
Transport Layer Security Working Group T. Dierks
INTERNET-DRAFT Consensus Development Corp.
Expires September, 1998 B. Anderson
 Certicom Corp.
 March 13, 1998

ECC Cipher Suites For TLS
draft-ietf-tls-ecc-00.txt

1. Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or made obsolete by other documents at
 any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as work in progress.

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

2. Introduction

 This document describes additions to TLS to support the Elliptic
 Curve Cryptosystem (ECC). The document assumes that the reader is
 familiar with the TLS protocol.

 The document defines cipher suites which use the Elliptic Curve
 Encryption Scheme (ECES), the Elliptic Curve Digital Signature
 Algorithm (ECDSA), the Elliptic Curve Nyberg-Rueppel Signature Scheme
 with Appendix (ECNRA), the Elliptic Curve Diffie-Hellman Key
 Agreement (ECDH), and the Elliptic Curve Menezes-Qu-Vanstone Key
 Agreement (ECMQV) key establishment algorithms. References to these
 algorithms can be found in section 13.

Dierks [Page 1]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

3. Table of Contents

1. Status of this Memo .. 1
2. Introduction ... 1
3. Table of Contents .. 2
4. Rationale .. 2
5. Elliptic Curve Key Establishment Methods 3
6. Key Establishment Operation 5
6.1. ECES_ECDSA ... 6
6.2. ECES_ECNRA ... 6
6.3. ECDHE_ECDSA .. 6
6.4. ECDHE_ECDSA_EXPORT ... 7
6.5. ECDHE_ECNRA .. 7
6.6. ECDHE_ECNRA_EXPORT ... 7
6.7. ECDH_ECDSA ... 7
6.8. ECDH_ECNRA ... 8
6.9. ECMQV_ECDSA .. 8
6.10. ECMQV_ECNRA .. 9
6.11. ECDH_anon .. 9
6.12. ECDH_anon_EXPORT ... 9
7. Client Certification 9
8. Data Structures ... 10
8.1. Server Key Exchange 10
8.2. Certificate Request 13
8.3. Client Key Exchange 14
8.4. Certificate Verify .. 15
9. Elliptic Curve Certificates 15
10. Cipher Suites ... 16
11. Elliptic Curve Cryptography Definitions 17
12. Recommended Cipher Suites 17
13. References .. 17
14. Security Considerations 18
15. Authors' Addresses .. 18

4. Rationale

 Several design goals drove our choice of key establishment
 algorithms:

 1. A desire to replicate all of the functionality and operating
 modes found in the current TLS cipher suites based on integer
 factorization and discret log cryptographic algorithms.

 2. While we wished to define cipher suites which use export-strength

Dierks [Page 2]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 cryptography, we did not want to define any cipher suites which
 would require certificates with export-strength keys; thus,
 exportable cipher suites are only defined for those key
 establishment mechanisms which use the certificate key for
 authentication rather than for key establishment.

 These criteria for key establishment algorithms, when combined with a
 number of symmetric algorithms, led to a large number of possible
 cipher suites. This is problematic in that it could lead to a lack of
 interoperability due to implementors supporting different subsets of
 the available cipher suites. In order to alleviate this, we have
 indicated two of the total cipher suites as recommended (see section

12). Unless there are specific reasons to choose other cipher
 suites, implementors should implement the recommended suites first.

5. Elliptic Curve Key Establishment Methods

 Key establishment is the terminology used in ISO standards to refer
 to the methods of establishing a shared key between two or more
 parties. Within key establishment there are two classifications:
 The operation is called key transport when only one party contributes
 to the generation of the shared key. The operation is called key
 agreement when 2 or more parties contribute to the generation of the
 shared key. For the purposes of this definition, the key in question
 is the premaster secret: TLS uses the master secret generation
 process to ensure that both parties contribute to the eventual master
 secret.

 The cipher suites defined here use the following key establishment
 methods:

 ECES_ECDSA Elliptic-curve encryption is used for the key
 transport; the server's certificate is signed
 using ECDSA.

 ECES_ECNRA Elliptic-curve encryption is used for the key
 transport; the server's certificate is signed
 using ECNRA.

 ECDHE_ECDSA Ephemeral elliptic-curve Diffie-Hellman is used
 for the key agreement; the server signs the
 parameters with an ECDSA key and is
 authenticated with a certificate signed with
 ECDSA.

Dierks [Page 3]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 ECDHE_ECDSA_EXPORT Ephemeral elliptic-curve Diffie-Hellman in
 export strength is used for the key agreement;
 the server signs the parameters with an ECDSA
 key and is authenticated with a certificate
 signed with ECDSA.

 ECDHE_ECNRA Ephemeral elliptic-curve Diffie-Hellman is used
 for the key agreement; the server signs the
 parameters with an ECNRA key and is
 authenticated with a certificate signed with
 ECNRA.

 ECDHE_ECNRA_EXPORT Ephemeral elliptic-curve Diffie-Hellman in
 export strength is used for the key agreement;
 the server signs the parameters with an ECNRA
 key and is authenticated with a certificate
 signed with ECNRA.

 ECDH_ECDSA Fixed elliptic-curve Diffie-Hellman is used for
 the key agreement; the server's certificate is
 signed with ECDSA.

 ECDH_ECNRA Fixed elliptic-curve Diffie-Hellman is used for
 the key agreement; the server's certificate is
 signed with ECNRA.

 ECMQV_ECDSA Ephemeral elliptic-curve MQV is used for key
 agreement and authentication; the server is
 authenticated with a certificate signed with
 ECDSA.

 ECMQV_ECNRA Ephemeral elliptic-curve MQV is used for key
 agreement and authentication; the server is
 authenticated with a certificate signed with
 ECNRA.

 ECDH_anon Anonymous elliptic-curve Diffie-Hellman is used
 for the key agreement.

 ECDH_anon_EXPORT Anonymous elliptic-curve Diffie-Hellman in
 export strength is used for the key agreement.

 Key establishment mechanisms which indicate that they are for export
 strength should use an ECC key for the key agreement of no more than
 113 bits. A 113-bit ECC key provides security that is roughly
 equivalent to a 512-bit RSA key and is expected to be eligible for
 export. The following table relates ECC key sizes to RSA key sizes

Dierks [Page 4]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 of equivalent security. These key sizes are considered equivalent in
 terms of work factor required to recover the private key using
 currently known fastest methods for solving the underlying
 mathematical problems of ECC and RSA.

 ECC RSA Time to break (MIPS-years)
 ________ _________ __________________________
 106 bits 512 bits 1E4 MY
 132 bits 768 bits 1E8 MY
 160 bits 1024 bits 1E11 MY
 191 bits 1536 bits 1E14 MY
 211 bits 2048 bits 1E20 MY

 Table 1: ECC and RSA key sizes for equivalent security

6. Key Establishment Operation

 The TLS key establishment protocol involves this message exchange:

 Client Server
 __________________ ___________________
 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Figure 1: Message flow in a full TLS handshake
 * - Message is not sent under some conditions

 Of these messages, the ones involved in the key establishment itself
 are the server's Certificate message, the ServerKeyExchange, the
 client's Certificate message, and the ClientKeyExchange.

 In order to specify the ECC cipher suites, we must specify the
 following elements for each key establishment algorithm:

 - The format of the server's certificate.

Dierks [Page 5]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 - The format of the server key exchange message

 - For methods in which the client's certificate can participate in
 the key agreement, the format of the client's certificate and the
 criteria for deciding if this certificate is eligible to
 participate in the key agreement.

 - The format of the client key exchange message

 - How to arrive at the premaster secret given all the preceding
 information.

 Several different key establishment modes are available. In order to
 allow full negotiation of supported algorithms, the signature
 algorithm used for the server's X.509 certificate is encoded into the
 cipher suite for those key establishment mechanisms where no
 signature algorithm is used; for those key establishments which
 utilize signature algorithms, the certificate signature algorithm is
 expected to be the same as the algorithm used in the key
 establishment.

6.1. ECES_ECDSA

 In ECES_ECDSA, the server sends a certificate with an ECES-capable
 public key in it. The server's certificate should be signed with
 ECDSA. A ServerKeyExchange message is not sent because the server's
 certificate contains all the necessary keying information for the
 client to complete the key establishment.

 The client's certificate is not involved in the key establishment for
 this method, although the client can still be authenticated via the
 normal mechanism.

 The client generates a 48 byte premaster secret, encrypts it using
 ECES using the public key from the server's certificate, and sends it
 to the server in the ClientKeyExchange message (see section 8.3).

 This premaster secret is decrypted by the server and both sides use
 it to generate the master secret for this TLS session.

6.2. ECES_ECNRA

 ECES_ECNRA is the same as ECES_ECDSA except for the fact that the
 server's certificate is signed by its CA with ECNRA.

6.3. ECDHE_ECDSA

 In ECDHE_ECDSA, the server's certificate has an ECDSA key and is, in

Dierks [Page 6]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 turn, signed by its CA with ECDSA. The ServerKeyExchange message
 contains an ephemeral ECDH key and a specification of the curve for
 this key. (see section 8.1). These parameters are signed with the
 server's authenticated ECDSA key.

 The client's certificate is not involved in the key establishment for
 this method, although the client can still be authenticated via the
 normal mechanism.

 The client should verify the signature on the ServerKeyExchange
 message and generate an ECDH key on the same curve as the server's
 ephemeral key. The client encodes the public half of that key into
 the ClientKeyExchange message and sends it to the server.

 The client and server perform an ECDH key agreement using their
 private keys and the public keys they have sent to each other. The
 resultant shared secret is the premaster secret.

6.4. ECDHE_ECDSA_EXPORT

 ECDHE_ECDSA_EXPORT is the same as ECDHE_ECDSA except for the fact
 that the curve used for the server's ephemeral ECDH key should be no
 longer than 113 bits. Because the server's certified key is only
 used for authentication, its length is unrestricted.

6.5. ECDHE_ECNRA

 ECDHE_ECNRA is the same as ECDHE_ECDSA except for the fact that the
 server's public key is an ECNRA key and the server's certificate is
 signed by its CA with ECNRA.

6.6. ECDHE_ECNRA_EXPORT

 ECDHE_ECNRA_EXPORT is the same as ECDHE_ECNRA except for the fact
 that the curve used for the server's ephemeral ECDH key should be no
 longer than 113 bits. Because the server's certified key is only
 used for authentication, its length is unrestricted.

6.7. ECDH_ECDSA

 In ECDH_ECDSA, the server's certificate contains an ECDH public key.
 This certificate is signed by the server's CA using ECDSA. The
 ServerKeyExchange message is not sent because the server's
 certificate contains all the necessary keying information for the
 client to complete the key establishment.

 If the server requests client authentication and includes the
 ecdsa_fixed_dh or ecnra_fixed_dh client certificate types (see

Dierks [Page 7]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

section 8.2) and the client has a certificate which contains an ECDH
 key on the same curve as the server's public key, and this
 certificate is otherwise eligible to be used for client
 authentication, then the client's certified public key is used in
 conjunction with the server's public key to do an ECDH key agreement;
 the resultant shared secret is the premaster key. In this situation,
 the client key exchange message is empty when sent and the client
 CertificateVerify message is not sent, as both the client and the
 server are authenticated by their ability to arrive at the same
 premaster secret.

 If client certification is not requested or if the client does not
 have a certificate with a suitable ECDH public key, the client can
 generate an ephemeral key on the same curve as the server's public
 key. This key is encoded into the ClientKeyExchange message (see

section 8.3) and used in conjunction with the server's key to
 complete the ECDH key agreement, yielding the premaster secret.

6.8. ECDH_ECNRA

 ECDH_ECNRA is the same as ECDH_ECDSA except for the fact that the
 server's certificate is signed by its CA with ECNRA.

6.9. ECMQV_ECDSA

 In ECMQV_ECDSA, the server's certificate contains an ECMQV key and is
 signed by the server's CA with ECDSA. The server then generates an
 temporary key pair and sends the public half of the temporary key in
 the ServerKeyExchange message (see section 8.1).

 If the server requests client authentication and includes the
 ecdsa_mqv or ecnra_mqv client certificate types (see section 8.2) and
 the client has a certificate which contains an ECMQV key on the same
 curve as the server's public key, and this certificate is otherwise
 eligible to be used for client authentication, then the client should
 send that certificate, then generate a temporary key and send the
 public half of that key in the ClientKeyExchange message (see section

8.3). The client and server then perform an MQV key agreement using
 their private keys and their peer's public keys (for each party, both
 the certified and temporary key pairs are used). The resultant
 shared secret is the premaster secret. The client CertificateVerify
 message is not sent, as both the client and the server are
 authenticated by their ability to arrive at the same premaster
 secret.

 If client certification is not requested or if the client does not
 have a certificate with a suitable ECMQV public key, the client
 should generate two temporary key pairs on the same curve as the

Dierks [Page 8]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 server's public key. The public halves of these temporary key pairs
 are encoded into the ClientKeyExchange message. One key pair is the
 usual temporary key used for MQV and the other takes the place of the
 certified key. Each side performs an MQV key agreement using the
 peer's public keys and its own private keys, yielding the premaster
 secret.

6.10. ECMQV_ECNRA

 ECMQV_ECNRA is the same as ECMQV_ECDSA except for the fact that the
 server's certificate is signed by its CA with ECNRA.

6.11. ECDH_anon

 In ECDH_anon, an anonymous Elliptic-Curve Diffie-Hellman operation is
 used to arrive at the premaster secret. In this case, the server is
 not authenticated and may not request that the client authenticate
 itself. The server's Certificate message is not sent. The
 ServerKeyExchange message contains the specification of a curve and a
 Diffie-Hellman public key (see section 8.1). The client responds
 with a ClientKeyExchange message containing a Diffie-Hellman public
 key on the same curve; the premaster secret is the shared secret
 resulting from an Elliptic Curve Diffie-Hellman key agreement with
 these keys.

6.12. ECDH_anon_EXPORT

 ECDH_anon_EXPORT is the same as ECDH_anon except for the fact that
 the curve used for the server's ephemeral ECDH key should be no
 longer than 113 bits.

7. Client Certification

 Six new client certificate types have been added: ecdsa_sign,
 ecnra_sign, ecdsa_fixed_dh, ecnra_fixed_dh, ecdsa_mqv, and ecnra_mqv.
 As noted above, the fixed_dh and mqv types are used in key
 establishment methods which allow the client's certified key to
 participate in key agreement. In these cases, the CertificateVerify
 message is not sent; the client's ability to arrive at the same
 premaster secret as the server demonstrates its control over the
 private half of the certified public key.

 One of these certificates is eligible for use in the key agreement
 operation if it has a key which can be used with that algorithm.
 Because elliptic curve keys have the same mathematical properties for
 all the algorithms discussed in this specification, a certificate
 could have a key which was authorized for use in any of several
 algorithms or for only a particular algorithm. In addition to the

Dierks [Page 9]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 key's eligibility, it must be defined using the same curve parameters
 as the server's key to be used in a operation with it. Of course,
 the use of a certificate is always subject to any and all policy
 constraints placed on it.

 In these certificates, the ecdsa or ecnra refers to the algorithm
 which the CA uses to sign the client's certificate.

 The ecdsa_sign and ecnra_sign certificate types are used in other key
 establishment methods and in cases where the client can not or
 chooses not to supply a suitable certificate to participate in one of
 the above methods. In these cases, the client must send a
 CertificateVerify message to demonstrate its control of the private
 half key of the certified key pair. (See section 8.4).

 Certificates requested with the ecdsa_sign ClientCertificateType must
 include an ECDSA public key and be signed by the CA with ECDSA;
 ecnra_sign certificates must include an ECNRA key and be signed with
 ECNRA.

 With all key establishment methods, it is permissible to request a
 client certificate using a different algorithm than the one used for
 the server's certificate; for example, a server doing a ECDHE_ECDSA
 or ECMQV_ECDSA key establishment could still request an ECNRA client
 certificate.

8. Data Structures

 Here the descriptions of the data structures exchanged are given.
 The presentation language is the same as that used in the TLS
 specification. Because these specifications extend the TLS protocol
 specification, these descriptions should be merged with those in TLS
 and in any other specifications which extend TLS. This means that
 enum types may not specify all the possible values and structures
 with multiple formats chosen with a select() clause may not indicate
 all the possible cases.

8.1. Server Key Exchange

 This messages is sent in the following key establishment methods:

 ECDHE_ECDSA
 ECDHE_ECDSA_EXPORT
 ECDHE_ECNRA
 ECDHE_ECNRA_EXPORT
 ECMQV_ECDSA
 ECMQV_ECNRA
 ECDH_anon

Dierks [Page 10]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 ECDH_anon_EXPORT

 It can contain elliptic curve Diffie-Hellman keys, either signed or
 unsigned, or MQV parameters.

 Structure of this message:

 enum { ec_eces,
 ec_diffie_hellman,
 ec_menezes_qu_vanstone } KeyExchangeAlgorithm;

 enum { ec_prime_p (1),
 ec_characteristic_two (2), (255) } ECFieldID;

 enum { ec_basis_onb, ec_basis_trinomial,
 ec_basis_pentanomial } ECBasisType;

 struct {
 opaque a <1..2^8-1>;
 opaque b <1..2^8-1>;
 opaque seed <0..2^8-1>;
 } ECCurve;

 a, b: These parameters specify the coefficients of the elliptic
 curve. Each value shall be the octet string representation of a
 field element following the conversion routine in [X9.62], section

4.3.1.

 seed: This is an optional parameter used to derive the coefficients
 of a randomly generated elliptic curve.

 struct {
 opaque point <1..2^8-1>;
 } ECPoint;

 point: This is the octet string representation of an elliptic curve
 point following the conversion routine in [X9.62], section 4.4.2.a.
 The representation format is defined following the definition in
 [X9.62], section 4.4.

 struct {
 ECFieldID field;
 select (field) {
 case ec_prime_p:
 opaque prime_p <1..2^8-1>;
 case ec_characteristic_two:

Dierks [Page 11]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 uint16 m;
 ECBasisType basis;
 select (basis) {
 case ec_basis_onb:
 struct { };
 case ec_trinomial:
 opaque k <1..2^8-1>;
 case ec_pentanomial:
 opaque k1 <1..2^8-1>;
 opaque k2 <1..2^8-1>;
 opaque k3 <1..2^8-1>;
 };
 };
 ECCurve curve;
 ECPoint base;
 opaque order <1..2^8-1>;
 opaque cofactor <1..2^8-1>;
 } ECParameters;

 field: This identifies the finite field over which the elliptic curve
 is defined.

 prime_p: This is the odd prime defining the field Fp.

 m: This is the degree of the characteristic-two field F2^m.

 k: The exponent k for the trinomical basis representation x^m + x^k +
 1.

 k1, k2, k3: The exponents for the pentanomial representation x^m +
 x^k3 + x^k2 + x^k1 + 1.

 curve: Specifies the coefficients a and b of the elliptic curve E.

 base: The base point P on the elliptic curve.

 order: The order n of the base point. The order of a point P is the
 smallest possible integer n such that nP = 0 (the point at infinity).

 cofactor: The integer h = #E(Fq)/n, where #E(Fq) represents the
 number of points on the elliptic curve E defined over the field Fq.

 struct {
 ECParameters curve_params;
 ECPoint public;
 } ServerECDHParams;

Dierks [Page 12]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 curve_params: This specifies the curve on which the elliptic-curve
 Diffie-Hellman key agreement is to occur.

 public: The ephemeral public key for the elliptic-curve Diffie-
 Hellman key agreement.

 struct {
 ECPoint temp_public;
 } ServerMQVParams;

 temp_public: The temporary MQV public key; the curve on which the MQV
 operation will take place is specified by the server's certificate.

 enum { ec_dsa, ec_nra } SignatureAlgorithm;

 select (SignatureAlgorithm) {
 case ec_dsa:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 case ec_nra:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 } Signature;

 select (KeyExchangeAlgorithm) {
 case ec_diffie_hellman:
 ServerECDHParams params;
 Signature signed_params;
 case ec_menezes_qu_vanstone:
 ServerMQVParams params;
 } ServerKeyExchange;

 Note: The anonymous case for Signature is used for ECDH_anon and
 ECDH_anon_EXPORT key establishment methods: in this case, the
 Signature element is empty.

8.2. Certificate Request

 The only addition to this message is six new types for the client
 certificate.

 Structure of this message:

 enum {

Dierks [Page 13]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 ecdsa_sign(5), ecnra_sign(6),
 ecdsa_fixed_dh(7), ecnra_fixed_dh(8),
 ecdsa_mqv (9), ecnra_mqv (10), (255)
 } ClientCertificateType;

8.3. Client Key Exchange

 This message is sent in all key exchanges. It can contain either an
 ECES encrypted secret, an ECDH public key (for use in ECDHE or
 ECDH_anon key establishment methods), an ECMQV temporary public key,
 or two temporary keys for use with MQV when the client does not have
 a suitable certificate.

 Structure of this message:

 struct {
 select (PublicValueEncoding) {
 case implicit: struct { };
 case explicit: ECPoint ecdh_Yc;
 } ecdh_public;
 } ClientECDiffieHellmanPublic;

 If the client has sent a certificate with an ECDH key, the
 PublicValueEncoding will be implicit and this message will be empty.
 Otherwise, ecdh_Yc will be the client's public value for the Diffie-
 Hellman key agreement.

 struct {
 select (PublicValueEncoding) {
 case implicit: struct { };
 case explicit: ECPoint ecmqv;
 } ecmqv_public;
 ECPoint ecmqv_temp;
 } ClientECMQVPublic;

 If the client has sent a certificate with an MQV key, the
 PublicValueEncoding will be implicit and the ecmqv_public field will
 be empty; otherwise, ecmqv will contain the client's MQV public
 value. In either case, ecmqv_temp will contain the temporary public
 key for the MQV operation.

 In the explicit case, the cost of an additional key generation can be
 saved by generating only one ephemeral key and sending two copies:
 one in ecmqv and one in ecmqv_temp.

Dierks [Page 14]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 struct {
 select (KeyExchangeAlgorithm) {
 case ec_eces: EncryptedPreMasterSecret;
 case ec_diffie_hellman: ClientECDiffieHellmanPublic;
 case ec_menezes_qu_vanstone: ClientECMQVPublic;
 } exchange_keys;
 } ClientKeyExchange;

 In the ECES case, the premaster secret will be sent encrypted with
 the server's public key. The standard TLS definition of
 EncryptedPreMasterSecret is suitable for this transmission.

8.4. Certificate Verify

 This message is sent when the client has sent a certificate which did
 not participate in a Diffie-Hellman or Menezes-Qu-Vanstone key
 agreement.

 This type needs no new definition: the CertificateVerify message in
 TLS uses the Signature type, which we have extended for ECDSA and
 ECNRA (see section 8.1).

9. Elliptic Curve Certificates

 All X.509 certificates must be in compliance with the PKIX profile of
 the X.509 standard [PKIX]. Elliptic curve keys should be encoded
 into X.509 certificates as specified in [PKIX-ECDSA]. However, this
 document currently only specifies formats for ECDSA keys and
 signatures.

 When this document refers to a certificate with an ECDSA, ECNRA,
 ECES, ECDH, or ECMQV key, it means a public key which is capable of
 performing a particular algorithm and which is permitted by the
 policy encoded in the certificate to participate in this algorithm.
 This may be a key which is specifically indicated as being useful for
 a particular algorithm or a general-purpose elliptic curve key which
 is allowed to perform a particular operation.

 The X.509 key usage extension encodes functions a key is allowed to
 perform. The relevant key usage bits for algorithms are:

 Algorithm Key Usage Bit
 _________ ________________
 ECDSA digitalSignature
 ECNRA digitalSignature
 ECES keyEncipherment
 ECDH keyAgreement
 ECMQV keyAgreement

Dierks [Page 15]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 Table 2: Pertinent X.509 key usage bits

 A TLS entity shall not present a certificate which is not eligible to
 participate in the negotiated cipher suite and shall refuse to
 communicate with a TLS peer which presents such a certificate.

10. Cipher Suites

 The following cipher suites are defined:

 CipherSuite TLS_ECES_ECDSA_NULL_SHA = { 0x00, 0x2C }
 CipherSuite TLS_ECES_ECDSA_WITH_RC4_128_SHA = { 0x00, 0x2D }
 CipherSuite TLS_ECES_ECDSA_WITH_DES_CBC_SHA = { 0x00, 0x2E }
 CipherSuite TLS_ECES_ECDSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x2F }
 CipherSuite TLS_ECES_ECNRA_NULL_SHA = { 0x00, 0x30 }
 CipherSuite TLS_ECES_ECNRA_WITH_RC4_128_SHA = { 0x00, 0x31 }
 CipherSuite TLS_ECES_ECNRA_WITH_DES_CBC_SHA = { 0x00, 0x32 }
 CipherSuite TLS_ECES_ECNRA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x33 }
 CipherSuite TLS_ECDHE_ECDSA_NULL_SHA = { 0x00, 0x34 }
 CipherSuite TLS_ECDHE_ECDSA_WITH_RC4_128_SHA = { 0x00, 0x36 }
 CipherSuite TLS_ECDHE_ECDSA_WITH_DES_CBC_SHA = { 0x00, 0x37 }
 CipherSuite TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x38 }
 CipherSuite TLS_ECDHE_ECDSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00, 0x39 }
 CipherSuite TLS_ECDHE_ECDSA_EXPORT_WITH_RC4_40_SHA = { 0x00, 0x40 }
 CipherSuite TLS_ECDHE_ECNRA_NULL_SHA = { 0x00, 0x41 }
 CipherSuite TLS_ECDHE_ECNRA_WITH_RC4_128_SHA = { 0x00, 0x42 }
 CipherSuite TLS_ECDHE_ECNRA_WITH_DES_CBC_SHA = { 0x00, 0x43 }
 CipherSuite TLS_ECDHE_ECNRA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x44 }
 CipherSuite TLS_ECDHE_ECNRA_EXPORT_WITH_DES40_CBC_SHA = { 0x00, 0x45 }
 CipherSuite TLS_ECDHE_ECNRA_EXPORT_WITH_RC4_40_SHA = { 0x00, 0x46 }
 CipherSuite TLS_ECDH_ECDSA_NULL_SHA = { 0x00, 0x47 }
 CipherSuite TLS_ECDH_ECDSA_WITH_RC4_128_SHA = { 0x00, 0x48 }
 CipherSuite TLS_ECDH_ECDSA_WITH_DES_CBC_SHA = { 0x00, 0x49 }
 CipherSuite TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x4A }
 CipherSuite TLS_ECDH_ECNRA_NULL_SHA = { 0x00, 0x4B }
 CipherSuite TLS_ECDH_ECNRA_WITH_RC4_128_SHA = { 0x00, 0x4C }
 CipherSuite TLS_ECDH_ECNRA_WITH_DES_CBC_SHA = { 0x00, 0x4D }
 CipherSuite TLS_ECDH_ECNRA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x4E }
 CipherSuite TLS_ECMQV_ECDSA_NULL_SHA = { 0x00, 0x4F }
 CipherSuite TLS_ECMQV_ECDSA_WITH_RC4_128_SHA = { 0x00, 0x50 }
 CipherSuite TLS_ECMQV_ECDSA_WITH_DES_CBC_SHA = { 0x00, 0x51 }
 CipherSuite TLS_ECMQV_ECDSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x52 }
 CipherSuite TLS_ECMQV_ECNRA_NULL_SHA = { 0x00, 0x53 }
 CipherSuite TLS_ECMQV_ECNRA_WITH_RC4_128_SHA = { 0x00, 0x54 }
 CipherSuite TLS_ECMQV_ECNRA_WITH_DES_CBC_SHA = { 0x00, 0x55 }
 CipherSuite TLS_ECMQV_ECNRA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x56 }
 CipherSuite TLS_ECDH_anon_NULL_WITH_SHA = { 0x00, 0x57 }
 CipherSuite TLS_ECDH_anon_WITH_RC4_128_SHA = { 0x00, 0x58 }

Dierks [Page 16]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 CipherSuite TLS_ECDH_anon_WITH_DES_CBC_SHA = { 0x00, 0x59 }
 CipherSuite TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x5A }
 CipherSuite TLS_ECDH_anon_EXPORT_WITH_DES40_CBC_SHA = { 0x00, 0x5B }
 CipherSuite TLS_ECDH_anon_EXPORT_WITH_RC4_40_SHA = { 0x00, 0x5C }

 Table 3: TLS ECC cipher suites

 The key establishment method, cipher, and hash algorithm for each
 cipher suite are easily determined by examining the name. Those
 cipher suites which use the "NULL" cipher or one of the "EXPORT" key
 establishment mechanisms are considered to be "exportable" cipher
 suites for the purposes of the TLS protocol.

11. Elliptic Curve Cryptography Definitions

 These definitions provide a quick reference for the elliptic curve
 terms.

 Elliptic curve Definition to come.

 Elliptic curve point Definition to come.

 EC parameters Definition to come.

 EC private key Definition to come.

 EC public key Definition to come.

 EC key pair Definition to come.

12. Recommended Cipher Suites

 In order to promote common interoperability, two cipher suites are
 recommended for initial implementation:
 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA and
 TLS_ECDHE_ECDSA_EXPORT_WITH_RC4_40_SHA. Implementing these two gives
 a basis of cryptographic strength, perfect forward secrecy, and
 well-accepted algorithms.

13. References

 [ECDH] IEEE P1363 Working Draft, February, 1997.

 [ECDSA] IEEE P1363 Working Draft, February, 1997.

 [ECDSA] ANSI X9.62 Working Draft, November 17, 1997.

Dierks [Page 17]

INTERNET-DRAFT ECC Cipher Suites For TLS March 13, 1998

 [ECES] ANSI X9.63 Working Draft.

 [ECMQV] IEEE P1363 Working Draft, February, 1997.

 [ECNRA] IEEE P1363 Working Draft, February, 1997.

 [PKIX] R. Housley, W. Ford, W. Polk, D. Solo, Internet Public Key
 Infrastructure: Part I: X.509 Certificate and CRL Profile, <draft-

ietf-pkix-ipki-part1-06.txt>, October 1997.

 [PKIX-ECDSA] L. Bassham, D. Johnson, W. Polk, Representation of
 Elliptic Curve Digital Signature Algorithm (ECDSA) Keys and
 Signatures in Internet X.509 Public Key Infrastructure Certificates
 <draft-ietf-pkix-ipki-ecdsa-01.txt>, November 1997.

 [X9.62] ANSI X9.62 Working Draft, November 17, 1997.

14. Security Considerations

 This document is entirely concerned with security mechanisms.
 Implementors should take care to ensure that code which controls
 security mechanisms is free of errors which might be exploited by
 attackers.

15. Authors' Addresses

 Authors:

 Tim Dierks
 Consensus Development
 timd@consensus.com

 Bill Anderson
 Certicom
 banderson@certicom.com

 Contributors:

 Gilles Garon
 ggaron@aol.com

https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-ecdsa-01.txt

Dierks [Page 18]

