
TLS E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 6347 (if approved) H. Tschofenig
Intended status: Standards Track Arm Limited
Expires: May 22, 2020 N. Modadugu
 Google, Inc.
 November 19, 2019

The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
draft-ietf-tls-dtls13-34

Abstract

 This document specifies Version 1.3 of the Datagram Transport Layer
 Security (DTLS) protocol. DTLS 1.3 allows client/server applications
 to communicate over the Internet in a way that is designed to prevent
 eavesdropping, tampering, and message forgery.

 The DTLS 1.3 protocol is intentionally based on the Transport Layer
 Security (TLS) 1.3 protocol and provides equivalent security
 guarantees with the exception of order protection/non-replayability.
 Datagram semantics of the underlying transport are preserved by the
 DTLS protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 22, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Rescorla, et al. Expires May 22, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft DTLS 1.3 November 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 4
3. DTLS Design Rationale and Overview 5
3.1. Packet Loss . 6
3.2. Reordering . 7
3.3. Message Size . 7
3.4. Replay Detection . 7

4. The DTLS Record Layer . 7
4.1. Determining the Header Format 11
4.2. Sequence Number and Epoch 11
4.2.1. Processing Guidelines 11
4.2.2. Reconstructing the Sequence Number and Epoch 12
4.2.3. Sequence Number Encryption 13

4.3. Transport Layer Mapping 14
4.4. PMTU Issues . 14
4.5. Record Payload Protection 16
4.5.1. Anti-Replay . 16
4.5.2. Handling Invalid Records 17

5. The DTLS Handshake Protocol 17
5.1. Denial-of-Service Countermeasures 18
5.2. DTLS Handshake Message Format 21
5.3. ClientHello Message 22
5.4. Handshake Message Fragmentation and Reassembly 23
5.5. End Of Early Data . 24

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Rescorla, et al. Expires May 22, 2020 [Page 2]

Internet-Draft DTLS 1.3 November 2019

5.6. DTLS Handshake Flights 24
5.7. Timeout and Retransmission 28
5.7.1. State Machine . 28
5.7.2. Timer Values . 30

5.8. CertificateVerify and Finished Messages 31
5.9. Cryptographic Label Prefix 31
5.10. Alert Messages . 31

 5.11. Establishing New Associations with Existing Parameters . 31
6. Example of Handshake with Timeout and Retransmission 32
6.1. Epoch Values and Rekeying 34

7. ACK Message . 36
7.1. Sending ACKs . 37
7.2. Receiving ACKs . 38

8. Key Updates . 38
9. Connection ID Updates . 38
9.1. Connection ID Example 40

10. Application Data Protocol 42
11. Security Considerations 42
12. Changes to DTLS 1.2 . 43
13. IANA Considerations . 44
14. References . 44
14.1. Normative References 44
14.2. Informative References 45

Appendix A. Protocol Data Structures and Constant Values 47
A.1. Record Layer . 47
A.2. Handshake Protocol 47
A.3. ACKs . 49
A.4. Connection ID Management 49

Appendix B. History . 49
Appendix C. Working Group Information 50
Appendix D. Contributors . 51

 Authors' Addresses . 51

1. Introduction

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

 The source for this draft is maintained in GitHub. Suggested changes
 should be submitted as pull requests at https://github.com/tlswg/

dtls13-spec. Instructions are on that page as well. Editorial
 changes can be managed in GitHub, but any substantive change should
 be discussed on the TLS mailing list.

 The primary goal of the TLS protocol is to provide privacy and data
 integrity between two communicating peers. The TLS protocol is
 composed of two layers: the TLS Record Protocol and the TLS Handshake
 Protocol. However, TLS must run over a reliable transport channel -
 typically TCP [RFC0793].

https://github.com/tlswg/dtls13-spec
https://github.com/tlswg/dtls13-spec
https://datatracker.ietf.org/doc/html/rfc0793

Rescorla, et al. Expires May 22, 2020 [Page 3]

Internet-Draft DTLS 1.3 November 2019

 There are applications that use UDP [RFC0768] as a transport and to
 offer communication security protection for those applications the
 Datagram Transport Layer Security (DTLS) protocol has been designed.
 DTLS is deliberately designed to be as similar to TLS as possible,
 both to minimize new security invention and to maximize the amount of
 code and infrastructure reuse.

 DTLS 1.0 [RFC4347] was originally defined as a delta from TLS 1.1
 [RFC4346] and DTLS 1.2 [RFC6347] was defined as a series of deltas to
 TLS 1.2 [RFC5246]. There is no DTLS 1.1; that version number was
 skipped in order to harmonize version numbers with TLS. This
 specification describes the most current version of the DTLS protocol
 based on TLS 1.3 [TLS13].

 Implementations that speak both DTLS 1.2 and DTLS 1.3 can
 interoperate with those that speak only DTLS 1.2 (using DTLS 1.2 of
 course), just as TLS 1.3 implementations can interoperate with TLS
 1.2 (see Appendix D of [TLS13] for details). While backwards
 compatibility with DTLS 1.0 is possible the use of DTLS 1.0 is not
 recommended as explained in Section 3.1.2 of RFC 7525 [RFC7525].

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used:

 - client: The endpoint initiating the DTLS connection.

 - connection: A transport-layer connection between two endpoints.

 - endpoint: Either the client or server of the connection.

 - handshake: An initial negotiation between client and server that
 establishes the parameters of their transactions.

 - peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 - receiver: An endpoint that is receiving records.

 - sender: An endpoint that is transmitting records.

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7525#section-3.1.2
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Rescorla, et al. Expires May 22, 2020 [Page 4]

Internet-Draft DTLS 1.3 November 2019

 - session: An association between a client and a server resulting
 from a handshake.

 - server: The endpoint which did not initiate the DTLS connection.

 - CID: Connection ID

 The reader is assumed to be familiar with the TLS 1.3 specification
 since this document is defined as a delta from TLS 1.3. As in TLS
 1.3 the HelloRetryRequest has the same format as a ServerHello
 message but for convenience we use the term HelloRetryRequest
 throughout this document as if it were a distinct message.

 Figures in this document illustrate various combinations of the DTLS
 protocol exchanges and the symbols have the following meaning:

 - '+' indicates noteworthy extensions sent in the previously noted
 message.

 - '*' indicates optional or situation-dependent messages/extensions
 that are not always sent.

 - '{}' indicates messages protected using keys derived from a
 [sender]_handshake_traffic_secret.

 - '[]' indicates messages protected using keys derived from
 traffic_secret_N.

3. DTLS Design Rationale and Overview

 The basic design philosophy of DTLS is to construct "TLS over
 datagram transport". Datagram transport does not require nor provide
 reliable or in-order delivery of data. The DTLS protocol preserves
 this property for application data. Applications such as media
 streaming, Internet telephony, and online gaming use datagram
 transport for communication due to the delay-sensitive nature of
 transported data. The behavior of such applications is unchanged
 when the DTLS protocol is used to secure communication, since the
 DTLS protocol does not compensate for lost or reordered data traffic.

 TLS cannot be used directly in datagram environments for the
 following five reasons:

 1. TLS relies on an implicit sequence number on records. If a
 record is not received, then the recipient will use the wrong
 sequence number when attempting to remove record protection from
 subsequent records. DTLS solves this problem by adding sequence
 numbers.

Rescorla, et al. Expires May 22, 2020 [Page 5]

Internet-Draft DTLS 1.3 November 2019

 2. The TLS handshake is a lock-step cryptographic handshake.
 Messages must be transmitted and received in a defined order; any
 other order is an error. DTLS handshake messages are also
 assigned sequence numbers to enable reassembly in the correct
 order in case datagrams are lost or reordered.

 3. During the handshake, messages are implicitly acknowledged by
 other handshake messages, but the last flight of messages and
 post-handshake messages (such as the NewSessionTicket message) do
 not result in any direct response that would allow the sender to
 detect loss. DTLS adds an acknowledgment message to enable
 better loss recovery.

 4. Handshake messages are potentially larger than can be contained
 in a single datagram. DTLS adds fields to handshake messages to
 support fragmentation and reassembly.

 5. Datagram transport protocols, like UDP, are susceptible to
 abusive behavior effecting denial of service attacks against
 nonparticipants. DTLS adds a return-routability check that uses
 the TLS HelloRetryRequest message (see Section 5.1 for details).

3.1. Packet Loss

 DTLS uses a simple retransmission timer to handle packet loss.
 Figure 1 demonstrates the basic concept, using the first phase of the
 DTLS handshake:

 Client Server
 ------ ------
 ClientHello ------>

 X<-- HelloRetryRequest
 (lost)

 [Timer Expires]

 ClientHello ------>
 (retransmit)

 Figure 1: DTLS retransmission example

 Once the client has transmitted the ClientHello message, it expects
 to see a HelloRetryRequest or a ServerHello from the server.
 However, if the server's message is lost, the client knows that
 either the ClientHello or the response from the server has been lost
 and retransmits. When the server receives the retransmission, it
 knows to retransmit.

Rescorla, et al. Expires May 22, 2020 [Page 6]

Internet-Draft DTLS 1.3 November 2019

 The server also maintains a retransmission timer and retransmits when
 that timer expires.

 Note that timeout and retransmission do not apply to the
 HelloRetryRequest since this would require creating state on the
 server. The HelloRetryRequest is designed to be small enough that it
 will not itself be fragmented, thus avoiding concerns about
 interleaving multiple HelloRetryRequests.

3.2. Reordering

 In DTLS, each handshake message is assigned a specific sequence
 number. When a peer receives a handshake message, it can quickly
 determine whether that message is the next message it expects. If it
 is, then it processes it. If not, it queues it for future handling
 once all previous messages have been received.

3.3. Message Size

 TLS and DTLS handshake messages can be quite large (in theory up to
 2^24-1 bytes, in practice many kilobytes). By contrast, UDP
 datagrams are often limited to less than 1500 bytes if IP
 fragmentation is not desired. In order to compensate for this
 limitation, each DTLS handshake message may be fragmented over
 several DTLS records, each of which is intended to fit in a single
 UDP datagram. Each DTLS handshake message contains both a fragment
 offset and a fragment length. Thus, a recipient in possession of all
 bytes of a handshake message can reassemble the original unfragmented
 message.

3.4. Replay Detection

 DTLS optionally supports record replay detection. The technique used
 is the same as in IPsec AH/ESP, by maintaining a bitmap window of
 received records. Records that are too old to fit in the window and
 records that have previously been received are silently discarded.
 The replay detection feature is optional, since packet duplication is
 not always malicious, but can also occur due to routing errors.
 Applications may conceivably detect duplicate packets and accordingly
 modify their data transmission strategy.

4. The DTLS Record Layer

 The DTLS record layer is different from the TLS 1.3 record layer.

 1. The DTLSCiphertext structure omits the superfluous version number
 and type fields.

Rescorla, et al. Expires May 22, 2020 [Page 7]

Internet-Draft DTLS 1.3 November 2019

 2. DTLS adds an epoch and sequence number to the TLS record header.
 This sequence number allows the recipient to correctly verify the
 DTLS MAC. However, the number of bits used for the epoch and
 sequence number fields in the DTLSCiphertext structure have been
 reduced from those in previous versions.

 3. The DTLSCiphertext structure has a variable length header.

 Note that the DTLS 1.3 record layer is different from the DTLS 1.2
 record layer.

 DTLSPlaintext records are used to send unprotected records and
 DTLSCiphertext records are used to send protected records.

 The DTLS record formats are shown below. Unless explicitly stated
 the meaning of the fields is unchanged from previous TLS / DTLS
 versions.

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 epoch = 0 // DTLS field
 uint48 sequence_number; // DTLS field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 struct {
 opaque content[DTLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } DTLSInnerPlaintext;

 struct {
 opaque unified_hdr[variable];
 opaque encrypted_record[length];
 } DTLSCiphertext;

 Figure 2: DTLS 1.3 Record Format

 unified_hdr: The unified_hdr is a field of variable length, as shown
 in Figure 3.

 encrypted_record: Identical to the encrypted_record field in a TLS
 1.3 record.

 The DTLSCiphertext header is tightly bit-packed, as shown below:

Rescorla, et al. Expires May 22, 2020 [Page 8]

Internet-Draft DTLS 1.3 November 2019

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0|0|1|C|S|L|E E|
 +-+-+-+-+-+-+-+-+
 | Connection ID | Legend:
 | (if any, |
 / length as / C - Connection ID (CID) present
 | negotiated) | S - Sequence number length
 +-+-+-+-+-+-+-+-+ L - Length present
 | 8 or 16 bit | E - Epoch
 |Sequence Number|
 +-+-+-+-+-+-+-+-+
 | 16 bit Length |
 | (if present) |
 +-+-+-+-+-+-+-+-+

 Figure 3: DTLS 1.3 CipherText Header

 Fixed Bits: The three high bits of the first byte of the
 DTLSCiphertext header are set to 001.

 C: The C bit (0x10) is set if the Connection ID is present.

 S: The S bit (0x08) indicates the size of the sequence number. 0
 means an 8-bit sequence number, 1 means 16-bit.

 L: The L bit (0x04) is set if the length is present.

 E: The two low bits (0x03) include the low order two bits of the
 epoch.

 Connection ID: Variable length CID. The CID concept is described in
 [DTLS-CID]. An example can be found in Section 9.1.

 Sequence Number: The low order 8 or 16 bits of the record sequence
 number. This value is 16 bits if the S bit is set to 1, and 8
 bits if the S bit is 0.

 Length: Identical to the length field in a TLS 1.3 record.

 As with previous versions of DTLS, multiple DTLSPlaintext and
 DTLSCiphertext records can be included in the same underlying
 transport datagram.

 Figure 4 illustrates different record layer header types.

Rescorla, et al. Expires May 22, 2020 [Page 9]

Internet-Draft DTLS 1.3 November 2019

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | Content Type | |0|0|1|1|1|1|E E| |0|0|1|0|0|0|E E|
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | 16 bit | | 16 bit | |8-bit Seq. No. |
 | Version | |Sequence Number| +-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ | |
 | 16 bit | | | | Encrypted |
 | Epoch | / Connection ID / / Record /
 +-+-+-+-+-+-+-+-+ | | | |
 | | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | | | 16 bit |
 | 48 bit | | Length | DTLSCiphertext
 |Sequence Number| +-+-+-+-+-+-+-+-+ Structure
 | | | | (minimal)
 | | | Encrypted |
 +-+-+-+-+-+-+-+-+ / Record /
 | 16 bit | | |
 | Length | +-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+
 | | DTLSCiphertext
 | | Structure
 / Fragment / (full)
 | |
 +-+-+-+-+-+-+-+-+

 DTLSPlaintext
 Structure

 Figure 4: Header Examples

 The length field MAY be omitted by clearing the L bit, which means
 that the record consumes the entire rest of the datagram in the lower
 level transport. In this case it is not possible to have multiple
 DTLSCiphertext format records without length fields in the same
 datagram. Omitting the length field MUST only be used for the last
 record in a datagram.

 Implementations which send multiple records in the same datagram
 SHOULD omit the connection id from all but the first record;
 receiving implementations MUST assume that any subsequent records
 without connection IDs belong to the same assocatiation. Sending
 implementations MUST NOT mix records from multiple DTLS associations
 in the same datagram. If the second or later record has a connection
 ID which does not correspond to the same association used for
 previous records, the rest of the datagram MUST be discarded.

Rescorla, et al. Expires May 22, 2020 [Page 10]

Internet-Draft DTLS 1.3 November 2019

 When expanded, the epoch and sequence number can be combined into an
 unpacked RecordNumber structure, as shown below:

 struct {
 uint16 epoch;
 uint48 sequence_number;
 } RecordNumber;

 This 64-bit value is used in the ACK message as well as in the
 "record_sequence_number" input to the AEAD function.

 The entire header value shown above is used as it appears on the wire
 as the additional data value for the AEAD function. Note that this
 design is different from the additional data calculation for DTLS 1.2
 and for DTLS 1.2 with Connection ID.

4.1. Determining the Header Format

 Implementations can distinguish the two header formats by examining
 the first byte:

 - If the first byte is alert(21), handshake(22), or ack(proposed,
 25), the record MUST be interpreted as a DTLSPlaintext record.

 - If the first byte is any other value, then receivers MUST check to
 see if the leading bits of the first byte are 001. If so, the
 implementation MUST process the record as DTLSCiphertext; the true
 content type will be inside the protected portion.

 - Otherwise, the record MUST be rejected as if it had failed
 deprotection, as described in Section 4.5.2.

4.2. Sequence Number and Epoch

 DTLS uses an explicit or partly explicit sequence number, rather than
 an implicit one, carried in the sequence_number field of the record.
 Sequence numbers are maintained separately for each epoch, with each
 sequence_number initially being 0 for each epoch.

 The epoch number is initially zero and is incremented each time
 keying material changes and a sender aims to rekey. More details are
 provided in Section 6.1.

4.2.1. Processing Guidelines

 Because DTLS records could be reordered, a record from epoch M may be
 received after epoch N (where N > M) has begun. In general,
 implementations SHOULD discard records from earlier epochs, but if

Rescorla, et al. Expires May 22, 2020 [Page 11]

Internet-Draft DTLS 1.3 November 2019

 packet loss causes noticeable problems implementations MAY choose to
 retain keying material from previous epochs for up to the default MSL
 specified for TCP [RFC0793] to allow for packet reordering. (Note
 that the intention here is that implementers use the current guidance
 from the IETF for MSL, as specified in [RFC0793] or successors not
 that they attempt to interrogate the MSL that the system TCP stack is
 using.)

 Conversely, it is possible for records that are protected with the
 new epoch to be received prior to the completion of a handshake. For
 instance, the server may send its Finished message and then start
 transmitting data. Implementations MAY either buffer or discard such
 records, though when DTLS is used over reliable transports (e.g.,
 SCTP [RFC4960]), they SHOULD be buffered and processed once the
 handshake completes. Note that TLS's restrictions on when records
 may be sent still apply, and the receiver treats the records as if
 they were sent in the right order.

 Implementations MUST send retransmissions of lost messages using the
 same epoch and keying material as the original transmission.

 Implementations MUST either abandon an association or re-key prior to
 allowing the sequence number to wrap.

 Implementations MUST NOT allow the epoch to wrap, but instead MUST
 establish a new association, terminating the old association.

4.2.2. Reconstructing the Sequence Number and Epoch

 When receiving protected DTLS records message, the recipient does not
 have a full epoch or sequence number value and so there is some
 opportunity for ambiguity. Because the full epoch and sequence
 number are used to compute the per-record nonce, failure to
 reconstruct these values leads to failure to deprotect the record,
 and so implementations MAY use a mechanism of their choice to
 determine the full values. This section provides an algorithm which
 is comparatively simple and which implementations are RECOMMENDED to
 follow.

 If the epoch bits match those of the current epoch, then
 implementations SHOULD reconstruct the sequence number by computing
 the full sequence number which is numerically closest to one plus the
 sequence number of the highest successfully deprotected record.

 During the handshake phase, the epoch bits unambiguously indicate the
 correct key to use. After the handshake is complete, if the epoch
 bits do not match those from the current epoch implementations SHOULD

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4960

Rescorla, et al. Expires May 22, 2020 [Page 12]

Internet-Draft DTLS 1.3 November 2019

 use the most recent past epoch which has matching bits, and then
 reconstruct the sequence number as described above.

4.2.3. Sequence Number Encryption

 In DTLS 1.3, when records are encrypted, record sequence numbers are
 also encrypted. The basic pattern is that the underlying encryption
 algorithm used with the AEAD algorithm is used to generate a mask
 which is then XORed with the sequence number.

 When the AEAD is based on AES, then the Mask is generated by
 computing AES-ECB on the first 16 bytes of the ciphertext:

 Mask = AES-ECB(sn_key, Ciphertext[0..15])

 When the AEAD is based on ChaCha20, then the mask is generated by
 treating the first 4 bytes of the ciphertext as the block counter and
 the next 12 bytes as the nonce, passing them to the ChaCha20 block
 function (Section 2.3 of [CHACHA]):

 Mask = ChaCha20(sn_key, Ciphertext[0..3], Ciphertext[4..15])

 The sn_key is computed as follows:

 [sender]_sn_key = HKDF-Expand-Label(Secret, "sn" , "", key_length)

 [sender] denotes the sending side. The Secret value to be used is
 described in Section 7.3 of [TLS13].

 The encrypted sequence number is computed by XORing the leading bytes
 of the Mask with the sequence number. Decryption is accomplished by
 the same process.

 This procedure requires the ciphertext length be at least 16 bytes.
 Receivers MUST reject shorter records as if they had failed
 deprotection, as described in Section 4.5.2. Senders MUST pad short
 plaintexts out (using the conventional record padding mechanism) in
 order to make a suitable-length ciphertext. Note most of the DTLS
 AEAD algorithms have a 16-byte authentication tag and need no
 padding. However, some algorithms such as TLS_AES_128_CCM_8_SHA256
 have a shorter authentication tag and may require padding for short
 inputs.

 Note that sequence number encryption is only applied to the
 DTLSCiphertext structure and not to the DTLSPlaintext structure,
 which also contains a sequence number.

Rescorla, et al. Expires May 22, 2020 [Page 13]

Internet-Draft DTLS 1.3 November 2019

4.3. Transport Layer Mapping

 DTLS messages MAY be fragmented into multiple DTLS records. Each
 DTLS record MUST fit within a single datagram. In order to avoid IP
 fragmentation, clients of the DTLS record layer SHOULD attempt to
 size records so that they fit within any PMTU estimates obtained from
 the record layer.

 Multiple DTLS records MAY be placed in a single datagram. Records
 are encoded consecutively. The length field from DTLS records
 containing that field can be used to determine the boundaries between
 records. The final record in a datagram can omit the length field.
 The first byte of the datagram payload MUST be the beginning of a
 record. Records MUST NOT span datagrams.

 DTLS records, as defined in this document, do not contain any
 association identifiers and applications must arrange to multiplex
 between associations. With UDP, the host/port number is used to look
 up the appropriate security association for incoming records.
 However, the CID extension defined in [DTLS-CID] adds an association
 identifier to DTLS records.

 Some transports, such as DCCP [RFC4340], provide their own sequence
 numbers. When carried over those transports, both the DTLS and the
 transport sequence numbers will be present. Although this introduces
 a small amount of inefficiency, the transport layer and DTLS sequence
 numbers serve different purposes; therefore, for conceptual
 simplicity, it is superior to use both sequence numbers.

 Some transports provide congestion control for traffic carried over
 them. If the congestion window is sufficiently narrow, DTLS
 handshake retransmissions may be held rather than transmitted
 immediately, potentially leading to timeouts and spurious
 retransmission. When DTLS is used over such transports, care should
 be taken not to overrun the likely congestion window. [RFC5238]
 defines a mapping of DTLS to DCCP that takes these issues into
 account.

4.4. PMTU Issues

 In general, DTLS's philosophy is to leave PMTU discovery to the
 application. However, DTLS cannot completely ignore PMTU for three
 reasons:

 - The DTLS record framing expands the datagram size, thus lowering
 the effective PMTU from the application's perspective.

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc5238

Rescorla, et al. Expires May 22, 2020 [Page 14]

Internet-Draft DTLS 1.3 November 2019

 - In some implementations, the application may not directly talk to
 the network, in which case the DTLS stack may absorb ICMP
 [RFC1191] "Datagram Too Big" indications or ICMPv6 [RFC4443]
 "Packet Too Big" indications.

 - The DTLS handshake messages can exceed the PMTU.

 In order to deal with the first two issues, the DTLS record layer
 SHOULD behave as described below.

 If PMTU estimates are available from the underlying transport
 protocol, they should be made available to upper layer protocols. In
 particular:

 - For DTLS over UDP, the upper layer protocol SHOULD be allowed to
 obtain the PMTU estimate maintained in the IP layer.

 - For DTLS over DCCP, the upper layer protocol SHOULD be allowed to
 obtain the current estimate of the PMTU.

 - For DTLS over TCP or SCTP, which automatically fragment and
 reassemble datagrams, there is no PMTU limitation. However, the
 upper layer protocol MUST NOT write any record that exceeds the
 maximum record size of 2^14 bytes.

 Note that DTLS does not defend against spoofed ICMP messages;
 implementations SHOULD ignore any such messages that indicate PMTUs
 below the IPv4 and IPv6 minimums of 576 and 1280 bytes respectively

 The DTLS record layer SHOULD allow the upper layer protocol to
 discover the amount of record expansion expected by the DTLS
 processing.

 If there is a transport protocol indication (either via ICMP or via a
 refusal to send the datagram as in Section 14 of [RFC4340]), then the
 DTLS record layer MUST inform the upper layer protocol of the error.

 The DTLS record layer SHOULD NOT interfere with upper layer protocols
 performing PMTU discovery, whether via [RFC1191] or [RFC4821]
 mechanisms. In particular:

 - Where allowed by the underlying transport protocol, the upper
 layer protocol SHOULD be allowed to set the state of the DF bit
 (in IPv4) or prohibit local fragmentation (in IPv6).

 - If the underlying transport protocol allows the application to
 request PMTU probing (e.g., DCCP), the DTLS record layer SHOULD
 honor this request.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4340#section-14
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821

Rescorla, et al. Expires May 22, 2020 [Page 15]

Internet-Draft DTLS 1.3 November 2019

 The final issue is the DTLS handshake protocol. From the perspective
 of the DTLS record layer, this is merely another upper layer
 protocol. However, DTLS handshakes occur infrequently and involve
 only a few round trips; therefore, the handshake protocol PMTU
 handling places a premium on rapid completion over accurate PMTU
 discovery. In order to allow connections under these circumstances,
 DTLS implementations SHOULD follow the following rules:

 - If the DTLS record layer informs the DTLS handshake layer that a
 message is too big, it SHOULD immediately attempt to fragment it,
 using any existing information about the PMTU.

 - If repeated retransmissions do not result in a response, and the
 PMTU is unknown, subsequent retransmissions SHOULD back off to a
 smaller record size, fragmenting the handshake message as
 appropriate. This standard does not specify an exact number of
 retransmits to attempt before backing off, but 2-3 seems
 appropriate.

4.5. Record Payload Protection

 Like TLS, DTLS transmits data as a series of protected records. The
 rest of this section describes the details of that format.

4.5.1. Anti-Replay

 Each DTLS record contains a sequence number to provide replay
 protection. Sequence number verification SHOULD be performed using
 the following sliding window procedure, borrowed from Section 3.4.3
 of [RFC4303].

 The received record counter for a session MUST be initialized to zero
 when that session is established. For each received record, the
 receiver MUST verify that the record contains a sequence number that
 does not duplicate the sequence number of any other record received
 during the lifetime of the session. This check SHOULD happen after
 deprotecting the record; otherwise the record discard might itself
 serve as a timing channel for the record number. Note that
 decompressing the records number is still a potential timing channel
 for the record number, though a less powerful one than whether it was
 deprotected.

 Duplicates are rejected through the use of a sliding receive window.
 (How the window is implemented is a local matter, but the following
 text describes the functionality that the implementation must
 exhibit.) The receiver SHOULD pick a window large enough to handle
 any plausible reordering, which depends on the data rate. (The
 receiver does not notify the sender of the window size.)

https://datatracker.ietf.org/doc/html/rfc4303#section-3.4.3
https://datatracker.ietf.org/doc/html/rfc4303#section-3.4.3

Rescorla, et al. Expires May 22, 2020 [Page 16]

Internet-Draft DTLS 1.3 November 2019

 The "right" edge of the window represents the highest validated
 sequence number value received on the session. Records that contain
 sequence numbers lower than the "left" edge of the window are
 rejected. Records falling within the window are checked against a
 list of received records within the window. An efficient means for
 performing this check, based on the use of a bit mask, is described
 in Section 3.4.3 of [RFC4303]. If the received record falls within
 the window and is new, or if the record is to the right of the
 window, then the record is new.

 The window MUST NOT be updated until the record has been deprotected
 successfully.

4.5.2. Handling Invalid Records

 Unlike TLS, DTLS is resilient in the face of invalid records (e.g.,
 invalid formatting, length, MAC, etc.). In general, invalid records
 SHOULD be silently discarded, thus preserving the association;
 however, an error MAY be logged for diagnostic purposes.
 Implementations which choose to generate an alert instead, MUST
 generate error alerts to avoid attacks where the attacker repeatedly
 probes the implementation to see how it responds to various types of
 error. Note that if DTLS is run over UDP, then any implementation
 which does this will be extremely susceptible to denial-of-service
 (DoS) attacks because UDP forgery is so easy. Thus, this practice is
 NOT RECOMMENDED for such transports, both to increase the reliability
 of DTLS service and to avoid the risk of spoofing attacks sending
 traffic to unrelated third parties.

 If DTLS is being carried over a transport that is resistant to
 forgery (e.g., SCTP with SCTP-AUTH), then it is safer to send alerts
 because an attacker will have difficulty forging a datagram that will
 not be rejected by the transport layer.

5. The DTLS Handshake Protocol

 DTLS 1.3 re-uses the TLS 1.3 handshake messages and flows, with the
 following changes:

 1. To handle message loss, reordering, and fragmentation
 modifications to the handshake header are necessary.

 2. Retransmission timers are introduced to handle message loss.

 3. A new ACK content type has been added for reliable message
 delivery of handshake messages.

https://datatracker.ietf.org/doc/html/rfc4303#section-3.4.3

Rescorla, et al. Expires May 22, 2020 [Page 17]

Internet-Draft DTLS 1.3 November 2019

 Note that TLS 1.3 already supports a cookie extension, which is used
 to prevent denial-of-service attacks. This DoS prevention mechanism
 is described in more detail below since UDP-based protocols are more
 vulnerable to amplification attacks than a connection-oriented
 transport like TCP that performs return-routability checks as part of
 the connection establishment.

 DTLS implementations do not use the TLS 1.3 "compatibility mode"
 described in Section D.4 of [TLS13]. DTLS servers MUST NOT echo the
 "session_id" value from the client and endpoints MUST NOT send
 ChangeCipherSpec messages.

 With these exceptions, the DTLS message formats, flows, and logic are
 the same as those of TLS 1.3.

5.1. Denial-of-Service Countermeasures

 Datagram security protocols are extremely susceptible to a variety of
 DoS attacks. Two attacks are of particular concern:

 1. An attacker can consume excessive resources on the server by
 transmitting a series of handshake initiation requests, causing
 the server to allocate state and potentially to perform expensive
 cryptographic operations.

 2. An attacker can use the server as an amplifier by sending
 connection initiation messages with a forged source of the
 victim. The server then sends its response to the victim
 machine, thus flooding it. Depending on the selected parameters
 this response message can be quite large, as it is the case for a
 Certificate message.

 In order to counter both of these attacks, DTLS borrows the stateless
 cookie technique used by Photuris [RFC2522] and IKE [RFC7296]. When
 the client sends its ClientHello message to the server, the server
 MAY respond with a HelloRetryRequest message. The HelloRetryRequest
 message, as well as the cookie extension, is defined in TLS 1.3. The
 HelloRetryRequest message contains a stateless cookie generated using
 the technique of [RFC2522]. The client MUST retransmit the
 ClientHello with the cookie added as an extension. The server then
 verifies the cookie and proceeds with the handshake only if it is
 valid. This mechanism forces the attacker/client to be able to
 receive the cookie, which makes DoS attacks with spoofed IP addresses
 difficult. This mechanism does not provide any defense against DoS
 attacks mounted from valid IP addresses.

 The DTLS 1.3 specification changes the way how cookies are exchanged
 compared to DTLS 1.2. DTLS 1.3 re-uses the HelloRetryRequest message

https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc2522

Rescorla, et al. Expires May 22, 2020 [Page 18]

Internet-Draft DTLS 1.3 November 2019

 and conveys the cookie to the client via an extension. The client
 receiving the cookie uses the same extension to place the cookie
 subsequently into a ClientHello message. DTLS 1.2 on the other hand
 used a separate message, namely the HelloVerifyRequest, to pass a
 cookie to the client and did not utilize the extension mechanism.
 For backwards compatibility reasons, the cookie field in the
 ClientHello is present in DTLS 1.3 but is ignored by a DTLS 1.3
 compliant server implementation.

 The exchange is shown in Figure 5. Note that the figure focuses on
 the cookie exchange; all other extensions are omitted.

 Client Server
 ------ ------
 ClientHello ------>

 <----- HelloRetryRequest
 + cookie

 ClientHello ------>
 + cookie

 [Rest of handshake]

 Figure 5: DTLS exchange with HelloRetryRequest containing the
 "cookie" extension

 The cookie extension is defined in Section 4.2.2 of [TLS13]. When
 sending the initial ClientHello, the client does not have a cookie
 yet. In this case, the cookie extension is omitted and the
 legacy_cookie field in the ClientHello message SHOULD be set to a
 zero length vector (i.e., a single zero byte length field) and MUST
 be ignored by a server negotiating DTLS 1.3.

 When responding to a HelloRetryRequest, the client MUST create a new
 ClientHello message following the description in Section 4.1.2 of
 [TLS13].

 If the HelloRetryRequest message is used, the initial ClientHello and
 the HelloRetryRequest are included in the calculation of the
 transcript hash. The computation of the message hash for the
 HelloRetryRequest is done according to the description in
 Section 4.4.1 of [TLS13].

 The handshake transcript is not reset with the second ClientHello and
 a stateless server-cookie implementation requires the transcript of
 the HelloRetryRequest to be stored in the cookie or the internal

Rescorla, et al. Expires May 22, 2020 [Page 19]

Internet-Draft DTLS 1.3 November 2019

 state of the hash algorithm, since only the hash of the transcript is
 required for the handshake to complete.

 When the second ClientHello is received, the server can verify that
 the cookie is valid and that the client can receive packets at the
 given IP address. If the client's apparent IP address is embedded in
 the cookie, this prevents an attacker from generating an acceptable
 ClientHello apparently from another user.

 One potential attack on this scheme is for the attacker to collect a
 number of cookies from different addresses where it controls
 endpoints and then reuse them to attack the server. The server can
 defend against this attack by changing the secret value frequently,
 thus invalidating those cookies. If the server wishes to allow
 legitimate clients to handshake through the transition (e.g., a
 client received a cookie with Secret 1 and then sent the second
 ClientHello after the server has changed to Secret 2), the server can
 have a limited window during which it accepts both secrets.
 [RFC7296] suggests adding a key identifier to cookies to detect this
 case. An alternative approach is simply to try verifying with both
 secrets. It is RECOMMENDED that servers implement a key rotation
 scheme that allows the server to manage keys with overlapping
 lifetime.

 Alternatively, the server can store timestamps in the cookie and
 reject cookies that were generated outside a certain interval of
 time.

 DTLS servers SHOULD perform a cookie exchange whenever a new
 handshake is being performed. If the server is being operated in an
 environment where amplification is not a problem, the server MAY be
 configured not to perform a cookie exchange. The default SHOULD be
 that the exchange is performed, however. In addition, the server MAY
 choose not to do a cookie exchange when a session is resumed.
 Clients MUST be prepared to do a cookie exchange with every
 handshake.

 If a server receives a ClientHello with an invalid cookie, it MUST
 NOT terminate the handshake with an "illegal_parameter" alert. This
 allows the client to restart the connection from scratch without a
 cookie.

 As described in Section 4.1.4 of [TLS13], clients MUST abort the
 handshake with an "unexpected_message" alert in response to any
 second HelloRetryRequest which was sent in the same connection (i.e.,
 where the ClientHello was itself in response to a HelloRetryRequest).

https://datatracker.ietf.org/doc/html/rfc7296

Rescorla, et al. Expires May 22, 2020 [Page 20]

Internet-Draft DTLS 1.3 November 2019

5.2. DTLS Handshake Message Format

 In order to support message loss, reordering, and message
 fragmentation, DTLS modifies the TLS 1.3 handshake header:

 enum {
 client_hello(1),
 server_hello(2),
 new_session_ticket(4),
 end_of_early_data(5),
 encrypted_extensions(8),
 certificate(11),
 certificate_request(13),
 certificate_verify(15),
 finished(20),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 uint16 message_seq; /* DTLS-required field */
 uint24 fragment_offset; /* DTLS-required field */
 uint24 fragment_length; /* DTLS-required field */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

 The first message each side transmits in each association always has
 message_seq = 0. Whenever a new message is generated, the
 message_seq value is incremented by one. When a message is
 retransmitted, the old message_seq value is re-used, i.e., not
 incremented. From the perspective of the DTLS record layer, the
 retransmission is a new record. This record will have a new
 DTLSPlaintext.sequence_number value.

Rescorla, et al. Expires May 22, 2020 [Page 21]

Internet-Draft DTLS 1.3 November 2019

 DTLS implementations maintain (at least notionally) a
 next_receive_seq counter. This counter is initially set to zero.
 When a handshake message is received, if its message_seq value
 matches next_receive_seq, next_receive_seq is incremented and the
 message is processed. If the sequence number is less than
 next_receive_seq, the message MUST be discarded. If the sequence
 number is greater than next_receive_seq, the implementation SHOULD
 queue the message but MAY discard it. (This is a simple space/
 bandwidth tradeoff).

 In addition to the handshake messages that are deprecated by the TLS
 1.3 specification, DTLS 1.3 furthermore deprecates the
 HelloVerifyRequest message originally defined in DTLS 1.0. DTLS
 1.3-compliant implements MUST NOT use the HelloVerifyRequest to
 execute a return-routability check. A dual-stack DTLS 1.2/DTLS 1.3
 client MUST, however, be prepared to interact with a DTLS 1.2 server.

5.3. ClientHello Message

 The format of the ClientHello used by a DTLS 1.3 client differs from
 the TLS 1.3 ClientHello format as shown below.

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2
 Random random;
 opaque legacy_session_id<0..32>;
 opaque legacy_cookie<0..2^8-1>; // DTLS
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

 legacy_version: In previous versions of DTLS, this field was used
 for version negotiation and represented the highest version number
 supported by the client. Experience has shown that many servers
 do not properly implement version negotiation, leading to "version
 intolerance" in which the server rejects an otherwise acceptable
 ClientHello with a version number higher than it supports. In
 DTLS 1.3, the client indicates its version preferences in the
 "supported_versions" extension (see Section 4.2.1 of [TLS13]) and
 the legacy_version field MUST be set to {254, 253}, which was the
 version number for DTLS 1.2. The version fields for DTLS 1.0 and

Rescorla, et al. Expires May 22, 2020 [Page 22]

Internet-Draft DTLS 1.3 November 2019

 DTLS 1.2 are 0xfeff and 0xfefd (to match the wire versions) but
 the version field for DTLS 1.3 is 0x0304.

 random: Same as for TLS 1.3.

 legacy_session_id: Same as for TLS 1.3.

 legacy_cookie: A DTLS 1.3-only client MUST set the legacy_cookie
 field to zero length. If a DTLS 1.3 ClientHello is received with
 any other value in this field, the server MUST abort the handshake
 with an "illegal_parameter" alert.

 cipher_suites: Same as for TLS 1.3.

 legacy_compression_methods: Same as for TLS 1.3.

 extensions: Same as for TLS 1.3.

5.4. Handshake Message Fragmentation and Reassembly

 Each DTLS message MUST fit within a single transport layer datagram.
 However, handshake messages are potentially bigger than the maximum
 record size. Therefore, DTLS provides a mechanism for fragmenting a
 handshake message over a number of records, each of which can be
 transmitted separately, thus avoiding IP fragmentation.

 When transmitting the handshake message, the sender divides the
 message into a series of N contiguous data ranges. The ranges MUST
 NOT overlap. The sender then creates N handshake messages, all with
 the same message_seq value as the original handshake message. Each
 new message is labeled with the fragment_offset (the number of bytes
 contained in previous fragments) and the fragment_length (the length
 of this fragment). The length field in all messages is the same as
 the length field of the original message. An unfragmented message is
 a degenerate case with fragment_offset=0 and fragment_length=length.
 Each range MUST be delivered in a single UDP datagram.

 When a DTLS implementation receives a handshake message fragment, it
 MUST buffer it until it has the entire handshake message. DTLS
 implementations MUST be able to handle overlapping fragment ranges.
 This allows senders to retransmit handshake messages with smaller
 fragment sizes if the PMTU estimate changes.

 Note that as with TLS, multiple handshake messages may be placed in
 the same DTLS record, provided that there is room and that they are
 part of the same flight. Thus, there are two acceptable ways to pack
 two DTLS messages into the same datagram: in the same record or in
 separate records.

Rescorla, et al. Expires May 22, 2020 [Page 23]

Internet-Draft DTLS 1.3 November 2019

5.5. End Of Early Data

 The DTLS 1.3 handshake has one important difference from the TLS 1.3
 handshake: the EndOfEarlyData message is omitted both from the wire
 and the handshake transcript: because DTLS records have epochs,
 EndOfEarlyData is not necessary to determine when the early data is
 complete, and because DTLS is lossy, attackers can trivially mount
 the deletion attacks that EndOfEarlyData prevents in TLS. Servers
 SHOULD aggressively age out the epoch 1 keys upon receiving the first
 epoch 2 record and SHOULD NOT accept epoch 1 data after the first
 epoch 3 record is received. (See Section 6.1 for the definitions of
 each epoch.)

5.6. DTLS Handshake Flights

 DTLS messages are grouped into a series of message flights, according
 to the diagrams below.

Rescorla, et al. Expires May 22, 2020 [Page 24]

Internet-Draft DTLS 1.3 November 2019

Client Server

ClientHello +----------+
 + key_share* | Flight 1 |
 + pre_shared_key* --------> +----------+

 +----------+
 <-------- HelloRetryRequest | Flight 2 |
 + cookie +----------+

ClientHello +----------+
 + key_share* | Flight 3 |
 + pre_shared_key* --------> +----------+
 + cookie

 ServerHello
 + key_share*
 + pre_shared_key* +----------+
 {EncryptedExtensions} | Flight 4 |
 {CertificateRequest*} +----------+
 {Certificate*}
 {CertificateVerify*}
 <-------- {Finished}
 [Application Data*]

 {Certificate*} +----------+
 {CertificateVerify*} | Flight 5 |
 {Finished} --------> +----------+
 [Application Data]

 +----------+
 <-------- [ACK] | Flight 6 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 Figure 6: Message flights for a full DTLS Handshake (with cookie
 exchange)

Rescorla, et al. Expires May 22, 2020 [Page 25]

Internet-Draft DTLS 1.3 November 2019

 ClientHello +----------+
 + pre_shared_key | Flight 1 |
 + key_share* --------> +----------+

 ServerHello
 + pre_shared_key +----------+
 + key_share* | Flight 2 |
 {EncryptedExtensions} +----------+
 <-------- {Finished}
 [Application Data*]
 +----------+
 {Finished} --------> | Flight 3 |
 [Application Data*] +----------+

 +----------+
 <-------- [ACK] | Flight 4 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 Figure 7: Message flights for resumption and PSK handshake (without
 cookie exchange)

Rescorla, et al. Expires May 22, 2020 [Page 26]

Internet-Draft DTLS 1.3 November 2019

 Client Server

 ClientHello
 + early_data
 + psk_key_exchange_modes +----------+
 + key_share* | Flight 1 |
 + pre_shared_key +----------+
 (Application Data*) -------->

 ServerHello
 + pre_shared_key
 + key_share* +----------+
 {EncryptedExtensions} | Flight 2 |
 {Finished} +----------+
 <-------- [Application Data*]

 +----------+
 {Finished} --------> | Flight 3 |
 [Application Data*] +----------+

 +----------+
 <-------- [ACK] | Flight 4 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 Figure 8: Message flights for the Zero-RTT handshake

 Client Server

 +----------+
 <-------- [NewSessionTicket] | Flight 1 |
 +----------+

 +----------+
 [ACK] --------> | Flight 2 |
 +----------+

 Figure 9: Message flights for the new session ticket message

 Note: The application data sent by the client is not included in the
 timeout and retransmission calculation.

Rescorla, et al. Expires May 22, 2020 [Page 27]

Internet-Draft DTLS 1.3 November 2019

5.7. Timeout and Retransmission

5.7.1. State Machine

 DTLS uses a simple timeout and retransmission scheme with the state
 machine shown in Figure 10. Because DTLS clients send the first
 message (ClientHello), they start in the PREPARING state. DTLS
 servers start in the WAITING state, but with empty buffers and no
 retransmit timer.

 +-----------+
 | PREPARING |
 +----------> | |
 | | |
 | +-----------+
 | |
 | | Buffer next flight
 | |
 | \|/
 | +-----------+
 | | |
 | | SENDING |<------------------+
 | | | |
 | +-----------+ |
 Receive | | |
 next | | Send flight or partial |
 flight | | flight |
 | +---------------+ |
 | | | Set retransmit timer | |
 | | \|/ |
 | | +-----------+ |
 | | | | |
 +--)---------| WAITING |-------------------+
 | | +----->| | Timer expires | | |
 | | | +-----------+ |
 | | | | | | |
 | | | | | | |
 | | +----------+ | +--------------------+
 | | Receive record | Read retransmit or ACK
 Receive | | Send ACK |
 last | | |
 flight | | | Receive ACK
 | | | for last flight
 \|/\|/ |
 |
 +-----------+ |
 | | <---------+
 | FINISHED |

Rescorla, et al. Expires May 22, 2020 [Page 28]

Internet-Draft DTLS 1.3 November 2019

 | |
 +-----------+
 | /|\
 | |
 | |
 +---+

 Server read retransmit
 Retransmit ACK

 Figure 10: DTLS timeout and retransmission state machine

 The state machine has four basic states: PREPARING, SENDING, WAITING,
 and FINISHED.

 In the PREPARING state, the implementation does whatever computations
 are necessary to prepare the next flight of messages. It then
 buffers them up for transmission (emptying the buffer first) and
 enters the SENDING state.

 In the SENDING state, the implementation transmits the buffered
 flight of messages. If the implementation has received one or more
 ACKs (see Section 7) from the peer, then it SHOULD omit any messages
 or message fragments which have already been ACKed. Once the
 messages have been sent, the implementation then enters the FINISHED
 state if this is the last flight in the handshake. Or, if the
 implementation expects to receive more messages, it sets a retransmit
 timer and then enters the WAITING state.

 There are four ways to exit the WAITING state:

 1. The retransmit timer expires: the implementation transitions to
 the SENDING state, where it retransmits the flight, resets the
 retransmit timer, and returns to the WAITING state.

 2. The implementation reads an ACK from the peer: upon receiving an
 ACK for a partial flight (as mentioned in Section 7.1), the
 implementation transitions to the SENDING state, where it
 retransmits the unacked portion of the flight, resets the
 retransmit timer, and returns to the WAITING state. Upon
 receiving an ACK for a complete flight, the implementation
 cancels all retransmissions and either remains in WAITING, or, if
 the ACK was for the final flight, transitions to FINISHED.

 3. The implementation reads a retransmitted flight from the peer:
 the implementation transitions to the SENDING state, where it
 retransmits the flight, resets the retransmit timer, and returns
 to the WAITING state. The rationale here is that the receipt of

Rescorla, et al. Expires May 22, 2020 [Page 29]

Internet-Draft DTLS 1.3 November 2019

 a duplicate message is the likely result of timer expiry on the
 peer and therefore suggests that part of one's previous flight
 was lost.

 4. The implementation receives some or all next flight of messages:
 if this is the final flight of messages, the implementation
 transitions to FINISHED. If the implementation needs to send a
 new flight, it transitions to the PREPARING state. Partial reads
 (whether partial messages or only some of the messages in the
 flight) may also trigger the implementation to send an ACK, as
 described in Section 7.1.

 Because DTLS clients send the first message (ClientHello), they start
 in the PREPARING state. DTLS servers start in the WAITING state, but
 with empty buffers and no retransmit timer.

 In addition, for at least twice the default Maximum Segment Lifetime
 (MSL) defined for [RFC0793], when in the FINISHED state, the server
 MUST respond to retransmission of the client's second flight with a
 retransmit of its ACK.

 Note that because of packet loss, it is possible for one side to be
 sending application data even though the other side has not received
 the first side's Finished message. Implementations MUST either
 discard or buffer all application data records for the new epoch
 until they have received the Finished message for that epoch.
 Implementations MAY treat receipt of application data with a new
 epoch prior to receipt of the corresponding Finished message as
 evidence of reordering or packet loss and retransmit their final
 flight immediately, shortcutting the retransmission timer.

5.7.2. Timer Values

 Though timer values are the choice of the implementation, mishandling
 of the timer can lead to serious congestion problems; for example, if
 many instances of a DTLS time out early and retransmit too quickly on
 a congested link. Implementations SHOULD use an initial timer value
 of 100 msec (the minimum defined in RFC 6298 [RFC6298]) and double
 the value at each retransmission, up to no less than the RFC 6298
 maximum of 60 seconds. Application specific profiles, such as those
 used for the Internet of Things environment, may recommend longer
 timer values. Note that a 100 msec timer is recommended rather than
 the 3-second RFC 6298 default in order to improve latency for time-
 sensitive applications. Because DTLS only uses retransmission for
 handshake and not dataflow, the effect on congestion should be
 minimal.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Rescorla, et al. Expires May 22, 2020 [Page 30]

Internet-Draft DTLS 1.3 November 2019

 Implementations SHOULD retain the current timer value until a
 transmission without loss occurs, at which time the value may be
 reset to the initial value. After a long period of idleness, no less
 than 10 times the current timer value, implementations may reset the
 timer to the initial value.

5.8. CertificateVerify and Finished Messages

 CertificateVerify and Finished messages have the same format as in
 TLS 1.3. Hash calculations include entire handshake messages,
 including DTLS-specific fields: message_seq, fragment_offset, and
 fragment_length. However, in order to remove sensitivity to
 handshake message fragmentation, the CertificateVerify and the
 Finished messages MUST be computed as if each handshake message had
 been sent as a single fragment following the algorithm described in

Section 4.4.3 and Section 4.4.4 of [TLS13], respectively.

5.9. Cryptographic Label Prefix

 Section 7.1 of [TLS13] specifies that HKDF-Expand-Label uses a label
 prefix of "tls13 ". For DTLS 1.3, that label SHALL be "dtls13".
 This ensures key separation between DTLS 1.3 and TLS 1.3. Note that
 there is no trailing space; this is necessary in order to keep the
 overall label size inside of one hash iteration because "DTLS" is one
 letter longer than "TLS".

5.10. Alert Messages

 Note that Alert messages are not retransmitted at all, even when they
 occur in the context of a handshake. However, a DTLS implementation
 which would ordinarily issue an alert SHOULD generate a new alert
 message if the offending record is received again (e.g., as a
 retransmitted handshake message). Implementations SHOULD detect when
 a peer is persistently sending bad messages and terminate the local
 connection state after such misbehavior is detected.

5.11. Establishing New Associations with Existing Parameters

 If a DTLS client-server pair is configured in such a way that
 repeated connections happen on the same host/port quartet, then it is
 possible that a client will silently abandon one connection and then
 initiate another with the same parameters (e.g., after a reboot).
 This will appear to the server as a new handshake with epoch=0. In
 cases where a server believes it has an existing association on a
 given host/port quartet and it receives an epoch=0 ClientHello, it
 SHOULD proceed with a new handshake but MUST NOT destroy the existing
 association until the client has demonstrated reachability either by
 completing a cookie exchange or by completing a complete handshake

Rescorla, et al. Expires May 22, 2020 [Page 31]

Internet-Draft DTLS 1.3 November 2019

 including delivering a verifiable Finished message. After a correct
 Finished message is received, the server MUST abandon the previous
 association to avoid confusion between two valid associations with
 overlapping epochs. The reachability requirement prevents off-path/
 blind attackers from destroying associations merely by sending forged
 ClientHellos.

 Note: it is not always possible to distinguish which association a
 given record is from. For instance, if the client performs a
 handshake, abandons the connection, and then immediately starts a new
 handshake, it may not be possible to tell which connection a given
 protected record is for. In these cases, trial decryption MAY be
 necessary, though implementations could also use some sort of CID,
 such as the one specified in [I-D.ietf-tls-dtls-connection-id].

6. Example of Handshake with Timeout and Retransmission

 The following is an example of a handshake with lost packets and
 retransmissions.

Rescorla, et al. Expires May 22, 2020 [Page 32]

Internet-Draft DTLS 1.3 November 2019

 Client Server
 ------ ------

 Record 0 -------->
 ClientHello
 (message_seq=0)
 +cookie

 X<----- Record 0
 (lost) ServerHello
 (message_seq=1)
 EncryptedExtensions
 (message_seq=2)
 Certificate
 (message_seq=3)

 <-------- Record 1
 CertificateVerify
 (message_seq=4)
 Finished
 (message_seq=5)

 Record 1 -------->
 ACK [1]

 <-------- Record 2
 ServerHello
 (message_seq=1)
 EncryptedExtensions
 (message_seq=2)
 Certificate
 (message_seq=3)

 Record 2 -------->
 Certificate
 (message_seq=2)
 CertificateVerify
 (message_seq=3)
 Finished
 (message_seq=4)

 <-------- Record 3
 ACK [2]

 Figure 11: Example DTLS exchange illustrating message loss

Rescorla, et al. Expires May 22, 2020 [Page 33]

Internet-Draft DTLS 1.3 November 2019

6.1. Epoch Values and Rekeying

 A recipient of a DTLS message needs to select the correct keying
 material in order to process an incoming message. With the
 possibility of message loss and re-order an identifier is needed to
 determine which cipher state has been used to protect the record
 payload. The epoch value fulfills this role in DTLS. In addition to
 the key derivation steps described in Section 7 of [TLS13] triggered
 by the states during the handshake a sender may want to rekey at any
 time during the lifetime of the connection and has to have a way to
 indicate that it is updating its sending cryptographic keys.

 This version of DTLS assigns dedicated epoch values to messages in
 the protocol exchange to allow identification of the correct cipher
 state:

 - epoch value (0) is used with unencrypted messages. There are
 three unencrypted messages in DTLS, namely ClientHello,
 ServerHello, and HelloRetryRequest.

 - epoch value (1) is used for messages protected using keys derived
 from client_early_traffic_secret. Note this epoch is skipped if
 the client does not offer early data.

 - epoch value (2) is used for messages protected using keys derived
 from [sender]_handshake_traffic_secret. Messages transmitted
 during the initial handshake, such as EncryptedExtensions,
 CertificateRequest, Certificate, CertificateVerify, and Finished
 belong to this category. Note, however, post-handshake are
 protected under the appropriate application traffic key and are
 not included in this category.

 - epoch value (3) is used for payloads protected using keys derived
 from the initial [sender]_application_traffic_secret_0. This may
 include handshake messages, such as post-handshake messages (e.g.,
 a NewSessionTicket message).

 - epoch value (4 to 2^16-1) is used for payloads protected using
 keys from the [sender]_application_traffic_secret_N (N>0).

 Using these reserved epoch values a receiver knows what cipher state
 has been used to encrypt and integrity protect a message.
 Implementations that receive a payload with an epoch value for which
 no corresponding cipher state can be determined MUST generate a
 "unexpected_message" alert. For example, client incorrectly uses
 epoch value 5 when sending early application data in a 0-RTT
 exchange. A server will not be able to compute the appropriate keys
 and will therefore have to respond with an alert.

Rescorla, et al. Expires May 22, 2020 [Page 34]

Internet-Draft DTLS 1.3 November 2019

 Note that epoch values do not wrap. If a DTLS implementation would
 need to wrap the epoch value, it MUST terminate the connection.

 The traffic key calculation is described in Section 7.3 of [TLS13].

 Figure 12 illustrates the epoch values in an example DTLS handshake.

 Client Server
 ------ ------

 ClientHello
 (epoch=0)
 -------->

 <-------- HelloRetryRequest
 (epoch=0)

 ClientHello -------->
 (epoch=0)

 <-------- ServerHello
 (epoch=0)
 {EncryptedExtensions}
 (epoch=2)
 {Certificate}
 (epoch=2)
 {CertificateVerify}
 (epoch=2)
 {Finished}
 (epoch=2)

 {Certificate} -------->
 (epoch=2)
 {CertificateVerify}
 (epoch=2)
 {Finished}
 (epoch=2)

 <-------- [ACK]
 (epoch=3)

 [Application Data] -------->
 (epoch=3)

 <-------- [Application Data]
 (epoch=3)

 Some time later ...

Rescorla, et al. Expires May 22, 2020 [Page 35]

Internet-Draft DTLS 1.3 November 2019

 (Post-Handshake Message Exchange)

 <-------- [NewSessionTicket]
 (epoch=3)

 [ACK] -------->
 (epoch=3)

 Some time later ...
 (Rekeying)

 <-------- [Application Data]
 (epoch=4)
 [Application Data] -------->
 (epoch=4)

 Figure 12: Example DTLS exchange with epoch information

7. ACK Message

 The ACK message is used by an endpoint to indicate handshake-
 containing the TLS records it has received from the other side. ACK
 is not a handshake message but is rather a separate content type,
 with code point TBD (proposed, 25). This avoids having ACK being
 added to the handshake transcript. Note that ACKs can still be sent
 in the same UDP datagram as handshake records.

 struct {
 RecordNumber record_numbers<0..2^16-1>;
 } ACK;

 record_numbers: a list of the records containing handshake messages
 in the current flight which the endpoint has received, in
 numerically increasing order. ACKs only cover the current
 outstanding flight (this is possible because DTLS is generally a
 lockstep protocol). Thus, an ACK from the server would not cover
 both the ClientHello and the client's Certificate.
 Implementations can accomplish this by clearing their ACK list
 upon receiving the start of the next flight.

 ACK records MUST be sent with an epoch that is equal to or higher
 than the record which is being acknowledged. Implementations SHOULD
 simply use the current key.

Rescorla, et al. Expires May 22, 2020 [Page 36]

Internet-Draft DTLS 1.3 November 2019

7.1. Sending ACKs

 When an implementation receives a partial flight, it SHOULD generate
 an ACK that covers the messages from that flight which it has
 received so far. Implementations have some discretion about when to
 generate ACKs, but it is RECOMMENDED that they do so under two
 circumstances:

 - When they receive a message or fragment which is out of order,
 either because it is not the next expected message or because it
 is not the next piece of the current message. Implementations
 MUST NOT send ACKs for handshake messages which they discard as
 out-of-order, because otherwise those messages will not be
 retransmitted.

 - When they have received part of a flight and do not immediately
 receive the rest of the flight (which may be in the same UDP
 datagram). A reasonable approach here is to set a timer for 1/4
 the current retransmit timer value when the first record in the
 flight is received and then send an ACK when that timer expires.

 In addition, implementations MUST send ACKs upon receiving all of any
 flight which they do not respond to with their own messages.
 Specifically, this means the client's final flight of the main
 handshake, the server's transmission of the NewSessionTicket, and
 KeyUpdate messages. ACKs SHOULD NOT be sent for other complete
 flights because they are implicitly acknowledged by the receipt of
 the next flight, which generally immediately follows the flight.
 Each NewSessionTicket or KeyUpdate is an individual flight; in
 particular, a KeyUpdate sent in response to a KeyUpdate with
 update_requested does not implicitly acknowledge that message.
 Implementations MAY acknowledge the records corresponding to each
 transmission of that flight or simply acknowledge the most recent
 one.

 ACKs MUST NOT be sent for other records of any content type other
 than handshake or for records which cannot be unprotected.

 Note that in some cases it may be necessary to send an ACK which does
 not contain any record numbers. For instance, a client might receive
 an EncryptedExtensions message prior to receiving a ServerHello.
 Because it cannot decrypt the EncryptedExtensions, it cannot safely
 acknowledge it (as it might be damaged). If the client does not send
 an ACK, the server will eventually retransmit its first flight, but
 this might take far longer than the actual round trip time between
 client and server. Having the client send an empty ACK shortcuts
 this process.

Rescorla, et al. Expires May 22, 2020 [Page 37]

Internet-Draft DTLS 1.3 November 2019

7.2. Receiving ACKs

 When an implementation receives an ACK, it SHOULD record that the
 messages or message fragments sent in the records being ACKed were
 received and omit them from any future retransmissions. Upon receipt
 of an ACK for only some messages from a flight, an implementation
 SHOULD retransmit the remaining messages or fragments. Note that
 this requires implementations to track which messages appear in which
 records. Once all the messages in a flight have been acknowledged,
 the implementation MUST cancel all retransmissions of that flight.
 As noted above, the receipt of any record responding to a given
 flight MUST be taken as an implicit acknowledgement for the entire
 flight.

8. Key Updates

 As with TLS 1.3, DTLS 1.3 implementations send a KeyUpdate message to
 indicate that they are updating their sending keys. As with other
 handshake messages with no built-in response, KeyUpdates MUST be
 acknowledged. In order to facilitate epoch reconstruction

Section 4.2.2 implementations MUST NOT send with the new keys or send
 a new KeyUpdate until the previous KeyUpdate has been acknowledged
 (this avoids having too many epochs in active use).

 Due to loss and/or re-ordering, DTLS 1.3 implementations may receive
 a record with an older epoch than the current one (the requirements
 above preclude receiving a newer record). They SHOULD attempt to
 process those records with that epoch (see Section 4.2.2 for
 information on determining the correct epoch), but MAY opt to discard
 such out-of-epoch records.

 Although KeyUpdate MUST be acknowledged, it is possible for the ACK
 to be lost, in which case the sender of the KeyUpdate will retransmit
 it. Implementations MUST retain the ability to ACK the KeyUpdate for
 up to 2MSL. It is RECOMMENDED that they do so by retaining the pre-
 update keying material, but they MAY do so by responding to messages
 which appear to be out-of-epoch with a canned ACK message; in this
 case, implementations SHOULD rate limit how often they send such
 ACKs.

9. Connection ID Updates

 If the client and server have negotiated the "connection_id"
 extension [DTLS-CID], either side can send a new CID which it wishes
 the other side to use in a NewConnectionId message.

Rescorla, et al. Expires May 22, 2020 [Page 38]

Internet-Draft DTLS 1.3 November 2019

 enum {
 cid_immediate(0), cid_spare(1), (255)
 } ConnectionIdUsage;

 opaque ConnectionId<0..2^8-1>;

 struct {
 ConnectionIds cids<0..2^16-1>;
 ConnectionIdUsage usage;
 } NewConnectionId;

 cid Indicates the set of CIDs which the sender wishes the peer to
 use.

 usage Indicates whether the new CIDs should be used immediately or
 are spare. If usage is set to "cid_immediate", then one of the
 new CID MUST be used immediately for all future records. If it is
 set to "cid_spare", then either existing or new CID MAY be used.

 Endpoints SHOULD use receiver-provided CIDs in the order they were
 provided. Endpoints MUST NOT have more than one NewConnectionId
 message outstanding.

 If the client and server have negotiated the "connection_id"
 extension, either side can request a new CID using the
 RequestConnectionId message.

 struct {
 uint8 num_cids;
 } RequestConnectionId;

 num_cids The number of CIDs desired.

 Endpoints SHOULD respond to RequestConnectionId by sending a
 NewConnectionId with usage "cid_spare" containing num_cid CIDs soon
 as possible. Endpoints MUST NOT send a RequestConnectionId message
 when an existing request is still unfulfilled; this implies that
 endpoints needs to request new CIDs well in advance. An endpoint MAY
 ignore requests, which it considers excessive (though they MUST be
 acknowledged as usual).

 Endpoints MUST NOT send either of these messages if they did not
 negotiate a CID. If an implementation receives these messages when
 CIDs were not negotiated, it MUST abort the connection with an
 unexpected_message alert.

Rescorla, et al. Expires May 22, 2020 [Page 39]

Internet-Draft DTLS 1.3 November 2019

9.1. Connection ID Example

 Below is an example exchange for DTLS 1.3 using a single CID in each
 direction.

 Note: The connection_id extension is defined in [DTLS-CID], which is
 used in ClientHello and ServerHello messages.

Rescorla, et al. Expires May 22, 2020 [Page 40]

Internet-Draft DTLS 1.3 November 2019

 Client Server
 ------ ------

 ClientHello
 (connection_id=5)
 -------->

 <-------- HelloRetryRequest
 (cookie)

 ClientHello -------->
 (connection_id=5)
 +cookie

 <-------- ServerHello
 (connection_id=100)
 EncryptedExtensions
 (cid=5)
 Certificate
 (cid=5)
 CertificateVerify
 (cid=5)
 Finished
 (cid=5)

 Certificate -------->
 (cid=100)
 CertificateVerify
 (cid=100)
 Finished
 (cid=100)
 <-------- Ack
 (cid=5)

 Application Data ========>
 (cid=100)
 <======== Application Data
 (cid=5)

 Figure 13: Example DTLS 1.3 Exchange with CIDs

 If no CID is negotiated, then the receiver MUST reject any records it
 receives that contain a CID.

Rescorla, et al. Expires May 22, 2020 [Page 41]

Internet-Draft DTLS 1.3 November 2019

10. Application Data Protocol

 Application data messages are carried by the record layer and are
 fragmented and encrypted based on the current connection state. The
 messages are treated as transparent data to the record layer.

11. Security Considerations

 Security issues are discussed primarily in [TLS13].

 The primary additional security consideration raised by DTLS is that
 of denial of service. DTLS includes a cookie exchange designed to
 protect against denial of service. However, implementations that do
 not use this cookie exchange are still vulnerable to DoS. In
 particular, DTLS servers that do not use the cookie exchange may be
 used as attack amplifiers even if they themselves are not
 experiencing DoS. Therefore, DTLS servers SHOULD use the cookie
 exchange unless there is good reason to believe that amplification is
 not a threat in their environment. Clients MUST be prepared to do a
 cookie exchange with every handshake.

 DTLS implementations MUST NOT update their sending address in
 response to packets from a different address unless they first
 perform some reachability test; no such test is defined in this
 specification. Even with such a test, An on-path adversary can also
 black-hole traffic or create a reflection attack against third
 parties because a DTLS peer has no means to distinguish a genuine
 address update event (for example, due to a NAT rebinding) from one
 that is malicious. This attack is of concern when there is a large
 asymmetry of request/response message sizes.

 With the exception of order protection and non-replayability, the
 security guarantees for DTLS 1.3 are the same as TLS 1.3. While TLS
 always provides order protection and non-replayability, DTLS does not
 provide order protection and may not provide replay protection.

 Unlike TLS implementations, DTLS implementations SHOULD NOT respond
 to invalid records by terminating the connection.

 If implementations process out-of-epoch records as recommended in
Section 8, then this creates a denial of service risk since an

 adversary could inject records with fake epoch values, forcing the
 recipient to compute the next-generation application_traffic_secret
 using the HKDF-Expand-Label construct to only find out that the
 message was does not pass the AEAD cipher processing. The impact of
 this attack is small since the HKDF-Expand-Label only performs
 symmetric key hashing operations. Implementations which are
 concerned about this form of attack can discard out-of-epoch records.

Rescorla, et al. Expires May 22, 2020 [Page 42]

Internet-Draft DTLS 1.3 November 2019

 The security and privacy properties of the CID for DTLS 1.3 builds on
 top of what is described in [DTLS-CID]. There are, however, several
 improvements:

 - The use of the Post-Handshake message allows the client and the
 server to update their CIDs and those values are exchanged with
 confidentiality protection.

 - With multi-homing, an adversary is able to correlate the
 communication interaction over the two paths, which adds further
 privacy concerns. In order to prevent this, implementations
 SHOULD attempt to use fresh CIDs whenever they change local
 addresses or ports (though this is not always possible to detect).
 The RequestConnectionId message can be used by a peer to ask for
 new CIDs to ensure that a pool of suitable CIDs is available.

 - Switching CID based on certain events, or even regularly, helps
 against tracking by on-path adversaries but the sequence numbers
 can still allow linkability. For this reason this specification
 defines an algorithm for encrypting sequence numbers, see

Section 4.2.3. Note that sequence number encryption is used for
 all encrypted DTLS 1.3 records irrespectively of the use of a CID.

 - DTLS 1.3 encrypts handshake messages much earlier than in previous
 DTLS versions. Therefore, less information identifying the DTLS
 client, such as the client certificate, is available to an on-path
 adversary.

12. Changes to DTLS 1.2

 Since TLS 1.3 introduces a large number of changes to TLS 1.2, the
 list of changes from DTLS 1.2 to DTLS 1.3 is equally large. For this
 reason this section focuses on the most important changes only.

 - New handshake pattern, which leads to a shorter message exchange

 - Only AEAD ciphers are supported. Additional data calculation has
 been simplified.

 - Removed support for weaker and older cryptographic algorithms

 - HelloRetryRequest of TLS 1.3 used instead of HelloVerifyRequest

 - More flexible ciphersuite negotiation

 - New session resumption mechanism

 - PSK authentication redefined

Rescorla, et al. Expires May 22, 2020 [Page 43]

Internet-Draft DTLS 1.3 November 2019

 - New key derivation hierarchy utilizing a new key derivation
 construct

 - Improved version negotiation

 - Optimized record layer encoding and thereby its size

 - Added CID functionality

 - Sequence numbers are encrypted.

13. IANA Considerations

 IANA is requested to allocate a new value in the "TLS ContentType"
 registry for the ACK message, defined in Section 7, with content type
 25. The value for the "DTLS-OK" column is "Y". IANA is requested to
 reserve the content type range 32-63 so that content types in this
 range are not allocated.

 IANA is requested to allocate two values in the "TLS Handshake Type"
 registry, defined in [TLS13], for RequestConnectionId (TBD), and
 NewConnectionId (TBD), as defined in this document. The value for
 the "DTLS-OK" columns are "Y".

14. References

14.1. Normative References

 [CHACHA] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
 <https://www.rfc-editor.org/info/rfc8439>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Rescorla, et al. Expires May 22, 2020 [Page 44]

Internet-Draft DTLS 1.3 November 2019

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,

RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

14.2. Informative References

 [DTLS-CID]
 Rescorla, E., Tschofenig, H., and T. Fossati, "Connection
 Identifiers for DTLS 1.2", draft-ietf-tls-dtls-connection-

id-07 (work in progress), October 2019.

 [I-D.ietf-tls-dtls-connection-id]
 Rescorla, E., Tschofenig, H., and T. Fossati, "Connection
 Identifiers for DTLS 1.2", draft-ietf-tls-dtls-connection-

id-07 (work in progress), October 2019.

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, DOI 10.17487/RFC2522, March 1999,
 <https://www.rfc-editor.org/info/rfc2522>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <https://www.rfc-editor.org/info/rfc4340>.

https://datatracker.ietf.org/doc/html/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-07
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-07
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-07
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-07
https://datatracker.ietf.org/doc/html/rfc2522
https://www.rfc-editor.org/info/rfc2522
https://datatracker.ietf.org/doc/html/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc4340
https://www.rfc-editor.org/info/rfc4340

Rescorla, et al. Expires May 22, 2020 [Page 45]

Internet-Draft DTLS 1.3 November 2019

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <https://www.rfc-editor.org/info/rfc4347>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5238] Phelan, T., "Datagram Transport Layer Security (DTLS) over
 the Datagram Congestion Control Protocol (DCCP)",

RFC 5238, DOI 10.17487/RFC5238, May 2008,
 <https://www.rfc-editor.org/info/rfc5238>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

14.3. URIs

 [1] mailto:tls@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/tls

 [3] https://www.ietf.org/mail-archive/web/tls/current/index.html

https://datatracker.ietf.org/doc/html/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://datatracker.ietf.org/doc/html/rfc4347
https://www.rfc-editor.org/info/rfc4347
https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5238
https://www.rfc-editor.org/info/rfc5238
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7296
https://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html

Rescorla, et al. Expires May 22, 2020 [Page 46]

Internet-Draft DTLS 1.3 November 2019

Appendix A. Protocol Data Structures and Constant Values

 This section provides the normative protocol types and constants
 definitions.

A.1. Record Layer

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 epoch = 0 // DTLS field
 uint48 sequence_number; // DTLS field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 struct {
 opaque content[DTLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } DTLSInnerPlaintext;

 struct {
 opaque unified_hdr[variable];
 opaque encrypted_record[length];
 } DTLSCiphertext;

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0|0|1|C|S|L|E E|
 +-+-+-+-+-+-+-+-+
 | Connection ID | Legend:
 | (if any, |
 / length as / C - Connection ID (CID) present
 | negotiated) | S - Sequence number length
 +-+-+-+-+-+-+-+-+ L - Length present
 | 8 or 16 bit | E - Epoch
 |Sequence Number|
 +-+-+-+-+-+-+-+-+
 | 16 bit Length |
 | (if present) |
 +-+-+-+-+-+-+-+-+

A.2. Handshake Protocol

 enum {
 hello_request_RESERVED(0),
 client_hello(1),

Rescorla, et al. Expires May 22, 2020 [Page 47]

Internet-Draft DTLS 1.3 November 2019

 server_hello(2),
 hello_verify_request_RESERVED(3),
 new_session_ticket(4),
 end_of_early_data(5),
 hello_retry_request_RESERVED(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 finished(20),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 uint16 message_seq; /* DTLS-required field */
 uint24 fragment_offset; /* DTLS-required field */
 uint24 fragment_length; /* DTLS-required field */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2
 Random random;
 opaque legacy_session_id<0..32>;
 opaque legacy_cookie<0..2^8-1>; // DTLS

Rescorla, et al. Expires May 22, 2020 [Page 48]

Internet-Draft DTLS 1.3 November 2019

 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

A.3. ACKs

 struct {
 RecordNumber record_numbers<0..2^16-1>;
 } ACK;

A.4. Connection ID Management

 enum {
 cid_immediate(0), cid_spare(1), (255)
 } ConnectionIdUsage;

 opaque ConnectionId<0..2^8-1>;

 struct {
 ConnectionIds cids<0..2^16-1>;
 ConnectionIdUsage usage;
 } NewConnectionId;

 struct {
 uint8 num_cids;
 } RequestConnectionId;

Appendix B. History

 RFC EDITOR: PLEASE REMOVE THE THIS SECTION

 IETF Drafts

draft-33: - Key separation between TLS and DTLS. Issue #72.

draft-32: - Editorial improvements and clarifications.

draft-31: - Editorial improvements in text and figures. - Added
 normative reference to ChaCha20 and Poly1305.

draft-30: - Changed record format - Added text about end of early
 data - Changed format of the Connection ID Update message - Added

Appendix A "Protocol Data Structures and Constant Values"

draft-29: - Added support for sequence number encryption - Update to
 new record format - Emphasize that compatibility mode isn't used.

https://datatracker.ietf.org/doc/html/draft-33
https://datatracker.ietf.org/doc/html/draft-32
https://datatracker.ietf.org/doc/html/draft-31
https://datatracker.ietf.org/doc/html/draft-30
https://datatracker.ietf.org/doc/html/draft-29

Rescorla, et al. Expires May 22, 2020 [Page 49]

Internet-Draft DTLS 1.3 November 2019

draft-28: - Version bump to align with TLS 1.3 pre-RFC version.

draft-27: - Incorporated unified header format. - Added support for
 CIDs.

draft-04 - 26: - Submissions to align with TLS 1.3 draft versions

draft-03 - Only update keys after KeyUpdate is ACKed.

draft-02 - Shorten the protected record header and introduce an
 ultra-short version of the record header. - Reintroduce KeyUpdate,
 which works properly now that we have ACK. - Clarify the ACK rules.

draft-01 - Restructured the ACK to contain a list of records and also
 be a record rather than a handshake message.

draft-00 - First IETF Draft

 Personal Drafts draft-01 - Alignment with version -19 of the TLS 1.3
 specification

draft-00

 - Initial version using TLS 1.3 as a baseline.

 - Use of epoch values instead of KeyUpdate message

 - Use of cookie extension instead of cookie field in ClientHello and
 HelloVerifyRequest messages

 - Added ACK message

 - Text about sequence number handling

Appendix C. Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [1]. Information on the group and
 information on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/tls [2]

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/tls/current/index.html [3]

https://datatracker.ietf.org/doc/html/draft-28
https://datatracker.ietf.org/doc/html/draft-27
https://datatracker.ietf.org/doc/html/draft-04
https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-01
https://datatracker.ietf.org/doc/html/draft-00
https://datatracker.ietf.org/doc/html/draft-01
https://datatracker.ietf.org/doc/html/draft-00
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html

Rescorla, et al. Expires May 22, 2020 [Page 50]

Internet-Draft DTLS 1.3 November 2019

Appendix D. Contributors

 Many people have contributed to previous DTLS versions and they are
 acknowledged in prior versions of DTLS specifications or in the
 referenced specifications. The sequence number encryption concept is
 taken from the QUIC specification. We would like to thank the
 authors of the QUIC specification for their work.

 In addition, we would like to thank:

 * David Benjamin
 Google
 davidben@google.com

 * Thomas Fossati
 Nokia
 thomas.fossati@nokia.com

 * Tobias Gondrom
 Huawei
 tobias.gondrom@gondrom.org

 * Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

 * Martin Thomson
 Mozilla
 martin.thomson@gmail.com

 * Christopher A. Wood
 Apple Inc.
 cawood@apple.com

 * Yin Xinxing
 Huawei
 yinxinxing@huawei.com

Authors' Addresses

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

Rescorla, et al. Expires May 22, 2020 [Page 51]

Internet-Draft DTLS 1.3 November 2019

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 Nagendra Modadugu
 Google, Inc.

 EMail: nagendra@cs.stanford.edu

Rescorla, et al. Expires May 22, 2020 [Page 52]

