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Abstract

   This document defines a simple mechanism for encrypting the Server
   Name Indication for TLS 1.3.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 12, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   DISCLAIMER: This is very early a work-in-progress design and has not
   yet seen significant (or really any) security analysis.  It should
   not be used as a basis for building production systems.

   Although TLS 1.3 [RFC8446] encrypts most of the handshake, including
   the server certificate, there are several other channels that allow
   an on-path attacker to determine the domain name the client is trying
   to connect to, including:

   o  Cleartext client DNS queries.

   o  Visible server IP addresses, assuming the the server is not doing
      domain-based virtual hosting.

   o  Cleartext Server Name Indication (SNI) [RFC6066] in ClientHello
      messages.

   DoH [I-D.ietf-doh-dns-over-https] and DPRIVE [RFC7858] [RFC8094]
   provide mechanisms for clients to conceal DNS lookups from network
   inspection, and many TLS servers host multiple domains on the same IP
   address.  In such environments, SNI is an explicit signal used to
   determine the server's identity.  Indirect mechanisms such as traffic
   analysis also exist.

   The TLS WG has extensively studied the problem of protecting SNI, but
   has been unable to develop a completely generic solution.
   [I-D.ietf-tls-sni-encryption] provides a description of the problem
   space and some of the proposed techniques.  One of the more difficult
   problems is "Do not stick out" ([I-D.ietf-tls-sni-encryption];

Section 3.4): if only sensitive/private services use SNI encryption,
   then SNI encryption is a signal that a client is going to such a
   service.  For this reason, much recent work has focused on concealing
   the fact that SNI is being protected.  Unfortunately, the result
   often has undesirable performance consequences, incomplete coverage,
   or both.

   The design in this document takes a different approach: it assumes
   that private origins will co-locate with or hide behind a provider

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc8094
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   (CDN, app server, etc.) which is able to activate encrypted SNI
   (ESNI) for all of the domains it hosts.  Thus, the use of encrypted
   SNI does not indicate that the client is attempting to reach a
   private origin, but only that it is going to a particular service
   provider, which the observer could already tell from the IP address.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Overview

   This document is designed to operate in one of two primary topologies
   shown below, which we call "Shared Mode" and "Split Mode"

3.1.  Topologies

                   +---------------------+
                   |                     |
                   |   2001:DB8::1111    |
                   |                     |
   Client <----->  | private.example.org |
                   |                     |
                   | public.example.com  |
                   |                     |
                   +---------------------+
                           Server

                      Figure 1: Shared Mode Topology

   In Shared Mode, the provider is the origin server for all the domains
   whose DNS records point to it and clients form a TLS connection
   directly to that provider, which has access to the plaintext of the
   connection.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
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                   +--------------------+       +---------------------+
                   |                    |       |                     |
                   |   2001:DB8::1111   |       |   2001:DB8::EEEE    |
   Client <------------------------------------>|                     |
                   | public.example.com |       | private.example.com |
                   |                    |       |                     |
                   +--------------------+       +---------------------+
                     Client-Facing Server            Backend Server

                       Figure 2: Split Mode Topology

   In Split Mode, the provider is _not_ the origin server for private
   domains.  Rather the DNS records for private domains point to the
   provider, but the provider's server just relays the connection back
   to the backend server, which is the true origin server.  The provider
   does not have access to the plaintext of the connection.  In
   principle, the provider might not be the origin for any domains, but
   as a practical matter, it is probably the origin for a large set of
   innocuous domains, but is also providing protection for some private
   domains.  Note that the backend server can be an unmodified TLS 1.3
   server.

3.2.  SNI Encryption

   First, the provider publishes a public key and metadata which is used
   for SNI encryption for all the domains for which it serves directly
   or indirectly (via Split Mode).  This document defines a publication
   mechanism using DNS, but other mechanisms are also possible.  In
   particular, if some of the clients of a private server are
   applications rather than Web browsers, those applications might have
   the public key and metadata preconfigured.

   When a client wants to form a TLS connection to any of the domains
   served by an ESNI-supporting provider, it sends an
   "encrypted_server_name" extension, which contains the true extension
   encrypted under the provider's public key.  The provider can then
   decrypt the extension and either terminate the connection (in Shared
   Mode) or forward it to the backend server (in Split Mode).

4.  Publishing the SNI Encryption Key in the DNS

   Publishing ESNI keys in the DNS requires care to ensure correct
   behavior.  There are deployment environments in which a domain is
   served by multiple server operators who do not manage the ESNI Keys.
   Because ESNIKeys and A/AAAA lookup are independent, it is therefore
   possible to obtain an ESNIKeys record which does not match the A/AAAA
   records.  (That is, the host to which an A or AAAA record refers is
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   not in possession of the ESNI keys.)  The design of the system must
   therefore allow clients to detect and recover from this situation.

   Servers operating in Split Mode SHOULD have DNS configured to return
   the same A (or AAAA) record for all ESNI-enabled servers they
   service.  This yields an anonymity set of cardinality equal to the
   number of ESNI-enabled server domains supported by a given client-
   facing server.  Thus, even with SNI encryption, an attacker which can
   enumerate the set of ESNI-enabled domains supported by a client-
   facing server can guess the correct SNI with probability at least 1/
   K, where K is the size of this ESNI-enabled server anonymity set.
   This probability may be increased via traffic analysis or other
   mechanisms.

   The following sections describe a DNS record format that achieve
   these goals.

4.1.  Encrypted SNI Record

   SNI Encryption keys can be published using the following ESNIKeys
   structure.

       // Copied from TLS 1.3
       struct {
           NamedGroup group;
           opaque key_exchange<1..2^16-1>;
       } KeyShareEntry;

       struct {
           uint16 version;
           uint8 checksum[4];
           opaque public_name<1..2^16-1>;
           KeyShareEntry keys<4..2^16-1>;
           CipherSuite cipher_suites<2..2^16-2>;
           uint16 padded_length;
           uint64 not_before;
           uint64 not_after;
           Extension extensions<0..2^16-1>;
       } ESNIKeys;

   version  The version of the structure.  For this specification, that
      value SHALL be 0xff02.  Clients MUST ignore any ESNIKeys structure
      with a version they do not understand.  [[NOTE: This means that
      the RFC will presumably have a nonzero value.]]

   checksum  The first four (4) octets of the SHA-256 message digest
      [RFC6234] of the ESNIKeys structure.  For the purpose of computing

https://datatracker.ietf.org/doc/html/rfc6234
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      the checksum, the value of the "checksum" field MUST be set to
      zero.

   public_name  The non-empty name of the entity trusted to update these
      encryption keys.  This is used to repair misconfigurations, as
      described in Section 5.1.2.

   keys  The list of keys which can be used by the client to encrypt the
      SNI.  Every key being listed MUST belong to a different group.

   padded_length : The length to pad the ServerNameList value to prior
   to encryption.  This value SHOULD be set to the largest
   ServerNameList the server expects to support rounded up the nearest
   multiple of 16.  If the server supports wildcard names, it SHOULD set
   this value to 260.

   not_before  The moment when the keys become valid for use.  The value
      is represented as seconds from 00:00:00 UTC on Jan 1 1970, not
      including leap seconds.

   not_after  The moment when the keys become invalid.  Uses the same
      unit as not_before.

   extensions  A list of extensions that the client can take into
      consideration when generating a Client Hello message.  The format
      is defined in [RFC8446]; Section 4.2.  The purpose of the field is
      to provide room for additional features in the future.  An
      extension may be tagged as mandatory by using an extension type
      codepoint with the high order bit set to 1.  A client which
      receives a mandatory extension they do not understand must reject
      the record.

   The semantics of this structure are simple: any of the listed keys
   may be used to encrypt the SNI for the associated domain name.  The
   cipher suite list is orthogonal to the list of keys, so each key may
   be used with any cipher suite.  Clients MUST parse the extension list
   and check for unsupported mandatory extensions.  If an unsupported
   mandatory extension is present, clients MUST reject the ESNIKeys
   record.

   This structure is placed in the RRData section of an ESNI record as-
   is.  Servers MAY supply multiple ESNIKeys values, either of the same
   or of different versions.  This allows a server to support multiple
   versions at once.  If the server does not supply any ESNIKeys values
   with a version known to the client, then the client MUST behave as if
   no ESNIKeys were found.

https://datatracker.ietf.org/doc/html/rfc8446
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   The name of each ESNI record MUST match the query domain name or the
   query domain name's canonicalized form.  That is, if a client queries
   example.com, the ESNI Resource Record might be:

   example.com. 60S IN ESNI "..." "..."

   The "checksum" field provides protection against transmission errors,
   including those caused by intermediaries such as a DNS proxy running
   on a home router.

   "not_before" and "not_after" fields represent the validity period of
   the published ESNI keys.  Clients MUST NOT use ESNI keys that was
   covered by an invalid checksum or beyond the published period.  If
   none of the ESNI keys values are acceptable, the client SHOULD behave
   as if no ESNIKeys were found.

   Servers SHOULD set the Resource Record TTL small enough so that the
   record gets discarded by the cache before the ESNI keys reach the end
   of their validity period.  Note that servers MAY need to retain the
   decryption key for some time after "not_after", and will need to
   consider clock skew, internal caches and the like, when selecting the
   "not_before" and "not_after" values.

   Client MAY cache the ESNIKeys for a particular domain based on the
   TTL of the Resource Record, but SHOULD NOT cache it based on the
   not_after value, to allow servers to rotate the keys often and
   improve forward secrecy.

   Note that the length of this structure MUST NOT exceed 2^16 - 1, as
   the RDLENGTH is only 16 bits [RFC1035].

4.2.  Encrypted SNI DNS Resolution

   This section describes a client ESNI resolution algorithm using a new
   "address_set" extension described below.  Future specifications may
   introduce new extensions and corresponding resolution algorithms.

4.2.1.  Address Set Extension

   ESNIKeys records MAY indicate a specific IP address(es) for the
   host(s) in possession of the ESNI private key via the following
   mandatory "address_set" ESNIKeys extension:

       enum {
           address_set(0x1001), (65535)
       } ExtensionType;

   The body of this extension is encoded using the following structure.

https://datatracker.ietf.org/doc/html/rfc1035
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       enum {
           address_v4(4),
           address_v6(6),
       } AddressType;

       struct {
           AddressType address_type;
           select (address_type) {
               case address_v4: {
                   opaque ipv4Address[4];
               }
               case address_v6: {
                   opaque ipv6Address[16];
               }
           }
       } Address;

       struct {
           Address address_set<1..2^16-1>;
       } AddressSet;

   address_set  A set of Address structures containing IPv4 or IPv6
      addresses to hosts which have the corresponding private ESNI key.

4.2.2.  Resolution Algorithm

   Clients obtain ESNI records by querying the DNS for ESNI-enabled
   server domains.  In cases where the domain of the A or AAAA records
   being resolved do not match the SNI Server Name, such as when
   [RFC7838] is being used, the alternate domain should be used for
   querying the ESNI TXT record.  (See Section 2.3 of [RFC7838] for more
   details.)

   Clients SHOULD initiate ESNI queries in parallel alongside normal A
   or AAAA queries to obtain address information in a timely manner in
   the event that ESNI is available.  The following algorithm describes
   a procedure by which clients can process ESNIKeys responses as they
   arrive to produce addresses for ESNI-capable hosts.

https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc7838#section-2.3
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1. If an ESNIKeys response with an "address_set" extension arrives before an A or
AAAA response, clients SHOULD initiate TLS with ESNI to the provided 
address(es).

2. If an A or AAAA response arrives before the ESNIKeys response, clients SHOULD wait up
to CD milliseconds before initiating TLS to either address. (Clients may begin
TCP connections in this time. QUIC connections should wait.) If an ESNIKeys
response with an "address_set" extension arrives in this time, clients SHOULD
initiate TLS with ESNI to the provided address(es). If an ESNIKeys response
without an "address_set" extension arrives in this time, clients MAY initiate
TLS with ESNI to the address(es) in the A or AAAA response. If no ESNIKeys 
response
arrives in this time, clients SHOULD initiate TLS without ESNI to the available 
address(es).

   CD (Connection Delay) is a configurable parameter.  The recommended
   value is 50 milliseconds, as per the guidance in [RFC8305].

5.  The "encrypted_server_name" extension

   The encrypted SNI is carried in an "encrypted_server_name" extension,
   defined as follows:

      enum {
          encrypted_server_name(0xffce), (65535)
      } ExtensionType;

   For clients (in ClientHello), this extension contains the following
   ClientEncryptedSNI structure:

      struct {
          CipherSuite suite;
          KeyShareEntry key_share;
          opaque record_digest<0..2^16-1>;
          opaque encrypted_sni<0..2^16-1>;
      } ClientEncryptedSNI;

   suite  The cipher suite used to encrypt the SNI.

   key_share  The KeyShareEntry carrying the client's public ephemeral
      key shared used to derive the ESNI key.

   record_digest  A cryptographic hash of the ESNIKeys structure from
      which the ESNI key was obtained, i.e., from the first byte of
      "checksum" to the end of the structure.  This hash is computed
      using the hash function associated with "suite".

   encrypted_sni  The ClientESNIInner structure, AEAD-encrypted using
      cipher suite "suite" and the key generated as described below.

https://datatracker.ietf.org/doc/html/rfc8305


Rescorla, et al.       Expires September 12, 2019              [Page 10]



Internet-Draft           TLS 1.3 SNI Encryption               March 2019

   For servers (in EncryptedExtensions), this extension contains the
   following structure:

      enum {
          esni_accept(0),
          esni_retry_request(1),
      } ServerESNIResponseType;

      struct {
          ServerESNIResponseType response_type;
          select (response_type) {
              case esni_accept:        uint8 nonce[16];
              case esni_retry_request: ESNIKeys retry_keys<1..2^16-1>;
          }
      } ServerEncryptedSNI;

   response_type  Indicates whether the server processed the client ESNI
      extension.  (See Section 5.1.2 and Section 5.2.}

   nonce  The contents of ClientESNIInner.nonce.  (See Section 5.1.)

   retry_keys  One or more ESNIKeys structures containing the keys that
      the client should use on subsequent connections to encrypt the
      ClientESNIInner structure.

   This protocol also defines the "esni_required" alert, which is sent
   by the client when it offered an "encrypted_server_name" extension
   which was not accepted by the server.

      enum {
          esni_required(121),
      } AlertDescription;

   Finally, requirements in Section 5.1 and Section 5.2 require
   implementations to track, alongside each PSK established by a
   previous connection, whether the connection negotiated this extension
   with the "esni_accept" response type.  If so, this is referred to as
   an "ESNI PSK".  Otherwise, it is a "non-ESNI PSK".  This may be
   implemented by adding a new field to client and server session
   states.

5.1.  Client Behavior

5.1.1.  Sending an encrypted SNI

   In order to send an encrypted SNI, the client MUST first select one
   of the server ESNIKeyShareEntry values and generate an (EC)DHE share
   in the matching group.  This share will then be sent to the server in
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   the "encrypted_sni" extension and used to derive the SNI encryption
   key.  It does not affect the (EC)DHE shared secret used in the TLS
   key schedule.  It MUST also select an appropriate cipher suite from
   the list of suites offered by the server.  If the client is unable to
   select an appropriate group or suite it SHOULD ignore that ESNIKeys
   value and MAY attempt to use another value provided by the server.
   (Recall that servers might provide multiple ESNIKeys in response to a
   ESNI record query.)  The client MUST NOT send encrypted SNI using
   groups or cipher suites not advertised by the server.

   When offering an encrypted SNI, the client MUST NOT offer to resume
   any non-ESNI PSKs.  It additionally MUST NOT offer to resume any
   sessions for TLS 1.2 or below.

   Let Z be the DH shared secret derived from a key share in ESNIKeys
   and the corresponding client share in ClientEncryptedSNI.key_share.
   The SNI encryption key is computed from Z as follows:

   Zx = HKDF-Extract(0, Z)
   key = HKDF-Expand-Label(Zx, "esni key", Hash(ESNIContents), key_length)
   iv = HKDF-Expand-Label(Zx, "esni iv", Hash(ESNIContents), iv_length)

   where ESNIContents is as specified below and Hash is the hash
   function associated with the HKDF instantiation.

      struct {
          opaque record_digest<0..2^16-1>;
          KeyShareEntry esni_key_share;
          Random client_hello_random;
      } ESNIContents;

   The client then creates a ClientESNIInner structure:

      struct {
          ServerNameList sni;
          opaque zeros[ESNIKeys.padded_length - length(sni)];
      } PaddedServerNameList;

      struct {
          uint8 nonce[16];
          PaddedServerNameList realSNI;
      } ClientESNIInner;

   nonce  A random 16-octet value to be echoed by the server in the
      "encrypted_server_name" extension.

   sni  The true SNI, that is, the ServerNameList that would have been
      sent in the plaintext "server_name" extension.
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   zeros  Zero padding whose length makes the serialized
      PaddedServerNameList struct have a length equal to
      ESNIKeys.padded_length.

   This value consists of the serialized ServerNameList from the
   "server_name" extension, padded with enough zeroes to make the total
   structure ESNIKeys.padded_length bytes long.  The purpose of the
   padding is to prevent attackers from using the length of the
   "encrypted_server_name" extension to determine the true SNI.  If the
   serialized ServerNameList is longer than ESNIKeys.padded_length, the
   client MUST NOT use the "encrypted_server_name" extension.

   The ClientEncryptedSNI.encrypted_sni value is then computed using the
   usual TLS 1.3 AEAD:

    encrypted_sni = AEAD-Encrypt(key, iv, ClientHello.KeyShareClientHello, 
ClientESNIInner)

   Where ClientHello.KeyShareClientHello is the body of the extension
   but not including the extension header.  Including
   ClientHello.KeyShareClientHello in the AAD of AEAD-Encrypt binds the
   ClientEncryptedSNI value to the ClientHello and prevents cut-and-
   paste attacks.

   Note: future extensions may end up reusing the server's
   ESNIKeyShareEntry for other purposes within the same message (e.g.,
   encrypting other values).  Those usages MUST have their own HKDF
   labels to avoid reuse.

   [[OPEN ISSUE: If in the future you were to reuse these keys for 0-RTT
   priming, then you would have to worry about potentially expanding
   twice of Z_extracted.  We should think about how to harmonize these
   to make sure that we maintain key separation.]]

   This value is placed in an "encrypted_server_name" extension.

   The client MUST place the value of ESNIKeys.public_name in the
   "server_name" extension.  (This is required for technical conformance
   with [RFC7540]; Section 9.2.)  The client MUST NOT send a
   "cached_info" extension [RFC7924] with a CachedObject entry whose
   CachedInformationType is "cert".

5.1.2.  Handling the server response

   If the server negotiates TLS 1.3 or above and provides an
   "encrypted_server_name" extension in EncryptedExtensions, the client
   then processes the extension's "response_type" field:

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7924
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   o  If the value is "esni_accept", the client MUST check that the
      extension's "nonce" field matches ClientESNIInner.nonce and
      otherwise abort the connection with an "illegal_parameter" alert.
      The client then proceeds with the connection as usual, verifying
      the certificate against the desired name.

   o  If the value is "esni_retry_request", the client proceeds with the
      handshake, verifying the certificate against ESNIKeys.public_name
      as described in Section 5.1.3.  If verification or the handshake
      fails, the client MUST return a failure to the calling
      application.  It MUST NOT use the retry keys.

      Otherwise, when the handshake completes successfully with the
      public name verified, the client MUST abort the connection with an
      "esni_required" alert.  It then processes the "retry_keys" field
      from the server's "encrypted_server_name" extension.

      If one of the values contains a version supported by the client,
      it can regard the ESNI keys as securely replaced by the server.
      It SHOULD retry the handshake with a new transport connection,
      using that value to encrypt the SNI.  The value may only be
      applied to the retry connection.  The client MUST continue to use
      the previously-advertised keys for subsequent connections.  This
      avoids introducing pinning concerns or a tracking vector, should a
      malicious server present client-specific retry keys to identify
      clients.

      If none of the values provided in "retry_keys" contains a
      supported version, the client can regard ESNI as securely disabled
      by the server.  As below, it SHOULD then retry the handshake with
      a new transport connection and ESNI disabled.

   o  If the field contains any other value, the client MUST abort the
      connection with an "illegal_parameter" alert.

   If the server negotiates an earlier version of TLS, or if it does not
   provide an "encrypted_server_name" extension in EncryptedExtensions,
   the client proceeds with the handshake, verifying the certificate
   against ESNIKeys.public_name as described in Section 5.1.3.  The
   client MUST NOT enable the False Start optimization [RFC7918] for
   this handshake.  If verification or the handshake fails, the client
   MUST return a failure to the calling application.  It MUST NOT treat
   this as a secure signal to disable ESNI.

   Otherwise, when the handshake completes successfully with the public
   name verified, the client MUST abort the connection with an
   "esni_required" alert.  The client can then regard ESNI as securely

https://datatracker.ietf.org/doc/html/rfc7918
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   disabled by the server.  It SHOULD retry the handshake with a new
   transport connection and ESNI disabled.

   [[TODO: Key replacement is significantly less scary than saying that
   ESNI-naive servers bounce ESNI off.  Is it worth defining a strict
   mode toggle in the ESNI keys, for a deployment to indicate it is
   ready for that? ]]

   Clients SHOULD implement a limit on retries caused by
   "esni_retry_request" or servers which do not acknowledge the
   "encrypted_server_name" extension.  If the client does not retry in
   either scenario, it MUST report an error to the calling application.

   If the server sends a HelloRetryRequest in response to the
   ClientHello and the client can send a second updated ClientHello per
   the rules in [RFC8446], the "encrypted_server_name" extension values
   which do not depend on the (possibly updated)
   ClientHello.KeyShareClientHello, i.e,, ClientEncryptedSNI.suite,
   ClientEncryptedSNI.key_share, and ClientEncryptedSNI.record_digest,
   MUST NOT change across ClientHello messages.  Moreover,
   ClientESNIInner.nonce and ClientESNIInner.realSNI MUST not change
   across ClientHello messages.  Informally, the values of all
   unencrypted extension information, as well as the inner extension
   plaintext, must be consistent between the first and second
   ClientHello messages.

5.1.3.  Verifying against the public name

   When the server cannot decrypt or does not process the
   "encrypted_server_name" extension, it continues with the handshake
   using the cleartext "server_name" extension instead (see

Section 5.2).  Clients that offer ESNI then verify the certificate
   with the public name, as follows:

   o  If the server resumed a session or negotiated a session that did
      not use a certificate for authentication, the client MUST abort
      the connection with an "illegal_parameter" alert.  This case is
      invalid because Section 5.1.1 requires the client to only offer
      ESNI-established sessions, and Section 5.2 requires the server to
      decline ESNI-established sessions if it did not accept ESNI.

   o  The client MUST verify that the certificate is valid for
      ESNIKeys.public_name.  If invalid, it MUST abort the connection
      with the appropriate alert.

   o  If the server requests a client certificate, the client MUST
      respond with an empty Certificate message, denoting no client
      certificate.

https://datatracker.ietf.org/doc/html/rfc8446
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   Note that verifying a connection for the public name does not verify
   it for the origin.  The TLS implementation MUST NOT report such
   connections as successful to the application.  It additionally MUST
   ignore all session tickets and session IDs presented by the server.
   These connections are only used to trigger retries, as described in

Section 5.1.2.  This may be implemented, for instance, by reporting a
   failed connection with a dedicated error code.

5.2.  Client-Facing Server Behavior

   Upon receiving an "encrypted_server_name" extension, the client-
   facing server MUST check that it is able to negotiate TLS 1.3 or
   greater.  If not, it MUST abort the connection with a
   "handshake_failure" alert.

   If the ClientEncryptedSNI.record_digest value does not match the
   cryptographic hash of any known ESNIKeys structure, it MUST ignore
   the extension and proceed with the connection, with the following
   added behavior:

   o  It MUST include the "encrypted_server_name" extension in
      EncryptedExtensions message with the "response_type" field set to
      "esni_retry_requested" and the "retry_keys" field set to one or
      more ESNIKeys structures with up-to-date keys.  Servers MAY supply
      multiple ESNIKeys values of different versions.  This allows a
      server to support multiple versions at once.

   o  The server MUST ignore all PSK identities in the ClientHello which
      correspond to ESNI PSKs.  ESNI PSKs offered by the client are
      associated with the ESNI name.  The server was unable to decrypt
      then ESNI name, so it should not resume them when using the
      cleartext SNI name.  This restriction allows a client to reject
      resumptions in Section 5.1.3.

   If the ClientEncryptedSNI.record_digest value does match the
   cryptographic hash of a known ESNIKeys, the server performs the
   following checks:

   o  If the ClientEncryptedSNI.key_share group does not match one in
      the ESNIKeys.keys, it MUST abort the connection with an
      "illegal_parameter" alert.

   o  If the length of the "encrypted_server_name" extension is
      inconsistent with the advertised padding length (plus AEAD
      expansion) the server MAY abort the connection with an
      "illegal_parameter" alert without attempting to decrypt.
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   Assuming these checks succeed, the server then computes K_sni and
   decrypts the ServerName value.  If decryption fails, the server MUST
   abort the connection with a "decrypt_error" alert.

   If the decrypted value's length is different from the advertised
   ESNIKeys.padded_length or the padding consists of any value other
   than 0, then the server MUST abort the connection with an
   illegal_parameter alert.  Otherwise, the server uses the
   PaddedServerNameList.sni value as if it were the "server_name"
   extension.  Any actual "server_name" extension is ignored, which also
   means the server MUST NOT send the "server_name" extension to the
   client.

   Upon determining the true SNI, the client-facing server then either
   serves the connection directly (if in Shared Mode), in which case it
   executes the steps in the following section, or forwards the TLS
   connection to the backend server (if in Split Mode).  In the latter
   case, it does not make any changes to the TLS messages, but just
   blindly forwards them.

5.3.  Shared Mode Server Behavior

   A server operating in Shared Mode uses PaddedServerNameList.sni as if
   it were the "server_name" extension to finish the handshake.  It
   SHOULD pad the Certificate message, via padding at the record layer,
   such that its length equals the size of the largest possible
   Certificate (message) covered by the same ESNI key.  Moreover, the
   server MUST include the "encrypted_server_name" extension in
   EncryptedExtensions with the "response_type" field set to
   "esni_accept" and the "nonce" field set to the decrypted
   PaddedServerNameList.nonce value from the client
   "encrypted_server_name" extension.

   If the server sends a NewSessionTicket message, the corresponding
   ESNI PSK MUST be ignored by all other servers in the deployment when
   not negotiating ESNI, including servers which do not implement this
   specification.  This may be implemented by adding a new field to the
   server session state which earlier implementations cannot parse.

   This restriction provides robustness for rollbacks (see Section 6.1).

5.4.  Split Mode Server Behavior

   In Split Mode, the backend server must know
   PaddedServerNameList.nonce to echo it back in EncryptedExtensions and
   complete the handshake.  Appendix A describes one mechanism for
   sending both PaddedServerNameList.sni and ClientESNIInner.nonce to
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   the backend server.  Thus, backend servers function the same as
   servers operating in Shared Mode.

   As in Shared Mode, if the backend server sends a NewSessionTicket
   message, the corresponding ESNI PSK MUST be ignored by other servers
   in the deployment when not negotiating ESNI, including servers which
   do not implement this specification.

6.  Compatibility Issues

   Unlike most TLS extensions, placing the SNI value in an ESNI
   extension is not interoperable with existing servers, which expect
   the value in the existing cleartext extension.  Thus server operators
   SHOULD ensure servers understand a given set of ESNI keys before
   advertising them.  Additionally, servers SHOULD retain support for
   any previously-advertised keys for the duration of their validity.

   However, in more complex deployment scenarios, this may be difficult
   to fully guarantee.  Thus this protocol was designed to be robust in
   case of inconsistencies between systems that advertise ESNI keys and
   servers, at the cost of extra round-trips due to a retry.  Two
   specific scenarios are detailed below.

6.1.  Misconfiguration and Deployment Concerns

   It is possible for ESNI advertisements and servers to become
   inconsistent.  This may occur, for instance, from DNS
   misconfiguration, caching issues, or an incomplete rollout in a
   multi-server deployment.  This may also occur if a server loses its
   ESNI keys, or if a deployment of ESNI must be rolled back on the
   server.

   The retry mechanism repairs most such inconsistencies.  If server and
   advertised keys mismatch, the server will respond with
   esni_retry_requested.  If the server does not understand the
   "encrypted_server_name" extension at all, it will ignore it as
   required by [RFC8446]; Section 4.1.2.  Provided the server can
   present a certificate valid for the public name, the client can
   safely retry with updated settings, as described in Section 5.1.2.

   Unless ESNI is disabled as a result of successfully establishing a
   connection to the public name, the client MUST NOT fall back to
   cleartext SNI, as this allows a network attacker to disclose the SNI.
   It MAY attempt to use another server from the DNS results, if one is
   provided.

https://datatracker.ietf.org/doc/html/rfc8446
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6.2.  Middleboxes

   A more serious problem is MITM proxies which do not support this
   extension.  [RFC8446]; Section 9.3 requires that such proxies remove
   any extensions they do not understand.  The handshake will then
   present a certificate based on the public name, without echoing the
   "encrypted_server_name" extension to the client.

   Depending on whether the client is configured to accept the proxy's
   certificate as authoritative for the public name, this may trigger
   the retry logic described in Section 5.1.2 or result in a connection
   failure.  A proxy which is not authoritative for the public name
   cannot forge a signal to disable ESNI.

   A non-conformant MITM proxy which instead forwards the ESNI
   extension, substituting its own KeyShare value, will result in the
   client-facing server recognizing the key, but failing to decrypt the
   SNI.  This causes a hard failure.  Clients SHOULD NOT attempt to
   repair the connection in this case.

7.  Security Considerations

7.1.  Why is cleartext DNS OK?

   In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource
   Records are signed via a server private key, ESNIKeys have no
   authenticity or provenance information.  This means that any attacker
   which can inject DNS responses or poison DNS caches, which is a
   common scenario in client access networks, can supply clients with
   fake ESNIKeys (so that the client encrypts SNI to them) or strip the
   ESNIKeys from the response.  However, in the face of an attacker that
   controls DNS, no SNI encryption scheme can work because the attacker
   can replace the IP address, thus blocking client connections, or
   substituting a unique IP address which is 1:1 with the DNS name that
   was looked up (modulo DNS wildcards).  Thus, allowing the ESNIKeys in
   the clear does not make the situation significantly worse.

   Clearly, DNSSEC (if the client validates and hard fails) is a defense
   against this form of attack, but DoH/DPRIVE are also defenses against
   DNS attacks by attackers on the local network, which is a common case
   where SNI is desired.  Moreover, as noted in the introduction, SNI
   encryption is less useful without encryption of DNS queries in
   transit via DoH or DPRIVE mechanisms.

https://datatracker.ietf.org/doc/html/rfc8446


Rescorla, et al.       Expires September 12, 2019              [Page 19]



Internet-Draft           TLS 1.3 SNI Encryption               March 2019

7.2.  Comparison Against Criteria

   [I-D.ietf-tls-sni-encryption] lists several requirements for SNI
   encryption.  In this section, we re-iterate these requirements and
   assess the ESNI design against them.

7.2.1.  Mitigate against replay attacks

   Since the SNI encryption key is derived from a (EC)DH operation
   between the client's ephemeral and server's semi-static ESNI key, the
   ESNI encryption is bound to the Client Hello.  It is not possible for
   an attacker to "cut and paste" the ESNI value in a different Client
   Hello, with a different ephemeral key share, as the terminating
   server will fail to decrypt and verify the ESNI value.

7.2.2.  Avoid widely-deployed shared secrets

   This design depends upon DNS as a vehicle for semi-static public key
   distribution.  Server operators may partition their private keys
   however they see fit provided each server behind an IP address has
   the corresponding private key to decrypt a key.  Thus, when one ESNI
   key is provided, sharing is optimally bound by the number of hosts
   that share an IP address.  Server operators may further limit sharing
   by sending different Resource Records containing ESNIKeys with
   different keys using a short TTL.

7.2.3.  Prevent SNI-based DoS attacks

   This design requires servers to decrypt ClientHello messages with
   ClientEncryptedSNI extensions carrying valid digests.  Thus, it is
   possible for an attacker to force decryption operations on the
   server.  This attack is bound by the number of valid TCP connections
   an attacker can open.

7.2.4.  Do not stick out

   As more clients enable ESNI support, e.g., as normal part of Web
   browser functionality, with keys supplied by shared hosting
   providers, the presence of ESNI extensions becomes less suspicious
   and part of common or predictable client behavior.  In other words,
   if all Web browsers start using ESNI, the presence of this value does
   not signal suspicious behavior to passive eavesdroppers.

7.2.5.  Forward secrecy

   This design is not forward secret because the server's ESNI key is
   static.  However, the window of exposure is bound by the key
   lifetime.  It is RECOMMENDED that servers rotate keys frequently.
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7.2.6.  Proper security context

   This design permits servers operating in Split Mode to forward
   connections directly to backend origin servers, thereby avoiding
   unnecessary MiTM attacks.

7.2.7.  Split server spoofing

   Assuming ESNIKeys retrieved from DNS are validated, e.g., via DNSSEC
   or fetched from a trusted Recursive Resolver, spoofing a server
   operating in Split Mode is not possible.  See Section 7.1 for more
   details regarding cleartext DNS.

   Validating the ESNIKeys structure additionally validates the public
   name.  This validates any retry signals from the server because the
   client validates the server certificate against the public name
   before retrying.

7.2.8.  Supporting multiple protocols

   This design has no impact on application layer protocol negotiation.
   It may affect connection routing, server certificate selection, and
   client certificate verification.  Thus, it is compatible with
   multiple protocols.

7.3.  Misrouting

   Note that the backend server has no way of knowing what the SNI was,
   but that does not lead to additional privacy exposure because the
   backend server also only has one identity.  This does, however,
   change the situation slightly in that the backend server might
   previously have checked SNI and now cannot (and an attacker can route
   a connection with an encrypted SNI to any backend server and the TLS
   connection will still complete).  However, the client is still
   responsible for verifying the server's identity in its certificate.

   [[TODO: Some more analysis needed in this case, as it is a little
   odd, and probably some precise rules about handling ESNI and no SNI
   uniformly?]]

8.  IANA Considerations

8.1.  Update of the TLS ExtensionType Registry

   IANA is requested to create an entry, encrypted_server_name(0xffce),
   in the existing registry for ExtensionType (defined in [RFC8446]),
   with "TLS 1.3" column values being set to "CH, EE", and "Recommended"
   column being set to "Yes".

https://datatracker.ietf.org/doc/html/rfc8446
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8.2.  Update of the TLS Alert Registry

   IANA is requested to create an entry, esni_required(121) in the
   existing registry for Alerts (defined in [RFC8446]), with the "DTLS-
   OK" column being set to "Y".

8.3.  Update of the Resource Record (RR) TYPEs Registry

   IANA is requested to create an entry, ESNI(0xff9f), in the existing
   registry for Resource Record (RR) TYPEs (defined in [RFC6895]) with
   "Meaning" column value being set to "Encrypted SNI".
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Appendix A.  Communicating SNI and Nonce to Backend Server

   When operating in Split Mode, backend servers will not have access to
   PaddedServerNameList.sni or ClientESNIInner.nonce without access to
   the ESNI keys or a way to decrypt ClientEncryptedSNI.encrypted_sni.

   One way to address this for a single connection, at the cost of
   having communication not be unmodified TLS 1.3, is as follows.
   Assume there is a shared (symmetric) key between the client-facing
   server and the backend server and use it to AEAD-encrypt Z and send
   the encrypted blob at the beginning of the connection before the
   ClientHello.  The backend server can then decrypt ESNI to recover the
   true SNI and nonce.

   Another way for backend servers to access the true SNI and nonce is
   by the client-facing server sharing the ESNI keys.

Appendix B.  Alternative SNI Protection Designs

   Alternative approaches to encrypted SNI may be implemented at the TLS
   or application layer.  In this section we describe several
   alternatives and discuss drawbacks in comparison to the design in
   this document.

B.1.  TLS-layer

B.1.1.  TLS in Early Data

   In this variant, TLS Client Hellos are tunneled within early data
   payloads belonging to outer TLS connections established with the
   client-facing server.  This requires clients to have established a
   previous session --- and obtained PSKs --- with the server.  The
   client-facing server decrypts early data payloads to uncover Client
   Hellos destined for the backend server, and forwards them onwards as
   necessary.  Afterwards, all records to and from backend servers are
   forwarded by the client-facing server - unmodified.  This avoids
   double encryption of TLS records.

   Problems with this approach are: (1) servers may not always be able
   to distinguish inner Client Hellos from legitimate application data,
   (2) nested 0-RTT data may not function correctly, (3) 0-RTT data may
   not be supported - especially under DoS - leading to availability
   concerns, and (4) clients must bootstrap tunnels (sessions), costing

https://datatracker.ietf.org/doc/html/rfc8094
https://www.rfc-editor.org/info/rfc8094


Rescorla, et al.       Expires September 12, 2019              [Page 24]



Internet-Draft           TLS 1.3 SNI Encryption               March 2019

   an additional round trip and potentially revealing the SNI during the
   initial connection.  In contrast, encrypted SNI protects the SNI in a
   distinct Client Hello extension and neither abuses early data nor
   requires a bootstrapping connection.

B.1.2.  Combined Tickets

   In this variant, client-facing and backend servers coordinate to
   produce "combined tickets" that are consumable by both.  Clients
   offer combined tickets to client-facing servers.  The latter parse
   them to determine the correct backend server to which the Client
   Hello should be forwarded.  This approach is problematic due to non-
   trivial coordination between client-facing and backend servers for
   ticket construction and consumption.  Moreover, it requires a
   bootstrapping step similar to that of the previous variant.  In
   contrast, encrypted SNI requires no such coordination.

B.2.  Application-layer

B.2.1.  HTTP/2 CERTIFICATE Frames

   In this variant, clients request secondary certificates with
   CERTIFICATE_REQUEST HTTP/2 frames after TLS connection completion.
   In response, servers supply certificates via TLS exported
   authenticators [I-D.ietf-tls-exported-authenticator] in CERTIFICATE
   frames.  Clients use a generic SNI for the underlying client-facing
   server TLS connection.  Problems with this approach include: (1) one
   additional round trip before peer authentication, (2) non-trivial
   application-layer dependencies and interaction, and (3) obtaining the
   generic SNI to bootstrap the connection.  In contrast, encrypted SNI
   induces no additional round trip and operates below the application
   layer.

Appendix C.  Total Client Hello Encryption

   The design described here only provides encryption for the SNI, but
   not for other extensions, such as ALPN.  Another potential design
   would be to encrypt all of the extensions using the same basic
   structure as we use here for ESNI.  That design has the following
   advantages:

   o  It protects all the extensions from ordinary eavesdroppers

   o  If the encrypted block has its own KeyShare, it does not
      necessarily require the client to use a single KeyShare, because
      the client's share is bound to the SNI by the AEAD (analysis
      needed).
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   It also has the following disadvantages:

   o  The client-facing server can still see the other extensions.  By
      contrast we could introduce another EncryptedExtensions block that
      was encrypted to the backend server and not the client-facing
      server.

   o  It requires a mechanism for the client-facing server to provide
      the extension-encryption key to the backend server (as in

Appendix A and thus cannot be used with an unmodified backend
      server.

   o  A conformant middlebox will strip every extension, which might
      result in a ClientHello which is just unacceptable to the server
      (more analysis needed).
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