
TLS Working Group E. Rescorla
Internet-Draft Mozilla
Intended status: Standards Track R. Barnes
Expires: January 13, 2022 Cisco
 H. Tschofenig
 Arm Limited
 July 12, 2021

Compact TLS 1.3
draft-ietf-tls-ctls-03

Abstract

 This document specifies a "compact" version of TLS 1.3. It is
 isomorphic to TLS 1.3 but saves space by trimming obsolete material,
 tighter encoding, and a template-based specialization technique. cTLS
 is not directly interoperable with TLS 1.3, but it should eventually
 be possible for a cTLS/TLS 1.3 server to exist and successfully
 interoperate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Rescorla, et al. Expires January 13, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft cTLS 1.3 July 2021

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 3
3. Common Primitives . 3
3.1. Varints . 3
3.2. Template-based Specialization 4
3.2.1. Requirements on TLS Implementations 8
3.2.2. Predefined Extensions 8
3.2.3. Known Certificates 9

3.3. Record Layer . 10
3.4. Handshake Layer . 11

4. Handshake Messages . 12
4.1. ClientHello . 12
4.2. ServerHello . 12
4.3. HelloRetryRequest . 13

5. Examples . 13
6. Security Considerations 13
7. IANA Considerations . 14
8. Normative References . 14
Appendix A. Example Exchange 14

 Acknowledgments . 17
 Authors' Addresses . 17

1. Introduction

 DISCLAIMER: This is a work-in-progress draft of cTLS and has not yet
 seen significant security analysis, so could contain major errors.
 It should not be used as a basis for building production systems.

 This document specifies a "compact" version of TLS 1.3 [RFC8446]. It
 is isomorphic to TLS 1.3 but designed to take up minimal bandwidth.
 The space reduction is achieved by four basic techniques:

 o Omitting unnecessary values that are a holdover from previous
 versions of TLS.

 o Omitting the fields and handshake messages required for preserving
 backwards-compatibility with earlier TLS versions.

 o More compact encodings.

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires January 13, 2022 [Page 2]

Internet-Draft cTLS 1.3 July 2021

 o A template-based specialization mechanism that allows pre-
 populating information at both endpoints without the need for
 negotiation.

 For the common (EC)DHE handshake with pre-established certificates,
 cTLS achieves an overhead of 45 bytes over the minimum required by
 the cryptovariables. For a PSK handshake, the overhead is 21 bytes.
 Annotated handshake transcripts for these cases can be found in

Appendix A.

 Because cTLS is semantically equivalent to TLS, it can be viewed
 either as a related protocol or as a compression mechanism.
 Specifically, it can be implemented by a layer between the TLS
 handshake state machine and the record layer.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Structure definitions listed below override TLS 1.3 definitions; any
 PDU not internally defined is taken from TLS 1.3 except for replacing
 integers with varints.

3. Common Primitives

3.1. Varints

 cTLS makes use of variable-length integers in order to allow a wide
 integer range while still providing for a minimal encoding. The
 width of the integer is encoded in the first two bits of the field as
 follows, with xs indicating bits that form part of the integer.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Rescorla, et al. Expires January 13, 2022 [Page 3]

Internet-Draft cTLS 1.3 July 2021

 +----------------------------+----------------+
 | Bit pattern | Length (bytes) |
 +----------------------------+----------------+
 | 0xxxxxxx | 1 |
 | | |
 | | |
 | | |
 | 10xxxxxx xxxxxxxx | 2 |
 | | |
 | | |
 | | |
 | 11xxxxxx xxxxxxxx xxxxxxxx | 3 |
 +----------------------------+----------------+

 Thus, one byte can be used to carry values up to 127.

 In the TLS syntax variable integers are denoted as "varint" and a
 vector with a top range of a varint is denoted as:

 opaque foo<1..V>;

 cTLS uses the varint encoding for all multi-byte integers in TLS,
 including:

 o Values of type uint16, uint24, uint32, uint64

 o Array and vector entries of these types

 o Encoded lengths for vectors that allow more than 255 entries

 o Enums that allow more than 255 entries

 Values of type uint8, opaque values, and one-byte enums are not
 affected. We do not show the structures which only change in this
 way.

3.2. Template-based Specialization

 The transmission overhead in TLS 1.3 is largely contributed to by two
 factors, : - the negotiation of algorithm parameters, and extensions,
 as well as - the exchange of certificates.

 TLS 1.3 supports different credential types and modes that are
 impacted differently by a compression scheme. For example, TLS
 supports certificate-based authentication, raw public key-based
 authentication as well as pre-shared key (PSK)-based authentication.
 PSK-based authentication can be used with externally configured PSKs
 or with PSKs established through tickets.

Rescorla, et al. Expires January 13, 2022 [Page 4]

Internet-Draft cTLS 1.3 July 2021

 The basic idea of template-based specialization is that we start with
 the basic TLS 1.3 handshake, which is fully general and then remove
 degrees of freedom, eliding parts of the handshake which are used to
 express those degrees of freedom. For example, if we only support
 one version of TLS, then it is not necessary to have version
 negotiation and the supported_versions extension can be omitted.

 Importantly, this process is performed only for the wire encoding but
 not for the handshake transcript. The result is that the transcript
 for a specialized cTLS handshake is the same as the transcript for a
 TLS 1.3 handshake with the same features used.

 One way of thinking of this is as if specialization is a stateful
 compression layer between the handshake and the record layer:

 +---------------+---------------+---------------+
 | Handshake | Application | Alert |
 +---------------+---------------+---------------+ +---------+
 | cTLS Compression Layer |<---| Profile |
 +---------------+---------------+---------------+ +---------+
 | cTLS Record Layer / Application |
 +---------------+---------------+---------------+

 By assuming that out-of-band agreements took place already prior to
 the start of the cTLS protocol exchange, the amount of data exchanged
 can be radically reduced. Because different clients may use
 different compression templates and because multiple compression
 templates may be available for use in different deployment
 environments, a client needs to inform the server about the profile
 it is planning to use. The profile field in the ClientHello serves
 this purpose.

 Although the template-based specialization mechanisms described here
 are general, we also include specific mechanism for certificate-based
 exchanges because those are where the most complexity and size
 reduction can be obtained. Most of the other exchanges in TLS 1.3
 are highly optimized and do not require compression to be used.

 The compression profile defining the use of algorithms, algorithm
 parameters, and extensions is specified via a JSON dictionary.

 For example, the following specialization describes a protocol with a
 single fixed version (TLS 1.3) and a single fixed cipher suite
 (TLS_AES_128_GCM_SHA256). On the wire, ClientHello.cipher_suites,
 ServerHello.cipher_suites, and the supported_versions extensions in
 the ClientHello and ServerHello would be omitted.

Rescorla, et al. Expires January 13, 2022 [Page 5]

Internet-Draft cTLS 1.3 July 2021

 {
 "version" : 772,
 "cipherSuite" : "TLS_AES_128_GCM_SHA256"
 }

 The following elements are defined:

 profile (integer): identifies the profile being defined.

 version (integer): indicates that both sides agree to the single TLS
 version specified by the given integer value (772 == 0x0304 for
 TLS 1.3). The supported_versions extension is omitted from
 ClientHello.extensions and reconstructed in the transcript as a
 single-valued list with the specified value. The
 supported_versions extension is omitted from
 ClientHello.extensions and reconstructed in the transcript with
 the specified value.

 cipherSuite (string): indicates that both sides agree to the single
 named cipher suite, using the "TLS_AEAD_HASH" syntax defined in

[RFC8446], Section 8.4. The ClientHello.cipher_suites field is
 omitted and reconstructed in the transcript as a single-valued
 list with the specified value. The server_hello.cipher_suite
 field is omitted and reconstructed in the transcript as the
 specified value.

 dhGroup (string): specifies a single DH group to use for key
 establishment. The group is listed by the code point name in

[RFC8446], Section 4.2.7. (e.g., x25519). This implies a literal
 "supported_groups" extension consisting solely of this group.

 signatureAlgorithm (string): specifies a single signature scheme to
 use for authentication. The group is listed by the code point
 name in [RFC8446], Section 4.2.7. (e.g., ed25519). This implies
 a literal "signature_algorithms" extension consisting solely of
 this group.

 random (integer): indicates that the ClientHello.Random and
 ServerHello.Random values are truncated to the given length. When
 the transcript is reconstructed, the Random is padded to the right
 with 0s and the anti-downgrade mechanism in [RFC8446],
 Section 4.1.3 is disabled. IMPORTANT: Using short Random values
 can lead to potential attacks. The Random length MUST be less
 than or equal to 32 bytes.

 [[Open Issue: Karthik Bhargavan suggested the idea of hashing
 ephemeral public keys and to use the result (truncated to 32 bytes)

https://datatracker.ietf.org/doc/html/rfc8446#section-8.4
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.7
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.7
https://datatracker.ietf.org/doc/html/rfc8446#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc8446#section-4.1.3

Rescorla, et al. Expires January 13, 2022 [Page 6]

Internet-Draft cTLS 1.3 July 2021

 as random values. Such a change would require a security analysis.
]]

 mutualAuth (boolean): if set to true, indicates that the client must
 authenticate with a certificate by sending Certificate and a
 CertificateVerify message. The server MUST omit the
 CertificateRequest message, as its contents are redundant. [[OPEN
 ISSUE: We don't actually say that you can omit empty messages, so
 we need to add that somewhere.]]

 extension_order: indicates in what order extensions appear in
 respective messages. This allows to omit sending the type. If
 there is only a single extension to be transmitted, then the
 extension length field can also be omitted. For example, imagine
 that only the KeyShare extension needs to be sent in the
 ClientHello as the only extension. Then, the following structure

 28 // Extensions.length
 33 26 // KeyShare
 0024 // client_shares.length
 001d // KeyShareEntry.group
 0020 a690...af948 // KeyShareEntry.key_exchange

 is compressed down to (assuming the KeyShare group has been pre-
 agreed)

 0020 a690...af948 // KeyShareEntry.key_exchange

 clientHelloExtensions (predefined extensions): Predefined
 ClientHello extensions, see {predefined-extensions}

 serverHelloExtensions (predefined extensions): Predefined
 ServerHello extensions, see {predefined-extensions}

 encryptedExtensions (predefined extensions): Predefined
 EncryptedExtensions extensions, see {predefined-extensions}

 certRequestExtensions (predefined extensions): Predefined
 CertificateRequest extensions, see {predefined-extensions}

 knownCertificates (known certificates): A compression dictionary for
 the Certificate message, see {known-certs}

 finishedSize (integer): indicates that the Finished value is to be
 truncated to the given length. When the transcript is
 reconstructed, the remainder of the Finished value is filled in by
 the receiving side.

Rescorla, et al. Expires January 13, 2022 [Page 7]

Internet-Draft cTLS 1.3 July 2021

 [[OPEN ISSUE: How short should we allow this to be? TLS 1.3 uses the
 native hash and TLS 1.2 used 12 bytes. More analysis is needed to
 know the minimum safe Finished size. See [RFC8446]; Section E.1 for
 more on this, as well as https://mailarchive.ietf.org/arch/msg/tls/

TugB5ddJu3nYg7chcyeIyUqWSbA.]]

3.2.1. Requirements on TLS Implementations

 To be compatible with the specializations described in this section,
 a TLS stack needs to provide the following features:

 o If specialization of extensions is to be used, then the TLS stack
 MUST order each vector of Extension values in ascending order
 according to the ExtensionType. This allows for a deterministic
 reconstruction of the extension list.

 o If truncated Random values are to be used, then the TLS stack MUST
 be configurable to set the remaining bytes of the random values to
 zero. This ensures that the reconstructed, padded random value
 matches the original.

 o If truncated Finished values are to be used, then the TLS stack
 MUST be configurable so that only the provided bytes of the
 Finished are verified, or so that the expected remaining values
 can be computed.

3.2.2. Predefined Extensions

 Extensions used in the ClientHello, ServerHello, EncryptedExtensions,
 and CertificateRequest messages can be "predefined" in a compression
 profile, so that they do not have to be sent on the wire. A
 predefined extensions object is a dictionary whose keys are extension
 names specified in the TLS ExtensionTypeRegistry specified in
 [RFC8446]. The corresponding value is a hex-encoded value for the
 ExtensionData field of the extension.

 When compressing a handshake message, the sender compares the
 extensions in the message being compressed to the predefined
 extensions object, applying the following rules:

 o If the extensions list in the message is not sorted in ascending
 order by extension type, it is an error, because the decompressed
 message will not match.

 o If there is no entry in the predefined extensions object for the
 type of the extension, then the extension is included in the
 compressed message

https://datatracker.ietf.org/doc/html/rfc8446
https://mailarchive.ietf.org/arch/msg/tls/TugB5ddJu3nYg7chcyeIyUqWSbA
https://mailarchive.ietf.org/arch/msg/tls/TugB5ddJu3nYg7chcyeIyUqWSbA
https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires January 13, 2022 [Page 8]

Internet-Draft cTLS 1.3 July 2021

 o If there is an entry:

 * If the ExtensionData of the extension does not match the value
 in the dictionary, it is an error, because decompression will
 not produce the correct result.

 * If the ExtensionData matches, then the extension is removed,
 and not included in the compressed message.

 When decompressing a handshake message the receiver reconstitutes the
 original extensions list using the predefined extensions:

 o If there is an extension in the compressed message with a type
 that exists in the predefined extensions object, it is an error,
 because such an extension would not have been sent by a sender
 with a compatible compression profile.

 o For each entry in the predefined extensions dictionary, an
 extension is added to the decompressed message with the specified
 type and value.

 o The resulting vector of extensions MUST be sorted in ascending
 order by extension type.

 Note that the "version", "dhGroup", and "signatureAlgorithm" fields
 in the compression profile are specific instances of this algorithm
 for the corresponding extensions.

 [[OPEN ISSUE: Are there other extensions that would benefit from
 special treatment, as opposed to hex values.]]

3.2.3. Known Certificates

 Certificates are a major contributor to the size of a TLS handshake.
 In order to avoid this overhead when the parties to a handshake have
 already exchanged certificates, a compression profile can specify a
 dictionary of "known certificates" that effectively acts as a
 compression dictionary on certificates.

 A known certificates object is a JSON dictionary whose keys are
 strings containing hex-encoded compressed values. The corresponding
 values are hex-encoded strings representing the uncompressed values.
 For example:

 {
 "00": "3082...",
 "01": "3082...",
 }

Rescorla, et al. Expires January 13, 2022 [Page 9]

Internet-Draft cTLS 1.3 July 2021

 When compressing a Certificate message, the sender examines the
 cert_data field of each CertificateEntry. If the cert_data matches a
 value in the known certificates object, then the sender replaces the
 cert_data with the corresponding key. Decompression works the
 opposite way, replacing keys with values.

 Note that in this scheme, there is no signaling on the wire for
 whether a given cert_data value is compressed or uncompressed. Known
 certificates objects SHOULD be constructed in such a way as to avoid
 a uncompressed object being mistaken for compressed one and
 erroneously decompressed. For X.509, it is sufficient for the first
 byte of the compressed value (key) to have a value other than 0x30,
 since every X.509 certificate starts with this byte.

3.3. Record Layer

 The only cTLS records that are sent in plaintext are handshake
 records (ClientHello and ServerHello/HRR). The content type is
 therefore constant (it is always "handshake"), so we instead set the
 "content_type" field to a fixed cTLS-specific value to distinguish
 cTLS plaintext records from encrypted records, TLS/DTLS records, and
 other protocols using the same 5-tuple.

 The "profile_id" field allows the client and server to agree on which
 compression profile should be used for this session (see

Section 3.2). This field MUST be set to zero if and only if no
 compression profile is used. Non-zero values are negotiated out of
 band between the client and server, as part of the specification of
 the compression profile.

 struct {
 ContentType content_type = ctls_handshake;
 varint profile_id;
 opaque fragment<0..V>;
 } CTLSPlaintext;

 [[OPEN ISSUE: The profile_id is needed in the ClientHello to inform
 the server what compression profile to use. For a ServerHello this
 field is not required. Should we make this field optional?]]

 Encrypted records use DTLS 1.3 record framing, comprising a
 configuration octet followed by optional connection ID, sequence
 number, and length fields.

Rescorla, et al. Expires January 13, 2022 [Page 10]

Internet-Draft cTLS 1.3 July 2021

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0|0|1|C|S|L|E E|
 +-+-+-+-+-+-+-+-+
 | Connection ID | Legend:
 | (if any, |
 / length as / C - Connection ID (CID) present
 | negotiated) | S - Sequence number length
 +-+-+-+-+-+-+-+-+ L - Length present
 | 8 or 16 bit | E - Epoch
 |Sequence Number|
 | (if present) |
 +-+-+-+-+-+-+-+-+
 | 16 bit Length |
 | (if present) |
 +-+-+-+-+-+-+-+-+

 struct {
 opaque unified_hdr[variable];
 opaque encrypted_record[length];
 } CTLSCiphertext;

 The presence and size of the connection ID field is negotiated as in
 DTLS.

 As with DTLS, the length field MAY be omitted by clearing the L bit,
 which means that the record consumes the entire rest of the data in
 the lower level transport. In this case it is not possible to have
 multiple DTLSCiphertext format records without length fields in the
 same datagram. In stream-oriented transports (e.g., TCP), the length
 field MUST be present. For use over other transports length
 information may be inferred from the underlying layer.

 Normal DTLS does not provide a mechanism for suppressing the sequence
 number field entirely. In cases where a sequence number is not
 required (e.g., when a reliable transport is in use), a cTLS
 implementation may suppress it by setting the
 "suppressSequenceNumber" flag in the compression profile being used
 (see Section 3.2). When this flag is enabled, the S bit in the
 configuration octet MUST be cleared.

3.4. Handshake Layer

 The cTLS handshake framing is same as the TLS 1.3 handshake framing,
 except for two changes:

 o The length field is omitted.

Rescorla, et al. Expires January 13, 2022 [Page 11]

Internet-Draft cTLS 1.3 July 2021

 o The HelloRetryRequest message is a true handshake message instead
 of a specialization of ServerHello.

 struct {
 HandshakeType msg_type; /* handshake type */
 select (Handshake.msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 };
 } Handshake;

4. Handshake Messages

 In general, we retain the basic structure of each individual TLS
 handshake message. However, the following handshake messages have
 been modified for space reduction and cleaned up to remove pre-TLS
 1.3 baggage.

4.1. ClientHello

 The cTLS ClientHello is defined as follows.

 opaque Random[RandomLength]; // variable length

 struct {
 Random random;
 CipherSuite cipher_suites<1..V>;
 Extension extensions<1..V>;
 } ClientHello;

4.2. ServerHello

 We redefine ServerHello in the following way.

 struct {
 Random random;
 CipherSuite cipher_suite;
 Extension extensions<1..V>;
 } ServerHello;

Rescorla, et al. Expires January 13, 2022 [Page 12]

Internet-Draft cTLS 1.3 July 2021

4.3. HelloRetryRequest

 The HelloRetryRequest has the following format.

 struct {
 CipherSuite cipher_suite;
 Extension extensions<2..V>;
 } HelloRetryRequest;

 The HelloRetryRequest is the same as the ServerHello above but
 without the unnecessary sentinel Random value.

5. Examples

 This section provides some example specializations.

 For this example we use TLS 1.3 only with AES_GCM, X25519, ALPN h2,
 short random values, and everything else is ordinary TLS 1.3.

 {
 "Version" : 0x0304
 "Profile" : 1,
 "Version" : 772,
 "Random": 16,
 "CipherSuite" : "TLS_AES_128_GCM_SHA256",
 "DHGroup": "X25519",
 "Extensions": {
 "named_groups": 29,
 "application_layer_protocol_negotiation" : "030016832",
 "..." : null
 }
 }

 Version 772 corresponds to the hex representation 0x0304, named group
 "29" (0x001D) represents X25519.

 [[OPEN ISSUE: Should we have a registry of well-known profiles?]]

6. Security Considerations

 WARNING: This document is effectively brand new and has seen no
 analysis. The idea here is that cTLS is isomorphic to TLS 1.3, and
 therefore should provide equivalent security guarantees.

 The use of key ids is a new feature introduced in this document,
 which requires some analysis, especially as it looks like a potential
 source of identity misbinding. This is, however, entirely separable
 from the rest of the specification.

Rescorla, et al. Expires January 13, 2022 [Page 13]

Internet-Draft cTLS 1.3 July 2021

 Transcript expansion also needs some analysis and we need to
 determine whether we need an extension to indicate that cTLS is in
 use and with which profile.

7. IANA Considerations

 This document requests that a code point be allocated from the "TLS
 ContentType registry. This value must be in the range 0-31
 (inclusive). The row to be added in the registry has the following
 form:

 +-------+-------------+---------+-----------+
 | Value | Description | DTLS-OK | Reference |
 +-------+-------------+---------+-----------+
 | TBD | ctls | N | RFCXXXX |
 +-------+-------------+---------+-----------+

 [[RFC EDITOR: Please replace the value TBD with the value assigned
 by IANA, and the value XXXX to the RFC number assigned for this
 document.]]

 [[OPEN ISSUE: Should we require standards action for all profile IDs
 that would fit in 2 octets.]]

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Example Exchange

 The follow exchange illustrates a complete cTLS-based exchange
 supporting mutual authentication using certificates. The digital
 signatures use ECDSA with SHA256 and NIST P256r1. The ephemeral
 Diffie-Hellman uses the FX25519 curve and the exchange negotiates
 TLS-AES-128-CCM8-SHA256. The certificates are exchanged using
 certificate identifiers.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Rescorla, et al. Expires January 13, 2022 [Page 14]

Internet-Draft cTLS 1.3 July 2021

 The resulting byte counts are as follows:

 ECDHE

 TLS CTLS Overhead
 --- ---- --------
 ClientHello 132 36 4
 ServerHello 90 36 4
 ServerFlight 478 80 7
 ClientFlight 458 80 7
 ==================================
 Total 1158 232 22

 The following compression profile was used in this example:

 {
 "profile": 1,
 "version": 772,
 "cipherSuite": "TLS_AES_128_CCM_8_SHA256",
 "dhGroup": "X25519",
 "signatureAlgorithm": "ECDSA_P256_SHA256",
 "finishedSize": 8,
 "clientHelloExtensions": {
 "server_name": "000e00000b6578616d706c652e636f6d",
 },
 "certificateRequestExtensions": {
 "certificate_request_context": 0,
 "signature_algorithms": "00020403"
 },
 "mutualAuth": true,
 "extension-order": {
 "clientHelloExtensions": {
 Key_share
 },
 "ServerHelloExtensions": {
 Key_share
 },
 },

 "knownCertificates": {
 "61": "3082...",
 "62": "3082...",
 "63": "...",
 "64": "...",
 ...
 }
 }

Rescorla, et al. Expires January 13, 2022 [Page 15]

Internet-Draft cTLS 1.3 July 2021

 ClientHello: 36 bytes = DH(32) + Overhead(4)

 01 // ClientHello
 01 // Profile ID
 0020 a690...af948 // KeyShareEntry.key_exchange

 ServerHello: 36 = DH(32) + Overhead(4)

 02 // ServerHello
 26 // Extensions.length
 0020 9fbc...0f49 // KeyShareEntry.key_exchange

 Server Flight: 80 = SIG(64) + MAC(8) + CERTID(1) + Overhead(7)

 The EncryptedExtensions, and the CertificateRequest messages are
 omitted because they are empty.

 0b // Certificate
 03 // CertificateList
 01 // CertData.length
 61 // CertData = 'a'

 0f // CertificateVerify
 4064 // Signature.length
 3045...10ce // Signature

 14 // Finished
 bfc9d66715bb2b04 // VerifyData

 Client Flight: 80 bytes = SIG(64) + MAC(8) + CERTID(1) + Overhead(7)

 0b // Certificate
 03 // CertificateList
 01 // CertData.length
 62 // CertData = 'b'

 0f // CertificateVerify
 4064 // Signature.length
 3045...f60e // Signature

 14 // Finished
 35e9c34eec2c5dc1 // VerifyData

Rescorla, et al. Expires January 13, 2022 [Page 16]

Internet-Draft cTLS 1.3 July 2021

Acknowledgments

 We would like to thank Karthikeyan Bhargavan, Owen Friel, Sean
 Turner, Martin Thomson and Chris Wood.

Authors' Addresses

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

 Richard Barnes
 Cisco

 Email: rlb@ipv.sx

 Hannes Tschofenig
 Arm Limited

 Email: hannes.tschofenig@arm.com

Rescorla, et al. Expires January 13, 2022 [Page 17]

