
Workgroup: TLS Working Group

Internet-Draft: draft-ietf-tls-ctls-01

Published: 2 November 2020

Intended Status: Informational

Expires: 6 May 2021

Authors: E. Rescorla

Mozilla

R. Barnes

Cisco

H. Tschofenig

Arm Limited

Compact TLS 1.3

Abstract

This document specifies a "compact" version of TLS 1.3. It is

isomorphic to TLS 1.3 but saves space by trimming obsolete material,

tighter encoding, and a template-based specialization technique.

cTLS is not directly interoperable with TLS 1.3, but it should

eventually be possible for a cTLS/TLS 1.3 server to exist and

successfully interoperate.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Common Primitives

3.1. Varints

3.2. Record Layer

3.3. Handshake Layer

4. Handshake Messages

4.1. ClientHello

4.2. ServerHello

4.3. HelloRetryRequest

5. Template-Based Specialization

5.1. Specifying a Specialization

5.1.1. Requirements on the TLS Implementation

5.1.2. Predefined Extensions

5.1.3. Known Certificates

6. Examples

7. Security Considerations

8. IANA Considerations

9. Normative References

Appendix A. Sample Transcripts

A.1. ECDHE and Mutual Certificate-based Authentication

A.2. PSK

Acknowledgments

Authors' Addresses

1. Introduction

DISCLAIMER: This is a work-in-progress draft of cTLS and has not yet

seen significant security analysis, so could contain major errors.

It should not be used as a basis for building production systems.

This document specifies a "compact" version of TLS 1.3 [RFC8446]. It

is isomorphic to TLS 1.3 but designed to take up minimal bandwidth.

The space reduction is achieved by four basic techniques:

Omitting unnecessary values that are a holdover from previous

versions of TLS.

Omitting the fields and handshake messages required for

preserving backwards-compatibility with earlier TLS versions.

More compact encodings, omitting unnecessary values.

A template-based specialization mechanism that allows for the

creation of application specific versions of TLS that omit

unnecessary values.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

For the common (EC)DHE handshake with pre-established certificates,

cTLS achieves an overhead of 45 bytes over the minimum required by

the cryptovariables. For a PSK handshake, the overhead is 21 bytes.

Annotated handshake transcripts for these cases can be found in

Appendix A.

Because cTLS is semantically equivalent to TLS, it can be viewed

either as a related protocol or as a compression mechanism.

Specifically, it can be implemented by a layer between the TLS

handshake state machine and the record layer.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Structure definitions listed below override TLS 1.3 definitions; any

PDU not internally defined is taken from TLS 1.3 except for

replacing integers with varints.

3. Common Primitives

3.1. Varints

cTLS makes use of variable-length integers in order to allow a wide

integer range while still providing for a minimal encoding. The

width of the integer is encoded in the first two bits of the field

as follows, with xs indicating bits that form part of the integer.

Bit pattern Length (bytes)

0xxxxxxx 1

10xxxxxx xxxxxxxx 2

11xxxxxx xxxxxxxx xxxxxxxx 3

Table 1

Thus, one byte can be used to carry values up to 127.

In the TLS syntax variable integers are denoted as "varint" and a

vector with a top range of a varint is denoted as:

¶

¶

¶

¶

¶

¶

¶

 opaque foo<1..V>;¶

cTLS uses the varint encoding for all multi-byte integers in TLS,

including:

Values of type uint16, uint24, uint32, uint64

Array and vector entries of these types

Encoded lengths for vectors that allow more than 255 entries

Enums that allow more than 255 entries

Values of type uint8, opaque values, and one-byte enums are not

affected. We do not show the structures which only change in this

way.

3.2. Record Layer

The only cTLS records that are sent in plaintext are handshake

records (ClientHello and ServerHello/HRR). The content type is

therefore constant (it is always handshake), so we instead set the

content_type field to a fixed cTLS-specific value to distinguish

cTLS plaintext records from encrypted records, TLS/DTLS records, and

other protocols using the same 5-tuple.

The profile_id field allows the client and server to agree on which

compression profile should be used for this session (see Section 5).

This field MUST be set to zero if and only if no compression profile

is used. Non-zero values are negotiated out of band between the

client and server, as part of the specification of the compression

profile.

[[OPEN ISSUE: The profile_id is needed in the ClientHello to inform

the server what compression profile to use. For a ServerHello this

field is not required. Should we make this field optional?]]

Encrypted records use DTLS 1.3 record framing, comprising a

configuration octet followed by optional connection ID, sequence

number, and length fields.

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

 struct {

 ContentType content_type = ctls_handshake;

 varint profile_id;

 opaque fragment<0..V>;

 } CTLSPlaintext;

¶

¶

¶

The presence and size of the connection ID field is negotiated as in

DTLS.

As with DTLS, the length field MAY be omitted by clearing the L bit,

which means that the record consumes the entire rest of the data in

the lower level transport. In this case it is not possible to have

multiple DTLSCiphertext format records without length fields in the

same datagram. In stream-oriented transports (e.g., TCP), the length

field MUST be present. For use over other transports length

information may be inferred from the underlying layer.

Normal DTLS does not provide a mechanism for suppressing the

sequence number field entirely. In cases where a sequence number is

not required (e.g., when a reliable transport is in use), a cTLS

implementation may suppress it by setting the suppressSequenceNumber

flag in the compression profile being used (see Section 5.1). When

this flag is enabled, the S bit in the configuration octet MUST be

cleared.

3.3. Handshake Layer

The cTLS handshake framing is same as the TLS 1.3 handshake framing,

except for two changes:

The length field is omitted

The HelloRetryRequest message is a true handshake message

instead of a specialization of ServerHello.

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |0|0|1|C|S|L|E E|

 +-+-+-+-+-+-+-+-+

 | Connection ID | Legend:

 | (if any, |

 / length as / C - Connection ID (CID) present

 | negotiated) | S - Sequence number length

 +-+-+-+-+-+-+-+-+ L - Length present

 | 8 or 16 bit | E - Epoch

 |Sequence Number|

 | (if present) |

 +-+-+-+-+-+-+-+-+

 | 16 bit Length |

 | (if present) |

 +-+-+-+-+-+-+-+-+

 struct {

 opaque unified_hdr[variable];

 opaque encrypted_record[length];

 } CTLSCiphertext;

¶

¶

¶

¶

¶

1. ¶

2.

¶

4. Handshake Messages

In general, we retain the basic structure of each individual TLS

handshake message. However, the following handshake messages have

been modified for space reduction and cleaned up to remove pre TLS

1.3 baggage.

4.1. ClientHello

The cTLS ClientHello is as follows.

4.2. ServerHello

We redefine ServerHello in a similar way:

4.3. HelloRetryRequest

The HelloRetryRequest has the following format:

 struct {

 HandshakeType msg_type; /* handshake type */

 select (Handshake.msg_type) {

 case client_hello: ClientHello;

 case server_hello: ServerHello;

 case hello_retry_request: HelloRetryRequest;

 case end_of_early_data: EndOfEarlyData;

 case encrypted_extensions: EncryptedExtensions;

 case certificate_request: CertificateRequest;

 case certificate: Certificate;

 case certificate_verify: CertificateVerify;

 case finished: Finished;

 case new_session_ticket: NewSessionTicket;

 case key_update: KeyUpdate;

 };

 } Handshake;

¶

¶

¶

 opaque Random[RandomLength]; // variable length

 struct {

 Random random;

 CipherSuite cipher_suites<1..V>;

 Extension extensions<1..V>;

 } ClientHello;

¶

¶

 struct {

 Random random;

 CipherSuite cipher_suite;

 Extension extensions<1..V>;

 } ServerHello;

¶

¶

It is the same as the ServerHello above but without the unnecessary

sentinel Random value.

5. Template-Based Specialization

The protocol in the previous section is fully general and isomorphic

to TLS 1.3; effectively it's just a small cleanup of the wire

encoding to match what we might have done starting from scratch. It

achieves some compaction, but only a modest amount. cTLS also

includes a mechanism for achieving very high compaction using

template-based specialization.

The basic idea is that we start with the basic TLS 1.3 handshake,

which is fully general and then remove degrees of freedom, eliding

parts of the handshake which are used to express those degrees of

freedom. For example, if we only support one version of TLS, then it

is not necessary to have version negotiation and the

supported_versions extension can be omitted.

Importantly, this process is performed only for the wire encoding

but not for the handshake transcript. The result is that the

transcript for a specialized cTLS handshake is the same as the

transcript for a TLS 1.3 handshake with the same features used.

One way of thinking of this is as if specialization is a stateful

compression layer between the handshake and the record layer:

Specializations are defined by a "compression profile" that

specifies what features are to be optimized out of the handshake. In

the following subsections, we define the structure of these

profiles, and how they are used in compressing and decompressing

handshake messages.

5.1. Specifying a Specialization

A compression profile defining of a specialized version of TLS is

defined using a JSON dictionary. Each axis of specialization is a

 struct {

 CipherSuite cipher_suite;

 Extension extensions<2..V>;

 } HelloRetryRequest;

¶

¶

¶

¶

¶

¶

+---------------+---------------+---------------+

| Handshake | Application | Alert |

+---------------+---------------+---------------+ +---------+

| cTLS Compression Layer |<---| Profile |

+---------------+---------------+---------------+ +---------+

| cTLS Record Layer / Application |

+---------------+---------------+---------------+

¶

¶

profileID (integer):

suppressSequenceNumber (boolean):

version (integer):

cipherSuite (string):

dhGroup (string):

signatureAlgorithm (string):

key in the dictionary. [[OPEN ISSUE: If we ever want to serialize

this, we'll want to use a list instead.]].

For example, the following specialization describes a protocol with

a single fixed version (TLS 1.3) and a single fixed cipher suite

(TLS_AES_128_GCM_SHA256). On the wire, ClientHello.cipher_suites,

ServerHello.cipher_suites, and the supported_versions extensions in

the ClientHello and ServerHello would be omitted.

cTLS allows specialization along the following axes:

The identifier for this profile, to be sent in

the profile_id field of CTLSPlaintext records. This value MUST

NOT be zero. If this value is not present, the default profile_id

is 1.

If present and set to true, the

sequence number field is omitted from encrypted record headers.

indicates that both sides agree to the single

TLS version specified by the given integer value (772 == 0x0304

for TLS 1.3). The supported_versions extension is omitted from

ClientHello.extensions and reconstructed in the transcript as a

single-valued list with the specified value. The

supported_versions extension is omitted from

ClientHello.extensions and reconstructed in the transcript with

the specified value.

indicates that both sides agree to the single

named cipher suite, using the "TLS_AEAD_HASH" syntax defined in

[RFC8446], Section 8.4. The ClientHello.cipher_suites field is

omitted and reconstructed in the transcript as a single-valued

list with the specified value. The server_hello.cipher_suite

field is omitted and reconstructed in the transcript as the

specified value.

specifies a single DH group to use for key

establishment. The group is listed by the code point name in

[RFC8446], Section 4.2.7. (e.g., x25519). This implies a literal

"supported_groups" extension consisting solely of this group.

specifies a single signature scheme to

use for authentication. The group is listed by the code point

name in [RFC8446], Section 4.2.7. (e.g., ed25519). This implies a

¶

¶

{

 "profileID": 33,

 "version" : 772,

 "cipherSuite" : "TLS_AES_128_GCM_SHA256"

}

¶

¶

¶

¶

¶

¶

¶

randomSize (integer):

clientHelloExtensions (predefined extensions):

serverHelloExtensions (predefined extensions):

encryptedExtensions (predefined extensions):

certRequestExtensions (predefined extensions):

knownCertificates (known certificates):

finishedSize (integer):

literal "signature_algorithms" extension consisting solely of

this group.

indicates that the ClientHello.Random and

ServerHello.Random values are truncated to the given values. When

the transcript is reconstructed, the Random is padded to the

right with 0s and the anti-downgrade mechanism in {{RFC8446)},

Section 4.1.3 is disabled. IMPORTANT: Using short Random values

can lead to potential attacks. When Random values are shorter

than 8 bytes, PSK-only modes MUST NOT be used, and each side MUST

use fresh DH ephemerals. The Random length MUST be less than or

equal to 32 bytes.

Predefined

ClientHello extensions, see {predefined-extensions}

Predefined

ServerHello extensions, see {predefined-extensions}

Predefined

EncryptedExtensions extensions, see {predefined-extensions}

Predefined

CertificateRequest extensions, see {predefined-extensions}

A compression dictionary

for the Certificate message, see {known-certs}

indicates that the Finished value is to be

truncated to the given length. When the transcript is

reconstructed, the remainder of the Finished value is filled in

by the receiving side. [[OPEN ISSUE: How short should we allow

this to be? TLS 1.3 uses the native hash and TLS 1.2 used 12

bytes. More analysis is needed to know the minimum safe Finished

size. See [RFC8446]; Section E.1 for more on this, as well as

https://mailarchive.ietf.org/arch/msg/tls/

TugB5ddJu3nYg7chcyeIyUqWSbA.]]

5.1.1. Requirements on the TLS Implementation

To be compatible with the specializations described in this section,

a TLS stack needs to provide two key features:

If specialization of extensions is to be used, then the TLS stack

MUST order each vector of Extension values in ascending order

according to the ExtensionType. This allows for a deterministic

reconstruction of the extension list.

If truncated Random values are to be used, then the TLS stack MUST

be configurable to set the remaining bytes of the random values to

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

zero. This ensures that the reconstructed, padded random value

matches the original.

If truncated Finished values are to be used, then the TLS stack MUST

be configurable so that only the provided bytes of the Finished are

verified, or so that the expected remaining values can be computed.

5.1.2. Predefined Extensions

Extensions used in the ClientHello, ServerHello,

EncryptedExtensions, and CertificateRequest messages can be

"predefined" in a compression profile, so that they do not have to

be sent on the wire. A predefined extensions object is a dictionary

whose keys are extension names specified in the TLS

ExtensionTypeRegistry specified in [RFC8446]. The corresponding

value is a hex-encoded value for the ExtensionData field of the

extension.

When compressing a handshake message, the sender compares the

extensions in the message being compressed to the predefined

extensions object, applying the following rules:

If the extensions list in the message is not sorted in ascending

order by extension type, it is an error, because the decompressed

message will not match.

If there is no entry in the predefined extensions object for the

type of the extension, then the extension is included in the

compressed message

If there is an entry:

If the ExtensionData of the extension does not match the value

in the dictionary, it is an error, because decompression will

not produce the correct result.

If the ExtensionData matches, then the extension is removed,

and not included in the compressed message.

When decompressing a handshake message the receiver reconstitutes

the original extensions list using the predefined extensions:

If there is an extension in the compressed message with a type

that exists in the predefined extensions object, it is an error,

because such an extension would not have been sent by a sender

with a compatible compression profile.

For each entry in the predefined extensions dictionary, an

extension is added to the decompressed message with the specified

type and value.

¶

¶

¶

¶

*

¶

*

¶

* ¶

-

¶

-

¶

¶

*

¶

*

¶

The resulting vector of extensions MUST be sorted in ascending

order by extension type.

Note that the "version", "dhGroup", and "signatureAlgorithm" fields

in the compression profile are specific instances of this algorithm

for the corresponding extensions.

[[OPEN ISSUE: Are there other extensions that would benefit from

special treatment, as opposed to hex values.]]

5.1.3. Known Certificates

Certificates are a major contributor to the size of a TLS handshake.

In order to avoid this overhead when the parties to a handshake have

already exchanged certificates, a compression profile can specify a

dictionary of "known certificates" that effectively acts as a

compression dictionary on certificates.

A known certificates object is a JSON dictionary whose keys are

strings containing hex-encoded compressed values. The corresponding

values are hex-encoded strings representing the uncompressed values.

For example:

When compressing a Certificate message, the sender examines the

cert_data field of each CertificateEntry. If the cert_data matches a

value in the known certificates object, then the sender replaces the

cert_data with the corresponding key. Decompression works the

opposite way, replacing keys with values.

Note that in this scheme, there is no signaling on the wire for

whether a given cert_data value is compressed or uncompressed. Known

certificates objects SHOULD be constructed in such a way as to avoid

a uncompressed object being mistaken for compressed one and

erroneously decompressed. For X.509, it is sufficient for the first

byte of the compressed value (key) to have a value other than 0x30,

since every X.509 certificate starts with this byte.

6. Examples

The following section provides some example specializations.

TLS 1.3 only:

*

¶

¶

¶

¶

¶

{

 "00": "3082...",

 "01": "3082...",

}

¶

¶

¶

¶

¶

TLS 1.3 with AES_GCM and X25519 and ALPN h2, short random values,

and everything else is ordinary TLS 1.3.

Version 772 corresponds to the hex representation 0x0304, named

group "29" (0x001D) represents X25519.

[[OPEN ISSUE: Should we have a registry of well-known profiles?]]

7. Security Considerations

WARNING: This document is effectively brand new and has seen no

analysis. The idea here is that cTLS is isomorphic to TLS 1.3, and

therefore should provide equivalent security guarantees.

The use of key ids is a new feature introduced in this document,

which requires some analysis, especially as it looks like a

potential source of identity misbinding. This is, however, entirely

separable from the rest of the specification.

Transcript expansion also needs some analysis and we need to

determine whether we need an extension to indicate that cTLS is in

use and with which profile.

8. IANA Considerations

This document requests that a code point be allocated from the "TLS

ContentType registry. This value must be in the range 0-31

(inclusive). The row to be added in the registry has the following

form:

Value Description DTLS-OK Reference

TBD ctls N RFCXXXX

Table 2

{

 "version" : 0x0304

}

¶

¶

{

 "version" : 772,

 "randomSize": 16,

 "cipherSuite" : "TLS_AES_128_GCM_SHA256",

 "dhGroup": "X25519",

 "clientHelloExtensions": {

 "named_groups": 29,

 "application_layer_protocol_negotiation" : "030016832",

 "..." : null

 }

}

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[RFC8446]

[[RFC EDITOR: Please replace the value TBD with the value assigned

by IANA, and the value XXXX to the RFC number assigned for this

document.]]

[[OPEN ISSUE: Should we require standards action for all profile IDs

that would fit in 2 octets.]]

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Sample Transcripts

In this section, we provide annotated example transcripts generated

using a draft implementation of this specification in the mint TLS

library. The transcripts shown are with the revised message formats

defined above, as well as specialization to the indicated cases,

using the aggressive compression profiles noted below. The resulting

byte counts are as follows:

To increase legibility, we show the plaintext bytes of handshake

messages that would be encrypted and shorten some of the

cryptographic values (shown with "..."). The totals above include 9

bytes of encryption overhead for the client and server flights,

which would otherwise be encrypted (with a one-byte content type and

an 8-byte tag).

¶

¶

¶

 ECDHE PSK

 ------------------ ------------------

 TLS CTLS Overhead TLS CTLS Overhead

 --- ---- -------- --- ---- --------

ClientHello 132 50 10 147 67 15

ServerHello 90 48 8 56 18 2

ServerFlight 478 104 16 42 12 3

ClientFlight 458 100 11 36 10 1

===

Total 1158 302 45 280 107 21

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446

Obviously, these figures are very provisional, and as noted at

several points above, there are additional opportunities to reduce

overhead.

[[NOTE: We are using a shortened Finished message here. See Section

5.1 for notes on Finished size. However, the overhead is constant

for all reasonable Finished sizes.]]

A.1. ECDHE and Mutual Certificate-based Authentication

Compression Profile:

ClientHello: 50 bytes = RANDOM(8) + DH(32) + Overhead(10)

ServerHello: 48 = RANDOM(8) + DH(32) + Overhead(8)

¶

¶

¶

{

 "version": 772,

 "cipherSuite": "TLS_AES_128_CCM_8_SHA256",

 "dhGroup": "X25519",

 "signatureAlgorithm": "ECDSA_P256_SHA256",

 "randomSize": 8,

 "finishedSize": 8,

 "clientHelloExtensions": {

 "server_name": "000e00000b6578616d706c652e636f6d",

 },

 "certificateRequestExtensions": {

 "signature_algorithms": "00020403"

 },

 "knownCertificates": {

 "61": "3082...",

 "62": "3082..."

 }

}

¶

¶

01 // ClientHello

2ef16120dd84a721 // Random

28 // Extensions.length

33 26 // KeyShare

 0024 // client_shares.length

 001d // KeyShareEntry.group

 0020 a690...af948 // KeyShareEntry.key_exchange

¶

¶

02 // ServerHello

962547bba5e00973 // Random

26 // Extensions.length

33 24 // KeyShare

 001d // KeyShareEntry.group

 0020 9fbc...0f49 // KeyShareEntry.key_exchange

¶

Server Flight: 96 = SIG(71) + MAC(8) + CERTID(1) + Overhead(16)

Client Flight: 91 bytes = SIG(71) + MAC(8) + CERTID(1) +

Overhead(11)

A.2. PSK

Compression Profile:

¶

08 // EncryptedExtensions

 00 // Extensions.length

0d // CertificateRequest

 00 // CertificateRequestContext.length

 00 // Extensions.length

0b // Certificate

 00 // CertificateRequestContext

 03 // CertificateList

 01 // CertData.length

 61 // CertData = 'a'

 00 // Extensions.length

0f // CertificateVerify

 0403 // SignatureAlgorithm

 4047 // Signature.length

 3045...f60e // Signature

14 // Finished

 bfc9d66715bb2b04 // VerifyData

¶

¶

0b // Certificate

 00 // CertificateRequestContext

 03 // CertificateList

 01 // CertData.length

 62 // CertData = 'b'

 00 // Extensions.length

0f // CertificateVerify

 0403 // SignatureAlgorithm

 4047 // Signature.length

 3045...f60e // Signature

14 // Finished

 35e9c34eec2c5dc1 // VerifyData

¶

¶

ClientHello: 67 bytes = RANDOM(16) + PSKID(4) + BINDER(32) +

Overhead(15)

ServerHello: 18 bytes = RANDOM(16) + 2

Server Flight: 3 bytes = Overhead(3)

Client Flight: 1 byte = Overhead(3)

Acknowledgments

We would like to thank Karthikeyan Bhargavan, Owen Friel, Sean

Turner, Martin Thomson and Chris Wood.

{

 "version": 772,

 "cipherSuite": "TLS_AES_128_CCM_8_SHA256",

 "signatureAlgorithm": "ECDSA_P256_SHA256",

 "randomSize": 16,

 "finishedSize": 0,

 "clientHelloExtensions": {

 "server_name": "000e00000b6578616d706c652e636f6d",

 "psk_key_exchange_modes": "0100"

 },

 "serverHelloExtensions": {

 "pre_shared_key": "0000"

 }

}

¶

¶

01 // ClientHello

e230115e62d9a3b58f73e0f2896b2e35 // Random

2d // Extensions.length

29 2b // PreSharedKey

 000a // identities.length

 0004 00010203 // identity

 7bd05af6 // obfuscated_ticket_age

 0021 // binders.length

 20 2428...bb3f // binder

¶

¶

02 // ServerHello

7232e2d3e61e476b844d9c1f6a4c868f // Random

00 // Extensions.length

¶

¶

08 // EncryptedExtensions

 00 // Extensions.length

14 // Finished

¶

¶

14 // Finished¶

¶

Authors' Addresses

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

Richard Barnes

Cisco

Email: rlb@ipv.sx

Hannes Tschofenig

Arm Limited

Email: hannes.tschofenig@arm.com

mailto:ekr@rtfm.com
mailto:rlb@ipv.sx
mailto:hannes.tschofenig@arm.com

	Compact TLS 1.3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Common Primitives
	3.1. Varints
	3.2. Record Layer
	3.3. Handshake Layer

	4. Handshake Messages
	4.1. ClientHello
	4.2. ServerHello
	4.3. HelloRetryRequest

	5. Template-Based Specialization
	5.1. Specifying a Specialization
	5.1.1. Requirements on the TLS Implementation
	5.1.2. Predefined Extensions
	5.1.3. Known Certificates

	6. Examples
	7. Security Considerations
	8. IANA Considerations
	9. Normative References
	Appendix A. Sample Transcripts
	A.1. ECDHE and Mutual Certificate-based Authentication
	A.2. PSK
	Acknowledgments
	Authors' Addresses

