
Internet Draft K. Jackson
Document: draft-ietf-tls-delegation-01.txt LBNL
 S. Tuecke
 D. Engert
 ANL
Expires: July 2001 Feburary 2002

TLS Delegation Protocol

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document specifies a delegation protocol for use with the
 Transport Layer Security (TLS) protocol. When the TLS session is
 using X.509 certificates for authentication, then the delegation is
 of an X.509 Proxy Certificate, as defined in draft-ggf-x509-proxy.
 When the TSL session is using Kerberos 5 for authentication, then
 the delegation is of a Kerberos 5 forwardable ticket, as defined in

RFC 1510.

Jackson, et. al. Expires February 2002 1
Internet Draft TLS Delegation Protocol July 2001

Table of Contents

 TLS Delegation Protocol..1
 Status of this Memo..1
 Abstract...1
 Table of Contents..2

1. Introduction...3

https://datatracker.ietf.org/doc/html/draft-ietf-tls-delegation-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ggf-x509-proxy
https://datatracker.ietf.org/doc/html/rfc1510

2. Assumed Session Properties...................................3
3. TLS Record Layer...3
4. Delegation Protocol..4
4.1. Delegation Protocol Overview................................4
4.2. Delegation Protocol Messages................................5
4.3. Delegation Init...5
4.4. Delegation Begin..6
4.5. Credential Request..6
4.6. Delegation Complete...7
4.7. Delegation Error..7
4.7.1. No Delegation...8
4.7.2. Unsupported Credential Type...............................8
4.7.3. Unsupported Version.......................................8
4.7.4. Delegation Denied...8
4.7.5. Invalid Session...9
5. Security Considerations......................................9
6. References...9
7. Acknowledgments..9
8. Contact Information..9

Jackson, et. al. Expires Feburary 2002 2
Internet Draft TLS Delegation Protocol July 2001

1. Introduction

 The TLS protocol, as defined in RFC 2246 [2], provides for
 authentication and data protection for communication between two
 entities. However, missing from the protocol is a way to perform
 delegation of a credential.

 This document defines extensions to the TLS protocol to allow it to
 perform delegation of a Proxy credential. When X.509 public key
 certificates are used, this delegation protocol will delegate a
 Proxy Certificate, as defined by draft-ggf-x509-proxy [5]. When
 Kerberos 5 is used, this delegation protocol will delegate a
 Kerberos 5 forwardable ticket, as defined by RFC 1510 [3].

 The motivation for proxies is discussed at length in draft-ggf-x509-
proxy, and therefore will not be discussed here.

Section 2 contains the assumptions this protocol makes about the
 underlying session established by TLS. Section 3 contains
 information about the necessary additions to the TLS Record Layer.

Section 4 contains a description of the proposed delegation
 protocol.

Section 5 discusses security considerations relating to this TLS
 Delegation Protocol. Section 6 contains the references. Section 7
 contains acknowledgements. Section 8 contains contact information

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/draft-ggf-x509-proxy
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/draft-ggf-x509-proxy
https://datatracker.ietf.org/doc/html/draft-ggf-x509-proxy

 for the authors.

 This document deals with the formatting of data in an external
 representation. The presentation language defined in RFC 2246 [2]
 will be used.

 This document was written under the auspices of the Global Grid
 Forum Security Working Group. For more information on this and
 other related work, see http://www.gridforum.org/security.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [1].

2. Assumed Session Properties

 This protocol relies on several properties of the underlying TLS
 session. In particular the protocol assumes that the communications
 channel is integrity checked, protects against man-in-the-middle
 attacks, and prevents replay attacks. In the case of PKI based
 delegation, the delegatee must have authenticated itself to the
 delegator. It is a fatal protocol error to attempt to initiate the
 delegation protocol in a session that does not meet these minimum
 requirements.

3. TLS Record Layer

Jackson, et. al. Expires Feburary 2002 3
Internet Draft TLS Delegation Protocol July 2001

 The TLS Protocol is a layered protocol. The TLS Record Protocol is
 the lowest layer. It provides the low-level message fragmentation,
 encryption/decryption, etc. Layered on top of this protocol are
 four record protocol clients: the handshake protocol, the alert
 protocol, the change cipher spec protocol, and the application data
 protocol. The delegation protocol is a fifth record protocol
 client. To support this the ContentType definition from section A.1
 of RFC 2246 becomes:

 enum { change_cipher_spec(20), alert(21),
 handshake(22), application_data(23),
 delegation(24), (255)
 } ContentType;

4. Delegation Protocol

 The TLS Delegation Protocol is a higher-level client of the TLS
 Record Protocol. This protocol is used to allow the initiator to
 delegate the ability to act on its behalf to the acceptor in the
 event that the acceptor must make a request to a third party on
 behalf of the initiator. In the case of X.509 certificate based

https://datatracker.ietf.org/doc/html/rfc2246
http://www.gridforum.org/security
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246

 delegation, the delegated credential will be a Proxy Certificate as
 defined by draft-ggf-x509-proxy. In the case of Kerberos 5 based
 delegation, the delegated credential will be a Kerberos 5
 forwardable ticket. Delegation request messages are supplied to the
 TLS Record Layer, where they are encapsulated within one or more
 TLSCiphertext structures, which are processed and transmitted as
 specified by the current active session state.

4.1. Delegation Protocol Overview

 The TLS Delegation Protocol involves the following steps:

 * Exchange delegation initiation messages and negotiate the
 credential type.

 * Create the delegated credential.

 Either the initiator or the acceptor may initiate the protocol. The
 acceptor optionally sends a DelegationInit message if it is
 initiating the protocol. The initiator sends a DelegationBegin
 message in response, or this message may be sent to initiate the
 protocol. The acceptor will now create an algorithm specific
 delegation request. It then sends a CredentialRequest message to
 the initiator containing the request. The initiator returns the
 resulting delegation credential to the acceptor in a
 DelegationComplete message. At this point, the delegation protocol
 is complete and the acceptor is in possession of a delegated
 credential. (See flow chart below.)

 Initiator Acceptor
 --------- --------
 <------- DelegationInit *
 DelegationBegin ------->

Jackson, et. al. Expires Feburary 2002 4
Internet Draft TLS Delegation Protocol July 2001

 <------- CredentialRequest
 DelegationComplete ------->

 * Indicates optional or situation-dependent messages that are not
 always sent.

4.2. Delegation Protocol Messages

 enum {
 delegation_init(8), delegation_begin(16),
 delegation_request(24), delegation_complete(32),
 delegation_error(40), (255)
 } DelegationType;

 struct {

https://datatracker.ietf.org/doc/html/draft-ggf-x509-proxy

 DelegationType msg_type; /* delegation type */
 uint24 length; /* bytes in message */
 select (DelegationType) {
 case delegation_init: DelegationInit;
 case delegation_begin: DelegationBegin;
 case credential_request: CredentialRequest;
 case delegation_complete: DelegationComplete;
 case delegation_error: DelegationError;
 } body;
 } Delegation;

4.3. Delegation Init

 When this message will be sent:
 The acceptor may send the delegation request message at any time.

 Meaning of this message:
 Delegation init is a notification to the initiator that the
 acceptor would like the initiator to initiate the delegation
 protocol. The initiator may ignore the message if it is
 unwilling to perform delegation at this time, or it may respond
 with a no delegation error message if unwilling to perform
 delegation. This message will contain the type of requested
 delegation credential. This allows for the ability to delegate a
 credential of a different type than was authenticated with. This
 may be useful if crossing authentication boundaries.

 After sending the delegation init message, acceptors should not
 repeat the request until the delegation protocol is complete.

 Structure of this message:
 enum {
 PKI(8), Kerberos(9),
 (255)
 } CredentialType;

 struct {
 opaque policy_list<0..??> [Not sure on the total size here]
 } PolicyList;

Jackson, et. al. Expires Feburary 2002 5
Internet Draft TLS Delegation Protocol July 2001

 struct {
 CredentialType requested_type;
 PolicyList policy_list;
 } DelegationInit;

 requested_type
 The type of delegation credential the acceptor is requesting.
 Currently supported types are PKI and Kerberos.

 policy_list
 An opaque structure that may contain policy information to be
 used by the initiator.

4.4. Delegation Begin

 When this message will be sent:
 The initiator may send this message at any time to initiate the
 protocol, or it will send this message in response to a
 delegation begin message.

 Structure of this message:
 struct {
 uint8 major, minor;
 } ProtocolVersion;

 struct {
 opaque policy_list<0..??> [Not sure on the total size here]
 } PolicyList;

 struct {
 ProtocolVersion initiator_version;
 CredentialType type;
 PolicyList policy_list;
 } DelegationBegin;

 initiator_version
 The version of the delegation protocol the initiator wishes to
 use. This should be the latest (highest valued) version
 supported by the initiator.

 type
 The type of delegation credential the initiator is willing to
 delegate. Currently supported types are PKI and Kerberos 5.

 policy_list
 An opaque structure that may contain policy information to be
 used by the acceptor when creating the credential request.

4.5. Credential Request

 When this message will be sent:

Jackson, et. al. Expires Feburary 2002 6
Internet Draft TLS Delegation Protocol July 2001

 The acceptor will send this message in response to the delegation
 begin message.

 Structure of this message:

 struct {
 ProtocolVersion acceptor_version;
 PolicyList policy_list;
 select (CredentialType) {
 case PKI:
 opaque CertReqMessage<1..?>;[Not sure of size]
 case Kerberos:
 opaque [Not sure what should go here, Doug?]
 };
 } CredentialRequest;

 acceptor_version
 The version of the delegation protocol the acceptor is using.
 This should be the latest (highest valued) version supported by
 both the initiator and acceptor.

 policy_list
 An opaque structure that may contain policy information to be
 used by the acceptor when creating the credential request.

 CertReqMessage
 A certificate request message as defined in draft-ietf-pkix-

rfc2511bis-00.txt [4].

4.6. Delegation Complete

 When this message will be sent:
 The initiator will send this message in response to the
 credential request message.

 Structure of this message:
 struct {
 select (CredentialType) {
 case PKI:
 opaque ASN.1Cert<0..2^24-1>;
 case Kerberos:
 opaque [I don't know what would go here, Doug?]
 };
 } DelegationComplete;

 ASN.1Cert
 An X.509 Proxy Certificate.

4.7. Delegation Error

 enum {
 no_delegation(8), unsupported_credential_type(16),
 unsupported_version(24), invalid_session(32), (255)
 } DelegationErrorType;

Jackson, et. al. Expires Feburary 2002 7

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rfc2511bis-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rfc2511bis-00.txt

Internet Draft TLS Delegation Protocol July 2001

 struct {
 DelegationErroryType msg_type;
 select (DelegationErrorType) {
 case no_delegation: NoDelegation;
 case unsupported_credential_type UnsupportedCredential;
 case unsupported_version UnsupportedVersion;
 case delegation_denied DelegationDenied;
 case invalid_session InvalidSession;
 };
 } DelegationError;

4.7.1. No Delegation

 When this message will be sent:
 The initiator, in response to a delegation init message, may send
 this if unwilling to delegate to this acceptor.

 Structure of this message:
 struct { } NoDelegation;

4.7.2. Unsupported Credential Type

 When this message will be sent:
 The initiator, in response to a delegation init message, may send
 this if it does not support the credential type the acceptor
 requested. The acceptor, in response to a delegation begin
 message, may send this if it does not support the credential type
 the initiator is willing to delegate.

 Structure of this message:
 struct { } UnsupportedCredential;

4.7.3. Unsupported Version

 When this message will be sent:
 The acceptor, in response to a delegation begin message, may send
 this message if it is unable to support the protocol version the
 initiator requested. The initiator, in response to a delegation
 request message, may send this if unable to support the protocol
 version the acceptor requested.

 Structure of this message:
 struct {} UnsupportedVersion;

4.7.4. Delegation Denied

 When this message will be sent:
 The initiator, in response to a credential request message, may
 send this if it is unwilling to generate the requested

 credential.

 Structure of this message:
 struct { } DelegationDenied;

Jackson, et. al. Expires Feburary 2002 8
Internet Draft TLS Delegation Protocol July 2001

4.7.5. Invalid Session

 When this message will be sent:
 Either the initiator or acceptor must send this message if it
 receives a delegation message while the current session does not
 support the minimum requirements of the protocol.

 Structure of this message:
 struct { } InvalidSession;

5. Security Considerations

 Security issues are discussed throughout this memo.

6. References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels," BCP 14, RFC 2119, March 1997.

 [2] Dierks, T. and C. Allen, "The TLS Protocol, Version 1.0," RFC
2246, January 1999.

 [3] Kohl, J. and C. Neuman, "The Kerberos Network Authentication
 Service (V5)," RFC 1510, September 1993.

 [4] Myers, M., C. Adams, D. Solo, and D. Kemp, "Certificate Request
 Message Format (CRMF)," Internet Draft draft-ietf-pkix-

rfc2511bis-00.txt, November 2000.

 [5] Tuecke, S., D. Engert, and M. Thompson, "Internet X.509 Public
 Key Infrastructure Proxy Certificate Profile," Internet Draft

draft-ggf-x509-Proxy-05.txt, February 2001.

7. Acknowledgments

 We are grateful to numerous colleagues for discussions on the topics
 covered in this paper, in particular (in alphabetical order, with
 apologies to anybody we've missed): Joe Bester, Randy Butler,
 Olivier Chevassut, William Johnston, Carl Kessleman, Ian Foster,
 Marty Humphrey, Clifford Neuman, Mary Thompson, Gene Tsudik, and Von
 Welch.

 This work was supported in part by the Mathematical, Information,

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rfc2511bis-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rfc2511bis-00.txt
https://datatracker.ietf.org/doc/html/draft-ggf-x509-Proxy-05.txt

 and Computational Sciences Division subprogram of the Office of
 Advanced Scientific Computing Research, U.S. Department of Energy,
 under Contract W-31-109-Eng-38 and under Contract DE-AC03-76SF00098
 with the University of California; by the Defense Advanced Research
 Projects Agency under contract N66001-96-C-8523; by the National
 Science Foundation; and by the NASA Information Power Grid project.

8. Contact Information

Jackson, et. al. Expires Feburary 2002 9
Internet Draft TLS Delegation Protocol July 2001

 Keith R. Jackson
 Lawrence Berkeley National Laboratory
 Berkeley, CA 94702
 Phone: 510-486-4401
 Email: KRJackson@lbl.gov

 Steven Tuecke
 Distributed Systems Laboratory
 Mathematics and Computer Science Division
 Argonne National Laboratory
 Argonne, IL 60439
 Email: tuecke@mcs.anl.gov

 Doug Engert
 Argonne National Laboratory
 Argonne, IL 60439
 Email: deengert@anl.gov

Jackson, et. al. Expires Feburary 2002 10

