
Workgroup: TLS

Internet-Draft: draft-ietf-tls-dtls-rrc-06

Updates: 6347, 9147 (if approved)

Published: 6 July 2022

Intended Status: Standards Track

Expires: 7 January 2023

Authors: H. Tschofenig, Ed.

Arm Limited

A. Kraus T. Fossati

Arm Limited

Return Routability Check for DTLS 1.2 and DTLS 1.3

Abstract

This document specifies a return routability check for use in

context of the Connection ID (CID) construct for the Datagram

Transport Layer Security (DTLS) protocol versions 1.2 and 1.3.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Transport Layer

Security Working Group mailing list (tls@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/tls/.

Source for this draft and an issue tracker can be found at https://

github.com/tlswg/dtls-rrc.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6347
https://www.rfc-editor.org/rfc/rfc9147
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/tlswg/dtls-rrc
https://github.com/tlswg/dtls-rrc
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. RRC Extension

4. Return Routability Check Message Types

5. RRC and CID Interplay

6. Attacker Model

6.1. Amplification

6.2. Off-Path Packet Forwarding

7. Path Validation Procedure

7.1. Basic

7.2. Enhanced

7.3. Path Challenge Requirements

7.4. Path Response/Drop Requirements

7.5. Timer Choice

8. Example

9. Security and Privacy Considerations

10. IANA Considerations

10.1. New TLS ContentType

10.2. New TLS ExtensionType

10.3. New RRC Message Type Sub-registry

11. Open Issues

12. Acknowledgments

13. References

13.1. Normative References

13.2. Informative References

Appendix A. History

Authors' Addresses

1. Introduction

In "classical" DTLS, selecting a security context of an incoming

DTLS record is accomplished with the help of the 5-tuple, i.e.

source IP address, source port, transport protocol, destination IP

address, and destination port. Changes to this 5 tuple can happen

for a variety reasons over the lifetime of the DTLS session. In the

IoT context, NAT rebinding is common with sleepy devices. Other

examples include end host mobility and multi-homing. Without CID, if

¶

https://trustee.ietf.org/license-info

the source IP address and/or source port changes during the lifetime

of an ongoing DTLS session then the receiver will be unable to

locate the correct security context. As a result, the DTLS handshake

has to be re-run. Of course, it is not necessary to re-run the full

handshake if session resumption is supported and negotiated.

A CID is an identifier carried in the record layer header of a DTLS

datagram that gives the receiver additional information for

selecting the appropriate security context. The CID mechanism has

been specified in [RFC9146] for DTLS 1.2 and in [RFC9147] for DTLS

1.3.

Section 6 of [RFC9146] describes how the use of CID increases the

attack surface by providing both on-path and off-path attackers an

opportunity for (D)DoS. It then goes on describing the steps a DTLS

principal must take when a record with a CID is received that has a

source address (and/or port) different from the one currently

associated with the DTLS connection. However, the actual mechanism

for ensuring that the new peer address is willing to receive and

process DTLS records is left open. This document standardizes a

return routability check (RRC) as part of the DTLS protocol itself.

The return routability check is performed by the receiving peer

before the CID-to-IP address/port binding is updated in that peer's

session state database. This is done in order to provide more

confidence to the receiving peer that the sending peer is reachable

at the indicated address and port.

Note however that, irrespective of CID, if RRC has been successfully

negotiated by the peers, path validation can be used at any time by

either endpoint. For instance, an endpoint might use RRC to check

that a peer is still in possession of its address after a period of

quiescence.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document assumes familiarity with the CID format and protocol

defined for DTLS 1.2 [RFC9146] and for DTLS 1.3 [RFC9147]. The

presentation language used in this document is described in Section

4 of [RFC8446].

This document reuses the definition of "anti-amplification limit"

from [RFC9000] to mean three times the amount of data received from

¶

¶

¶

¶

¶

¶

¶

an unvalidated address. This includes all DTLS records originating

from that source address, excluding discarded ones.

3. RRC Extension

The use of RRC is negotiated via the rrc DTLS-only extension. On

connecting, the client includes the rrc extension in its ClientHello

if it wishes to use RRC. If the server is capable of meeting this

requirement, it responds with a rrc extension in its ServerHello.

The extension_type value for this extension is TBD1 and the

extension_data field of this extension is empty. The client and

server MUST NOT use RRC unless both sides have successfully

exchanged rrc extensions.

Note that the RRC extension applies to both DTLS 1.2 and DTLS 1.3.

4. Return Routability Check Message Types

This document defines the return_routability_check content type

(Figure 1) to carry Return Routability Check protocol messages.

The protocol consists of three message types: path_challenge,

path_response and path_drop that are used for path validation and

selection as described in Section 7.

Each message carries a Cookie, a 8-byte field containing arbitrary

data.

The return_routability_check message MUST be authenticated and

encrypted using the currently active security context.

¶

¶

¶

¶

¶

¶

¶

enum {

 invalid(0),

 change_cipher_spec(20),

 alert(21),

 handshake(22),

 application_data(23),

 heartbeat(24), /* RFC 6520 */

 tls12_cid(25), /* RFC 9146, DTLS 1.2 only */

 return_routability_check(TBD2), /* NEW */

 (255)

} ContentType;

uint64 Cookie;

enum {

 path_challenge(0),

 path_response(1),

 path_drop(2),

 (255)

} rrc_msg_type;

struct {

 rrc_msg_type msg_type;

 select (return_routability_check.msg_type) {

 case path_challenge: Cookie;

 case path_response: Cookie;

 case path_drop: Cookie;

 };

} return_routability_check;

Figure 1: Return Routability Check Message

Future extensions or additions to the Return Routability Check

protocol may define new message types. Implementations MUST be able

to parse and ignore messages with an unknown msg_type.

5. RRC and CID Interplay

RRC offers an in-protocol mechanism to perform peer address

validation that complements the "peer address update" procedure

described in Section 6 of [RFC9146]. Specifically, when both CID

[RFC9146] and RRC have been successfully negotiated for the session,

if a record with CID is received that has the source address of the

enclosing UDP datagram different from the one currently associated

with that CID value, the receiver SHOULD perform a return

routability check as described in Section 7, unless an application

layer specific address validation mechanism can be triggered

instead.

¶

¶

https://rfc-editor.org/rfc/rfc9146#section-6

6. Attacker Model

We define two classes of attackers, off-path and on-path, with

increasing capabilities (see Figure 2) partly following terminology

introduced in QUIC [RFC9000]:

An off-path attacker is not on the original path between the DTLS

peers, but is able to observe packets on the original path and

has faster routing compared to the DTLS peers, which allows it to

make copies of the observed packets, race its copies to either

peer and consistently win the race.

An on-path attacker is on the original path between the DTLS

peers and is therefore capable, compared to the off-path

attacker, to also drop and delay records at will.

Note that in general, attackers cannot craft DTLS records in a way

that would successfully pass verification due to the cryptographic

protections applied by the DTLS record layer.

Inspect un-encrypted portions

Inject
off-path

Reorder

Modify un-authenticated portions on-path

Delay

Drop

Manipulate the packetization layer

Figure 2: Attackers capabilities

RRC is designed to defend against the following attacks:

On-path and off-path attackers that try to create an

amplification attack by spoofing the source address of the victim

(Section 6.1).

Off-path attackers that try to put themselves on-path (Section

6.2), provided that the enhanced path validation algorithm is

used (Section 7.2).

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

6.1. Amplification

Both on-path and off-path attackers can send a packet (either by

modifying it on the fly, or by copying, injecting and racing it,

respectively) with the source address modified to that of a victim

host. If the traffic generated by the server in response is larger

compared to the received packet (e.g., a CoAP server returning an

MTU's worth of data from a 20-bytes GET request) the attacker can

use the server as a traffic amplifier toward the victim.

When receiving a packet with a known CID and a spoofed source

address, an RRC-capable endpoint will not send a (potentially large)

response but instead a small path_challenge message to the victim

host. Since the host is not able to decrypt it and generate a valid

path_response, the address validation fails, which in turn keeps the

original address binding unaltered.

Note that in case of an off-path attacker, the original packet still

reaches the intended destination; therefore, an implementation could

use a different strategy to mitigate the attack.

6.2. Off-Path Packet Forwarding

An off-path attacker that can observe packets might forward copies

of genuine packets to endpoints over a different path. If the copied

packet arrives before the genuine packet, this will appear as a path

change, like in a genuine NAT rebinding occurrence. Any genuine

packet will be discarded as a duplicate. If the attacker is able to

continue forwarding packets, it might be able to cause migration to

a path via the attacker. This places the attacker on-path, giving it

the ability to observe or drop all subsequent packets.

This style of attack relies on the attacker using a path that has

the same or better characteristics (e.g., due to a more favourable

service level agreements) as the direct path between endpoints. The

attack is more reliable if relatively few packets are sent or if

packet loss coincides with the attempted attack.

A data packet received on the original path that increases the

maximum received packet number will cause the endpoint to move back

to that path. Therefore, eliciting packets on this path increases

the likelihood that the attack is unsuccessful. Note however that,

unlike QUIC, DTLS has no "non-probing" packets so this would require

application specific mechanisms.

Figure 3 illustrates the case where a receiver receives a packet

with a new source IP address and/or new port number. In order to

determine whether this path change was not triggered by an off-path

attacker, the receiver will send a RRC message of type

path_challenge (1) on the old path.

¶

¶

¶

¶

¶

¶

¶

new old
path path

Receiver

Attacker?

Sender

Figure 3: Off-Path Packet Forwarding Scenario

Three cases need to be considered:

Case 1: The old path is dead (e.g., due to a NAT rebinding), which

leads to a timeout of (1).

As shown in Figure 4, a path_challenge (2) needs to be sent on the

new path. If the sender replies with a path_response on the new path

(3), the switch to the new path is considered legitimate.

¶

¶

¶

¶

new old
path path

Receiver
.
.

path- 3 . 1 path-
response . challenge

.

NAT X timeout

.
2 path- .

challenge .
.
.

Sender'

Figure 4: Old path is dead

Case 2: The old path is alive but not preferred.

This case is shown in Figure 5 whereby the sender replies with a

path_drop message (2) on the old path. This triggers the receiver to

send a path_challenge (3) on the new path. The sender will reply

with a path_response (4) on the new path, thus providing

confirmation for the path migration.

¶

¶

¶

new old
path path

Receiver

path- 4 path- 1
response challenge

AP/NAT A AP/NAT B

3 path- 2 path-
challenge drop

Sender

Figure 5: Old path is not preferred

Case 3: The old path is alive and preferred.

This is most likely the result of an off-path attacker trying to

place itself on path. The receiver sends a path_challenge on the old

path and the sender replies with a path_response (2) on the old

path. The interaction is shown in Figure 6. This results in the

connection not being migrated to the new path, thus thwarting the

attack.

¶

¶

¶

new old
path path

Receiver

1 path-
challenge

off-path AP / NAT
attacker

path- 2
response

Sender

Figure 6: Old path is preferred

Note that this defense is imperfect, but this is not considered a

serious problem. If the path via the attack is reliably faster than

the old path despite multiple attempts to use that old path, it is

not possible to distinguish between an attack and an improvement in

routing.

An endpoint could also use heuristics to improve detection of this

style of attack. For instance, NAT rebinding is improbable if

packets were recently received on the old path; similarly, rebinding

is rare on IPv6 paths. Endpoints can also look for duplicated

packets. Conversely, a change in connection ID is more likely to

indicate an intentional migration rather than an attack. Note that

changes in connection IDs are supported in DTLS 1.3 but not in DTLS

1.2.

7. Path Validation Procedure

The receiver that observes the peer's address or port update MUST

stop sending any buffered application data, or limit the data sent

to the unvalidated address to the anti-amplification limit.

It then initiates the return routability check that proceeds as

described either in Section 7.2 or Section 7.1, depending on whether

the off-path attacker scenario described in Section 6.2 is to be

taken into account or not.

¶

¶

¶

¶

¶

(The decision on what strategy to choose depends mainly on the

threat model, but may also be influenced by other considerations.

Examples of impacting factors include: the need to minimise

implementation complexity, privacy concerns, the need to reduce the

time it takes to switch path. The choice may be offered as a

configuration option to the user.)

After the path validation procedure is completed, any pending send

operation is resumed to the bound peer address.

Section 7.3 and Section 7.4 list the requirements for the initiator

and responder roles, broken down per protocol phase.

7.1. Basic

The receiver creates a return_routability_check message of type

path_challenge and places the unpredictable cookie into the

message.

The message is sent to the observed new address and a timer T

(see Section 7.5) is started.

The peer endpoint cryptographically verifies the received

return_routability_check message of type path_challenge and

responds by echoing the cookie value in a

return_routability_check message of type path_response.

When the initiator receives the return_routability_check

message of type path_response and verifies that it contains the

sent cookie, it updates the peer address binding.

If T expires the peer address binding is not updated.

7.2. Enhanced

The receiver creates a return_routability_check message of type

path_challenge and places the unpredictable cookie into the

message.

The message is sent to the previously valid address, which

corresponds to the old path. Additionally, a timer T, see

Section 7.5, is started.

If the path is still functional, the peer endpoint

cryptographically verifies the received

return_routability_check message of type path_challenge. The

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

1.

¶

2.

¶

3.

action to be taken depends on whether the path through which

the message was received is the preferred one or not anymore:

If the path through which the message was received is

preferred, a return_routability_check message of type

path_response MUST be returned.

If the path through which the message was received is not

preferred, a return_routability_check message of type

path_drop MUST be returned. In either case, the peer

endpoint echoes the cookie value in the response.

The initiator receives and verifies that the

return_routability_check message contains the previously sent

cookie. The actions taken by the initiator differ based on the

received message:

When a return_routability_check message of type

path_response was received, the initiator MUST continue

using the previously valid address, i.e. no switch to the

new path takes place and the peer address binding is not

updated.

When a return_routability_check message of type path_drop

was received, the initiator MUST perform a return

routability check on the observed new address, as described

in Section 7.1.

If T expires the peer address binding is not updated. In this

case, the initiator MUST perform a return routability check on

the observed new address, as described in Section 7.1.

7.3. Path Challenge Requirements

The initiator MAY send multiple return_routability_check messages

of type path_challenge to cater for packet loss on the probed

path.

Each path_challenge SHOULD go into different transport

packets. (Note that the DTLS implementation may not have

control over the packetization done by the transport layer.)

The transmission of subsequent path_challenge messages SHOULD

be paced to decrease the chance of loss.

Each path_challenge message MUST contain random data.

The initiator MAY use padding using the record padding mechanism

available in DTLS 1.3 (and in DTLS 1.2, when CID is enabled on

the sending direction) up to the anti-amplification limit to

¶

*

¶

*

¶

4.

¶

*

¶

*

¶

5.

¶

*

¶

-

¶

-

¶

- ¶

*

probe if the path MTU (PMTU) for the new path is still

acceptable.

7.4. Path Response/Drop Requirements

The responder MUST NOT delay sending an elicited path_response or

path_drop messages.

The responder MUST send exactly one path_response or path_drop

message for each received path_challenge.

The responder MUST send the path_response or the path_drop on the

path where the corresponding path_challenge has been received, so

that validation succeeds only if the path is functional in both

directions. The initiator MUST NOT enforce this behaviour.

The initiator MUST silently discard any invalid path_response or

path_drop it receives.

Note that RRC does not cater for PMTU discovery on the reverse path.

If the responder wants to do PMTU discovery using RRC, it should

initiate a new path validation procedure.

7.5. Timer Choice

When setting T, implementations are cautioned that the new path

could have a longer round-trip time (RTT) than the original.

In settings where there is external information about the RTT of the

active path, implementations SHOULD use T = 3xRTT.

If an implementation has no way to obtain information regarding the

RTT of the active path, a value of 1s SHOULD be used.

Profiles for specific deployment environments -- for example,

constrained networks [I-D.ietf-uta-tls13-iot-profile] -- MAY specify

a different, more suitable value.

8. Example

The example TLS 1.3 handshake shown in Figure 7 shows a client and a

server negotiating the support for CID and for the RRC extension.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

Figure 7: Message Flow for Full TLS Handshake

Once a connection has been established the client and the server

exchange application payloads protected by DTLS with an unilaterally

used CIDs. In our case, the client is requested to use CID 100 for

records sent to the server.

At some point in the communication interaction the IP address used

by the client changes and, thanks to the CID usage, the security

context to interpret the record is successfully located by the

server. However, the server wants to test the reachability of the

client at his new IP address.

 Client Server

Key ^ ClientHello

Exch | + key_share

 | + signature_algorithms

 | + rrc

 v + connection_id=empty

 -------->

 ServerHello ^ Key

 + key_share | Exch

 + connection_id=100 |

 + rrc v

 {EncryptedExtensions} ^ Server

 {CertificateRequest} v Params

 {Certificate} ^

 {CertificateVerify} | Auth

 <-------- {Finished} v

 ^ {Certificate}

Auth | {CertificateVerify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

 + Indicates noteworthy extensions sent in the

 previously noted message.

 * Indicates optional or situation-dependent

 messages/extensions that are not always sent.

 {} Indicates messages protected using keys

 derived from a [sender]_handshake_traffic_secret.

 [] Indicates messages protected using keys

 derived from [sender]_application_traffic_secret_N.

¶

¶

Figure 8: Return Routability Example

 Client Server

 ------ ------

 Application Data ========>

 <CID=100>

 Src-IP=A

 Dst-IP=Z

 <======== Application Data

 Src-IP=Z

 Dst-IP=A

 <<------------->>

 << Some >>

 << Time >>

 << Later >>

 <<------------->>

 Application Data ========>

 <CID=100>

 Src-IP=B

 Dst-IP=Z

 <<< Unverified IP

 Address B >>

 <-------- Return Routability Check

 path_challenge(cookie)

 Src-IP=Z

 Dst-IP=B

 Return Routability Check -------->

 path_response(cookie)

 Src-IP=B

 Dst-IP=Z

 <<< IP Address B

 Verified >>

 <======== Application Data

 Src-IP=Z

 Dst-IP=B

9. Security and Privacy Considerations

Note that the return routability checks do not protect against

flooding of third-parties if the attacker is on-path, as the

attacker can redirect the return routability checks to the real peer

(even if those datagrams are cryptographically authenticated). On-

path adversaries can, in general, pose a harm to connectivity.

When using DTLS 1.3, peers SHOULD avoid using the same CID on

multiple network paths, in particular when initiating connection

migration or when probing a new network path, as described in

Section 7, as an adversary can otherwise correlate the communication

interaction across those different paths. DTLS 1.3 provides

mechanisms to ensure that a new CID can always be used. In general,

an endpoint should proactively send a RequestConnectionId message to

ask for new CIDs as soon as the pool of spare CIDs is depleted (or

goes below a threshold). Also, in case a peer might have exhausted

available CIDs, a migrating endpoint could include NewConnectionId

in packets sent on the new path to make sure that the subsequent

path validation can use fresh CIDs.

Note that DTLS 1.2 does not offer the ability to request new CIDs

during the session lifetime since CIDs have the same life-span of

the connection. Therefore, deployments that use DTLS in multihoming

environments SHOULD refuse to use CIDs with DTLS 1.2 and switch to

DTLS 1.3 if the correlation privacy threat is a concern.

10. IANA Considerations

RFC Editor: please replace RFCthis with this RFC number and remove

this note.

10.1. New TLS ContentType

IANA is requested to allocate an entry to the TLS ContentType

registry, for the return_routability_check(TBD2) message defined in

this document. The return_routability_check content type is only

applicable to DTLS 1.2 and 1.3.

10.2. New TLS ExtensionType

IANA is requested to allocate the extension code point (TBD1) for

the rrc extension to the TLS ExtensionType Values registry as

described in Table 1.

Value Extension Name TLS 1.3 DTLS-Only Recommended Reference

TBD1 rrc CH, SH Y N RFCthis

Table 1: rrc entry in the TLS ExtensionType Values registry

¶

¶

¶

¶

¶

¶

Value:

Description:

DTLS-Only:

Reference:

[IANA.tls-parameters]

10.3. New RRC Message Type Sub-registry

IANA is requested to create a new sub-registry for RRC Message Types

in the TLS Parameters registry [IANA.tls-parameters], with the

policy "expert review" [RFC8126].

Each entry in the registry must include:

A number in the range from 0 to 255 (decimal)

a brief description of the message

RRC is only available in DTLS, therefore this column will be set

to Y for all the entries in this registry

a reference document

The initial state of this sub-registry is as follows:

Value Description DTLS-Only Reference

0 path_challenge Y RFCthis

1 path_response Y RFCthis

2 path_drop Y RFCthis

3-255 Unassigned

Table 2: Initial Entries in RRC Message Type

registry

11. Open Issues

Issues against this document are tracked at https://github.com/

tlswg/dtls-rrc/issues

12. Acknowledgments

We would like to thank Achim Kraus, Hanno Becker, Hanno Boeck,

Manuel Pegourie-Gonnard, Mohit Sahni and Rich Salz for their input

to this document.

13. References

13.1. Normative References

IANA, "Transport Layer Security (TLS)

Parameters", <https://www.iana.org/assignments/tls-

parameters>.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/tls-parameters
https://www.iana.org/assignments/tls-parameters

[RFC2119]

[RFC8126]

[RFC8174]

[RFC8446]

[RFC9146]

[RFC9147]

[I-D.ietf-uta-tls13-iot-profile]

[RFC9000]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Rescorla, E., Ed., Tschofenig, H., Ed., Fossati, T., and

A. Kraus, "Connection Identifier for DTLS 1.2", RFC 9146,

DOI 10.17487/RFC9146, March 2022, <https://www.rfc-

editor.org/rfc/rfc9146>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/rfc/rfc9147>.

13.2. Informative References

Tschofenig, H. and T. Fossati,

"TLS/DTLS 1.3 Profiles for the Internet of Things", Work

in Progress, Internet-Draft, draft-ietf-uta-tls13-iot-

profile-04, 7 March 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-uta-tls13-iot-profile-04>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Appendix A. History

RFC EDITOR: PLEASE REMOVE THIS SECTION

draft-ietf-tls-dtls-rrc-06

Add Achim as co-author

¶

¶

* ¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc9146
https://www.rfc-editor.org/rfc/rfc9146
https://www.rfc-editor.org/rfc/rfc9147
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-04
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-04
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000

Added IANA registry for RRC message types (#14)

Small fix in the path validation algorithm (#15)

Renamed path_delete to path_drop (#16)

Added an "attacker model" section (#17, #31, #44, #45, #48)

Add criteria for choosing between basic and enhanced path

validation (#18)

Reorganise Section 4 a bit (#19)

Small fix in Path Response/Drop Requirements section (#20)

Add privacy considerations wrt CID reuse (#30)

draft-ietf-tls-dtls-rrc-05

Added text about off-path packet forwarding

draft-ietf-tls-dtls-rrc-04

Re-submitted draft to fix references

draft-ietf-tls-dtls-rrc-03

Added details for challenge-response exchange

draft-ietf-tls-dtls-rrc-02

Undo the TLS flags extension for negotiating RRC, use a new

extension type

draft-ietf-tls-dtls-rrc-01

Use the TLS flags extension for negotiating RRC

Enhanced IANA consideration section

Expanded example section

Revamp message layout:

Use 8-byte fixed size cookies

Explicitly separate path challenge from response

draft-ietf-tls-dtls-rrc-00

Draft name changed after WG adoption

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

- ¶

- ¶

¶

* ¶

draft-tschofenig-tls-dtls-rrc-01

Removed text that overlapped with draft-ietf-tls-dtls-connection-

id

draft-tschofenig-tls-dtls-rrc-00

Initial version

Authors' Addresses

Hannes Tschofenig (editor)

Arm Limited

Email: hannes.tschofenig@arm.com

Achim Kraus

Email: achimkraus@gmx.net

Thomas Fossati

Arm Limited

Email: thomas.fossati@arm.com

¶

*

¶

¶

* ¶

mailto:hannes.tschofenig@arm.com
mailto:achimkraus@gmx.net
mailto:thomas.fossati@arm.com

	Return Routability Check for DTLS 1.2 and DTLS 1.3
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. RRC Extension
	4. Return Routability Check Message Types
	5. RRC and CID Interplay
	6. Attacker Model
	6.1. Amplification
	6.2. Off-Path Packet Forwarding

	7. Path Validation Procedure
	7.1. Basic
	7.2. Enhanced
	7.3. Path Challenge Requirements
	7.4. Path Response/Drop Requirements
	7.5. Timer Choice

	8. Example
	9. Security and Privacy Considerations
	10. IANA Considerations
	10.1. New TLS ContentType
	10.2. New TLS ExtensionType
	10.3. New RRC Message Type Sub-registry

	11. Open Issues
	12. Acknowledgments
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. History
	Authors' Addresses

