
Workgroup: TLS

Internet-Draft: draft-ietf-tls-dtls13-36

Obsoletes: 6347 (if approved)

Published: 9 March 2020

Intended Status: Standards Track

Expires: 10 September 2020

Authors: E. Rescorla

RTFM, Inc.

H. Tschofenig

Arm Limited

N. Modadugu

Google, Inc.

The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

Abstract

This document specifies Version 1.3 of the Datagram Transport Layer

Security (DTLS) protocol. DTLS 1.3 allows client/server applications

to communicate over the Internet in a way that is designed to

prevent eavesdropping, tampering, and message forgery.

The DTLS 1.3 protocol is intentionally based on the Transport Layer

Security (TLS) 1.3 protocol and provides equivalent security

guarantees with the exception of order protection/non-replayability.

Datagram semantics of the underlying transport are preserved by the

DTLS protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6347
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. DTLS Design Rationale and Overview

3.1. Packet Loss

3.2. Reordering

3.3. Message Size

3.4. Replay Detection

4. The DTLS Record Layer

4.1. Determining the Header Format

4.2. Sequence Number and Epoch

4.2.1. Processing Guidelines

4.2.2. Reconstructing the Sequence Number and Epoch

4.2.3. Sequence Number Encryption

4.3. Transport Layer Mapping

4.4. PMTU Issues

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.5. Record Payload Protection

4.5.1. Anti-Replay

4.5.2. Handling Invalid Records

5. The DTLS Handshake Protocol

5.1. Denial-of-Service Countermeasures

5.2. DTLS Handshake Message Format

5.3. ClientHello Message

5.4. Handshake Message Fragmentation and Reassembly

5.5. End Of Early Data

5.6. DTLS Handshake Flights

5.7. Timeout and Retransmission

5.7.1. State Machine

5.7.2. Timer Values

5.8. CertificateVerify and Finished Messages

5.9. Cryptographic Label Prefix

5.10. Alert Messages

5.11. Establishing New Associations with Existing Parameters

6. Example of Handshake with Timeout and Retransmission

6.1. Epoch Values and Rekeying

7. ACK Message

7.1. Sending ACKs

7.2. Receiving ACKs

8. Key Updates

9. Connection ID Updates

9.1. Connection ID Example

10. Application Data Protocol

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11. Security Considerations

12. Changes to DTLS 1.2

13. IANA Considerations

14. References

14.1. Normative References

14.2. Informative References

Appendix A. Protocol Data Structures and Constant Values

A.1. Record Layer

A.2. Handshake Protocol

A.3. ACKs

A.4. Connection ID Management

Appendix B. History

Appendix C. Working Group Information

Appendix D. Contributors

Authors' Addresses

1. Introduction

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

The source for this draft is maintained in GitHub. Suggested changes

should be submitted as pull requests at https://github.com/tlswg/

dtls13-spec. Instructions are on that page as well. Editorial

changes can be managed in GitHub, but any substantive change should

be discussed on the TLS mailing list.

The primary goal of the TLS protocol is to establish an

authenticated, confidentiality and integrity protected channel

between two communicating peers. The TLS protocol is composed of two

layers: the TLS Record Protocol and the TLS Handshake Protocol.

However, TLS must run over a reliable transport channel - typically

TCP [RFC0793].

There are applications that use UDP [RFC0768] as a transport and to

offer communication security protection for those applications the

Datagram Transport Layer Security (DTLS) protocol has been

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

developed. DTLS is deliberately designed to be as similar to TLS as

possible, both to minimize new security invention and to maximize

the amount of code and infrastructure reuse.

DTLS 1.0 [RFC4347] was originally defined as a delta from TLS 1.1

[RFC4346] and DTLS 1.2 [RFC6347] was defined as a series of deltas

to TLS 1.2 [RFC5246]. There is no DTLS 1.1; that version number was

skipped in order to harmonize version numbers with TLS. This

specification describes the most current version of the DTLS

protocol based on TLS 1.3 [TLS13].

Implementations that speak both DTLS 1.2 and DTLS 1.3 can

interoperate with those that speak only DTLS 1.2 (using DTLS 1.2 of

course), just as TLS 1.3 implementations can interoperate with TLS

1.2 (see Appendix D of [TLS13] for details). While backwards

compatibility with DTLS 1.0 is possible the use of DTLS 1.0 is not

recommended as explained in Section 3.1.2 of RFC 7525 [RFC7525].

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used:

client: The endpoint initiating the DTLS connection.

connection: A transport-layer connection between two endpoints.

endpoint: Either the client or server of the connection.

handshake: An initial negotiation between client and server that

establishes the parameters of their transactions.

peer: An endpoint. When discussing a particular endpoint, "peer"

refers to the endpoint that is remote to the primary subject of

discussion.

receiver: An endpoint that is receiving records.

sender: An endpoint that is transmitting records.

session: An association between a client and a server resulting

from a handshake.

server: The endpoint which did not initiate the DTLS connection.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

CID: Connection ID

The reader is assumed to be familiar with the TLS 1.3 specification

since this document is defined as a delta from TLS 1.3. As in TLS

1.3 the HelloRetryRequest has the same format as a ServerHello

message but for convenience we use the term HelloRetryRequest

throughout this document as if it were a distinct message.

Figures in this document illustrate various combinations of the DTLS

protocol exchanges and the symbols have the following meaning:

'+' indicates noteworthy extensions sent in the previously noted

message.

'*' indicates optional or situation-dependent messages/extensions

that are not always sent.

'{}' indicates messages protected using keys derived from a

[sender]_handshake_traffic_secret.

'[]' indicates messages protected using keys derived from

traffic_secret_N.

3. DTLS Design Rationale and Overview

The basic design philosophy of DTLS is to construct "TLS over

datagram transport". Datagram transport does not require nor provide

reliable or in-order delivery of data. The DTLS protocol preserves

this property for application data. Applications such as media

streaming, Internet telephony, and online gaming use datagram

transport for communication due to the delay-sensitive nature of

transported data. The behavior of such applications is unchanged

when the DTLS protocol is used to secure communication, since the

DTLS protocol does not compensate for lost or reordered data

traffic.

TLS cannot be used directly in datagram environments for the

following five reasons:

TLS relies on an implicit sequence number on records. If a

record is not received, then the recipient will use the wrong

sequence number when attempting to remove record protection

from subsequent records. DTLS solves this problem by adding

sequence numbers.

The TLS handshake is a lock-step cryptographic handshake.

Messages must be transmitted and received in a defined order;

any other order is an error. DTLS handshake messages are also

assigned sequence numbers to enable reassembly in the correct

order in case datagrams are lost or reordered.

* ¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

1.

¶

2.

¶

During the handshake, messages are implicitly acknowledged by

other handshake messages, but the last flight of messages and

post-handshake messages (such as the NewSessionTicket message)

do not result in any direct response that would allow the

sender to detect loss. DTLS adds an acknowledgment message to

enable better loss recovery.

Handshake messages are potentially larger than can be contained

in a single datagram. DTLS adds fields to handshake messages to

support fragmentation and reassembly.

Datagram transport protocols, like UDP, are susceptible to

abusive behavior effecting denial of service attacks against

nonparticipants. DTLS adds a return-routability check that uses

the TLS HelloRetryRequest message (see Section 5.1 for

details).

3.1. Packet Loss

DTLS uses a simple retransmission timer to handle packet loss.

Figure 1 demonstrates the basic concept, using the first phase of

the DTLS handshake:

Figure 1: DTLS retransmission example

Once the client has transmitted the ClientHello message, it expects

to see a HelloRetryRequest or a ServerHello from the server.

However, if the server's message is lost, the client knows that

either the ClientHello or the response from the server has been lost

and retransmits. When the server receives the retransmission, it

knows to retransmit.

The server also maintains a retransmission timer and retransmits

when that timer expires.

Note that timeout and retransmission do not apply to the

HelloRetryRequest since this would require creating state on the

3.

¶

4.

¶

5.

¶

¶

 Client Server

 ------ ------

 ClientHello ------>

 X<-- HelloRetryRequest

 (lost)

 [Timer Expires]

 ClientHello ------>

 (retransmit)

¶

¶

server. The HelloRetryRequest is designed to be small enough that it

will not itself be fragmented, thus avoiding concerns about

interleaving multiple HelloRetryRequests.

3.2. Reordering

In DTLS, each handshake message is assigned a specific sequence

number. When a peer receives a handshake message, it can quickly

determine whether that message is the next message it expects. If it

is, then it processes it. If not, it queues it for future handling

once all previous messages have been received.

3.3. Message Size

TLS and DTLS handshake messages can be quite large (in theory up to

2^24-1 bytes, in practice many kilobytes). By contrast, UDP

datagrams are often limited to less than 1500 bytes if IP

fragmentation is not desired. In order to compensate for this

limitation, each DTLS handshake message may be fragmented over

several DTLS records, each of which is intended to fit in a single

UDP datagram. Each DTLS handshake message contains both a fragment

offset and a fragment length. Thus, a recipient in possession of all

bytes of a handshake message can reassemble the original

unfragmented message.

3.4. Replay Detection

DTLS optionally supports record replay detection. The technique used

is the same as in IPsec AH/ESP, by maintaining a bitmap window of

received records. Records that are too old to fit in the window and

records that have previously been received are silently discarded.

The replay detection feature is optional, since packet duplication

is not always malicious, but can also occur due to routing errors.

Applications may conceivably detect duplicate packets and

accordingly modify their data transmission strategy.

4. The DTLS Record Layer

The DTLS 1.3 record layer is different from the TLS 1.3 record layer

and also different from the DTLS 1.2 record layer.

The DTLSCiphertext structure omits the superfluous version

number and type fields.

DTLS adds an epoch and sequence number to the TLS record

header. This sequence number allows the recipient to correctly

verify the DTLS MAC. However, the number of bits used for the

epoch and sequence number fields in the DTLSCiphertext

structure have been reduced from those in previous versions.

¶

¶

¶

¶

¶

1.

¶

2.

¶

unified_hdr:

encrypted_record:

The DTLSCiphertext structure has a variable length header.

DTLSPlaintext records are used to send unprotected records and

DTLSCiphertext records are used to send protected records.

The DTLS record formats are shown below. Unless explicitly stated

the meaning of the fields is unchanged from previous TLS / DTLS

versions.

Figure 2: DTLS 1.3 Record Format

The unified_hdr is a field of variable length, as

shown in Figure 3.

Identical to the encrypted_record field in a TLS

1.3 record.

The DTLSCiphertext header is tightly bit-packed, as shown below:

3. ¶

¶

¶

struct {

 ContentType type;

 ProtocolVersion legacy_record_version;

 uint16 epoch = 0

 uint48 sequence_number;

 uint16 length;

 opaque fragment[DTLSPlaintext.length];

} DTLSPlaintext;

struct {

 opaque content[DTLSPlaintext.length];

 ContentType type;

 uint8 zeros[length_of_padding];

} DTLSInnerPlaintext;

struct {

 opaque unified_hdr[variable];

 opaque encrypted_record[length];

} DTLSCiphertext;

¶

¶

¶

Fixed Bits:

C:

S:

L:

E:

Connection ID:

Sequence Number:

Length:

Figure 3: DTLS 1.3 CipherText Header

The three high bits of the first byte of the

DTLSCiphertext header are set to 001.

The C bit (0x10) is set if the Connection ID is present.

The S bit (0x08) indicates the size of the sequence number. 0

means an 8-bit sequence number, 1 means 16-bit.

The L bit (0x04) is set if the length is present.

The two low bits (0x03) include the low order two bits of the

epoch.

Variable length CID. The CID concept is described in

[I-D.ietf-tls-dtls-connection-id]. An example can be found in

Section 9.1.

The low order 8 or 16 bits of the record sequence

number. This value is 16 bits if the S bit is set to 1, and 8

bits if the S bit is 0.

Identical to the length field in a TLS 1.3 record.

As with previous versions of DTLS, multiple DTLSPlaintext and

DTLSCiphertext records can be included in the same underlying

transport datagram.

Figure 4 illustrates different record layer header types.

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

|0|0|1|C|S|L|E E|

+-+-+-+-+-+-+-+-+

| Connection ID | Legend:

| (if any, |

/ length as / C - Connection ID (CID) present

| negotiated) | S - Sequence number length

+-+-+-+-+-+-+-+-+ L - Length present

| 8 or 16 bit | E - Epoch

|Sequence Number|

+-+-+-+-+-+-+-+-+

| 16 bit Length |

| (if present) |

+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 4: Header Examples

The length field MAY be omitted by clearing the L bit, which means

that the record consumes the entire rest of the datagram in the

lower level transport. In this case it is not possible to have

multiple DTLSCiphertext format records without length fields in the

same datagram. Omitting the length field MUST only be used for the

last record in a datagram.

Implementations which send multiple records in the same datagram

SHOULD omit the connection id from all but the first record;

receiving implementations MUST assume that any subsequent records

without connection IDs belong to the same assocatiation. Sending

implementations MUST NOT mix records from multiple DTLS associations

in the same datagram. If the second or later record has a connection

ID which does not correspond to the same association used for

previous records, the rest of the datagram MUST be discarded.

When expanded, the epoch and sequence number can be combined into an

unpacked RecordNumber structure, as shown below:

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

| Content Type | |0|0|1|1|1|1|E E| |0|0|1|0|0|0|E E|

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

| 16 bit | | 16 bit | |8-bit Seq. No. |

| Version | |Sequence Number| +-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ | |

| 16 bit | | | | Encrypted |

| Epoch | / Connection ID / / Record /

+-+-+-+-+-+-+-+-+ | | | |

| | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

| | | 16 bit |

| 48 bit | | Length | DTLSCiphertext

|Sequence Number| +-+-+-+-+-+-+-+-+ Structure

| | | | (minimal)

| | | Encrypted |

+-+-+-+-+-+-+-+-+ / Record /

| 16 bit | | |

| Length | +-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+

| | DTLSCiphertext

| | Structure

/ Fragment / (full)

| |

+-+-+-+-+-+-+-+-+

 DTLSPlaintext

 Structure

¶

¶

¶

This 64-bit value is used in the ACK message as well as in the

"record_sequence_number" input to the AEAD function.

The entire header value shown in Figure 4 (but prior to record

number encryption) is used as as the additional data value for the

AEAD function. For instance, if the minimal variant is used, the AAD

is 2 octets long. Note that this design is different from the

additional data calculation for DTLS 1.2 and for DTLS 1.2 with

Connection ID.

4.1. Determining the Header Format

Implementations can distinguish the two header formats by examining

the first byte:

If the first byte is alert(21), handshake(22), or ack(proposed,

25), the record MUST be interpreted as a DTLSPlaintext record.

If the first byte is any other value, then receivers MUST check

to see if the leading bits of the first byte are 001. If so, the

implementation MUST process the record as DTLSCiphertext; the

true content type will be inside the protected portion.

Otherwise, the record MUST be rejected as if it had failed

deprotection, as described in Section 4.5.2.

4.2. Sequence Number and Epoch

DTLS uses an explicit or partly explicit sequence number, rather

than an implicit one, carried in the sequence_number field of the

record. Sequence numbers are maintained separately for each epoch,

with each sequence_number initially being 0 for each epoch.

The epoch number is initially zero and is incremented each time

keying material changes and a sender aims to rekey. More details are

provided in Section 6.1.

4.2.1. Processing Guidelines

Because DTLS records could be reordered, a record from epoch M may

be received after epoch N (where N > M) has begun. In general,

implementations SHOULD discard records from earlier epochs, but if

packet loss causes noticeable problems implementations MAY choose to

retain keying material from previous epochs for up to the default

MSL specified for TCP [RFC0793] to allow for packet reordering.

 struct {

 uint16 epoch;

 uint48 sequence_number;

 } RecordNumber;

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

(Note that the intention here is that implementers use the current

guidance from the IETF for MSL, as specified in [RFC0793] or

successors not that they attempt to interrogate the MSL that the

system TCP stack is using.)

Conversely, it is possible for records that are protected with the

new epoch to be received prior to the completion of a handshake. For

instance, the server may send its Finished message and then start

transmitting data. Implementations MAY either buffer or discard such

records, though when DTLS is used over reliable transports (e.g.,

SCTP [RFC4960]), they SHOULD be buffered and processed once the

handshake completes. Note that TLS's restrictions on when records

may be sent still apply, and the receiver treats the records as if

they were sent in the right order.

Implementations MUST send retransmissions of lost messages using the

same epoch and keying material as the original transmission.

Implementations MUST either abandon an association or re-key prior

to allowing the sequence number to wrap.

Implementations MUST NOT allow the epoch to wrap, but instead MUST

establish a new association, terminating the old association.

4.2.2. Reconstructing the Sequence Number and Epoch

When receiving protected DTLS records message, the recipient does

not have a full epoch or sequence number value and so there is some

opportunity for ambiguity. Because the full epoch and sequence

number are used to compute the per-record nonce, failure to

reconstruct these values leads to failure to deprotect the record,

and so implementations MAY use a mechanism of their choice to

determine the full values. This section provides an algorithm which

is comparatively simple and which implementations are RECOMMENDED to

follow.

If the epoch bits match those of the current epoch, then

implementations SHOULD reconstruct the sequence number by computing

the full sequence number which is numerically closest to one plus

the sequence number of the highest successfully deprotected record.

During the handshake phase, the epoch bits unambiguously indicate

the correct key to use. After the handshake is complete, if the

epoch bits do not match those from the current epoch implementations

SHOULD use the most recent past epoch which has matching bits, and

then reconstruct the sequence number as described above.

¶

¶

¶

¶

¶

¶

¶

¶

4.2.3. Sequence Number Encryption

In DTLS 1.3, when records are encrypted, record sequence numbers are

also encrypted. The basic pattern is that the underlying encryption

algorithm used with the AEAD algorithm is used to generate a mask

which is then XORed with the sequence number.

When the AEAD is based on AES, then the Mask is generated by

computing AES-ECB on the first 16 bytes of the ciphertext:

When the AEAD is based on ChaCha20, then the mask is generated by

treating the first 4 bytes of the ciphertext as the block counter

and the next 12 bytes as the nonce, passing them to the ChaCha20

block function (Section 2.3 of [CHACHA]):

The sn_key is computed as follows:

[sender] denotes the sending side. The Secret value to be used is

described in Section 7.3 of [TLS13].

The encrypted sequence number is computed by XORing the leading

bytes of the Mask with the sequence number. Decryption is

accomplished by the same process.

This procedure requires the ciphertext length be at least 16 bytes.

Receivers MUST reject shorter records as if they had failed

deprotection, as described in Section 4.5.2. Senders MUST pad short

plaintexts out (using the conventional record padding mechanism) in

order to make a suitable-length ciphertext. Note most of the DTLS

AEAD algorithms have a 16-byte authentication tag and need no

padding. However, some algorithms such as TLS_AES_128_CCM_8_SHA256

have a shorter authentication tag and may require padding for short

inputs.

Note that sequence number encryption is only applied to the

DTLSCiphertext structure and not to the DTLSPlaintext structure,

which also contains a sequence number.

4.3. Transport Layer Mapping

DTLS messages MAY be fragmented into multiple DTLS records. Each

DTLS record MUST fit within a single datagram. In order to avoid IP

fragmentation, clients of the DTLS record layer SHOULD attempt to

¶

¶

 Mask = AES-ECB(sn_key, Ciphertext[0..15])¶

¶

 Mask = ChaCha20(sn_key, Ciphertext[0..3], Ciphertext[4..15])¶

¶

 [sender]_sn_key = HKDF-Expand-Label(Secret, "sn" , "", key_length)¶

¶

¶

¶

¶

size records so that they fit within any PMTU estimates obtained

from the record layer.

Multiple DTLS records MAY be placed in a single datagram. Records

are encoded consecutively. The length field from DTLS records

containing that field can be used to determine the boundaries

between records. The final record in a datagram can omit the length

field. The first byte of the datagram payload MUST be the beginning

of a record. Records MUST NOT span datagrams.

DTLS records without CIDs do not contain any association identifiers

and applications must arrange to multiplex between associations.

With UDP, the host/port number is used to look up the appropriate

security association for incoming records.

Some transports, such as DCCP [RFC4340], provide their own sequence

numbers. When carried over those transports, both the DTLS and the

transport sequence numbers will be present. Although this introduces

a small amount of inefficiency, the transport layer and DTLS

sequence numbers serve different purposes; therefore, for conceptual

simplicity, it is superior to use both sequence numbers.

Some transports provide congestion control for traffic carried over

them. If the congestion window is sufficiently narrow, DTLS

handshake retransmissions may be held rather than transmitted

immediately, potentially leading to timeouts and spurious

retransmission. When DTLS is used over such transports, care should

be taken not to overrun the likely congestion window. [RFC5238]

defines a mapping of DTLS to DCCP that takes these issues into

account.

4.4. PMTU Issues

In general, DTLS's philosophy is to leave PMTU discovery to the

application. However, DTLS cannot completely ignore PMTU for three

reasons:

The DTLS record framing expands the datagram size, thus lowering

the effective PMTU from the application's perspective.

In some implementations, the application may not directly talk to

the network, in which case the DTLS stack may absorb ICMP

[RFC1191] "Datagram Too Big" indications or ICMPv6 [RFC4443]

"Packet Too Big" indications.

The DTLS handshake messages can exceed the PMTU.

In order to deal with the first two issues, the DTLS record layer

SHOULD behave as described below.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

If PMTU estimates are available from the underlying transport

protocol, they should be made available to upper layer protocols. In

particular:

For DTLS over UDP, the upper layer protocol SHOULD be allowed to

obtain the PMTU estimate maintained in the IP layer.

For DTLS over DCCP, the upper layer protocol SHOULD be allowed to

obtain the current estimate of the PMTU.

For DTLS over TCP or SCTP, which automatically fragment and

reassemble datagrams, there is no PMTU limitation. However, the

upper layer protocol MUST NOT write any record that exceeds the

maximum record size of 2^14 bytes.

Note that DTLS does not defend against spoofed ICMP messages;

implementations SHOULD ignore any such messages that indicate PMTUs

below the IPv4 and IPv6 minimums of 576 and 1280 bytes respectively

The DTLS record layer SHOULD allow the upper layer protocol to

discover the amount of record expansion expected by the DTLS

processing.

If there is a transport protocol indication (either via ICMP or via

a refusal to send the datagram as in Section 14 of [RFC4340]), then

the DTLS record layer MUST inform the upper layer protocol of the

error.

The DTLS record layer SHOULD NOT interfere with upper layer

protocols performing PMTU discovery, whether via [RFC1191] or

[RFC4821] mechanisms. In particular:

Where allowed by the underlying transport protocol, the upper

layer protocol SHOULD be allowed to set the state of the DF bit

(in IPv4) or prohibit local fragmentation (in IPv6).

If the underlying transport protocol allows the application to

request PMTU probing (e.g., DCCP), the DTLS record layer SHOULD

honor this request.

The final issue is the DTLS handshake protocol. From the perspective

of the DTLS record layer, this is merely another upper layer

protocol. However, DTLS handshakes occur infrequently and involve

only a few round trips; therefore, the handshake protocol PMTU

handling places a premium on rapid completion over accurate PMTU

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

discovery. In order to allow connections under these circumstances,

DTLS implementations SHOULD follow the following rules:

If the DTLS record layer informs the DTLS handshake layer that a

message is too big, it SHOULD immediately attempt to fragment it,

using any existing information about the PMTU.

If repeated retransmissions do not result in a response, and the

PMTU is unknown, subsequent retransmissions SHOULD back off to a

smaller record size, fragmenting the handshake message as

appropriate. This standard does not specify an exact number of

retransmits to attempt before backing off, but 2-3 seems

appropriate.

4.5. Record Payload Protection

Like TLS, DTLS transmits data as a series of protected records. The

rest of this section describes the details of that format.

4.5.1. Anti-Replay

Each DTLS record contains a sequence number to provide replay

protection. Sequence number verification SHOULD be performed using

the following sliding window procedure, borrowed from Section 3.4.3

of [RFC4303].

The received record counter for a session MUST be initialized to

zero when that session is established. For each received record, the

receiver MUST verify that the record contains a sequence number that

does not duplicate the sequence number of any other record received

during the lifetime of the session. This check SHOULD happen after

deprotecting the record; otherwise the record discard might itself

serve as a timing channel for the record number. Note that

decompressing the records number is still a potential timing channel

for the record number, though a less powerful one than whether it

was deprotected.

Duplicates are rejected through the use of a sliding receive window.

(How the window is implemented is a local matter, but the following

text describes the functionality that the implementation must

exhibit.) The receiver SHOULD pick a window large enough to handle

any plausible reordering, which depends on the data rate. (The

receiver does not notify the sender of the window size.)

The "right" edge of the window represents the highest validated

sequence number value received on the session. Records that contain

sequence numbers lower than the "left" edge of the window are

rejected. Records falling within the window are checked against a

list of received records within the window. An efficient means for

performing this check, based on the use of a bit mask, is described

¶

*

¶

*

¶

¶

¶

¶

¶

in Section 3.4.3 of [RFC4303]. If the received record falls within

the window and is new, or if the record is to the right of the

window, then the record is new.

The window MUST NOT be updated until the record has been deprotected

successfully.

4.5.2. Handling Invalid Records

Unlike TLS, DTLS is resilient in the face of invalid records (e.g.,

invalid formatting, length, MAC, etc.). In general, invalid records

SHOULD be silently discarded, thus preserving the association;

however, an error MAY be logged for diagnostic purposes.

Implementations which choose to generate an alert instead, MUST

generate error alerts to avoid attacks where the attacker repeatedly

probes the implementation to see how it responds to various types of

error. Note that if DTLS is run over UDP, then any implementation

which does this will be extremely susceptible to denial-of-service

(DoS) attacks because UDP forgery is so easy. Thus, this practice is

NOT RECOMMENDED for such transports, both to increase the

reliability of DTLS service and to avoid the risk of spoofing

attacks sending traffic to unrelated third parties.

If DTLS is being carried over a transport that is resistant to

forgery (e.g., SCTP with SCTP-AUTH), then it is safer to send alerts

because an attacker will have difficulty forging a datagram that

will not be rejected by the transport layer.

5. The DTLS Handshake Protocol

DTLS 1.3 re-uses the TLS 1.3 handshake messages and flows, with the

following changes:

To handle message loss, reordering, and fragmentation

modifications to the handshake header are necessary.

Retransmission timers are introduced to handle message loss.

A new ACK content type has been added for reliable message

delivery of handshake messages.

Note that TLS 1.3 already supports a cookie extension, which is used

to prevent denial-of-service attacks. This DoS prevention mechanism

is described in more detail below since UDP-based protocols are more

vulnerable to amplification attacks than a connection-oriented

transport like TCP that performs return-routability checks as part

of the connection establishment.

DTLS implementations do not use the TLS 1.3 "compatibility mode"

described in Section D.4 of [TLS13]. DTLS servers MUST NOT echo the

¶

¶

¶

¶

¶

1.

¶

2. ¶

3.

¶

¶

"session_id" value from the client and endpoints MUST NOT send

ChangeCipherSpec messages.

With these exceptions, the DTLS message formats, flows, and logic

are the same as those of TLS 1.3.

5.1. Denial-of-Service Countermeasures

Datagram security protocols are extremely susceptible to a variety

of DoS attacks. Two attacks are of particular concern:

An attacker can consume excessive resources on the server by

transmitting a series of handshake initiation requests, causing

the server to allocate state and potentially to perform

expensive cryptographic operations.

An attacker can use the server as an amplifier by sending

connection initiation messages with a forged source of the

victim. The server then sends its response to the victim

machine, thus flooding it. Depending on the selected parameters

this response message can be quite large, as it is the case for

a Certificate message.

In order to counter both of these attacks, DTLS borrows the

stateless cookie technique used by Photuris [RFC2522] and IKE

[RFC7296]. When the client sends its ClientHello message to the

server, the server MAY respond with a HelloRetryRequest message. The

HelloRetryRequest message, as well as the cookie extension, is

defined in TLS 1.3. The HelloRetryRequest message contains a

stateless cookie generated using the technique of [RFC2522]. The

client MUST retransmit the ClientHello with the cookie added as an

extension. The server then verifies the cookie and proceeds with the

handshake only if it is valid. This mechanism forces the attacker/

client to be able to receive the cookie, which makes DoS attacks

with spoofed IP addresses difficult. This mechanism does not provide

any defense against DoS attacks mounted from valid IP addresses.

The DTLS 1.3 specification changes the way how cookies are exchanged

compared to DTLS 1.2. DTLS 1.3 re-uses the HelloRetryRequest message

and conveys the cookie to the client via an extension. The client

receiving the cookie uses the same extension to place the cookie

subsequently into a ClientHello message. DTLS 1.2 on the other hand

used a separate message, namely the HelloVerifyRequest, to pass a

cookie to the client and did not utilize the extension mechanism.

For backwards compatibility reasons, the cookie field in the

ClientHello is present in DTLS 1.3 but is ignored by a DTLS 1.3

compliant server implementation.

The exchange is shown in Figure 5. Note that the figure focuses on

the cookie exchange; all other extensions are omitted.

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

Figure 5: DTLS exchange with HelloRetryRequest containing the "cookie"

extension

The cookie extension is defined in Section 4.2.2 of [TLS13]. When

sending the initial ClientHello, the client does not have a cookie

yet. In this case, the cookie extension is omitted and the

legacy_cookie field in the ClientHello message MUST be set to a zero

length vector (i.e., a single zero byte length field).

When responding to a HelloRetryRequest, the client MUST create a new

ClientHello message following the description in Section 4.1.2 of

[TLS13].

If the HelloRetryRequest message is used, the initial ClientHello

and the HelloRetryRequest are included in the calculation of the

transcript hash. The computation of the message hash for the

HelloRetryRequest is done according to the description in Section

4.4.1 of [TLS13].

The handshake transcript is not reset with the second ClientHello

and a stateless server-cookie implementation requires the transcript

of the HelloRetryRequest to be stored in the cookie or the internal

state of the hash algorithm, since only the hash of the transcript

is required for the handshake to complete.

When the second ClientHello is received, the server can verify that

the cookie is valid and that the client can receive packets at the

given IP address. If the client's apparent IP address is embedded in

the cookie, this prevents an attacker from generating an acceptable

ClientHello apparently from another user.

One potential attack on this scheme is for the attacker to collect a

number of cookies from different addresses where it controls

endpoints and then reuse them to attack the server. The server can

defend against this attack by changing the secret value frequently,

thus invalidating those cookies. If the server wishes to allow

legitimate clients to handshake through the transition (e.g., a

 Client Server

 ------ ------

 ClientHello ------>

 <----- HelloRetryRequest

 + cookie

 ClientHello ------>

 + cookie

 [Rest of handshake]

¶

¶

¶

¶

¶

client received a cookie with Secret 1 and then sent the second

ClientHello after the server has changed to Secret 2), the server

can have a limited window during which it accepts both secrets.

[RFC7296] suggests adding a key identifier to cookies to detect this

case. An alternative approach is simply to try verifying with both

secrets. It is RECOMMENDED that servers implement a key rotation

scheme that allows the server to manage keys with overlapping

lifetime.

Alternatively, the server can store timestamps in the cookie and

reject cookies that were generated outside a certain interval of

time.

DTLS servers SHOULD perform a cookie exchange whenever a new

handshake is being performed. If the server is being operated in an

environment where amplification is not a problem, the server MAY be

configured not to perform a cookie exchange. The default SHOULD be

that the exchange is performed, however. In addition, the server MAY

choose not to do a cookie exchange when a session is resumed or,

more generically, when the DTLS handshake uses a PSK-based key

exchange. Clients MUST be prepared to do a cookie exchange with

every handshake.

If a server receives a ClientHello with an invalid cookie, it MUST

NOT terminate the handshake with an "illegal_parameter" alert. This

allows the client to restart the connection from scratch without a

cookie.

As described in Section 4.1.4 of [TLS13], clients MUST abort the

handshake with an "unexpected_message" alert in response to any

second HelloRetryRequest which was sent in the same connection

(i.e., where the ClientHello was itself in response to a

HelloRetryRequest).

5.2. DTLS Handshake Message Format

In order to support message loss, reordering, and message

fragmentation, DTLS modifies the TLS 1.3 handshake header:

¶

¶

¶

¶

¶

¶

The first message each side transmits in each association always has

message_seq = 0. Whenever a new message is generated, the

message_seq value is incremented by one. When a message is

retransmitted, the old message_seq value is re-used, i.e., not

incremented. From the perspective of the DTLS record layer, the

retransmission is a new record. This record will have a new

DTLSPlaintext.sequence_number value.

Note: In DTLS 1.2 the message_seq was reset to zero in case of a

rehandshake (i.e., renegotiation). On the surface, a rehandshake in

DTLS 1.2 shares similarities with a post-handshake message exchange

in DTLS 1.3. However, in DTLS 1.3 the message_seq is not reset to

allow distinguishing a retransmission from a previously sent post-

handshake message from a newly sent post-handshake message.

enum {

 client_hello(1),

 server_hello(2),

 new_session_ticket(4),

 end_of_early_data(5),

 encrypted_extensions(8),

 certificate(11),

 certificate_request(13),

 certificate_verify(15),

 finished(20),

 key_update(24),

 message_hash(254),

 (255)

} HandshakeType;

struct {

 HandshakeType msg_type; /* handshake type */

 uint24 length; /* bytes in message */

 uint16 message_seq; /* DTLS-required field */

 uint24 fragment_offset; /* DTLS-required field */

 uint24 fragment_length; /* DTLS-required field */

 select (HandshakeType) {

 case client_hello: ClientHello;

 case server_hello: ServerHello;

 case end_of_early_data: EndOfEarlyData;

 case encrypted_extensions: EncryptedExtensions;

 case certificate_request: CertificateRequest;

 case certificate: Certificate;

 case certificate_verify: CertificateVerify;

 case finished: Finished;

 case new_session_ticket: NewSessionTicket;

 case key_update: KeyUpdate;

 } body;

} Handshake;

¶

¶

¶

legacy_version:

DTLS implementations maintain (at least notionally) a

next_receive_seq counter. This counter is initially set to zero.

When a handshake message is received, if its message_seq value

matches next_receive_seq, next_receive_seq is incremented and the

message is processed. If the sequence number is less than

next_receive_seq, the message MUST be discarded. If the sequence

number is greater than next_receive_seq, the implementation SHOULD

queue the message but MAY discard it. (This is a simple space/

bandwidth tradeoff).

In addition to the handshake messages that are deprecated by the TLS

1.3 specification, DTLS 1.3 furthermore deprecates the

HelloVerifyRequest message originally defined in DTLS 1.0. DTLS 1.3-

compliant implements MUST NOT use the HelloVerifyRequest to execute

a return-routability check. A dual-stack DTLS 1.2/DTLS 1.3 client

MUST, however, be prepared to interact with a DTLS 1.2 server.

5.3. ClientHello Message

The format of the ClientHello used by a DTLS 1.3 client differs from

the TLS 1.3 ClientHello format as shown below.

In previous versions of DTLS, this field was used

for version negotiation and represented the highest version

number supported by the client. Experience has shown that many

servers do not properly implement version negotiation, leading to

"version intolerance" in which the server rejects an otherwise

acceptable ClientHello with a version number higher than it

supports. In DTLS 1.3, the client indicates its version

preferences in the "supported_versions" extension (see Section

4.2.1 of [TLS13]) and the legacy_version field MUST be set to

{254, 253}, which was the version number for DTLS 1.2. The

version fields for DTLS 1.0 and DTLS 1.2 are 0xfeff and 0xfefd

¶

¶

¶

uint16 ProtocolVersion;

opaque Random[32];

uint8 CipherSuite[2]; /* Cryptographic suite selector */

struct {

 ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2

 Random random;

 opaque legacy_session_id<0..32>;

 opaque legacy_cookie<0..2^8-1>; // DTLS

 CipherSuite cipher_suites<2..2^16-2>;

 opaque legacy_compression_methods<1..2^8-1>;

 Extension extensions<8..2^16-1>;

} ClientHello;

¶

random:

legacy_session_id:

legacy_cookie:

cipher_suites:

legacy_compression_methods:

extensions:

(to match the wire versions) but the version field for DTLS 1.3

is 0x0304.

Same as for TLS 1.3.

Same as for TLS 1.3.

A DTLS 1.3-only client MUST set the legacy_cookie

field to zero length. If a DTLS 1.3 ClientHello is received with

any other value in this field, the server MUST abort the

handshake with an "illegal_parameter" alert.

Same as for TLS 1.3.

Same as for TLS 1.3.

Same as for TLS 1.3.

5.4. Handshake Message Fragmentation and Reassembly

Each DTLS message MUST fit within a single transport layer datagram.

However, handshake messages are potentially bigger than the maximum

record size. Therefore, DTLS provides a mechanism for fragmenting a

handshake message over a number of records, each of which can be

transmitted separately, thus avoiding IP fragmentation.

When transmitting the handshake message, the sender divides the

message into a series of N contiguous data ranges. The ranges MUST

NOT overlap. The sender then creates N handshake messages, all with

the same message_seq value as the original handshake message. Each

new message is labeled with the fragment_offset (the number of bytes

contained in previous fragments) and the fragment_length (the length

of this fragment). The length field in all messages is the same as

the length field of the original message. An unfragmented message is

a degenerate case with fragment_offset=0 and fragment_length=length.

Each range MUST be delivered in a single UDP datagram.

When a DTLS implementation receives a handshake message fragment, it

MUST buffer it until it has the entire handshake message. DTLS

implementations MUST be able to handle overlapping fragment ranges.

This allows senders to retransmit handshake messages with smaller

fragment sizes if the PMTU estimate changes.

Note that as with TLS, multiple handshake messages may be placed in

the same DTLS record, provided that there is room and that they are

part of the same flight. Thus, there are two acceptable ways to pack

two DTLS messages into the same datagram: in the same record or in

separate records.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.5. End Of Early Data

The DTLS 1.3 handshake has one important difference from the TLS 1.3

handshake: the EndOfEarlyData message is omitted both from the wire

and the handshake transcript: because DTLS records have epochs,

EndOfEarlyData is not necessary to determine when the early data is

complete, and because DTLS is lossy, attackers can trivially mount

the deletion attacks that EndOfEarlyData prevents in TLS. Servers

SHOULD aggressively age out the epoch 1 keys upon receiving the

first epoch 2 record and SHOULD NOT accept epoch 1 data after the

first epoch 3 record is received. (See Section 6.1 for the

definitions of each epoch.)

5.6. DTLS Handshake Flights

DTLS messages are grouped into a series of message flights,

according to the diagrams below.

¶

¶

Figure 6: Message flights for a full DTLS Handshake (with cookie

exchange)

Client Server

ClientHello +----------+

 + key_share* | Flight 1 |

 + pre_shared_key* --------> +----------+

 +----------+

 <-------- HelloRetryRequest | Flight 2 |

 + cookie +----------+

ClientHello +----------+

 + key_share* | Flight 3 |

 + pre_shared_key* --------> +----------+

 + cookie

 ServerHello

 + key_share*

 + pre_shared_key* +----------+

 {EncryptedExtensions} | Flight 4 |

 {CertificateRequest*} +----------+

 {Certificate*}

 {CertificateVerify*}

 <-------- {Finished}

 [Application Data*]

 {Certificate*} +----------+

 {CertificateVerify*} | Flight 5 |

 {Finished} --------> +----------+

 [Application Data]

 +----------+

 <-------- [ACK] | Flight 6 |

 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

Figure 7: Message flights for resumption and PSK handshake (without

cookie exchange)

 ClientHello +----------+

 + pre_shared_key | Flight 1 |

 + key_share* --------> +----------+

 ServerHello

 + pre_shared_key +----------+

 + key_share* | Flight 2 |

 {EncryptedExtensions} +----------+

 <-------- {Finished}

 [Application Data*]

 +----------+

 {Finished} --------> | Flight 3 |

 [Application Data*] +----------+

 +----------+

 <-------- [ACK] | Flight 4 |

 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

Client Server

 ClientHello

 + early_data

 + psk_key_exchange_modes +----------+

 + key_share* | Flight 1 |

 + pre_shared_key +----------+

 (Application Data*) -------->

 ServerHello

 + pre_shared_key

 + key_share* +----------+

 {EncryptedExtensions} | Flight 2 |

 {Finished} +----------+

 <-------- [Application Data*]

 +----------+

 {Finished} --------> | Flight 3 |

 [Application Data*] +----------+

 +----------+

 <-------- [ACK] | Flight 4 |

 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

Figure 8: Message flights for the Zero-RTT handshake

Figure 9: Message flights for the new session ticket message

Note: The application data sent by the client is not included in the

timeout and retransmission calculation.

5.7. Timeout and Retransmission

5.7.1. State Machine

DTLS uses a simple timeout and retransmission scheme with the state

machine shown in Figure 10. Because DTLS clients send the first

message (ClientHello), they start in the PREPARING state. DTLS

servers start in the WAITING state, but with empty buffers and no

retransmit timer.

Client Server

 +----------+

 <-------- [NewSessionTicket] | Flight 1 |

 +----------+

 +----------+

[ACK] --------> | Flight 2 |

 +----------+

¶

¶

Figure 10: DTLS timeout and retransmission state machine

 +-----------+

 | PREPARING |

 +----------> | |

 | | |

 | +-----------+

 | |

 | | Buffer next flight

 | |

 | \|/

 | +-----------+

 | | |

 | | SENDING |<------------------+

 | | | |

 | +-----------+ |

 Receive | | |

 next | | Send flight or partial |

 flight | | flight |

 | +---------------+ |

 | | | Set retransmit timer |

 | | \|/ |

 | | +-----------+ |

 | | | | |

 +--)---------| WAITING |-------------------+

 | | +----->| | Timer expires |

 | | | +-----------+ |

 | | | | | | |

 | | | | | | |

 | | +----------+ | +--------------------+

 | | Receive record | Read retransmit or ACK

 Receive | | Send ACK |

 last | | |

 flight | | | Receive ACK

 | | | for last flight

 \|/\|/ |

 |

 +-----------+ |

 | | <---------+

 | FINISHED |

 | |

 +-----------+

 | /|\

 | |

 | |

 +---+

 Server read retransmit

 Retransmit ACK

The state machine has four basic states: PREPARING, SENDING,

WAITING, and FINISHED.

In the PREPARING state, the implementation does whatever

computations are necessary to prepare the next flight of messages.

It then buffers them up for transmission (emptying the buffer first)

and enters the SENDING state.

In the SENDING state, the implementation transmits the buffered

flight of messages. If the implementation has received one or more

ACKs (see Section 7) from the peer, then it SHOULD omit any messages

or message fragments which have already been ACKed. Once the

messages have been sent, the implementation then enters the FINISHED

state if this is the last flight in the handshake. Or, if the

implementation expects to receive more messages, it sets a

retransmit timer and then enters the WAITING state.

There are four ways to exit the WAITING state:

The retransmit timer expires: the implementation transitions to

the SENDING state, where it retransmits the flight, resets the

retransmit timer, and returns to the WAITING state.

The implementation reads an ACK from the peer: upon receiving

an ACK for a partial flight (as mentioned in Section 7.1), the

implementation transitions to the SENDING state, where it

retransmits the unacked portion of the flight, resets the

retransmit timer, and returns to the WAITING state. Upon

receiving an ACK for a complete flight, the implementation

cancels all retransmissions and either remains in WAITING, or,

if the ACK was for the final flight, transitions to FINISHED.

The implementation reads a retransmitted flight from the peer:

the implementation transitions to the SENDING state, where it

retransmits the flight, resets the retransmit timer, and

returns to the WAITING state. The rationale here is that the

receipt of a duplicate message is the likely result of timer

expiry on the peer and therefore suggests that part of one's

previous flight was lost.

The implementation receives some or all next flight of

messages: if this is the final flight of messages, the

implementation transitions to FINISHED. If the implementation

needs to send a new flight, it transitions to the PREPARING

state. Partial reads (whether partial messages or only some of

the messages in the flight) may also trigger the implementation

to send an ACK, as described in Section 7.1.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

Because DTLS clients send the first message (ClientHello), they

start in the PREPARING state. DTLS servers start in the WAITING

state, but with empty buffers and no retransmit timer.

In addition, for at least twice the default Maximum Segment Lifetime

(MSL) defined for [RFC0793], when in the FINISHED state, the server

MUST respond to retransmission of the client's second flight with a

retransmit of its ACK.

Note that because of packet loss, it is possible for one side to be

sending application data even though the other side has not received

the first side's Finished message. Implementations MUST either

discard or buffer all application data records for the new epoch

until they have received the Finished message for that epoch.

Implementations MAY treat receipt of application data with a new

epoch prior to receipt of the corresponding Finished message as

evidence of reordering or packet loss and retransmit their final

flight immediately, shortcutting the retransmission timer.

5.7.2. Timer Values

Though timer values are the choice of the implementation,

mishandling of the timer can lead to serious congestion problems;

for example, if many instances of a DTLS time out early and

retransmit too quickly on a congested link. Implementations SHOULD

use an initial timer value of 100 msec (the minimum defined in RFC

6298 [RFC6298]) and double the value at each retransmission, up to

no less than the RFC 6298 maximum of 60 seconds. Application

specific profiles, such as those used for the Internet of Things

environment, may recommend longer timer values. Note that a 100 msec

timer is recommended rather than the 3-second RFC 6298 default in

order to improve latency for time-sensitive applications. Because

DTLS only uses retransmission for handshake and not dataflow, the

effect on congestion should be minimal.

Implementations SHOULD retain the current timer value until a

transmission without loss occurs, at which time the value may be

reset to the initial value. After a long period of idleness, no less

than 10 times the current timer value, implementations may reset the

timer to the initial value.

5.8. CertificateVerify and Finished Messages

CertificateVerify and Finished messages have the same format as in

TLS 1.3. Hash calculations include entire handshake messages,

including DTLS-specific fields: message_seq, fragment_offset, and

fragment_length. However, in order to remove sensitivity to

handshake message fragmentation, the CertificateVerify and the

Finished messages MUST be computed as if each handshake message had

¶

¶

¶

¶

¶

been sent as a single fragment following the algorithm described in

Section 4.4.3 and Section 4.4.4 of [TLS13], respectively.

5.9. Cryptographic Label Prefix

Section 7.1 of [TLS13] specifies that HKDF-Expand-Label uses a label

prefix of "tls13 ". For DTLS 1.3, that label SHALL be "dtls13". This

ensures key separation between DTLS 1.3 and TLS 1.3. Note that there

is no trailing space; this is necessary in order to keep the overall

label size inside of one hash iteration because "DTLS" is one letter

longer than "TLS".

5.10. Alert Messages

Note that Alert messages are not retransmitted at all, even when

they occur in the context of a handshake. However, a DTLS

implementation which would ordinarily issue an alert SHOULD generate

a new alert message if the offending record is received again (e.g.,

as a retransmitted handshake message). Implementations SHOULD detect

when a peer is persistently sending bad messages and terminate the

local connection state after such misbehavior is detected.

5.11. Establishing New Associations with Existing Parameters

If a DTLS client-server pair is configured in such a way that

repeated connections happen on the same host/port quartet, then it

is possible that a client will silently abandon one connection and

then initiate another with the same parameters (e.g., after a

reboot). This will appear to the server as a new handshake with

epoch=0. In cases where a server believes it has an existing

association on a given host/port quartet and it receives an epoch=0

ClientHello, it SHOULD proceed with a new handshake but MUST NOT

destroy the existing association until the client has demonstrated

reachability either by completing a cookie exchange or by completing

a complete handshake including delivering a verifiable Finished

message. After a correct Finished message is received, the server

MUST abandon the previous association to avoid confusion between two

valid associations with overlapping epochs. The reachability

requirement prevents off-path/blind attackers from destroying

associations merely by sending forged ClientHellos.

Note: it is not always possible to distinguish which association a

given record is from. For instance, if the client performs a

handshake, abandons the connection, and then immediately starts a

new handshake, it may not be possible to tell which connection a

given protected record is for. In these cases, trial decryption MAY

be necessary, though implementations could use the CID concept.

¶

¶

¶

¶

¶

6. Example of Handshake with Timeout and Retransmission

The following is an example of a handshake with lost packets and

retransmissions.¶

Figure 11: Example DTLS exchange illustrating message loss

Client Server

------ ------

 Record 0 -------->

 ClientHello

 (message_seq=0)

 X<----- Record 0

 (lost) ServerHello

 (message_seq=1)

 EncryptedExtensions

 (message_seq=2)

 Certificate

 (message_seq=3)

 <-------- Record 1

 CertificateVerify

 (message_seq=4)

 Finished

 (message_seq=5)

 Record 1 -------->

 ACK [1]

 <-------- Record 2

 ServerHello

 (message_seq=1)

 EncryptedExtensions

 (message_seq=2)

 Certificate

 (message_seq=3)

 Record 2 -------->

 Certificate

 (message_seq=1)

 CertificateVerify

 (message_seq=2)

 Finished

 (message_seq=3)

 <-------- Record 3

 ACK [2]

6.1. Epoch Values and Rekeying

A recipient of a DTLS message needs to select the correct keying

material in order to process an incoming message. With the

possibility of message loss and re-order an identifier is needed to

determine which cipher state has been used to protect the record

payload. The epoch value fulfills this role in DTLS. In addition to

the key derivation steps described in Section 7 of [TLS13] triggered

by the states during the handshake a sender may want to rekey at any

time during the lifetime of the connection and has to have a way to

indicate that it is updating its sending cryptographic keys.

This version of DTLS assigns dedicated epoch values to messages in

the protocol exchange to allow identification of the correct cipher

state:

epoch value (0) is used with unencrypted messages. There are

three unencrypted messages in DTLS, namely ClientHello,

ServerHello, and HelloRetryRequest.

epoch value (1) is used for messages protected using keys derived

from client_early_traffic_secret. Note this epoch is skipped if

the client does not offer early data.

epoch value (2) is used for messages protected using keys derived

from [sender]_handshake_traffic_secret. Messages transmitted

during the initial handshake, such as EncryptedExtensions,

CertificateRequest, Certificate, CertificateVerify, and Finished

belong to this category. Note, however, post-handshake are

protected under the appropriate application traffic key and are

not included in this category.

epoch value (3) is used for payloads protected using keys derived

from the initial [sender]_application_traffic_secret_0. This may

include handshake messages, such as post-handshake messages

(e.g., a NewSessionTicket message).

epoch value (4 to 2^16-1) is used for payloads protected using

keys from the [sender]_application_traffic_secret_N (N>0).

Using these reserved epoch values a receiver knows what cipher state

has been used to encrypt and integrity protect a message.

Implementations that receive a payload with an epoch value for which

no corresponding cipher state can be determined MUST generate a

"unexpected_message" alert. For example, client incorrectly uses

epoch value 5 when sending early application data in a 0-RTT

exchange. A server will not be able to compute the appropriate keys

and will therefore have to respond with an alert.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

Note that epoch values do not wrap. If a DTLS implementation would

need to wrap the epoch value, it MUST terminate the connection.

The traffic key calculation is described in Section 7.3 of [TLS13].

Figure 12 illustrates the epoch values in an example DTLS handshake.

¶

¶

¶

Client Server

------ ------

 ClientHello

 (epoch=0)

 -------->

 <-------- HelloRetryRequest

 (epoch=0)

 ClientHello -------->

 (epoch=0)

 <-------- ServerHello

 (epoch=0)

 {EncryptedExtensions}

 (epoch=2)

 {Certificate}

 (epoch=2)

 {CertificateVerify}

 (epoch=2)

 {Finished}

 (epoch=2)

 {Certificate} -------->

 (epoch=2)

 {CertificateVerify}

 (epoch=2)

 {Finished}

 (epoch=2)

 <-------- [ACK]

 (epoch=3)

 [Application Data] -------->

 (epoch=3)

 <-------- [Application Data]

 (epoch=3)

 Some time later ...

 (Post-Handshake Message Exchange)

 <-------- [NewSessionTicket]

 (epoch=3)

 [ACK] -------->

 (epoch=3)

 Some time later ...

 (Rekeying)

 <-------- [Application Data]

 (epoch=4)

 [Application Data] -------->

 (epoch=4)

record_numbers:

Figure 12: Example DTLS exchange with epoch information

7. ACK Message

The ACK message is used by an endpoint to indicate handshake-

containing the TLS records it has received from the other side. ACK

is not a handshake message but is rather a separate content type,

with code point TBD (proposed, 25). This avoids having ACK being

added to the handshake transcript. Note that ACKs can still be sent

in the same UDP datagram as handshake records.

a list of the records containing handshake messages

in the current flight which the endpoint has received and either

processed or buffered, in numerically increasing order.

Implementations MUST NOT acknowledge records containing non-

duplicative handshake messages or fragments which have not been

processed or buffered. Otherwise, deadlock can ensue.

During the handshake, ACKs only cover the current outstanding flight

(this is possible because DTLS is generally a lockstep protocol).

Thus, an ACK from the server would not cover both the ClientHello

and the client's Certificate. Implementations can accomplish this by

clearing their ACK list upon receiving the start of the next flight.

After the handshake, ACKs SHOULD be sent once for each received and

processed record (potentially subject to some delay) and MAY cover

more than one flight.

ACK records MUST be sent with an epoch that is equal to or higher

than the record which is being acknowledged. Implementations SHOULD

simply use the current key.

7.1. Sending ACKs

When an implementation receives a partial flight, it SHOULD generate

an ACK that covers the messages from that flight which it has

received so far. Implementations have some discretion about when to

generate ACKs, but it is RECOMMENDED that they do so under two

circumstances:

When they receive a message or fragment which is out of order,

either because it is not the next expected message or because it

is not the next piece of the current message. Implementations

MUST NOT send ACKs for handshake messages which they discard as

¶

struct {

 RecordNumber record_numbers<0..2^16-1>;

} ACK;

¶

¶

¶

¶

¶

¶

¶

*

out-of-order, because otherwise those messages will not be

retransmitted.

When they have received part of a flight and do not immediately

receive the rest of the flight (which may be in the same UDP

datagram). A reasonable approach here is to set a timer for 1/4

the current retransmit timer value when the first record in the

flight is received and then send an ACK when that timer expires.

In addition, implementations MUST send ACKs upon receiving all of

any flight which they do not respond to with their own messages.

Specifically, this means the client's final flight of the main

handshake, the server's transmission of the NewSessionTicket, and

KeyUpdate messages. ACKs SHOULD NOT be sent for other complete

flights because they are implicitly acknowledged by the receipt of

the next flight, which generally immediately follows the flight.

Each NewSessionTicket or KeyUpdate is an individual flight; in

particular, a KeyUpdate sent in response to a KeyUpdate with

update_requested does not implicitly acknowledge that message.

Implementations MAY acknowledge the records corresponding to each

transmission of that flight or simply acknowledge the most recent

one.

ACKs MUST NOT be sent for other records of any content type other

than handshake or for records which cannot be unprotected.

Note that in some cases it may be necessary to send an ACK which

does not contain any record numbers. For instance, a client might

receive an EncryptedExtensions message prior to receiving a

ServerHello. Because it cannot decrypt the EncryptedExtensions, it

cannot safely acknowledge it (as it might be damaged). If the client

does not send an ACK, the server will eventually retransmit its

first flight, but this might take far longer than the actual round

trip time between client and server. Having the client send an empty

ACK shortcuts this process.

7.2. Receiving ACKs

When an implementation receives an ACK, it SHOULD record that the

messages or message fragments sent in the records being ACKed were

received and omit them from any future retransmissions. Upon receipt

of an ACK for only some messages from a flight, an implementation

SHOULD retransmit the remaining messages or fragments. Note that

this requires implementations to track which messages appear in

which records. Once all the messages in a flight have been

acknowledged, the implementation MUST cancel all retransmissions of

that flight. As noted above, the receipt of any record responding to

a given flight MUST be taken as an implicit acknowledgement for the

entire flight.

¶

*

¶

¶

¶

¶

¶

cid

usage

8. Key Updates

As with TLS 1.3, DTLS 1.3 implementations send a KeyUpdate message

to indicate that they are updating their sending keys. As with other

handshake messages with no built-in response, KeyUpdates MUST be

acknowledged. In order to facilitate epoch reconstruction Section

4.2.2 implementations MUST NOT send with the new keys or send a new

KeyUpdate until the previous KeyUpdate has been acknowledged (this

avoids having too many epochs in active use).

Due to loss and/or re-ordering, DTLS 1.3 implementations may receive

a record with an older epoch than the current one (the requirements

above preclude receiving a newer record). They SHOULD attempt to

process those records with that epoch (see Section 4.2.2 for

information on determining the correct epoch), but MAY opt to

discard such out-of-epoch records.

Although KeyUpdate MUST be acknowledged, it is possible for the ACK

to be lost, in which case the sender of the KeyUpdate will

retransmit it. Implementations MUST retain the ability to ACK the

KeyUpdate for up to 2MSL. It is RECOMMENDED that they do so by

retaining the pre-update keying material, but they MAY do so by

responding to messages which appear to be out-of-epoch with a canned

ACK message; in this case, implementations SHOULD rate limit how

often they send such ACKs.

9. Connection ID Updates

If the client and server have negotiated the "connection_id"

extension [I-D.ietf-tls-dtls-connection-id], either side can send a

new CID which it wishes the other side to use in a NewConnectionId

message.

Indicates the set of CIDs which the sender wishes the peer to

use.

Indicates whether the new CIDs should be used immediately or

are spare. If usage is set to "cid_immediate", then one of the

¶

¶

¶

¶

enum {

 cid_immediate(0), cid_spare(1), (255)

} ConnectionIdUsage;

opaque ConnectionId<0..2^8-1>;

struct {

 ConnectionIds cids<0..2^16-1>;

 ConnectionIdUsage usage;

} NewConnectionId;

¶

¶

num_cids

new CID MUST be used immediately for all future records. If it is

set to "cid_spare", then either existing or new CID MAY be used.

Endpoints SHOULD use receiver-provided CIDs in the order they were

provided. Endpoints MUST NOT have more than one NewConnectionId

message outstanding.

If the client and server have negotiated the "connection_id"

extension, either side can request a new CID using the

RequestConnectionId message.

The number of CIDs desired.

Endpoints SHOULD respond to RequestConnectionId by sending a

NewConnectionId with usage "cid_spare" containing num_cid CIDs soon

as possible. Endpoints MUST NOT send a RequestConnectionId message

when an existing request is still unfulfilled; this implies that

endpoints needs to request new CIDs well in advance. An endpoint MAY

ignore requests, which it considers excessive (though they MUST be

acknowledged as usual).

Endpoints MUST NOT send either of these messages if they did not

negotiate a CID. If an implementation receives these messages when

CIDs were not negotiated, it MUST abort the connection with an

unexpected_message alert.

9.1. Connection ID Example

Below is an example exchange for DTLS 1.3 using a single CID in each

direction.

Note: The connection_id extension is defined in [I-D.ietf-tls-dtls-

connection-id], which is used in ClientHello and ServerHello

messages.

¶

¶

¶

struct {

 uint8 num_cids;

} RequestConnectionId;

¶

¶

¶

¶

¶

¶

Figure 13: Example DTLS 1.3 Exchange with CIDs

If no CID is negotiated, then the receiver MUST reject any records

it receives that contain a CID.

10. Application Data Protocol

Application data messages are carried by the record layer and are

fragmented and encrypted based on the current connection state. The

messages are treated as transparent data to the record layer.

Client Server

------ ------

ClientHello

(connection_id=5)

 -------->

 <-------- HelloRetryRequest

 (cookie)

ClientHello -------->

(connection_id=5)

 +cookie

 <-------- ServerHello

 (connection_id=100)

 EncryptedExtensions

 (cid=5)

 Certificate

 (cid=5)

 CertificateVerify

 (cid=5)

 Finished

 (cid=5)

Certificate -------->

(cid=100)

CertificateVerify

(cid=100)

Finished

(cid=100)

 <-------- Ack

 (cid=5)

Application Data ========>

(cid=100)

 <======== Application Data

 (cid=5)

¶

¶

11. Security Considerations

Security issues are discussed primarily in [TLS13].

The primary additional security consideration raised by DTLS is that

of denial of service. DTLS includes a cookie exchange designed to

protect against denial of service. However, implementations that do

not use this cookie exchange are still vulnerable to DoS. In

particular, DTLS servers that do not use the cookie exchange may be

used as attack amplifiers even if they themselves are not

experiencing DoS. Therefore, DTLS servers SHOULD use the cookie

exchange unless there is good reason to believe that amplification

is not a threat in their environment. Clients MUST be prepared to do

a cookie exchange with every handshake.

DTLS implementations MUST NOT update their sending address in

response to packets from a different address unless they first

perform some reachability test; no such test is defined in this

specification. Even with such a test, An on-path adversary can also

black-hole traffic or create a reflection attack against third

parties because a DTLS peer has no means to distinguish a genuine

address update event (for example, due to a NAT rebinding) from one

that is malicious. This attack is of concern when there is a large

asymmetry of request/response message sizes.

With the exception of order protection and non-replayability, the

security guarantees for DTLS 1.3 are the same as TLS 1.3. While TLS

always provides order protection and non-replayability, DTLS does

not provide order protection and may not provide replay protection.

Unlike TLS implementations, DTLS implementations SHOULD NOT respond

to invalid records by terminating the connection.

If implementations process out-of-epoch records as recommended in

Section 8, then this creates a denial of service risk since an

adversary could inject records with fake epoch values, forcing the

recipient to compute the next-generation application_traffic_secret

using the HKDF-Expand-Label construct to only find out that the

message was does not pass the AEAD cipher processing. The impact of

this attack is small since the HKDF-Expand-Label only performs

symmetric key hashing operations. Implementations which are

concerned about this form of attack can discard out-of-epoch

records.

¶

¶

¶

¶

¶

¶

The security and privacy properties of the CID for DTLS 1.3 builds

on top of what is described in [I-D.ietf-tls-dtls-connection-id].

There are, however, several improvements:

The use of the Post-Handshake message allows the client and the

server to update their CIDs and those values are exchanged with

confidentiality protection.

With multi-homing, an adversary is able to correlate the

communication interaction over the two paths, which adds further

privacy concerns. In order to prevent this, implementations

SHOULD attempt to use fresh CIDs whenever they change local

addresses or ports (though this is not always possible to

detect). The RequestConnectionId message can be used by a peer to

ask for new CIDs to ensure that a pool of suitable CIDs is

available.

Switching CID based on certain events, or even regularly, helps

against tracking by on-path adversaries but the sequence numbers

can still allow linkability. For this reason this specification

defines an algorithm for encrypting sequence numbers, see Section

4.2.3. Note that sequence number encryption is used for all

encrypted DTLS 1.3 records irrespectively of the use of a CID.

DTLS 1.3 encrypts handshake messages much earlier than in

previous DTLS versions. Therefore, less information identifying

the DTLS client, such as the client certificate, is available to

an on-path adversary.

12. Changes to DTLS 1.2

Since TLS 1.3 introduces a large number of changes to TLS 1.2, the

list of changes from DTLS 1.2 to DTLS 1.3 is equally large. For this

reason this section focuses on the most important changes only.

New handshake pattern, which leads to a shorter message exchange

Only AEAD ciphers are supported. Additional data calculation has

been simplified.

Removed support for weaker and older cryptographic algorithms

HelloRetryRequest of TLS 1.3 used instead of HelloVerifyRequest

More flexible ciphersuite negotiation

New session resumption mechanism

PSK authentication redefined

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

[CHACHA]

[I-D.ietf-tls-dtls-connection-id]

[RFC0768]

[RFC0793]

[RFC1191]

New key derivation hierarchy utilizing a new key derivation

construct

Improved version negotiation

Optimized record layer encoding and thereby its size

Added CID functionality

Sequence numbers are encrypted.

13. IANA Considerations

IANA is requested to allocate a new value in the "TLS ContentType"

registry for the ACK message, defined in Section 7, with content

type 26. The value for the "DTLS-OK" column is "Y". IANA is

requested to reserve the content type range 32-63 so that content

types in this range are not allocated.

IANA is requested to allocate two values in the "TLS Handshake Type"

registry, defined in [TLS13], for RequestConnectionId (TBD), and

NewConnectionId (TBD), as defined in this document. The value for

the "DTLS-OK" columns are "Y".

14. References

14.1. Normative References

Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF

Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,

<https://www.rfc-editor.org/info/rfc8439>.

Rescorla, E., Tschofenig, H., and T. Fossati, "Connection

Identifiers for DTLS 1.2", Work in Progress, Internet-

Draft, draft-ietf-tls-dtls-connection-id-07, 21 October

2019, <http://www.ietf.org/internet-drafts/draft-ietf-

tls-dtls-connection-id-07.txt>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Mogul, J.C. and S.E. Deering, "Path MTU discovery", RFC

1191, DOI 10.17487/RFC1191, November 1990, <https://

www.rfc-editor.org/info/rfc1191>.

*

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

https://www.rfc-editor.org/info/rfc8439
http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls-connection-id-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls-connection-id-07.txt
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191

[RFC2119]

[RFC4443]

[RFC4821]

[RFC6298]

[RFC8174]

[TLS13]

[RFC2522]

[RFC4303]

[RFC4340]

[RFC4346]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Conta, A., Deering, S., and M. Gupta, Ed., "Internet

Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification", STD 89, RFC

4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-

editor.org/info/rfc4443>.

Mathis, M. and J. Heffner, "Packetization Layer Path MTU

Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,

<https://www.rfc-editor.org/info/rfc4821>.

Paxson, V., Allman, M., Chu, J., and M. Sargent,

"Computing TCP's Retransmission Timer", RFC 6298, DOI

10.17487/RFC6298, June 2011, <https://www.rfc-editor.org/

info/rfc6298>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

14.2. Informative References

Karn, P. and W. Simpson, "Photuris: Session-Key

Management Protocol", RFC 2522, DOI 10.17487/RFC2522,

March 1999, <https://www.rfc-editor.org/info/rfc2522>.

Kent, S., "IP Encapsulating Security Payload (ESP)", RFC

4303, DOI 10.17487/RFC4303, December 2005, <https://

www.rfc-editor.org/info/rfc4303>.

Kohler, E., Handley, M., and S. Floyd, "Datagram

Congestion Control Protocol (DCCP)", RFC 4340, DOI

10.17487/RFC4340, March 2006, <https://www.rfc-

editor.org/info/rfc4340>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.1", RFC 4346, DOI 10.17487/

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc2522
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340

[RFC4347]

[RFC4960]

[RFC5238]

[RFC5246]

[RFC6347]

[RFC7296]

[RFC7525]

RFC4346, April 2006, <https://www.rfc-editor.org/info/

rfc4346>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,

<https://www.rfc-editor.org/info/rfc4347>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Phelan, T., "Datagram Transport Layer Security (DTLS)

over the Datagram Congestion Control Protocol (DCCP)",

RFC 5238, DOI 10.17487/RFC5238, May 2008, <https://

www.rfc-editor.org/info/rfc5238>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Appendix A. Protocol Data Structures and Constant Values

This section provides the normative protocol types and constants

definitions.¶

https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4347
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5238
https://www.rfc-editor.org/info/rfc5238
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7525

A.1. Record Layer

struct {

 ContentType type;

 ProtocolVersion legacy_record_version;

 uint16 epoch = 0

 uint48 sequence_number;

 uint16 length;

 opaque fragment[DTLSPlaintext.length];

} DTLSPlaintext;

struct {

 opaque content[DTLSPlaintext.length];

 ContentType type;

 uint8 zeros[length_of_padding];

} DTLSInnerPlaintext;

struct {

 opaque unified_hdr[variable];

 opaque encrypted_record[length];

} DTLSCiphertext;

0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

|0|0|1|C|S|L|E E|

+-+-+-+-+-+-+-+-+

| Connection ID | Legend:

| (if any, |

/ length as / C - Connection ID (CID) present

| negotiated) | S - Sequence number length

+-+-+-+-+-+-+-+-+ L - Length present

| 8 or 16 bit | E - Epoch

|Sequence Number|

+-+-+-+-+-+-+-+-+

| 16 bit Length |

| (if present) |

+-+-+-+-+-+-+-+-+

¶

A.2. Handshake Protocol

enum {

 hello_request_RESERVED(0),

 client_hello(1),

 server_hello(2),

 hello_verify_request_RESERVED(3),

 new_session_ticket(4),

 end_of_early_data(5),

 hello_retry_request_RESERVED(6),

 encrypted_extensions(8),

 certificate(11),

 server_key_exchange_RESERVED(12),

 certificate_request(13),

 server_hello_done_RESERVED(14),

 certificate_verify(15),

 client_key_exchange_RESERVED(16),

 finished(20),

 key_update(24),

 message_hash(254),

 (255)

} HandshakeType;

struct {

 HandshakeType msg_type; /* handshake type */

 uint24 length; /* bytes in message */

 uint16 message_seq; /* DTLS-required field */

 uint24 fragment_offset; /* DTLS-required field */

 uint24 fragment_length; /* DTLS-required field */

 select (HandshakeType) {

 case client_hello: ClientHello;

 case server_hello: ServerHello;

 case end_of_early_data: EndOfEarlyData;

 case encrypted_extensions: EncryptedExtensions;

 case certificate_request: CertificateRequest;

 case certificate: Certificate;

 case certificate_verify: CertificateVerify;

 case finished: Finished;

 case new_session_ticket: NewSessionTicket;

 case key_update: KeyUpdate;

 } body;

} Handshake;

uint16 ProtocolVersion;

opaque Random[32];

uint8 CipherSuite[2]; /* Cryptographic suite selector */

struct {

 ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2

 Random random;

 opaque legacy_session_id<0..32>;

 opaque legacy_cookie<0..2^8-1>; // DTLS

 CipherSuite cipher_suites<2..2^16-2>;

 opaque legacy_compression_methods<1..2^8-1>;

 Extension extensions<8..2^16-1>;

} ClientHello;

¶

A.3. ACKs

A.4. Connection ID Management

Appendix B. History

RFC EDITOR: PLEASE REMOVE THE THIS SECTION

IETF Drafts

draft-36: - Some editorial changes. - Changed the content type to

not conflict with existing allocations (*)

draft-35: - I-D.ietf-tls-dtls-connection-id became a normative

reference - Removed duplicate reference to I-D.ietf-tls-dtls-

connection-id. - Fix figure 11 to have the right numbers andno

cookie in message 1. - Clarify when you can ACK. - Clarify

additional data computation.

draft-33: - Key separation between TLS and DTLS. Issue #72.

draft-32: - Editorial improvements and clarifications.

draft-31: - Editorial improvements in text and figures. - Added

normative reference to ChaCha20 and Poly1305.

draft-30: - Changed record format - Added text about end of early

data - Changed format of the Connection ID Update message - Added

Appendix A "Protocol Data Structures and Constant Values"

struct {

 RecordNumber record_numbers<0..2^16-1>;

} ACK;

¶

enum {

 cid_immediate(0), cid_spare(1), (255)

} ConnectionIdUsage;

opaque ConnectionId<0..2^8-1>;

struct {

 ConnectionIds cids<0..2^16-1>;

 ConnectionIdUsage usage;

} NewConnectionId;

struct {

 uint8 num_cids;

} RequestConnectionId;

¶

¶

¶

¶

¶

¶

¶

¶

¶

draft-29: - Added support for sequence number encryption - Update to

new record format - Emphasize that compatibility mode isn't used.

draft-28: - Version bump to align with TLS 1.3 pre-RFC version.

draft-27: - Incorporated unified header format. - Added support for

CIDs.

draft-04 - 26: - Submissions to align with TLS 1.3 draft versions

draft-03 - Only update keys after KeyUpdate is ACKed.

draft-02 - Shorten the protected record header and introduce an

ultra-short version of the record header. - Reintroduce KeyUpdate,

which works properly now that we have ACK. - Clarify the ACK rules.

draft-01 - Restructured the ACK to contain a list of records and

also be a record rather than a handshake message.

draft-00 - First IETF Draft

Personal Drafts draft-01 - Alignment with version -19 of the TLS 1.3

specification

draft-00

Initial version using TLS 1.3 as a baseline.

Use of epoch values instead of KeyUpdate message

Use of cookie extension instead of cookie field in ClientHello

and HelloVerifyRequest messages

Added ACK message

Text about sequence number handling

Appendix C. Working Group Information

The discussion list for the IETF TLS working group is located at the

e-mail address tls@ietf.org. Information on the group and

information on how to subscribe to the list is at https://

www1.ietf.org/mailman/listinfo/tls

Archives of the list can be found at: https://www.ietf.org/mail-

archive/web/tls/current/index.html

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

¶

mailto:tls@ietf.org
https://www1.ietf.org/mailman/listinfo/tls
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html

Appendix D. Contributors

Many people have contributed to previous DTLS versions and they are

acknowledged in prior versions of DTLS specifications or in the

referenced specifications. The sequence number encryption concept is

taken from the QUIC specification. We would like to thank the

authors of the QUIC specification for their work.

In addition, we would like to thank:

Authors' Addresses

Eric Rescorla

RTFM, Inc.

Email: ekr@rtfm.com

Hannes Tschofenig

¶

¶

* David Benjamin

 Google

 davidben@google.com

¶

* Thomas Fossati

 Arm Limited

 Thomas.Fossati@arm.com

¶

* Tobias Gondrom

 Huawei

 tobias.gondrom@gondrom.org

¶

* Ilari Liusvaara

 Independent

 ilariliusvaara@welho.com

¶

* Martin Thomson

 Mozilla

 martin.thomson@gmail.com

¶

* Christopher A. Wood

 Apple Inc.

 cawood@apple.com

¶

* Yin Xinxing

 Huawei

 yinxinxing@huawei.com

¶

* Hanno Becker

 Arm Limited

 Hanno.Becker@arm.com

¶

mailto:ekr@rtfm.com

Arm Limited

Email: hannes.tschofenig@arm.com

Nagendra Modadugu

Google, Inc.

Email: nagendra@cs.stanford.edu

mailto:hannes.tschofenig@arm.com
mailto:nagendra@cs.stanford.edu

	The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. DTLS Design Rationale and Overview
	3.1. Packet Loss
	3.2. Reordering
	3.3. Message Size
	3.4. Replay Detection

	4. The DTLS Record Layer
	4.1. Determining the Header Format
	4.2. Sequence Number and Epoch
	4.2.1. Processing Guidelines
	4.2.2. Reconstructing the Sequence Number and Epoch
	4.2.3. Sequence Number Encryption

	4.3. Transport Layer Mapping
	4.4. PMTU Issues
	4.5. Record Payload Protection
	4.5.1. Anti-Replay
	4.5.2. Handling Invalid Records

	5. The DTLS Handshake Protocol
	5.1. Denial-of-Service Countermeasures
	5.2. DTLS Handshake Message Format
	5.3. ClientHello Message
	5.4. Handshake Message Fragmentation and Reassembly
	5.5. End Of Early Data
	5.6. DTLS Handshake Flights
	5.7. Timeout and Retransmission
	5.7.1. State Machine
	5.7.2. Timer Values

	5.8. CertificateVerify and Finished Messages
	5.9. Cryptographic Label Prefix
	5.10. Alert Messages
	5.11. Establishing New Associations with Existing Parameters

	6. Example of Handshake with Timeout and Retransmission
	6.1. Epoch Values and Rekeying

	7. ACK Message
	7.1. Sending ACKs
	7.2. Receiving ACKs

	8. Key Updates
	9. Connection ID Updates
	9.1. Connection ID Example

	10. Application Data Protocol
	11. Security Considerations
	12. Changes to DTLS 1.2
	13. IANA Considerations
	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. Protocol Data Structures and Constant Values
	A.1. Record Layer
	A.2. Handshake Protocol
	A.3. ACKs
	A.4. Connection ID Management
	Appendix B. History
	Appendix C. Working Group Information
	Appendix D. Contributors
	Authors' Addresses

