
tls E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Experimental K. Oku
Expires: September 12, 2019 Fastly
 N. Sullivan
 Cloudflare
 C. Wood
 Apple, Inc.
 March 11, 2019

Encrypted Server Name Indication for TLS 1.3
draft-ietf-tls-esni-03

Abstract

 This document defines a simple mechanism for encrypting the Server
 Name Indication for TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Rescorla, et al. Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TLS 1.3 SNI Encryption March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Definitions 4
3. Overview . 4
3.1. Topologies . 4
3.2. SNI Encryption . 5

4. Publishing the SNI Encryption Key in the DNS 5
4.1. Encrypted SNI Record 6
4.2. Encrypted SNI DNS Resolution 8
4.2.1. Address Set Extension 8
4.2.2. Resolution Algorithm 9

5. The "encrypted_server_name" extension 10
5.1. Client Behavior . 11
5.1.1. Sending an encrypted SNI 11
5.1.2. Handling the server response 13
5.1.3. Verifying against the public name 15

5.2. Client-Facing Server Behavior 16
5.3. Shared Mode Server Behavior 17
5.4. Split Mode Server Behavior 17

6. Compatibility Issues . 18
6.1. Misconfiguration and Deployment Concerns 18
6.2. Middleboxes . 19

7. Security Considerations 19
7.1. Why is cleartext DNS OK? 19
7.2. Comparison Against Criteria 20
7.2.1. Mitigate against replay attacks 20
7.2.2. Avoid widely-deployed shared secrets 20
7.2.3. Prevent SNI-based DoS attacks 20
7.2.4. Do not stick out 20
7.2.5. Forward secrecy 20
7.2.6. Proper security context 21
7.2.7. Split server spoofing 21
7.2.8. Supporting multiple protocols 21

7.3. Misrouting . 21
8. IANA Considerations . 21
8.1. Update of the TLS ExtensionType Registry 21
8.2. Update of the TLS Alert Registry 22
8.3. Update of the Resource Record (RR) TYPEs Registry 22

9. References . 22
9.1. Normative References 22
9.2. Informative References 23

Appendix A. Communicating SNI and Nonce to Backend Server . . . 24
Appendix B. Alternative SNI Protection Designs 24
B.1. TLS-layer . 24

Rescorla, et al. Expires September 12, 2019 [Page 2]

Internet-Draft TLS 1.3 SNI Encryption March 2019

B.1.1. TLS in Early Data 24
B.1.2. Combined Tickets 25

B.2. Application-layer . 25
B.2.1. HTTP/2 CERTIFICATE Frames 25

Appendix C. Total Client Hello Encryption 25
Appendix D. Acknowledgements 26

 Authors' Addresses . 26

1. Introduction

 DISCLAIMER: This is very early a work-in-progress design and has not
 yet seen significant (or really any) security analysis. It should
 not be used as a basis for building production systems.

 Although TLS 1.3 [RFC8446] encrypts most of the handshake, including
 the server certificate, there are several other channels that allow
 an on-path attacker to determine the domain name the client is trying
 to connect to, including:

 o Cleartext client DNS queries.

 o Visible server IP addresses, assuming the the server is not doing
 domain-based virtual hosting.

 o Cleartext Server Name Indication (SNI) [RFC6066] in ClientHello
 messages.

 DoH [I-D.ietf-doh-dns-over-https] and DPRIVE [RFC7858] [RFC8094]
 provide mechanisms for clients to conceal DNS lookups from network
 inspection, and many TLS servers host multiple domains on the same IP
 address. In such environments, SNI is an explicit signal used to
 determine the server's identity. Indirect mechanisms such as traffic
 analysis also exist.

 The TLS WG has extensively studied the problem of protecting SNI, but
 has been unable to develop a completely generic solution.
 [I-D.ietf-tls-sni-encryption] provides a description of the problem
 space and some of the proposed techniques. One of the more difficult
 problems is "Do not stick out" ([I-D.ietf-tls-sni-encryption];

Section 3.4): if only sensitive/private services use SNI encryption,
 then SNI encryption is a signal that a client is going to such a
 service. For this reason, much recent work has focused on concealing
 the fact that SNI is being protected. Unfortunately, the result
 often has undesirable performance consequences, incomplete coverage,
 or both.

 The design in this document takes a different approach: it assumes
 that private origins will co-locate with or hide behind a provider

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc8094

Rescorla, et al. Expires September 12, 2019 [Page 3]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 (CDN, app server, etc.) which is able to activate encrypted SNI
 (ESNI) for all of the domains it hosts. Thus, the use of encrypted
 SNI does not indicate that the client is attempting to reach a
 private origin, but only that it is going to a particular service
 provider, which the observer could already tell from the IP address.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Overview

 This document is designed to operate in one of two primary topologies
 shown below, which we call "Shared Mode" and "Split Mode"

3.1. Topologies

 +---------------------+
 | |
 | 2001:DB8::1111 |
 | |
 Client <-----> | private.example.org |
 | |
 | public.example.com |
 | |
 +---------------------+
 Server

 Figure 1: Shared Mode Topology

 In Shared Mode, the provider is the origin server for all the domains
 whose DNS records point to it and clients form a TLS connection
 directly to that provider, which has access to the plaintext of the
 connection.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Rescorla, et al. Expires September 12, 2019 [Page 4]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 +--------------------+ +---------------------+
 | | | |
 | 2001:DB8::1111 | | 2001:DB8::EEEE |
 Client <------------------------------------>| |
 | public.example.com | | private.example.com |
 | | | |
 +--------------------+ +---------------------+
 Client-Facing Server Backend Server

 Figure 2: Split Mode Topology

 In Split Mode, the provider is _not_ the origin server for private
 domains. Rather the DNS records for private domains point to the
 provider, but the provider's server just relays the connection back
 to the backend server, which is the true origin server. The provider
 does not have access to the plaintext of the connection. In
 principle, the provider might not be the origin for any domains, but
 as a practical matter, it is probably the origin for a large set of
 innocuous domains, but is also providing protection for some private
 domains. Note that the backend server can be an unmodified TLS 1.3
 server.

3.2. SNI Encryption

 First, the provider publishes a public key and metadata which is used
 for SNI encryption for all the domains for which it serves directly
 or indirectly (via Split Mode). This document defines a publication
 mechanism using DNS, but other mechanisms are also possible. In
 particular, if some of the clients of a private server are
 applications rather than Web browsers, those applications might have
 the public key and metadata preconfigured.

 When a client wants to form a TLS connection to any of the domains
 served by an ESNI-supporting provider, it sends an
 "encrypted_server_name" extension, which contains the true extension
 encrypted under the provider's public key. The provider can then
 decrypt the extension and either terminate the connection (in Shared
 Mode) or forward it to the backend server (in Split Mode).

4. Publishing the SNI Encryption Key in the DNS

 Publishing ESNI keys in the DNS requires care to ensure correct
 behavior. There are deployment environments in which a domain is
 served by multiple server operators who do not manage the ESNI Keys.
 Because ESNIKeys and A/AAAA lookup are independent, it is therefore
 possible to obtain an ESNIKeys record which does not match the A/AAAA
 records. (That is, the host to which an A or AAAA record refers is

Rescorla, et al. Expires September 12, 2019 [Page 5]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 not in possession of the ESNI keys.) The design of the system must
 therefore allow clients to detect and recover from this situation.

 Servers operating in Split Mode SHOULD have DNS configured to return
 the same A (or AAAA) record for all ESNI-enabled servers they
 service. This yields an anonymity set of cardinality equal to the
 number of ESNI-enabled server domains supported by a given client-
 facing server. Thus, even with SNI encryption, an attacker which can
 enumerate the set of ESNI-enabled domains supported by a client-
 facing server can guess the correct SNI with probability at least 1/
 K, where K is the size of this ESNI-enabled server anonymity set.
 This probability may be increased via traffic analysis or other
 mechanisms.

 The following sections describe a DNS record format that achieve
 these goals.

4.1. Encrypted SNI Record

 SNI Encryption keys can be published using the following ESNIKeys
 structure.

 // Copied from TLS 1.3
 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 struct {
 uint16 version;
 uint8 checksum[4];
 opaque public_name<1..2^16-1>;
 KeyShareEntry keys<4..2^16-1>;
 CipherSuite cipher_suites<2..2^16-2>;
 uint16 padded_length;
 uint64 not_before;
 uint64 not_after;
 Extension extensions<0..2^16-1>;
 } ESNIKeys;

 version The version of the structure. For this specification, that
 value SHALL be 0xff02. Clients MUST ignore any ESNIKeys structure
 with a version they do not understand. [[NOTE: This means that
 the RFC will presumably have a nonzero value.]]

 checksum The first four (4) octets of the SHA-256 message digest
 [RFC6234] of the ESNIKeys structure. For the purpose of computing

https://datatracker.ietf.org/doc/html/rfc6234

Rescorla, et al. Expires September 12, 2019 [Page 6]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 the checksum, the value of the "checksum" field MUST be set to
 zero.

 public_name The non-empty name of the entity trusted to update these
 encryption keys. This is used to repair misconfigurations, as
 described in Section 5.1.2.

 keys The list of keys which can be used by the client to encrypt the
 SNI. Every key being listed MUST belong to a different group.

 padded_length : The length to pad the ServerNameList value to prior
 to encryption. This value SHOULD be set to the largest
 ServerNameList the server expects to support rounded up the nearest
 multiple of 16. If the server supports wildcard names, it SHOULD set
 this value to 260.

 not_before The moment when the keys become valid for use. The value
 is represented as seconds from 00:00:00 UTC on Jan 1 1970, not
 including leap seconds.

 not_after The moment when the keys become invalid. Uses the same
 unit as not_before.

 extensions A list of extensions that the client can take into
 consideration when generating a Client Hello message. The format
 is defined in [RFC8446]; Section 4.2. The purpose of the field is
 to provide room for additional features in the future. An
 extension may be tagged as mandatory by using an extension type
 codepoint with the high order bit set to 1. A client which
 receives a mandatory extension they do not understand must reject
 the record.

 The semantics of this structure are simple: any of the listed keys
 may be used to encrypt the SNI for the associated domain name. The
 cipher suite list is orthogonal to the list of keys, so each key may
 be used with any cipher suite. Clients MUST parse the extension list
 and check for unsupported mandatory extensions. If an unsupported
 mandatory extension is present, clients MUST reject the ESNIKeys
 record.

 This structure is placed in the RRData section of an ESNI record as-
 is. Servers MAY supply multiple ESNIKeys values, either of the same
 or of different versions. This allows a server to support multiple
 versions at once. If the server does not supply any ESNIKeys values
 with a version known to the client, then the client MUST behave as if
 no ESNIKeys were found.

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires September 12, 2019 [Page 7]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 The name of each ESNI record MUST match the query domain name or the
 query domain name's canonicalized form. That is, if a client queries
 example.com, the ESNI Resource Record might be:

 example.com. 60S IN ESNI "..." "..."

 The "checksum" field provides protection against transmission errors,
 including those caused by intermediaries such as a DNS proxy running
 on a home router.

 "not_before" and "not_after" fields represent the validity period of
 the published ESNI keys. Clients MUST NOT use ESNI keys that was
 covered by an invalid checksum or beyond the published period. If
 none of the ESNI keys values are acceptable, the client SHOULD behave
 as if no ESNIKeys were found.

 Servers SHOULD set the Resource Record TTL small enough so that the
 record gets discarded by the cache before the ESNI keys reach the end
 of their validity period. Note that servers MAY need to retain the
 decryption key for some time after "not_after", and will need to
 consider clock skew, internal caches and the like, when selecting the
 "not_before" and "not_after" values.

 Client MAY cache the ESNIKeys for a particular domain based on the
 TTL of the Resource Record, but SHOULD NOT cache it based on the
 not_after value, to allow servers to rotate the keys often and
 improve forward secrecy.

 Note that the length of this structure MUST NOT exceed 2^16 - 1, as
 the RDLENGTH is only 16 bits [RFC1035].

4.2. Encrypted SNI DNS Resolution

 This section describes a client ESNI resolution algorithm using a new
 "address_set" extension described below. Future specifications may
 introduce new extensions and corresponding resolution algorithms.

4.2.1. Address Set Extension

 ESNIKeys records MAY indicate a specific IP address(es) for the
 host(s) in possession of the ESNI private key via the following
 mandatory "address_set" ESNIKeys extension:

 enum {
 address_set(0x1001), (65535)
 } ExtensionType;

 The body of this extension is encoded using the following structure.

https://datatracker.ietf.org/doc/html/rfc1035

Rescorla, et al. Expires September 12, 2019 [Page 8]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 enum {
 address_v4(4),
 address_v6(6),
 } AddressType;

 struct {
 AddressType address_type;
 select (address_type) {
 case address_v4: {
 opaque ipv4Address[4];
 }
 case address_v6: {
 opaque ipv6Address[16];
 }
 }
 } Address;

 struct {
 Address address_set<1..2^16-1>;
 } AddressSet;

 address_set A set of Address structures containing IPv4 or IPv6
 addresses to hosts which have the corresponding private ESNI key.

4.2.2. Resolution Algorithm

 Clients obtain ESNI records by querying the DNS for ESNI-enabled
 server domains. In cases where the domain of the A or AAAA records
 being resolved do not match the SNI Server Name, such as when
 [RFC7838] is being used, the alternate domain should be used for
 querying the ESNI TXT record. (See Section 2.3 of [RFC7838] for more
 details.)

 Clients SHOULD initiate ESNI queries in parallel alongside normal A
 or AAAA queries to obtain address information in a timely manner in
 the event that ESNI is available. The following algorithm describes
 a procedure by which clients can process ESNIKeys responses as they
 arrive to produce addresses for ESNI-capable hosts.

https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc7838#section-2.3

Rescorla, et al. Expires September 12, 2019 [Page 9]

Internet-Draft TLS 1.3 SNI Encryption March 2019

1. If an ESNIKeys response with an "address_set" extension arrives before an A or
AAAA response, clients SHOULD initiate TLS with ESNI to the provided
address(es).

2. If an A or AAAA response arrives before the ESNIKeys response, clients SHOULD wait up
to CD milliseconds before initiating TLS to either address. (Clients may begin
TCP connections in this time. QUIC connections should wait.) If an ESNIKeys
response with an "address_set" extension arrives in this time, clients SHOULD
initiate TLS with ESNI to the provided address(es). If an ESNIKeys response
without an "address_set" extension arrives in this time, clients MAY initiate
TLS with ESNI to the address(es) in the A or AAAA response. If no ESNIKeys
response
arrives in this time, clients SHOULD initiate TLS without ESNI to the available
address(es).

 CD (Connection Delay) is a configurable parameter. The recommended
 value is 50 milliseconds, as per the guidance in [RFC8305].

5. The "encrypted_server_name" extension

 The encrypted SNI is carried in an "encrypted_server_name" extension,
 defined as follows:

 enum {
 encrypted_server_name(0xffce), (65535)
 } ExtensionType;

 For clients (in ClientHello), this extension contains the following
 ClientEncryptedSNI structure:

 struct {
 CipherSuite suite;
 KeyShareEntry key_share;
 opaque record_digest<0..2^16-1>;
 opaque encrypted_sni<0..2^16-1>;
 } ClientEncryptedSNI;

 suite The cipher suite used to encrypt the SNI.

 key_share The KeyShareEntry carrying the client's public ephemeral
 key shared used to derive the ESNI key.

 record_digest A cryptographic hash of the ESNIKeys structure from
 which the ESNI key was obtained, i.e., from the first byte of
 "checksum" to the end of the structure. This hash is computed
 using the hash function associated with "suite".

 encrypted_sni The ClientESNIInner structure, AEAD-encrypted using
 cipher suite "suite" and the key generated as described below.

https://datatracker.ietf.org/doc/html/rfc8305

Rescorla, et al. Expires September 12, 2019 [Page 10]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 For servers (in EncryptedExtensions), this extension contains the
 following structure:

 enum {
 esni_accept(0),
 esni_retry_request(1),
 } ServerESNIResponseType;

 struct {
 ServerESNIResponseType response_type;
 select (response_type) {
 case esni_accept: uint8 nonce[16];
 case esni_retry_request: ESNIKeys retry_keys<1..2^16-1>;
 }
 } ServerEncryptedSNI;

 response_type Indicates whether the server processed the client ESNI
 extension. (See Section 5.1.2 and Section 5.2.}

 nonce The contents of ClientESNIInner.nonce. (See Section 5.1.)

 retry_keys One or more ESNIKeys structures containing the keys that
 the client should use on subsequent connections to encrypt the
 ClientESNIInner structure.

 This protocol also defines the "esni_required" alert, which is sent
 by the client when it offered an "encrypted_server_name" extension
 which was not accepted by the server.

 enum {
 esni_required(121),
 } AlertDescription;

 Finally, requirements in Section 5.1 and Section 5.2 require
 implementations to track, alongside each PSK established by a
 previous connection, whether the connection negotiated this extension
 with the "esni_accept" response type. If so, this is referred to as
 an "ESNI PSK". Otherwise, it is a "non-ESNI PSK". This may be
 implemented by adding a new field to client and server session
 states.

5.1. Client Behavior

5.1.1. Sending an encrypted SNI

 In order to send an encrypted SNI, the client MUST first select one
 of the server ESNIKeyShareEntry values and generate an (EC)DHE share
 in the matching group. This share will then be sent to the server in

Rescorla, et al. Expires September 12, 2019 [Page 11]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 the "encrypted_sni" extension and used to derive the SNI encryption
 key. It does not affect the (EC)DHE shared secret used in the TLS
 key schedule. It MUST also select an appropriate cipher suite from
 the list of suites offered by the server. If the client is unable to
 select an appropriate group or suite it SHOULD ignore that ESNIKeys
 value and MAY attempt to use another value provided by the server.
 (Recall that servers might provide multiple ESNIKeys in response to a
 ESNI record query.) The client MUST NOT send encrypted SNI using
 groups or cipher suites not advertised by the server.

 When offering an encrypted SNI, the client MUST NOT offer to resume
 any non-ESNI PSKs. It additionally MUST NOT offer to resume any
 sessions for TLS 1.2 or below.

 Let Z be the DH shared secret derived from a key share in ESNIKeys
 and the corresponding client share in ClientEncryptedSNI.key_share.
 The SNI encryption key is computed from Z as follows:

 Zx = HKDF-Extract(0, Z)
 key = HKDF-Expand-Label(Zx, "esni key", Hash(ESNIContents), key_length)
 iv = HKDF-Expand-Label(Zx, "esni iv", Hash(ESNIContents), iv_length)

 where ESNIContents is as specified below and Hash is the hash
 function associated with the HKDF instantiation.

 struct {
 opaque record_digest<0..2^16-1>;
 KeyShareEntry esni_key_share;
 Random client_hello_random;
 } ESNIContents;

 The client then creates a ClientESNIInner structure:

 struct {
 ServerNameList sni;
 opaque zeros[ESNIKeys.padded_length - length(sni)];
 } PaddedServerNameList;

 struct {
 uint8 nonce[16];
 PaddedServerNameList realSNI;
 } ClientESNIInner;

 nonce A random 16-octet value to be echoed by the server in the
 "encrypted_server_name" extension.

 sni The true SNI, that is, the ServerNameList that would have been
 sent in the plaintext "server_name" extension.

Rescorla, et al. Expires September 12, 2019 [Page 12]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 zeros Zero padding whose length makes the serialized
 PaddedServerNameList struct have a length equal to
 ESNIKeys.padded_length.

 This value consists of the serialized ServerNameList from the
 "server_name" extension, padded with enough zeroes to make the total
 structure ESNIKeys.padded_length bytes long. The purpose of the
 padding is to prevent attackers from using the length of the
 "encrypted_server_name" extension to determine the true SNI. If the
 serialized ServerNameList is longer than ESNIKeys.padded_length, the
 client MUST NOT use the "encrypted_server_name" extension.

 The ClientEncryptedSNI.encrypted_sni value is then computed using the
 usual TLS 1.3 AEAD:

 encrypted_sni = AEAD-Encrypt(key, iv, ClientHello.KeyShareClientHello,
ClientESNIInner)

 Where ClientHello.KeyShareClientHello is the body of the extension
 but not including the extension header. Including
 ClientHello.KeyShareClientHello in the AAD of AEAD-Encrypt binds the
 ClientEncryptedSNI value to the ClientHello and prevents cut-and-
 paste attacks.

 Note: future extensions may end up reusing the server's
 ESNIKeyShareEntry for other purposes within the same message (e.g.,
 encrypting other values). Those usages MUST have their own HKDF
 labels to avoid reuse.

 [[OPEN ISSUE: If in the future you were to reuse these keys for 0-RTT
 priming, then you would have to worry about potentially expanding
 twice of Z_extracted. We should think about how to harmonize these
 to make sure that we maintain key separation.]]

 This value is placed in an "encrypted_server_name" extension.

 The client MUST place the value of ESNIKeys.public_name in the
 "server_name" extension. (This is required for technical conformance
 with [RFC7540]; Section 9.2.) The client MUST NOT send a
 "cached_info" extension [RFC7924] with a CachedObject entry whose
 CachedInformationType is "cert".

5.1.2. Handling the server response

 If the server negotiates TLS 1.3 or above and provides an
 "encrypted_server_name" extension in EncryptedExtensions, the client
 then processes the extension's "response_type" field:

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7924

Rescorla, et al. Expires September 12, 2019 [Page 13]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 o If the value is "esni_accept", the client MUST check that the
 extension's "nonce" field matches ClientESNIInner.nonce and
 otherwise abort the connection with an "illegal_parameter" alert.
 The client then proceeds with the connection as usual, verifying
 the certificate against the desired name.

 o If the value is "esni_retry_request", the client proceeds with the
 handshake, verifying the certificate against ESNIKeys.public_name
 as described in Section 5.1.3. If verification or the handshake
 fails, the client MUST return a failure to the calling
 application. It MUST NOT use the retry keys.

 Otherwise, when the handshake completes successfully with the
 public name verified, the client MUST abort the connection with an
 "esni_required" alert. It then processes the "retry_keys" field
 from the server's "encrypted_server_name" extension.

 If one of the values contains a version supported by the client,
 it can regard the ESNI keys as securely replaced by the server.
 It SHOULD retry the handshake with a new transport connection,
 using that value to encrypt the SNI. The value may only be
 applied to the retry connection. The client MUST continue to use
 the previously-advertised keys for subsequent connections. This
 avoids introducing pinning concerns or a tracking vector, should a
 malicious server present client-specific retry keys to identify
 clients.

 If none of the values provided in "retry_keys" contains a
 supported version, the client can regard ESNI as securely disabled
 by the server. As below, it SHOULD then retry the handshake with
 a new transport connection and ESNI disabled.

 o If the field contains any other value, the client MUST abort the
 connection with an "illegal_parameter" alert.

 If the server negotiates an earlier version of TLS, or if it does not
 provide an "encrypted_server_name" extension in EncryptedExtensions,
 the client proceeds with the handshake, verifying the certificate
 against ESNIKeys.public_name as described in Section 5.1.3. The
 client MUST NOT enable the False Start optimization [RFC7918] for
 this handshake. If verification or the handshake fails, the client
 MUST return a failure to the calling application. It MUST NOT treat
 this as a secure signal to disable ESNI.

 Otherwise, when the handshake completes successfully with the public
 name verified, the client MUST abort the connection with an
 "esni_required" alert. The client can then regard ESNI as securely

https://datatracker.ietf.org/doc/html/rfc7918

Rescorla, et al. Expires September 12, 2019 [Page 14]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 disabled by the server. It SHOULD retry the handshake with a new
 transport connection and ESNI disabled.

 [[TODO: Key replacement is significantly less scary than saying that
 ESNI-naive servers bounce ESNI off. Is it worth defining a strict
 mode toggle in the ESNI keys, for a deployment to indicate it is
 ready for that?]]

 Clients SHOULD implement a limit on retries caused by
 "esni_retry_request" or servers which do not acknowledge the
 "encrypted_server_name" extension. If the client does not retry in
 either scenario, it MUST report an error to the calling application.

 If the server sends a HelloRetryRequest in response to the
 ClientHello and the client can send a second updated ClientHello per
 the rules in [RFC8446], the "encrypted_server_name" extension values
 which do not depend on the (possibly updated)
 ClientHello.KeyShareClientHello, i.e,, ClientEncryptedSNI.suite,
 ClientEncryptedSNI.key_share, and ClientEncryptedSNI.record_digest,
 MUST NOT change across ClientHello messages. Moreover,
 ClientESNIInner.nonce and ClientESNIInner.realSNI MUST not change
 across ClientHello messages. Informally, the values of all
 unencrypted extension information, as well as the inner extension
 plaintext, must be consistent between the first and second
 ClientHello messages.

5.1.3. Verifying against the public name

 When the server cannot decrypt or does not process the
 "encrypted_server_name" extension, it continues with the handshake
 using the cleartext "server_name" extension instead (see

Section 5.2). Clients that offer ESNI then verify the certificate
 with the public name, as follows:

 o If the server resumed a session or negotiated a session that did
 not use a certificate for authentication, the client MUST abort
 the connection with an "illegal_parameter" alert. This case is
 invalid because Section 5.1.1 requires the client to only offer
 ESNI-established sessions, and Section 5.2 requires the server to
 decline ESNI-established sessions if it did not accept ESNI.

 o The client MUST verify that the certificate is valid for
 ESNIKeys.public_name. If invalid, it MUST abort the connection
 with the appropriate alert.

 o If the server requests a client certificate, the client MUST
 respond with an empty Certificate message, denoting no client
 certificate.

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires September 12, 2019 [Page 15]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 Note that verifying a connection for the public name does not verify
 it for the origin. The TLS implementation MUST NOT report such
 connections as successful to the application. It additionally MUST
 ignore all session tickets and session IDs presented by the server.
 These connections are only used to trigger retries, as described in

Section 5.1.2. This may be implemented, for instance, by reporting a
 failed connection with a dedicated error code.

5.2. Client-Facing Server Behavior

 Upon receiving an "encrypted_server_name" extension, the client-
 facing server MUST check that it is able to negotiate TLS 1.3 or
 greater. If not, it MUST abort the connection with a
 "handshake_failure" alert.

 If the ClientEncryptedSNI.record_digest value does not match the
 cryptographic hash of any known ESNIKeys structure, it MUST ignore
 the extension and proceed with the connection, with the following
 added behavior:

 o It MUST include the "encrypted_server_name" extension in
 EncryptedExtensions message with the "response_type" field set to
 "esni_retry_requested" and the "retry_keys" field set to one or
 more ESNIKeys structures with up-to-date keys. Servers MAY supply
 multiple ESNIKeys values of different versions. This allows a
 server to support multiple versions at once.

 o The server MUST ignore all PSK identities in the ClientHello which
 correspond to ESNI PSKs. ESNI PSKs offered by the client are
 associated with the ESNI name. The server was unable to decrypt
 then ESNI name, so it should not resume them when using the
 cleartext SNI name. This restriction allows a client to reject
 resumptions in Section 5.1.3.

 If the ClientEncryptedSNI.record_digest value does match the
 cryptographic hash of a known ESNIKeys, the server performs the
 following checks:

 o If the ClientEncryptedSNI.key_share group does not match one in
 the ESNIKeys.keys, it MUST abort the connection with an
 "illegal_parameter" alert.

 o If the length of the "encrypted_server_name" extension is
 inconsistent with the advertised padding length (plus AEAD
 expansion) the server MAY abort the connection with an
 "illegal_parameter" alert without attempting to decrypt.

Rescorla, et al. Expires September 12, 2019 [Page 16]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 Assuming these checks succeed, the server then computes K_sni and
 decrypts the ServerName value. If decryption fails, the server MUST
 abort the connection with a "decrypt_error" alert.

 If the decrypted value's length is different from the advertised
 ESNIKeys.padded_length or the padding consists of any value other
 than 0, then the server MUST abort the connection with an
 illegal_parameter alert. Otherwise, the server uses the
 PaddedServerNameList.sni value as if it were the "server_name"
 extension. Any actual "server_name" extension is ignored, which also
 means the server MUST NOT send the "server_name" extension to the
 client.

 Upon determining the true SNI, the client-facing server then either
 serves the connection directly (if in Shared Mode), in which case it
 executes the steps in the following section, or forwards the TLS
 connection to the backend server (if in Split Mode). In the latter
 case, it does not make any changes to the TLS messages, but just
 blindly forwards them.

5.3. Shared Mode Server Behavior

 A server operating in Shared Mode uses PaddedServerNameList.sni as if
 it were the "server_name" extension to finish the handshake. It
 SHOULD pad the Certificate message, via padding at the record layer,
 such that its length equals the size of the largest possible
 Certificate (message) covered by the same ESNI key. Moreover, the
 server MUST include the "encrypted_server_name" extension in
 EncryptedExtensions with the "response_type" field set to
 "esni_accept" and the "nonce" field set to the decrypted
 PaddedServerNameList.nonce value from the client
 "encrypted_server_name" extension.

 If the server sends a NewSessionTicket message, the corresponding
 ESNI PSK MUST be ignored by all other servers in the deployment when
 not negotiating ESNI, including servers which do not implement this
 specification. This may be implemented by adding a new field to the
 server session state which earlier implementations cannot parse.

 This restriction provides robustness for rollbacks (see Section 6.1).

5.4. Split Mode Server Behavior

 In Split Mode, the backend server must know
 PaddedServerNameList.nonce to echo it back in EncryptedExtensions and
 complete the handshake. Appendix A describes one mechanism for
 sending both PaddedServerNameList.sni and ClientESNIInner.nonce to

Rescorla, et al. Expires September 12, 2019 [Page 17]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 the backend server. Thus, backend servers function the same as
 servers operating in Shared Mode.

 As in Shared Mode, if the backend server sends a NewSessionTicket
 message, the corresponding ESNI PSK MUST be ignored by other servers
 in the deployment when not negotiating ESNI, including servers which
 do not implement this specification.

6. Compatibility Issues

 Unlike most TLS extensions, placing the SNI value in an ESNI
 extension is not interoperable with existing servers, which expect
 the value in the existing cleartext extension. Thus server operators
 SHOULD ensure servers understand a given set of ESNI keys before
 advertising them. Additionally, servers SHOULD retain support for
 any previously-advertised keys for the duration of their validity.

 However, in more complex deployment scenarios, this may be difficult
 to fully guarantee. Thus this protocol was designed to be robust in
 case of inconsistencies between systems that advertise ESNI keys and
 servers, at the cost of extra round-trips due to a retry. Two
 specific scenarios are detailed below.

6.1. Misconfiguration and Deployment Concerns

 It is possible for ESNI advertisements and servers to become
 inconsistent. This may occur, for instance, from DNS
 misconfiguration, caching issues, or an incomplete rollout in a
 multi-server deployment. This may also occur if a server loses its
 ESNI keys, or if a deployment of ESNI must be rolled back on the
 server.

 The retry mechanism repairs most such inconsistencies. If server and
 advertised keys mismatch, the server will respond with
 esni_retry_requested. If the server does not understand the
 "encrypted_server_name" extension at all, it will ignore it as
 required by [RFC8446]; Section 4.1.2. Provided the server can
 present a certificate valid for the public name, the client can
 safely retry with updated settings, as described in Section 5.1.2.

 Unless ESNI is disabled as a result of successfully establishing a
 connection to the public name, the client MUST NOT fall back to
 cleartext SNI, as this allows a network attacker to disclose the SNI.
 It MAY attempt to use another server from the DNS results, if one is
 provided.

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires September 12, 2019 [Page 18]

Internet-Draft TLS 1.3 SNI Encryption March 2019

6.2. Middleboxes

 A more serious problem is MITM proxies which do not support this
 extension. [RFC8446]; Section 9.3 requires that such proxies remove
 any extensions they do not understand. The handshake will then
 present a certificate based on the public name, without echoing the
 "encrypted_server_name" extension to the client.

 Depending on whether the client is configured to accept the proxy's
 certificate as authoritative for the public name, this may trigger
 the retry logic described in Section 5.1.2 or result in a connection
 failure. A proxy which is not authoritative for the public name
 cannot forge a signal to disable ESNI.

 A non-conformant MITM proxy which instead forwards the ESNI
 extension, substituting its own KeyShare value, will result in the
 client-facing server recognizing the key, but failing to decrypt the
 SNI. This causes a hard failure. Clients SHOULD NOT attempt to
 repair the connection in this case.

7. Security Considerations

7.1. Why is cleartext DNS OK?

 In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource
 Records are signed via a server private key, ESNIKeys have no
 authenticity or provenance information. This means that any attacker
 which can inject DNS responses or poison DNS caches, which is a
 common scenario in client access networks, can supply clients with
 fake ESNIKeys (so that the client encrypts SNI to them) or strip the
 ESNIKeys from the response. However, in the face of an attacker that
 controls DNS, no SNI encryption scheme can work because the attacker
 can replace the IP address, thus blocking client connections, or
 substituting a unique IP address which is 1:1 with the DNS name that
 was looked up (modulo DNS wildcards). Thus, allowing the ESNIKeys in
 the clear does not make the situation significantly worse.

 Clearly, DNSSEC (if the client validates and hard fails) is a defense
 against this form of attack, but DoH/DPRIVE are also defenses against
 DNS attacks by attackers on the local network, which is a common case
 where SNI is desired. Moreover, as noted in the introduction, SNI
 encryption is less useful without encryption of DNS queries in
 transit via DoH or DPRIVE mechanisms.

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires September 12, 2019 [Page 19]

Internet-Draft TLS 1.3 SNI Encryption March 2019

7.2. Comparison Against Criteria

 [I-D.ietf-tls-sni-encryption] lists several requirements for SNI
 encryption. In this section, we re-iterate these requirements and
 assess the ESNI design against them.

7.2.1. Mitigate against replay attacks

 Since the SNI encryption key is derived from a (EC)DH operation
 between the client's ephemeral and server's semi-static ESNI key, the
 ESNI encryption is bound to the Client Hello. It is not possible for
 an attacker to "cut and paste" the ESNI value in a different Client
 Hello, with a different ephemeral key share, as the terminating
 server will fail to decrypt and verify the ESNI value.

7.2.2. Avoid widely-deployed shared secrets

 This design depends upon DNS as a vehicle for semi-static public key
 distribution. Server operators may partition their private keys
 however they see fit provided each server behind an IP address has
 the corresponding private key to decrypt a key. Thus, when one ESNI
 key is provided, sharing is optimally bound by the number of hosts
 that share an IP address. Server operators may further limit sharing
 by sending different Resource Records containing ESNIKeys with
 different keys using a short TTL.

7.2.3. Prevent SNI-based DoS attacks

 This design requires servers to decrypt ClientHello messages with
 ClientEncryptedSNI extensions carrying valid digests. Thus, it is
 possible for an attacker to force decryption operations on the
 server. This attack is bound by the number of valid TCP connections
 an attacker can open.

7.2.4. Do not stick out

 As more clients enable ESNI support, e.g., as normal part of Web
 browser functionality, with keys supplied by shared hosting
 providers, the presence of ESNI extensions becomes less suspicious
 and part of common or predictable client behavior. In other words,
 if all Web browsers start using ESNI, the presence of this value does
 not signal suspicious behavior to passive eavesdroppers.

7.2.5. Forward secrecy

 This design is not forward secret because the server's ESNI key is
 static. However, the window of exposure is bound by the key
 lifetime. It is RECOMMENDED that servers rotate keys frequently.

Rescorla, et al. Expires September 12, 2019 [Page 20]

Internet-Draft TLS 1.3 SNI Encryption March 2019

7.2.6. Proper security context

 This design permits servers operating in Split Mode to forward
 connections directly to backend origin servers, thereby avoiding
 unnecessary MiTM attacks.

7.2.7. Split server spoofing

 Assuming ESNIKeys retrieved from DNS are validated, e.g., via DNSSEC
 or fetched from a trusted Recursive Resolver, spoofing a server
 operating in Split Mode is not possible. See Section 7.1 for more
 details regarding cleartext DNS.

 Validating the ESNIKeys structure additionally validates the public
 name. This validates any retry signals from the server because the
 client validates the server certificate against the public name
 before retrying.

7.2.8. Supporting multiple protocols

 This design has no impact on application layer protocol negotiation.
 It may affect connection routing, server certificate selection, and
 client certificate verification. Thus, it is compatible with
 multiple protocols.

7.3. Misrouting

 Note that the backend server has no way of knowing what the SNI was,
 but that does not lead to additional privacy exposure because the
 backend server also only has one identity. This does, however,
 change the situation slightly in that the backend server might
 previously have checked SNI and now cannot (and an attacker can route
 a connection with an encrypted SNI to any backend server and the TLS
 connection will still complete). However, the client is still
 responsible for verifying the server's identity in its certificate.

 [[TODO: Some more analysis needed in this case, as it is a little
 odd, and probably some precise rules about handling ESNI and no SNI
 uniformly?]]

8. IANA Considerations

8.1. Update of the TLS ExtensionType Registry

 IANA is requested to create an entry, encrypted_server_name(0xffce),
 in the existing registry for ExtensionType (defined in [RFC8446]),
 with "TLS 1.3" column values being set to "CH, EE", and "Recommended"
 column being set to "Yes".

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla, et al. Expires September 12, 2019 [Page 21]

Internet-Draft TLS 1.3 SNI Encryption March 2019

8.2. Update of the TLS Alert Registry

 IANA is requested to create an entry, esni_required(121) in the
 existing registry for Alerts (defined in [RFC8446]), with the "DTLS-
 OK" column being set to "Y".

8.3. Update of the Resource Record (RR) TYPEs Registry

 IANA is requested to create an entry, ESNI(0xff9f), in the existing
 registry for Resource Record (RR) TYPEs (defined in [RFC6895]) with
 "Meaning" column value being set to "Encrypted SNI".

9. References

9.1. Normative References

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-

ietf-tls-exported-authenticator-08 (work in progress),
 October 2018.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6895] Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,
 April 2013, <https://www.rfc-editor.org/info/rfc6895>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6895
https://datatracker.ietf.org/doc/html/draft-ietf-tls-exported-authenticator-08
https://datatracker.ietf.org/doc/html/draft-ietf-tls-exported-authenticator-08
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/bcp42
https://datatracker.ietf.org/doc/html/rfc6895
https://www.rfc-editor.org/info/rfc6895
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540

Rescorla, et al. Expires September 12, 2019 [Page 22]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [RFC7918] Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", RFC 7918,
 DOI 10.17487/RFC7918, August 2016,
 <https://www.rfc-editor.org/info/rfc7918>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <https://www.rfc-editor.org/info/rfc7924>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

9.2. Informative References

 [I-D.ietf-doh-dns-over-https]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", draft-ietf-doh-dns-over-https-14 (work in
 progress), August 2018.

 [I-D.ietf-tls-sni-encryption]
 Huitema, C. and E. Rescorla, "Issues and Requirements for
 SNI Encryption in TLS", draft-ietf-tls-sni-encryption-04
 (work in progress), November 2018.

 [I-D.kazuho-protected-sni]
 Oku, K., "TLS Extensions for Protecting SNI", draft-

kazuho-protected-sni-00 (work in progress), July 2017.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://datatracker.ietf.org/doc/html/rfc7918
https://www.rfc-editor.org/info/rfc7918
https://datatracker.ietf.org/doc/html/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-doh-dns-over-https-14
https://datatracker.ietf.org/doc/html/draft-ietf-tls-sni-encryption-04
https://datatracker.ietf.org/doc/html/draft-kazuho-protected-sni-00
https://datatracker.ietf.org/doc/html/draft-kazuho-protected-sni-00
https://datatracker.ietf.org/doc/html/rfc7858
https://www.rfc-editor.org/info/rfc7858

Rescorla, et al. Expires September 12, 2019 [Page 23]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 [RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017,
 <https://www.rfc-editor.org/info/rfc8094>.

Appendix A. Communicating SNI and Nonce to Backend Server

 When operating in Split Mode, backend servers will not have access to
 PaddedServerNameList.sni or ClientESNIInner.nonce without access to
 the ESNI keys or a way to decrypt ClientEncryptedSNI.encrypted_sni.

 One way to address this for a single connection, at the cost of
 having communication not be unmodified TLS 1.3, is as follows.
 Assume there is a shared (symmetric) key between the client-facing
 server and the backend server and use it to AEAD-encrypt Z and send
 the encrypted blob at the beginning of the connection before the
 ClientHello. The backend server can then decrypt ESNI to recover the
 true SNI and nonce.

 Another way for backend servers to access the true SNI and nonce is
 by the client-facing server sharing the ESNI keys.

Appendix B. Alternative SNI Protection Designs

 Alternative approaches to encrypted SNI may be implemented at the TLS
 or application layer. In this section we describe several
 alternatives and discuss drawbacks in comparison to the design in
 this document.

B.1. TLS-layer

B.1.1. TLS in Early Data

 In this variant, TLS Client Hellos are tunneled within early data
 payloads belonging to outer TLS connections established with the
 client-facing server. This requires clients to have established a
 previous session --- and obtained PSKs --- with the server. The
 client-facing server decrypts early data payloads to uncover Client
 Hellos destined for the backend server, and forwards them onwards as
 necessary. Afterwards, all records to and from backend servers are
 forwarded by the client-facing server - unmodified. This avoids
 double encryption of TLS records.

 Problems with this approach are: (1) servers may not always be able
 to distinguish inner Client Hellos from legitimate application data,
 (2) nested 0-RTT data may not function correctly, (3) 0-RTT data may
 not be supported - especially under DoS - leading to availability
 concerns, and (4) clients must bootstrap tunnels (sessions), costing

https://datatracker.ietf.org/doc/html/rfc8094
https://www.rfc-editor.org/info/rfc8094

Rescorla, et al. Expires September 12, 2019 [Page 24]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 an additional round trip and potentially revealing the SNI during the
 initial connection. In contrast, encrypted SNI protects the SNI in a
 distinct Client Hello extension and neither abuses early data nor
 requires a bootstrapping connection.

B.1.2. Combined Tickets

 In this variant, client-facing and backend servers coordinate to
 produce "combined tickets" that are consumable by both. Clients
 offer combined tickets to client-facing servers. The latter parse
 them to determine the correct backend server to which the Client
 Hello should be forwarded. This approach is problematic due to non-
 trivial coordination between client-facing and backend servers for
 ticket construction and consumption. Moreover, it requires a
 bootstrapping step similar to that of the previous variant. In
 contrast, encrypted SNI requires no such coordination.

B.2. Application-layer

B.2.1. HTTP/2 CERTIFICATE Frames

 In this variant, clients request secondary certificates with
 CERTIFICATE_REQUEST HTTP/2 frames after TLS connection completion.
 In response, servers supply certificates via TLS exported
 authenticators [I-D.ietf-tls-exported-authenticator] in CERTIFICATE
 frames. Clients use a generic SNI for the underlying client-facing
 server TLS connection. Problems with this approach include: (1) one
 additional round trip before peer authentication, (2) non-trivial
 application-layer dependencies and interaction, and (3) obtaining the
 generic SNI to bootstrap the connection. In contrast, encrypted SNI
 induces no additional round trip and operates below the application
 layer.

Appendix C. Total Client Hello Encryption

 The design described here only provides encryption for the SNI, but
 not for other extensions, such as ALPN. Another potential design
 would be to encrypt all of the extensions using the same basic
 structure as we use here for ESNI. That design has the following
 advantages:

 o It protects all the extensions from ordinary eavesdroppers

 o If the encrypted block has its own KeyShare, it does not
 necessarily require the client to use a single KeyShare, because
 the client's share is bound to the SNI by the AEAD (analysis
 needed).

Rescorla, et al. Expires September 12, 2019 [Page 25]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 It also has the following disadvantages:

 o The client-facing server can still see the other extensions. By
 contrast we could introduce another EncryptedExtensions block that
 was encrypted to the backend server and not the client-facing
 server.

 o It requires a mechanism for the client-facing server to provide
 the extension-encryption key to the backend server (as in

Appendix A and thus cannot be used with an unmodified backend
 server.

 o A conformant middlebox will strip every extension, which might
 result in a ClientHello which is just unacceptable to the server
 (more analysis needed).

Appendix D. Acknowledgements

 This document draws extensively from ideas in
 [I-D.kazuho-protected-sni], but is a much more limited mechanism
 because it depends on the DNS for the protection of the ESNI key.
 Richard Barnes, Christian Huitema, Patrick McManus, Matthew Prince,
 Nick Sullivan, Martin Thomson, and David Benjamin also provided
 important ideas and contributions.

Authors' Addresses

 Eric Rescorla
 RTFM, Inc.

 Email: ekr@rtfm.com

 Kazuho Oku
 Fastly

 Email: kazuhooku@gmail.com

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

Rescorla, et al. Expires September 12, 2019 [Page 26]

Internet-Draft TLS 1.3 SNI Encryption March 2019

 Christopher A. Wood
 Apple, Inc.

 Email: cawood@apple.com

Rescorla, et al. Expires September 12, 2019 [Page 27]

