
TLS Working Group V. Gupta
Internet-Draft Sun Labs
Expires: February 27, 2003 S. Blake-Wilson
 BCI
 B. Moeller
 Technische Universitaet Darmstadt
 C. Hawk
 Independent Consultant
 August 29, 2002

ECC Cipher Suites for TLS
<draft-ietf-tls-ecc-02.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on February 27, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes new key exchange algorithms based on Elliptic
 Curve Cryptography (ECC) for the TLS (Transport Layer Security)
 protocol. In particular, it specifies the use of Elliptic Curve
 Diffie-Hellman (ECDH) key agreement in a TLS handshake and the use of
 Elliptic Curve Digital Signature Algorithm (ECDSA) as a new
 authentication mechanism.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-ecc-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Gupta, et al. Expires February 27, 2003 [Page 1]

Internet-Draft ECC Cipher Suites for TLS August 2002

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 Please send comments on this document to the TLS mailing list.

Table of Contents

1. Introduction . 3
2. Key Exchange Algorithms 5
2.1 ECDH_ECDSA . 6
2.2 ECDHE_ECDSA . 7
2.3 ECDH_RSA . 7
2.4 ECDHE_RSA . 7
2.5 ECDH_anon . 7
3. Client Authentication . 9
3.1 ECDSA_sign . 9
3.2 ECDSA_fixed_ECDH . 10
3.3 RSA_fixed_ECDH . 10
4. Data Structures and Computations 11
4.1 Server Certificate . 11
4.2 Server Key Exchange . 12
4.3 Certificate Request . 17
4.4 Client Certificate . 18
4.5 Client Key Exchange . 19
4.6 Certificate Verify . 20
4.7 Elliptic Curve Certificates 22
4.8 ECDH, ECDSA and RSA Computations 22
5. Cipher Suites . 24
6. Security Considerations 26
7. Intellectual Property Rights 27
8. Acknowledgments . 28

 References . 29
 Authors' Addresses . 30
 Full Copyright Statement 31

https://datatracker.ietf.org/doc/html/rfc2119

Gupta, et al. Expires February 27, 2003 [Page 2]

Internet-Draft ECC Cipher Suites for TLS August 2002

1. Introduction

 Elliptic Curve Cryptography (ECC) is emerging as an attractive
 public-key cryptosystem for mobile/wireless environments. Compared
 to currently prevalent cryptosystems such as RSA, ECC offers
 equivalent security with smaller key sizes. This is illustrated in
 the following table, based on [2], which gives approximate comparable
 key sizes for symmetric- and asymmetric-key cryptosystems based on
 the best-known algorithms for attacking them.

 Symmetric | ECC | DH/DSA/RSA
 -------------+---------+------------
 80 | 163 | 1024
 128 | 283 | 3072
 192 | 409 | 7680
 256 | 571 | 15360

 Table 1: Comparable key sizes (in bits)

 Smaller key sizes result in power, bandwidth and computational
 savings that make ECC especially attractive for constrained
 environments.

 This document describes additions to TLS to support ECC. In
 particular, it defines

 o the use of the Elliptic Curve Diffie-Hellman (ECDH) key agreement
 scheme with long-term or ephemeral keys to establish the TLS
 premaster secret, and

 o the use of fixed-ECDH certificates and ECDSA for authentication of
 TLS peers.

 The remainder of this document is organized as follows. Section 2
 provides an overview of ECC-based key exchange algorithms for TLS.

Section 3 describes the use of ECC certificates for client
 authentication. Section 4 specifies various data structures needed
 for an ECC-based handshake, their encoding in TLS messages and the
 processing of those messages. Section 5 defines new ECC-based cipher
 suites and identifies a small subset of these as recommended for all
 implementations of this specification. Section 6, Section 7 and

Section 8 mention security considerations, intellectual property
 rights, and acknowledgments, respectively. This is followed by a
 list of references cited in this document and the authors' contact
 information.

 Implementation of this specification requires familiarity with both

Gupta, et al. Expires February 27, 2003 [Page 3]

Internet-Draft ECC Cipher Suites for TLS August 2002

 TLS [3] and ECC [5][6][7][8] .

Gupta, et al. Expires February 27, 2003 [Page 4]

Internet-Draft ECC Cipher Suites for TLS August 2002

2. Key Exchange Algorithms

 This document introduces five new ECC-based key exchange algorithms
 for TLS. All of them use ECDH to compute the TLS premaster secret
 and differ only in the lifetime of ECDH keys (long-term or ephemeral)
 and the mechanism (if any) used to authenticate them. The derivation
 of the TLS master secret from the premaster secret and the subsequent
 generation of bulk encryption/MAC keys and initialization vectors is
 independent of the key exchange algorithm and not impacted by the
 introduction of ECC.

 The table below summarizes the new key exchange algorithms which
 mimic DH_DSS, DH_RSA, DHE_DSS, DHE_RSA and DH_anon (see [3]),
 respectively.

 Key
 Exchange
 Algorithm Description
 --------- -----------

 ECDH_ECDSA Fixed ECDH with ECDSA-signed certificates.

 ECDHE_ECDSA Ephemeral ECDH with ECDSA signatures.

 ECDH_RSA Fixed ECDH with RSA-signed certificates.

 ECDHE_RSA Ephemeral ECDH with RSA signatures.

 ECDH_anon Anonymous ECDH, no signatures.

 Table 2: ECC key exchange algorithms

 Note that the anonymous key exchange algorithm does not provide
 authentication of the server or the client. Like other anonymous TLS
 key exchanges, it is subject to man-in-the-middle attacks.
 Implementations of this algorithm SHOULD provide authentication by
 other means.

 Note that there is no structural difference between ECDH and ECDSA
 keys. A certificate issuer may use X509.v3 keyUsage and
 extendedKeyUsage extensions to restrict the use of an ECC public key
 to certain computations. This document refers to an ECC key as ECDH-
 capable if its use in ECDH is permitted. ECDSA-capable is defined
 similarly.

Gupta, et al. Expires February 27, 2003 [Page 5]

Internet-Draft ECC Cipher Suites for TLS August 2002

 Client Server
 ------ ------

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*+
 <-------- ServerHelloDone
 Certificate*+
 ClientKeyExchange
 CertificateVerify*+
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished

 Application Data <-------> Application Data

 Figure 1: Message flow in a full TLS handshake
 * message is not sent under some conditions
 + message is not sent unless the client is
 authenticated

 Figure 1 shows all messages involved in the TLS key establishment
 protocol (aka full handshake). The addition of ECC has direct impact
 only on the the server's Certificate message, the ServerKeyExchange,
 the ClientKeyExchange, the CertificateRequest, the client's
 Certificate message, and the CertificateVerify. Next, we describe
 each ECC key exchange algorithm in greater detail in terms of the
 content and processing of these messages. For ease of exposition, we
 defer discussion of client authentication and associated messages
 (identified with a + in Figure 1) until Section 3.

2.1 ECDH_ECDSA

 In ECDH_ECDSA, the server's certificate MUST contain an ECDH-capable
 public key and be signed with ECDSA.

 A ServerKeyExchange MUST NOT be sent (the server's certificate
 contains all the necessary keying information required by the client
 to arrive at the premaster secret).

 The client MUST generate an ECDH key pair on the same curve as the
 server's long-term public key and send its public key in the
 ClientKeyExchange message (except when using client authentication
 algorithm ECDSA_fixed_ECDH or RSA_fixed_ECDH, in which case the

Gupta, et al. Expires February 27, 2003 [Page 6]

Internet-Draft ECC Cipher Suites for TLS August 2002

 modifications from section Section 3.2 or Section 3.3 apply).

 Both client and server MUST perform an ECDH operation and use the
 resultant shared secret as the premaster secret. All ECDH
 calculations are performed as specified in Section 4.8

2.2 ECDHE_ECDSA

 In ECDHE_ECDSA, the server's certificate MUST contain an ECDSA-
 capable public key and be signed with ECDSA.

 The server MUST send its ephemeral ECDH public key and a
 specification of the corresponding curve in the ServerKeyExchange
 message. These parameters MUST be signed with ECDSA using the
 private key corresponding to the public key in the server's
 Certificate.

 The client MUST generate an ECDH key pair on the same curve as the
 server's ephemeral ECDH key and send its public key in the
 ClientKeyExchange message.

 Both client and server MUST perform an ECDH operation (Section 4.8)
 and use the resultant shared secret as the premaster secret.

2.3 ECDH_RSA

 This key exchange algorithm is the same as ECDH_ECDSA except the
 server's certificate MUST be signed with RSA rather than ECDSA.

2.4 ECDHE_RSA

 This key exchange algorithm is the same as ECDHE_ECDSA except the
 server's certificate MUST contain an RSA public key authorized for
 signing and the signature in the ServerKeyExchange message MUST be
 computed with the corresponding RSA private key. The server
 certificate MUST be signed with RSA.

2.5 ECDH_anon

 In ECDH_anon, the server's Certificate, the CertificateRequest, the
 client's Certificate, and the CertificateVerify messages MUST NOT be
 sent.

 The server MUST send an ephemeral ECDH public key and a specification
 of the corresponding curve in the ServerKeyExchange message. These
 parameters MUST NOT be signed.

 The client MUST generate an ECDH key pair on the same curve as the

Gupta, et al. Expires February 27, 2003 [Page 7]

Internet-Draft ECC Cipher Suites for TLS August 2002

 server's ephemeral ECDH key and send its public key in the
 ClientKeyExchange message.

 Both client and server MUST perform an ECDH operation and use the
 resultant shared secret as the premaster secret. All ECDH
 calculations are performed as specified in Section 4.8

Gupta, et al. Expires February 27, 2003 [Page 8]

Internet-Draft ECC Cipher Suites for TLS August 2002

3. Client Authentication

 This document defines three new client authentication mechanisms
 named after the type of client certificate involved: ECDSA_sign,
 ECDSA_fixed_ECDH and RSA_fixed_ECDH. The ECDSA_sign mechanism is
 usable with any of the non-anonymous ECC key exchange algorithms
 described in Section 2 as well as other non-anonymous (non-ECC) key
 exchange algorithms defined in TLS [3]. The ECDSA_fixed_ECDH and
 RSA_fixed_ECDH mechanisms are usable with ECDH_ECDSA and ECDH_RSA.
 Their use with ECDHE_ECDSA and ECDHE_RSA is prohibited because the
 use of a long-term ECDH client key would jeopardize the forward
 secrecy property of these algorithms.

 The server can request ECC-based client authentication by including
 one or more of these certificate types in its CertificateRequest
 message. The server MUST NOT include any certificate types that are
 prohibited for the negotiated key exchange algorithm. The client
 must check if it possesses a certificate appropriate for any of the
 methods suggested by the server and is willing to use it for
 authentication.

 If these conditions are not met, the client should send a client
 Certificate message containing no certificates. In this case, the
 ClientKeyExchange should be sent as described in Section 2 and the
 CertificateVerify should not be sent. If the server requires client
 authentication, it may respond with a fatal handshake failure alert.

 If the client has an appropriate certificate and is willing to use it
 for authentication, it MUST send that certificate in the client's
 Certificate message (as per Section 4.4) and prove possession of the
 private key corresponding to the certified key. The process of
 determining an appropriate certificate and proving possession is
 different for each authentication mechanism and described below.

 NOTE: It is permissible for a server to request (and the client to
 send) a client certificate of a different type than the server
 certificate.

3.1 ECDSA_sign

 To use this authentication mechanism, the client MUST possess a
 certificate containing an ECDSA-capable public key and signed with
 ECDSA.

 The client MUST prove possession of the private key corresponding to
 the certified key by including a signature in the CertificateVerify
 message as described in Section 4.6.

Gupta, et al. Expires February 27, 2003 [Page 9]

Internet-Draft ECC Cipher Suites for TLS August 2002

3.2 ECDSA_fixed_ECDH

 To use this authentication mechanism, the client MUST possess a
 certificate containing an ECDH-capable public key and that
 certificate MUST be signed with ECDSA. Furthermore, the client's
 ECDH key MUST be on the same elliptic curve as the server's long-term
 (certified) ECDH key.

 When using this authentication mechanism, the client MUST send an
 empty ClientKeyExchange as described in Section 4.5 and MUST NOT send
 the CertificateVerify message. The ClientKeyExchange is empty since
 the client's ECDH public key required by the server to compute the
 premaster secret is available inside the client's certificate. The
 client's ability to arrive at the same premaster secret as the server
 (demonstrated by a successful exchange of Finished messages) proves
 possession of the private key corresponding to the certified public
 key and the CertificateVerify message is unnecessary.

3.3 RSA_fixed_ECDH

 This authentication mechanism is identical to ECDSA_fixed_ECDH except
 the client's certificate MUST be signed with RSA.

Gupta, et al. Expires February 27, 2003 [Page 10]

Internet-Draft ECC Cipher Suites for TLS August 2002

4. Data Structures and Computations

 This section specifies the data structures and computations used by
 ECC-based key mechanisms specified in Section 2 and Section 3. The
 presentation language used here is the same as that used in TLS [3].
 Since this specification extends TLS, these descriptions should be
 merged with those in the TLS specification and any others that extend
 TLS. This means that enum types may not specify all possible values
 and structures with multiple formats chosen with a select() clause
 may not indicate all possible cases.

4.1 Server Certificate

 When this message is sent:

 This message is sent in all non-anonymous ECC-based key exchange
 algorithms.

 Meaning of this message:

 This message is used to authentically convey the server's static
 public key to the client. The following table shows the server
 certificate type appropriate for each key exchange algorithm. ECC
 public keys must be encoded in certificates as described in Section

4.7.

 NOTE: The server's Certificate message is capable of carrying a chain
 of certificates. The restrictions mentioned in Table 3 apply only to
 the server's certificate (first in the chain).

Gupta, et al. Expires February 27, 2003 [Page 11]

Internet-Draft ECC Cipher Suites for TLS August 2002

 Key Exchange Algorithm Server Certificate Type
 ---------------------- -----------------------

 ECDH_ECDSA Certificate must contain an
 ECDH-capable public key. It
 must be signed with ECDSA.

 ECDHE_ECDSA Certificate must contain an
 ECDSA-capable public key. It
 must be signed with ECDSA.

 ECDH_RSA Certificate must contain an
 ECDH-capable public key. It
 must be signed with RSA.

 ECDHE_RSA Certificate must contain an
 RSA public key authorized for
 use in digital signatures. It
 must be signed with RSA.

 Table 3: Server certificate types

 Structure of this message:

 Identical to the TLS Certificate format.

 Actions of the sender:

 The server constructs an appropriate certificate chain and conveys it
 to the client in the Certificate message.

 Actions of the receiver:

 The client validates the certificate chain, extracts the server's
 public key, and checks that the key type is appropriate for the
 negotiated key exchange algorithm.

4.2 Server Key Exchange

 When this message is sent:

 This message is sent when using the ECDHE_ECDSA, ECDHE_RSA and
 ECDH_anon key exchange algorithms.

 Meaning of this message:

 This message is used to convey the server's ephemeral ECDH public key

Gupta, et al. Expires February 27, 2003 [Page 12]

Internet-Draft ECC Cipher Suites for TLS August 2002

 (and the corresponding elliptic curve domain parameters) to the
 client.

 Structure of this message:

 enum { explicit_prime (1), explicit_char2 (2),
 named_curve (3), (255) } ECCurveType;

 explicit_prime: Indicates the elliptic curve domain parameters are
 conveyed verbosely, and the underlying finite field is a prime
 field.

 explicit_char2: Indicates the elliptic curve domain parameters are
 conveyed verbosely, and the underlying finite field is a
 characteristic 2 field.

 named_curve: Indicates that a named curve is used. This option
 SHOULD be used when applicable.

 struct {
 opaque a <1..2^8-1>;
 opaque b <1..2^8-1>;
 opaque seed <0..2^8-1>;
 } ECCurve;

 a, b: These parameters specify the coefficients of the elliptic
 curve. Each value contains the byte string representation of a
 field element following the conversion routine in Section 4.3.3 of
 ANSI X9.62 [7].

 seed: This is an optional parameter used to derive the coefficients
 of a randomly generated elliptic curve.

 struct {
 opaque point <1..2^8-1>;
 } ECPoint;

 point: This is the byte string representation of an elliptic curve
 point following the conversion routine in Section 4.3.6 of ANSI
 X9.62 [7]. Note that this byte string may represent an elliptic
 curve point in compressed or uncompressed form. Implementations
 of this specification MUST support the uncompressed form and MAY
 support the compressed form.

Gupta, et al. Expires February 27, 2003 [Page 13]

Internet-Draft ECC Cipher Suites for TLS August 2002

 enum { ec_basis_trinomial, ec_basis_pentanomial } ECBasisType;

 ec_basis_trinomial: Indicates representation of a characteristic two
 field using a trinomial basis.

 ec_basis_pentanomial: Indicates representation of a characteristic
 two field using a pentanomial basis.

 enum {
 sect163k1 (1), sect163r1 (2), sect163r2 (3),
 sect193r1 (4), sect193r2 (5), sect233k1 (6),
 sect233r1 (7), sect239k1 (8), sect283k1 (9),
 sect283r1 (10), sect409k1 (11), sect409r1 (12),
 sect571k1 (13), sect571r1 (14), secp160k1 (15),
 secp160r1 (16), secp160r2 (17), secp192k1 (18),
 secp192r1 (19), secp224k1 (20), secp224r1 (21),
 secp256k1 (22), secp256r1 (23), secp384r1 (24),
 secp521r1 (25), reserved (240..247), (255)
 } NamedCurve;

 sect163k1, etc: Indicates use of the corresponding named curve
 specified in SEC 2 [12]. Note that many of these curves are also
 recommended in ANSI X9.62 [7], and FIPS 186-2 [9]. Values 240
 through 247 are reserved for private use.

Gupta, et al. Expires February 27, 2003 [Page 14]

Internet-Draft ECC Cipher Suites for TLS August 2002

 struct {
 ECCurveType curve_type;
 select (curve_type) {
 case explicit_prime:
 opaque prime_p <1..2^8-1>;
 ECCurve curve;
 ECPoint base;
 opaque order <1..2^8-1>;
 opaque cofactor <1..2^8-1>;
 case explicit_char2:
 uint16 m;
 ECBasisType basis;
 select (basis) {
 case ec_trinomial:
 opaque k <1..2^8-1>;
 case ec_pentanomial:
 opaque k1 <1..2^8-1>;
 opaque k2 <1..2^8-1>;
 opaque k3 <1..2^8-1>;
 };
 ECCurve curve;
 ECPoint base;
 opaque order <1..2^8-1>;
 opaque cofactor <1..2^8-1>;
 case named_curve:
 NamedCurve namedcurve;
 };
 } ECParameters;

 curve_type: This identifies the type of the elliptic curve domain
 parameters.

 prime_p: This is the odd prime defining the field Fp.

 curve: Specifies the coefficients a and b (and optional seed) of the
 elliptic curve E.

 base: Specifies the base point G on the elliptic curve.

 order: Specifies the order n of the base point.

 cofactor: Specifies the cofactor h = #E(Fq)/n, where #E(Fq)
 represents the number of points on the elliptic curve E defined
 over the field Fq.

 m: This is the degree of the characteristic-two field F2^m.

 k: The exponent k for the trinomial basis representation x^m + x^k

Gupta, et al. Expires February 27, 2003 [Page 15]

Internet-Draft ECC Cipher Suites for TLS August 2002

 +1.

 k1, k2, k3: The exponents for the pentanomial representation x^m +
 x^k3 + x^k2 + x^k1 + 1 (such that k3 > k2 > k1).

 namedcurve: Specifies a recommended set of elliptic curve domain
 parameters.

 struct {
 ECParameters curve_params;
 ECPoint public;
 } ServerECDHParams;

 curve_params: Specifies the elliptic curve domain parameters
 associated with the ECDH public key.

 public: The ephemeral ECDH public key.

 The ServerKeyExchange message is extended as follows.

 enum { ec_diffie_hellman } KeyExchangeAlgorithm;

 ec_diffie_hellman: Indicates the ServerKeyExchange message contains
 an ECDH public key.

 select (KeyExchangeAlgorithm) {
 case ec_diffie_hellman:
 ServerECDHParams params;
 Signature signed_params;
 } ServerKeyExchange;

 params: Specifies the ECDH public key and associated domain
 parameters.

 signed_params: A hash of the params, with the signature appropriate
 to that hash applied. The private key corresponding to the
 certified public key in the server's Certificate message is used
 for signing.

 enum { ecdsa } SignatureAlgorithm;

Gupta, et al. Expires February 27, 2003 [Page 16]

Internet-Draft ECC Cipher Suites for TLS August 2002

 select (SignatureAlgorithm) {
 case ecdsa:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 } Signature;

 NOTE: SignatureAlgorithm is 'rsa' for the ECDHE_RSA key exchange
 algorithm and 'anonymous' for ECDH_anon. These cases are defined in
 TLS [3]. SignatureAlgorithm is 'ecdsa' for ECDHE_ECDSA. ECDSA
 signatures are generated and verified as described in Section 4.8.

 Actions of the sender:

 The server selects elliptic curve domain parameters and an ephemeral
 ECDH public key corresponding to these parameters according to the
 ECKAS-DH1 scheme from IEEE 1363 [6]. It conveys this information to
 the client in the ServerKeyExchange message using the format defined
 above.

 Actions of the recipient:

 The client verifies the signature (when present) and retrieves the
 server's elliptic curve domain parameters and ephemeral ECDH public
 key from the ServerKeyExchange message.

4.3 Certificate Request

 When this message is sent:

 This message is sent when requesting client authentication.

 Meaning of this message:

 The server uses this message to suggest acceptable client
 authentication methods.

 Structure of this message:

 The TLS CertificateRequest message is extended as follows.

 enum {
 ecdsa_sign(5), rsa_fixed_ecdh(6),
 ecdsa_fixed_ecdh(7), (255)
 } ClientCertificateType;

 ecdsa_sign, etc Indicates that the server would like to use the
 corresponding client authentication method specified in Section 3.

Gupta, et al. Expires February 27, 2003 [Page 17]

Internet-Draft ECC Cipher Suites for TLS August 2002

 NOTE: SSL 3.0 [4] assigns values 5 and 6 differently
 (rsa_ephemeral_dh and dss_ephemeral_dh); these
 ClientCertificateType values are not used by TLS.

 Actions of the sender:

 The server decides which client authentication methods it would like
 to use, and conveys this information to the client using the format
 defined above.

 Actions of the receiver:

 The client determines whether it has an appropriate certificate for
 use with any of the requested methods, and decides whether or not to
 proceed with client authentication.

4.4 Client Certificate

 When this message is sent:

 This message is sent in response to a CertificateRequest when a
 client has a suitable certificate.

 Meaning of this message:

 This message is used to authentically convey the client's static
 public key to the server. The following table summarizes what client
 certificate types are appropriate for the ECC-based client
 authentication mechanisms described in Section 3. ECC public keys
 must be encoded in certificates as described in Section 4.7.

 NOTE: The client's Certificate message is capable of carrying a chain
 of certificates. The restrictions mentioned in Table 4 apply only to
 the client's certificate (first in the chain).

Gupta, et al. Expires February 27, 2003 [Page 18]

Internet-Draft ECC Cipher Suites for TLS August 2002

 Client
 Authentication Method Client Certificate Type
 --------------------- -----------------------

 ECDSA_sign Certificate must contain an
 ECDSA-capable public key and
 be signed with ECDSA.

 ECDSA_fixed_ECDH Certificate must contain an
 ECDH-capable public key on the
 same elliptic curve as the server's
 long-term ECDH key. This certificate
 must be signed with ECDSA.

 RSA_fixed_ECDH Certificate must contain an
 ECDH-capable public key on the
 same elliptic curve as the server's
 long-term ECDH key. This certificate
 must be signed with RSA.

 Table 4: Client certificate types

 Structure of this message:

 Identical to the TLS client Certificate format.

 Actions of the sender:

 The client constructs an appropriate certificate chain, and conveys
 it to the server in the Certificate message.

 Actions of the receiver:

 The TLS server validates the certificate chain, extracts the client's
 public key, and checks that the key type is appropriate for the
 client authentication method.

4.5 Client Key Exchange

 When this message is sent:

 This message is sent in all key exchange algorithms. If client
 authentication with ECDSA_fixed_ECDH or RSA_fixed_ECDH is used, this
 message is empty. Otherwise, it contains the client's ephemeral ECDH
 public key.

 Meaning of the message:

Gupta, et al. Expires February 27, 2003 [Page 19]

Internet-Draft ECC Cipher Suites for TLS August 2002

 This message is used to convey ephemeral data relating to the key
 exchange belonging to the client (such as its ephemeral ECDH public
 key).

 Structure of this message:

 The TLS ClientKeyExchange message is extended as follows.

 enum { yes, no } EphemeralPublicKey;

 yes, no: Indicates whether or not the client is providing an
 ephemeral ECDH public key. (In ECC ciphersuites, this is "yes"
 except when the client uses the ECDSA_fixed_ECDH or RSA_fixed_ECDH
 client authentication mechanism.)

 struct {
 select (EphemeralPublicKey) {
 case yes: ECPoint ecdh_Yc;
 case no: struct { };
 } ecdh_public;
 } ClientECDiffieHellmanPublic;

 ecdh_Yc: Contains the client's ephemeral ECDH public key.

 struct {
 select (KeyExchangeAlgorithm) {
 case ec_diffie_hellman: ClientECDiffieHellmanPublic;
 } exchange_keys;
 } ClientKeyExchange;

 Actions of the sender:

 The client selects an ephemeral ECDH public key corresponding to the
 parameters it received from the server according to the ECKAS-DH1
 scheme from IEEE 1363 [6]. It conveys this information to the client
 in the ClientKeyExchange message using the format defined above.

 Actions of the recipient:

 The server retrieves the client's ephemeral ECDH public key from the
 ClientKeyExchange message and checks that it is on the same elliptic
 curve as the server's ECDH key.

4.6 Certificate Verify

 When this message is sent:

Gupta, et al. Expires February 27, 2003 [Page 20]

Internet-Draft ECC Cipher Suites for TLS August 2002

 This message is sent when the client sends a client certificate
 containing a public key usable for digital signatures, e.g. when the
 client is authenticated using the ECDSA_sign mechanism.

 Meaning of the message:

 This message contains a signature that proves possession of the
 private key corresponding to the public key in the client's
 Certificate message.

 Structure of this message:

 The TLS CertificateVerify message is extended as follows.

 enum { ecdsa } SignatureAlgorithm;

 select (SignatureAlgorithm) {
 case ecdsa:
 digitally-signed struct {
 opaque sha_hash[20];
 };
 } Signature;

 For the ecdsa case, the signature field in the CertificateVerify
 message contains an ECDSA signature computed over handshake messages
 exchanged so far. ECDSA signatures are computed as described in

Section 4.8. As per ANSI X9.62, an ECDSA signature consists of a
 pair of integers r and s. These integers are both converted into
 byte strings of the same length as the curve order n using the
 conversion routine specified in Section 4.3.1 of [7]. The two byte
 strings are concatenated, and the result is placed in the signature
 field.

 Actions of the sender:

 The client computes its signature over all handshake messages sent or
 received starting at client hello up to but not including this
 message. It uses the private key corresponding to its certified
 public key to compute the signature which is conveyed in the format
 defined above.

 Actions of the receiver:

 The server extracts the client's signature from the CertificateVerify
 message, and verifies the signature using the public key it received
 in the client's Certificate message.

Gupta, et al. Expires February 27, 2003 [Page 21]

Internet-Draft ECC Cipher Suites for TLS August 2002

4.7 Elliptic Curve Certificates

 X509 certificates containing ECC public keys or signed using ECDSA
 MUST comply with [14]. Clients SHOULD use the elliptic curve domain
 parameters recommended in ANSI X9.62 [7], FIPS 186-2 [9], and SEC 2
 [12].

4.8 ECDH, ECDSA and RSA Computations

 All ECDH calculations (including parameter and key generation as well
 as the shared secret calculation) MUST be performed according to [6]
 using the ECKAS-DH1 scheme with the ECSVDP-DH secret value derivation
 primitive, and the KDF1 key derivation function using SHA-1 [9]. The
 output of this scheme, i.e. the 20-byte SHA-1 output from the KDF,
 is the premaster secret.

 DISCUSSION POINT:

 Using KDF1 with SHA-1 limits the security to at most 160 bits,
 independently of the elliptic curve used for ECDH. An alternative
 way to define the protocol would be to employ the identity map as key
 derivation function (in other words, omit the SHA-1 step and directly
 use the octet string representation of the x coordinate of the
 elliptic curve point resulting from the ECDH computation as premaster
 secret). This is similar to conventional DH in TLS [3], and it is
 appropriate for TLS given that TLS already defines a PRF for
 determining the actual symmetric keys.

 The TLS PRF (which is used to derive the master secret from the
 premaster secret and the symmetric keys from the master secret) has
 an internal security limit of at most 288 bits (128 + 160 for MD5 and
 SHA-1), so the use of KDF1 with SHA-1 can be seen to actually weaken
 the theoretical security of the protocol.

 Options to solve this problem include the following:

 o Omit the SHA-1 step as describe above. (BM)

 o Continue to use KDF1 with SHA-1 for curves up to, say, 288 bits
 (more precisely: for curves where FE2OSP returns an octet string
 up to 36 octets) and omit the SHA-1 step only for larger curves.
 (SBW/BM)

 o Continue to use KDF1 with SHA-1 for curves up to, say, 288 bits
 and use KDF1 with SHA-256 or SHA-384 or SHA-512 for larger curves.
 (SBW)

 The first solution will break compatibility with existing

Gupta, et al. Expires February 27, 2003 [Page 22]

Internet-Draft ECC Cipher Suites for TLS August 2002

 implementations based on draft-ietf-tls-ecc-01.txt. The second and
 third solutions are somewhat of a kludge, but maintain compatibility
 (in a large range).

 OPEN QUESTION: We invite comments on which of these solutions would
 be preferred.

 END OF DISCUSSION POINT.

 All ECDSA computations MUST be performed according to ANSI X9.62 [7]
 using the SHA-1 [9] hash function. The 20 bytes of the SHA-1 are run
 directly through the ECDSA algorithm with no additional hashing.

 All RSA signatures must be generated and verified according to PKCS#1
 [10].

https://datatracker.ietf.org/doc/html/draft-ietf-tls-ecc-01.txt

Gupta, et al. Expires February 27, 2003 [Page 23]

Internet-Draft ECC Cipher Suites for TLS August 2002

5. Cipher Suites

 The table below defines new ECC cipher suites that use the key
 exchange algorithms specified in Section 2.

 CipherSuite TLS_ECDH_ECDSA_WITH_NULL_SHA = { 0x00, 0x47 }
 CipherSuite TLS_ECDH_ECDSA_WITH_RC4_128_SHA = { 0x00, 0x48 }
 CipherSuite TLS_ECDH_ECDSA_WITH_DES_CBC_SHA = { 0x00, 0x49 }
 CipherSuite TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x4A }
 CipherSuite TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA = { 0x00, 0x4B }
 CipherSuite TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA = { 0x00, 0x4C }

 CipherSuite TLS_ECDHE_ECDSA_WITH_NULL_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_ECDSA_WITH_RC4_128_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA = { 0x00, 0x?? }

 CipherSuite TLS_ECDH_RSA_WITH_NULL_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_RSA_WITH_RC4_128_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x?? }

 CipherSuite TLS_ECDHE_RSA_WITH_NULL_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_RSA_WITH_RC4_128_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x?? }

 CipherSuite TLS_ECDH_anon_NULL_WITH_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_anon_WITH_RC4_128_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_anon_WITH_AES_128_CBC_SHA = { 0x00, 0x?? }
 CipherSuite TLS_ECDH_anon_WITH_AES_256_CBC_SHA = { 0x00, 0x?? }

 Table 5: TLS ECC cipher suites

 The key exchange method, cipher, and hash algorithm for each of these
 cipher suites are easily determined by examining the name. Ciphers
 other than AES ciphers, and hash algorithms are defined in [3]. AES
 ciphers are defined in [11].

 Server implementations SHOULD support all of the following cipher
 suites, and client implementations SHOULD support at least one of
 them: TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,

Gupta, et al. Expires February 27, 2003 [Page 24]

Internet-Draft ECC Cipher Suites for TLS August 2002

 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, and
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA.

Gupta, et al. Expires February 27, 2003 [Page 25]

Internet-Draft ECC Cipher Suites for TLS August 2002

6. Security Considerations

 This document is entirely concerned with security mechanisms.

 This document is based on [3], [6], [7] and [11]. The appropriate
 security considerations of those documents apply.

Gupta, et al. Expires February 27, 2003 [Page 26]

Internet-Draft ECC Cipher Suites for TLS August 2002

7. Intellectual Property Rights

 The IETF has been notified of intellectual property rights claimed in
 regard to the specification contained in this document. For more
 information, consult the online list of claimed rights (http://

www.ietf.org/ipr.html).

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in [13]. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification can
 be obtained from the IETF Secretariat.

http://www.ietf.org/ipr.html
http://www.ietf.org/ipr.html

Gupta, et al. Expires February 27, 2003 [Page 27]

Internet-Draft ECC Cipher Suites for TLS August 2002

8. Acknowledgments

 The authors wish to thank Bill Anderson and Tim Dierks.

Gupta, et al. Expires February 27, 2003 [Page 28]

Internet-Draft ECC Cipher Suites for TLS August 2002

References

 [1] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [2] Lenstra, A. and E. Verheul, "Selecting Cryptographic Key
 Sizes", Journal of Cryptology 14 (2001) 255-293, <http://

www.cryptosavvy.com/>.

 [3] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

 [4] Freier, A., Karlton, P. and P. Kocher, "The SSL Protocol
 Version 3.0", November 1996, <http://wp.netscape.com/eng/ssl3/

draft302.txt>.

 [5] SECG, "Elliptic Curve Cryptography", SEC 1, 2000, <http://
www.secg.org/>.

 [6] IEEE, "Standard Specifications for Public Key Cryptography",
 IEEE 1363, 2000.

 [7] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

 [8] NIST, "Digital Signature Standard", FIPS 180-1, 2000.

 [9] NIST, "Secure Hash Standard", FIPS 186-2, 1995.

 [10] RSA Laboratories, "PKCS#1: RSA Encryption Standard version
 1.5", PKCS 1, November 1993.

 [11] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [12] SECG, "Recommended Elliptic Curve Domain Parameters", SEC 2,
 2000, <http://www.secg.org/>.

 [13] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", RFC 2028, BCP 11, October 1996.

 [14] Polk, T., Housley, R. and L. Bassham, "Algorithms and
 Identifiers for the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile", RFC

3279, April 2002.

https://datatracker.ietf.org/doc/html/rfc2119
http://www.cryptosavvy.com/
http://www.cryptosavvy.com/
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
http://wp.netscape.com/eng/ssl3/draft302.txt
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.secg.org/
http://www.secg.org/
https://datatracker.ietf.org/doc/html/rfc3268
http://www.secg.org/
https://datatracker.ietf.org/doc/html/rfc2028
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3279

Gupta, et al. Expires February 27, 2003 [Page 29]

Internet-Draft ECC Cipher Suites for TLS August 2002

Authors' Addresses

 Vipul Gupta
 Sun Microsystems Laboratories
 2600 Casey Avenue
 MS UMTV29-235
 Mountain View, CA 94303
 USA

 Phone: +1 650 336 1681
 EMail: vipul.gupta@sun.com

 Simon Blake-Wilson
 Basic Commerce & Industries, Inc.
 96 Spandia Ave
 Unit 606
 Toronto, ON M6G 2T6
 Canada

 Phone: +1 416 214 5961
 EMail: sblakewilson@bcisse.com

 Bodo Moeller
 Technische Universitaet Darmstadt
 Alexanderstr. 10
 64283 Darmstadt
 Germany

 Phone: +49 6151 16 6628
 EMail: moeller@cdc.informatik.tu-darmstadt.de

 Chris Hawk
 Independent Consultant

 EMail: chris@socialeng.com

Gupta, et al. Expires February 27, 2003 [Page 30]

Internet-Draft ECC Cipher Suites for TLS August 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Gupta, et al. Expires February 27, 2003 [Page 31]

