. However, since the client and
 the server communicate the hash values of the cached data in the
 initial handshake messages the fingerprints are included in the TLS
 Finish message.

 Clients MUST ensure that they only cache information from legitimate
 sources. For example, when the client populates the cache from a TLS
 exchange then it must only cache information after the successful
 completion of a TLS exchange to ensure that an attacker does not
 inject incorrect information into the cache. Failure to do so allows
 for man-in-the-middle attacks.

 Security consideratios for the fingerprint calculation are discussed
 in Section 5.

8. IANA Considerations

8.1. New Entry to the TLS ExtensionType Registry

 IANA is requested to add an entry to the existing TLS ExtensionType
 registry, defined in RFC 5246 [RFC5246], for cached_info(TBD) defined
 in this document.

8.2. New Registry for CachedInformationType

 IANA is requested to establish a registry for TLS
 CachedInformationType values. The first entries in the registry are

 o cert(1)

 o cert_req(2)

 The policy for adding new values to this registry, following the
 terminology defined in RFC 5226 [RFC5226], is as follows:

 o 0-63 (decimal): Standards Action

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Santesson & Tschofenig Expires April 21, 2016 [Page 10]

Internet-Draft TLS Cached Information Extension October 2015

 o 64-223 (decimal): Specification Required

 o 224-255 (decimal): reserved for Private Use

9. Acknowledgments

 We would like to thank the following persons for your detailed
 document reviews:

 o Paul Wouters and Nikos Mavrogiannopoulos (December 2011)

 o Rob Stradling (February 2012)

 o Ondrej Mikle (in March 2012)

 o Ilari Liusvaara, Adam Langley, and Eric Rescorla (in July 2014)

 o Sean Turner (in August 2014)

 o Martin Thomson (in August 2015)

 We would also to thank Martin Thomson, Karthikeyan Bhargavan, Sankalp
 Bagaria and Eric Rescorla for their feedback regarding the
 fingerprint calculation.

 Finally, we would like to thank the TLS working group chairs, Sean
 Turner and Joe Salowey, as well as the responsible security area
 director, Stephen Farrell, for their support.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4634] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, DOI 10.17487/RFC4634, July
 2006, <http://www.rfc-editor.org/info/rfc4634>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4634
http://www.rfc-editor.org/info/rfc4634
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246

Santesson & Tschofenig Expires April 21, 2016 [Page 11]

Internet-Draft TLS Cached Information Extension October 2015

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066, DOI
 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

10.2. Informative References

 [ASN.1-Dump]
 Gutmann, P., "ASN.1 Object Dump Program", February 2013,
 <http://www.cs.auckland.ac.nz/~pgut001/>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6574] Tschofenig, H. and J. Arkko, "Report from the Smart Object
 Workshop", RFC 6574, DOI 10.17487/RFC6574, April 2012,
 <http://www.rfc-editor.org/info/rfc6574>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <http://www.rfc-editor.org/info/rfc7250>.

Appendix A. Example

 Consider a certificate containing an NIST P256 elliptic curve public
 key displayed using Peter Gutmann's ASN.1 decoder [ASN.1-Dump] in
 Figure 5.

 0 556: SEQUENCE {
 4 434: SEQUENCE {
 8 3: [0] {
 10 1: INTEGER 2
 : }
 13 1: INTEGER 13
 16 10: SEQUENCE {
 18 8: OBJECT IDENTIFIER ecdsaWithSHA256 (1 2 840 10045 4 3 2)
 : }
 28 62: SEQUENCE {
 30 11: SET {
 32 9: SEQUENCE {
 34 3: OBJECT IDENTIFIER countryName (2 5 4 6)
 39 2: PrintableString 'NL'
 : }

https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066
http://www.cs.auckland.ac.nz/~pgut001/
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc6574
http://www.rfc-editor.org/info/rfc6574
https://datatracker.ietf.org/doc/html/rfc7250
http://www.rfc-editor.org/info/rfc7250

Santesson & Tschofenig Expires April 21, 2016 [Page 12]

Internet-Draft TLS Cached Information Extension October 2015

 : }
 43 17: SET {
 45 15: SEQUENCE {
 47 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
 52 8: PrintableString 'PolarSSL'
 : }
 : }
 62 28: SET {
 64 26: SEQUENCE {
 66 3: OBJECT IDENTIFIER commonName (2 5 4 3)
 71 19: PrintableString 'Polarssl Test EC CA'
 : }
 : }
 : }
 92 30: SEQUENCE {
 94 13: UTCTime 24/09/2013 15:52:04 GMT
 109 13: UTCTime 22/09/2023 15:52:04 GMT
 : }
 124 65: SEQUENCE {
 126 11: SET {
 128 9: SEQUENCE {
 130 3: OBJECT IDENTIFIER countryName (2 5 4 6)
 135 2: PrintableString 'NL'
 : }
 : }
 139 17: SET {
 141 15: SEQUENCE {
 143 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
 148 8: PrintableString 'PolarSSL'
 : }
 : }
 158 31: SET {
 160 29: SEQUENCE {
 162 3: OBJECT IDENTIFIER commonName (2 5 4 3)
 167 22: PrintableString 'PolarSSL Test Client 2'
 : }
 : }
 : }
 191 89: SEQUENCE {
 193 19: SEQUENCE {
 195 7: OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
 204 8: OBJECT IDENTIFIER prime256v1 (1 2 840 10045 3 1 7)
 : }
 214 66: BIT STRING
 : 04 57 E5 AE B1 73 DF D3 AC BB 93 B8 81 FF 12 AE
 : EE E6 53 AC CE 55 53 F6 34 0E CC 2E E3 63 25 0B
 : DF 98 E2 F3 5C 60 36 96 C0 D5 18 14 70 E5 7F 9F
 : D5 4B 45 18 E5 B0 6C D5 5C F8 96 8F 87 70 A3 E4

Santesson & Tschofenig Expires April 21, 2016 [Page 13]

Internet-Draft TLS Cached Information Extension October 2015

 : C7
 : }
 282 157: [3] {
 285 154: SEQUENCE {
 288 9: SEQUENCE {
 290 3: OBJECT IDENTIFIER basicConstraints (2 5 29 19)
 295 2: OCTET STRING, encapsulates {
 297 0: SEQUENCE {}
 : }
 : }
 299 29: SEQUENCE {
 301 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
 306 22: OCTET STRING, encapsulates {
 308 20: OCTET STRING
 : 7A 00 5F 86 64 FC E0 5D E5 11 10 3B B2 E6 3B C4
 : 26 3F CF E2
 : }
 : }
 330 110: SEQUENCE {
 332 3: OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29 35)
 337 103: OCTET STRING, encapsulates {
 339 101: SEQUENCE {
 341 20: [0]
 : 9D 6D 20 24 49 01 3F 2B CB 78 B5 19 BC 7E 24 C9
 : DB FB 36 7C
 363 66: [1] {
 365 64: [4] {
 367 62: SEQUENCE {
 369 11: SET {
 371 9: SEQUENCE {
 373 3: OBJECT IDENTIFIER countryName (2 5 4 6)
 378 2: PrintableString 'NL'
 : }
 : }
 382 17: SET {
 384 15: SEQUENCE {
 386 3: OBJECT IDENTIFIER organizationName
 : (2 5 4 10)
 391 8: PrintableString 'PolarSSL'
 : }
 : }
 401 28: SET {
 403 26: SEQUENCE {
 405 3: OBJECT IDENTIFIER commonName (2 5 4 3)
 410 19: PrintableString 'Polarssl Test EC CA'
 : }
 : }
 : }

Santesson & Tschofenig Expires April 21, 2016 [Page 14]

Internet-Draft TLS Cached Information Extension October 2015

 : }
 : }
 431 9: [2] 00 C1 43 E2 7E 62 43 CC E8
 : }
 : }
 : }
 : }
 : }
 : }
 442 10: SEQUENCE {
 444 8: OBJECT IDENTIFIER ecdsaWithSHA256 (1 2 840 10045 4 3 2)
 : }
 454 104: BIT STRING, encapsulates {
 457 101: SEQUENCE {
 459 48: INTEGER
 : 4A 65 0D 7B 20 83 A2 99 B9 A8 0F FC 8D EE 8F 3D
 : BB 70 4C 96 03 AC 8E 78 70 DD F2 0E A0 B2 16 CB
 : 65 8E 1A C9 3F 2C 61 7E F8 3C EF AD 1C EE 36 20
 509 49: INTEGER
 : 00 9D F2 27 A6 D5 74 B8 24 AE E1 6A 3F 31 A1 CA
 : 54 2F 08 D0 8D EE 4F 0C 61 DF 77 78 7D B4 FD FC
 : 42 49 EE E5 B2 6A C2 CD 26 77 62 8E 28 7C 9E 57
 : 45
 : }
 : }
 : }

 Figure 5: ASN.1-based Certificate: Example.

 To include the certificate shown in Figure 5 in a TLS/DTLS
 Certificate message it is prepended with a message header. This
 Certificate message header in our example is 0b 00 02 36 00 02 33 00
 02 00 02 30, which indicates:

 Message Type: 0b -- 1 byte type field indicating a Certificate
 message

 Length: 00 02 36 -- 3 byte length field indicating a 566 bytes
 payload

 Certificates Length: 00 02 33 -- 3 byte length field indicating 563
 bytes for the entire certificates_list structure, which may
 contain multiple certificates. In our example only one
 certificate is included.

 Certificate Length: 00 02 30 -- 3 byte length field indicating 560
 bytes of the actual certificate following immediately afterwards.

Santesson & Tschofenig Expires April 21, 2016 [Page 15]

Internet-Draft TLS Cached Information Extension October 2015

 In our example, this is the certificate content with 30 82 02
 9E 57 45 shown in Figure 6.

 The hex encoding of the ASN.1 encoded certificate payload shown in
 Figure 5 leads to the following encoding.

 30 82 02 2C 30 82 01 B2 A0 03 02 01 02 02 01 0D
 30 0A 06 08 2A 86 48 CE 3D 04 03 02 30 3E 31 0B
 30 09 06 03 55 04 06 13 02 4E 4C 31 11 30 0F 06
 03 55 04 0A 13 08 50 6F 6C 61 72 53 53 4C 31 1C
 30 1A 06 03 55 04 03 13 13 50 6F 6C 61 72 73 73
 6C 20 54 65 73 74 20 45 43 20 43 41 30 1E 17 0D
 31 33 30 39 32 34 31 35 35 32 30 34 5A 17 0D 32
 33 30 39 32 32 31 35 35 32 30 34 5A 30 41 31 0B
 30 09 06 03 55 04 06 13 02 4E 4C 31 11 30 0F 06
 03 55 04 0A 13 08 50 6F 6C 61 72 53 53 4C 31 1F
 30 1D 06 03 55 04 03 13 16 50 6F 6C 61 72 53 53
 4C 20 54 65 73 74 20 43 6C 69 65 6E 74 20 32 30
 59 30 13 06 07 2A 86 48 CE 3D 02 01 06 08 2A 86
 48 CE 3D 03 01 07 03 42 00 04 57 E5 AE B1 73 DF
 D3 AC BB 93 B8 81 FF 12 AE EE E6 53 AC CE 55 53
 F6 34 0E CC 2E E3 63 25 0B DF 98 E2 F3 5C 60 36
 96 C0 D5 18 14 70 E5 7F 9F D5 4B 45 18 E5 B0 6C
 D5 5C F8 96 8F 87 70 A3 E4 C7 A3 81 9D 30 81 9A
 30 09 06 03 55 1D 13 04 02 30 00 30 1D 06 03 55
 1D 0E 04 16 04 14 7A 00 5F 86 64 FC E0 5D E5 11
 10 3B B2 E6 3B C4 26 3F CF E2 30 6E 06 03 55 1D
 23 04 67 30 65 80 14 9D 6D 20 24 49 01 3F 2B CB
 78 B5 19 BC 7E 24 C9 DB FB 36 7C A1 42 A4 40 30
 3E 31 0B 30 09 06 03 55 04 06 13 02 4E 4C 31 11
 30 0F 06 03 55 04 0A 13 08 50 6F 6C 61 72 53 53
 4C 31 1C 30 1A 06 03 55 04 03 13 13 50 6F 6C 61
 72 73 73 6C 20 54 65 73 74 20 45 43 20 43 41 82
 09 00 C1 43 E2 7E 62 43 CC E8 30 0A 06 08 2A 86
 48 CE 3D 04 03 02 03 68 00 30 65 02 30 4A 65 0D
 7B 20 83 A2 99 B9 A8 0F FC 8D EE 8F 3D BB 70 4C
 96 03 AC 8E 78 70 DD F2 0E A0 B2 16 CB 65 8E 1A
 C9 3F 2C 61 7E F8 3C EF AD 1C EE 36 20 02 31 00
 9D F2 27 A6 D5 74 B8 24 AE E1 6A 3F 31 A1 CA 54
 2F 08 D0 8D EE 4F 0C 61 DF 77 78 7D B4 FD FC 42
 49 EE E5 B2 6A C2 CD 26 77 62 8E 28 7C 9E 57 45

 Figure 6: Hex Encoding of the Example Certificate.

 Applying the SHA-256 hash function to the Certificate message, which
 is starts with 0b 00 02 and ends with 9E 57 45, produces
 0x086eefb4859adfe977defac494fff6b73033b4ce1f86b8f2a9fc0c6bf98605af.

Santesson & Tschofenig Expires April 21, 2016 [Page 16]

Internet-Draft TLS Cached Information Extension October 2015

 Subsequently, this output is truncated to 32 bits, which leads to a
 fingerpint of 0x086eefb4.

Authors' Addresses

 Stefan Santesson
 3xA Security AB
 Scheelev. 17
 Lund 223 70
 Sweden

 Email: sts@aaa-sec.com

 Hannes Tschofenig
 ARM Ltd.
 Hall in Tirol 6060
 Austria

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

http://www.tschofenig.priv.at

Santesson & Tschofenig Expires April 21, 2016 [Page 17]

