
Workgroup: tls

Internet-Draft: draft-ietf-tls-esni-09

Published: 16 December 2020

Intended Status: Standards Track

Expires: 19 June 2021

Authors: E. Rescorla

RTFM, Inc.

K. Oku

Fastly

N. Sullivan

Cloudflare

C.A. Wood

Cloudflare

TLS Encrypted Client Hello

Abstract

This document describes a mechanism in Transport Layer Security

(TLS) for encrypting a ClientHello message under a server public

key.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 June 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Overview

3.1. Topologies

3.2. Encrypted ClientHello (ECH)

4. Encrypted ClientHello Configuration

4.1. Configuration Extensions

5. The "encrypted_client_hello" Extension

5.1. Encoding the ClientHelloInner

5.2. Authenticating the ClientHelloOuter

6. Client Behavior

6.1. Offering ECH

6.1.1. ClientHelloInner Indication Extension

6.1.2. Recommended Padding Scheme

6.1.3. Handling the Server Response

6.1.4. Handling HelloRetryRequest

6.2. GREASE ECH

7. Server Behavior

7.1. Client-Facing Server

7.1.1. Handling HelloRetryRequest

7.2. Backend Server

8. Compatibility Issues

8.1. Misconfiguration and Deployment Concerns

8.2. Middleboxes

9. Compliance Requirements

10. Security Considerations

10.1. Security and Privacy Goals

10.2. Unauthenticated and Plaintext DNS

10.3. Client Tracking

10.4. Optional Configuration Identifiers and Trial Decryption

10.5. Outer ClientHello

10.6. Related Privacy Leaks

10.7. Attacks Exploiting Acceptance Confirmation

10.8. Comparison Against Criteria

10.8.1. Mitigate Cut-and-Paste Attacks

10.8.2. Avoid Widely Shared Secrets

10.8.3. Prevent SNI-Based Denial-of-Service Attacks

10.8.4. Do Not Stick Out

10.8.5. Maintain Forward Secrecy

10.8.6. Enable Multi-party Security Contexts

10.8.7. Support Multiple Protocols

10.9. Padding Policy

10.10. Active Attack Mitigations

10.10.1. Client Reaction Attack Mitigation

10.10.2. HelloRetryRequest Hijack Mitigation

10.10.3. ClientHello Malleability Mitigation

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

11. IANA Considerations

11.1. Update of the TLS ExtensionType Registry

11.2. Update of the TLS Alert Registry

12. ECHConfig Extension Guidance

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Alternative SNI Protection Designs

A.1. TLS-layer

A.1.1. TLS in Early Data

A.1.2. Combined Tickets

A.2. Application-layer

A.2.1. HTTP/2 CERTIFICATE Frames

Appendix B. Acknowledgements

Authors' Addresses

1. Introduction

DISCLAIMER: This draft is work-in-progress and has not yet seen

significant (or really any) security analysis. It should not be used

as a basis for building production systems.

Although TLS 1.3 [RFC8446] encrypts most of the handshake, including

the server certificate, there are several ways in which an on-path

attacker can learn private information about the connection. The

plaintext Server Name Indication (SNI) extension in ClientHello

messages, which leaks the target domain for a given connection, is

perhaps the most sensitive, unencrypted information in TLS 1.3.

The target domain may also be visible through other channels, such

as plaintext client DNS queries, visible server IP addresses

(assuming the server does not use domain-based virtual hosting), or

other indirect mechanisms such as traffic analysis. DoH [RFC8484]

and DPRIVE [RFC7858] [RFC8094] provide mechanisms for clients to

conceal DNS lookups from network inspection, and many TLS servers

host multiple domains on the same IP address. In such environments,

the SNI remains the primary explicit signal used to determine the

server's identity.

The TLS Working Group has studied the problem of protecting the SNI,

but has been unable to develop a completely generic solution.

[RFC8744] provides a description of the problem space and some of

the proposed techniques. One of the more difficult problems is "Do

not stick out" ([RFC8744], Section 3.4): if only sensitive or

private services use SNI encryption, then SNI encryption is a signal

that a client is going to such a service. For this reason, much

recent work has focused on concealing the fact that the SNI is being

protected. Unfortunately, the result often has undesirable

performance consequences, incomplete coverage, or both.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The protocol specified by this document takes a different approach.

It assumes that private origins will co-locate with or hide behind a

provider (reverse proxy, application server, etc.) that protects

sensitive ClientHello parameters, including the SNI, for all of the

domains it hosts. These co-located servers form an anonymity set

wherein all elements have a consistent configuration, e.g., the set

of supported application protocols, ciphersuites, TLS versions, and

so on. Usage of this mechanism reveals that a client is connecting

to a particular service provider, but does not reveal which server

from the anonymity set terminates the connection. Thus, it leaks no

more than what is already visible from the server IP address.

This document specifies a new TLS extension, called Encrypted Client

Hello (ECH), that allows clients to encrypt their ClientHello to a

supporting server. This protects the SNI and other potentially

sensitive fields, such as the ALPN list [RFC7301]. This extension is

only supported with (D)TLS 1.3 [RFC8446] and newer versions of the

protocol.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here. All TLS notation comes from [RFC8446],

Section 3.

3. Overview

This protocol is designed to operate in one of two topologies

illustrated below, which we call "Shared Mode" and "Split Mode".

3.1. Topologies

Figure 1: Shared Mode Topology

¶

¶

¶

¶

 +---------------------+

 | |

 | 2001:DB8::1111 |

 | |

Client <-----> | private.example.org |

 | |

 | public.example.com |

 | |

 +---------------------+

 Server

In Shared Mode, the provider is the origin server for all the

domains whose DNS records point to it. In this mode, the TLS

connection is terminated by the provider.

Figure 2: Split Mode Topology

In Split Mode, the provider is not the origin server for private

domains. Rather, the DNS records for private domains point to the

provider, and the provider's server relays the connection back to

the origin server, who terminates the TLS connection with the

client. Importantly, service provider does not have access to the

plaintext of the connection.

In the remainder of this document, we will refer to the ECH-service

provider as the "client-facing server" and to the TLS terminator as

the "backend server". These are the same entity in Shared Mode, but

in Split Mode, the client-facing and backend servers are physically

separated.

3.2. Encrypted ClientHello (ECH)

ECH allows the client to encrypt sensitive ClientHello extensions,

e.g., SNI, ALPN, etc., under the public key of the client-facing

server. This requires the client-facing server to publish the public

key and metadata it uses for ECH for all the domains for which it

serves directly or indirectly (via Split Mode). This document

defines the format of the ECH encryption public key and metadata,

referred to as an ECH configuration, and delegates DNS publication

details to [HTTPS-RR], though other delivery mechanisms are

possible. In particular, if some of the clients of a private server

are applications rather than Web browsers, those applications might

have the public key and metadata preconfigured.

When a client wants to establish a TLS session with the backend

server, it constructs its ClientHello as indicated in Section 6.1.

We will refer to this as the ClientHelloInner message. The client

encrypts this message using the public key of the ECH configuration.

It then constructs a new ClientHello, the ClientHelloOuter, with

innocuous values for sensitive extensions, e.g., SNI, ALPN, etc.,

and with an "encrypted_client_hello" extension, which this document

¶

 +--------------------+ +---------------------+

 | | | |

 | 2001:DB8::1111 | | 2001:DB8::EEEE |

Client <----------------------------->| |

 | public.example.com | | private.example.com |

 | | | |

 +--------------------+ +---------------------+

 Client-Facing Server Backend Server

¶

¶

¶

defines (Section 5). The extension's payload carries the encrypted

ClientHelloInner and specifies the ECH configuration used for

encryption. Finally, it sends ClientHelloOuter to the server.

Upon receiving the ClientHelloOuter, a TLS server takes one of the

following actions:

If it does not support ECH, it ignores the

"encrypted_client_hello" extension and proceeds with the

handshake as usual, per [RFC8446], Section 4.1.2.

If it is a client-facing server for the ECH protocol, but

cannot decrypt the extension, then it terminates the handshake

using the ClientHelloOuter. This is referred to as "ECH

rejection". When ECH is rejected, the client-facing server

sends an acceptable ECH configuration in its

EncryptedExtensions message.

If it supports ECH and decrypts the extension, it forwards the

ClientHelloInner to the backend server, who terminates the

connection. This is referred to as "ECH acceptance".

Upon receiving the server's response, the client determines whether

or not ECH was accepted and proceeds with the handshake accordingly.

(See Section 6 for details.)

The primary goal of ECH is to ensure that connections to servers in

the same anonymity set are indistinguishable from one another.

Moreover, it should achieve this goal without affecting any existing

security properties of TLS 1.3. See Section 10.1 for more details

about the ECH security and privacy goals.

4. Encrypted ClientHello Configuration

ECH uses draft-07 of HPKE for public key encryption [I-D.irtf-cfrg-

hpke]. The ECH configuration is defined by the following ECHConfig

structure.

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

version

length

contents

public_name

public_key

The structure contains the following fields:

The version of ECH for which this configuration is used.

Beginning with draft-08, the version is the same as the code

point for the "encrypted_client_hello" extension. Clients MUST

ignore any ECHConfig structure with a version they do not

support.

The length, in bytes, of the next field.

An opaque byte string whose contents depend on the

version. For this specification, the contents are an

ECHConfigContents structure.

The ECHConfigContents structure contains the following fields:

The non-empty name of the client-facing server, i.e.,

the entity trusted to update the ECH configuration. This is used

to correct misconfigured clients, as described in Section 6.1.3.

The HPKE public key used by the client to encrypt

ClientHelloInner.

 opaque HpkePublicKey<1..2^16-1>;

 uint16 HpkeKemId; // Defined in I-D.irtf-cfrg-hpke

 uint16 HpkeKdfId; // Defined in I-D.irtf-cfrg-hpke

 uint16 HpkeAeadId; // Defined in I-D.irtf-cfrg-hpke

 struct {

 HpkeKdfId kdf_id;

 HpkeAeadId aead_id;

 } ECHCipherSuite;

 struct {

 opaque public_name<1..2^16-1>;

 HpkePublicKey public_key;

 HpkeKemId kem_id;

 ECHCipherSuite cipher_suites<4..2^16-4>;

 uint16 maximum_name_length;

 Extension extensions<0..2^16-1>;

 } ECHConfigContents;

 struct {

 uint16 version;

 uint16 length;

 select (ECHConfig.version) {

 case 0xfe09: ECHConfigContents contents;

 }

 } ECHConfig;

¶

¶

¶

¶

¶

¶

¶

¶

kem_id

cipher_suites

maximum_name_length

extensions

The HPKE KEM identifier corresponding to public_key. Clients

MUST ignore any ECHConfig structure with a key using a KEM they

do not support.

The list of HPKE KDF and AEAD identifier pairs

clients can use for encrypting ClientHelloInner.

The longest name of a backend server, if known.

If this value is not known it can be set to zero, in which case

clients SHOULD use the inner ClientHello padding scheme described

below. That could happen if wildcard names are in use, or if

names can be added or removed from the anonymity set during the

lifetime of a particular ECH configuration.

A list of extensions that the client must take into

consideration when generating a ClientHello message. These are

described below (Section 4.1).

The client-facing server advertises a sequence of ECH configurations

to clients, serialized as follows.

The ECHConfigs structure contains one or more ECHConfig structures

in decreasing order of preference. This allows a server to support

multiple versions of ECH and multiple sets of ECH parameters.

4.1. Configuration Extensions

ECH configuration extensions are used to provide room for additional

functionality as needed. See Section 12 for guidance on which types

of extensions are appropriate for this structure.

The format is as defined in [RFC8446], Section 4.2. The same

interpretation rules apply: extensions MAY appear in any order, but

there MUST NOT be more than one extension of the same type in the

extensions block. An extension can be tagged as mandatory by using

an extension type codepoint with the high order bit set to 1. A

client that receives a mandatory extension they do not understand

MUST reject the ECHConfig content.

Clients MUST parse the extension list and check for unsupported

mandatory extensions. If an unsupported mandatory extension is

present, clients MUST ignore the ECHConfig.

5. The "encrypted_client_hello" Extension

The encrypted ClientHelloInner is carried in an

"encrypted_client_hello" extension, defined as follows:

¶

¶

¶

¶

¶

 ECHConfig ECHConfigs<1..2^16-1>;¶

¶

¶

¶

¶

¶

cipher_suite

config_id

enc

payload

retry_configs

When offered by the client, the extension appears only in the

ClientHelloOuter. The payload MUST have the following structure:

The cipher suite used to encrypt ClientHelloInner.

This MUST match a value provided in the corresponding

ECHConfigContents.cipher_suites list.

The configuration identifier, equal to Expand(Extract("",

config), "tls ech config id", 8), unless it is optional for an

application; see Section 10.4. config is the ECHConfig structure.

Extract and Expand are as specified by the cipher suite KDF.

(Passing the literal "" as the salt is interpreted by Extract as

no salt being provided.)

The HPKE encapsulated key, used by servers to decrypt the

corresponding payload field.

The serialized and encrypted ClientHelloInner structure,

encrypted using HPKE as described in Section 6.1.

When the client offers the "encrypted_client_hello" extension, the

server MAY include an "encrypted_client_hello" extension in its

EncryptedExtensions message with the following payload:

An ECHConfigs structure containing one or more

ECHConfig structures, in decreasing order of preference, to be

used by the client in subsequent connection attempts.

This document also defines the "ech_required" alert, which the

client MUST send when it offered an "encrypted_client_hello"

extension that was not accepted by the server. (See Section 11.2.)

 enum {

 encrypted_client_hello(0xfe09), (65535)

 } ExtensionType;

¶

¶

 struct {

 ECHCipherSuite cipher_suite;

 opaque config_id<0..255>;

 opaque enc<1..2^16-1>;

 opaque payload<1..2^16-1>;

 } ClientECH;

¶

¶

¶

¶

¶

¶

 struct {

 ECHConfigs retry_configs;

 } ServerECH;

¶

¶

¶

5.1. Encoding the ClientHelloInner

Some TLS 1.3 extensions can be quite large, thus repeating them in

the ClientHelloInner and ClientHelloOuter can lead to an excessive

overall size. One pathological example is "key_share" with post-

quantum algorithms. To reduce the impact of duplicated extensions,

the client may use the "ech_outer_extensions" extension.

OuterExtensions consists of one or more ExtensionType values, each

of which reference an extension in ClientHelloOuter.

When sending ClientHello, the client first computes

ClientHelloInner, including any PSK binders. It then computes a new

value, the EncodedClientHelloInner, by first making a copy of

ClientHelloInner. It then replaces the legacy_session_id field with

an empty string.

The client then MAY substitute extensions which it knows will be

duplicated in ClientHelloOuter. To do so, the client removes and

replaces extensions from EncodedClientHelloInner with a single

"ech_outer_extensions" extension. Removed extensions MUST be ordered

consecutively in ClientHelloInner. The list of outer extensions,

OuterExtensions, includes those which were removed from

EncodedClientHelloInner, in the order in which they were removed.

Finally, EncodedClientHelloInner is serialized as a ClientHello

structure, defined in Section 4.1.2 of [RFC8446]. Note this does not

include the four-byte header included in the Handshake structure.

The client-facing server computes ClientHelloInner by reversing this

process. First it makes a copy of EncodedClientHelloInner and copies

the legacy_session_id field from ClientHelloOuter. It then looks for

an "ech_outer_extensions" extension. If found, it replaces the

extension with the corresponding sequence of extensions in the

ClientHelloOuter. If any referenced extensions are missing or if

"encrypted_client_hello" appears in the list, the server MUST abort

the connection with an "illegal_parameter" alert.

The "ech_outer_extensions" extension is only used for compressing

the ClientHelloInner. It MUST NOT be sent in either ClientHelloOuter

or ClientHelloInner.

¶

 enum {

 ech_outer_extensions(0xfd00), (65535)

 } ExtensionType;

 ExtensionType OuterExtensions<2..254>;

¶

¶

¶

¶

¶

¶

¶

5.2. Authenticating the ClientHelloOuter

To prevent a network attacker from modifying the reconstructed

ClientHelloInner (see Section 10.10.3), ECH authenticates

ClientHelloOuter by computing ClientHelloOuterAAD as described below

and passing it in as the associated data for HPKE sealing and

opening operations. ClientHelloOuterAAD has the following structure:

The first three parameters are equal to, respectively, the

ClientECH.cipher_suite, ClientECH.config_id, and ClientECH.enc

fields of the payload of the "encrypted_client_hello" extension. The

last parameter, outer_hello, is computed by serializing

ClientHelloOuter with the "encrypted_client_hello" extension

removed. Note this does not include the four-byte header included in

the Handshake structure.

Note the decompression process in Section 5.1 forbids

"encrypted_client_hello" in OuterExtensions. This ensures the

unauthenticated portion of ClientHelloOuter is not incorporated into

ClientHelloInner.

6. Client Behavior

Clients that implement the ECH extension behave in one of two ways:

either they offer a real ECH extension, as described in Section 6.1;

or they send a GREASE ECH extension, as described in Section 6.2.

Clients of the latter type do not negotiate ECH. Instead, they

generate a dummy ECH extension that is ignored by the server. (See

Section 10.8.4 for an explanation.) The client offers ECH if it is

in possession of a compatible ECH configuration and sends GREASE ECH

otherwise.

6.1. Offering ECH

To offer ECH, the client first chooses a suitable ECH configuration.

To determine if a given ECHConfig is suitable, it checks that it

supports the KEM algorithm identified by ECHConfig.contents.kem_id,

at least one KDF/AEAD algorithm identified by

ECHConfig.contents.cipher_suites, and the version of ECH indicated

by ECHConfig.contents.version. Once a suitable configuration is

found, the client selects the cipher suite it will use for

encryption. It MUST NOT choose a cipher suite or version not

¶

 struct {

 ECHCipherSuite cipher_suite; // ClientECH.cipher_suite

 opaque config_id<0..255>; // ClientECH.config_id

 opaque enc<1..2^16-1>; // ClientECH.enc

 opaque outer_hello<1..2^24-1>;

 } ClientHelloOuterAAD;

¶

¶

¶

¶

advertised by the configuration. If no compatible configuration is

found, then the client SHOULD proceed as described in Section 6.2.

Next, the client constructs the ClientHelloInner message just as it

does a standard ClientHello, with the exception of the following

rules:

It MUST NOT offer to negotiate TLS 1.2 or below. This is

necessary to ensure the backend server does not negotiate a TLS

version that is incompatible with ECH.

It MUST NOT offer to resume any session for TLS 1.2 and below.

It SHOULD contain TLS padding [RFC7685] as described in Section

6.1.2.

If it intends to compress any extensions (see Section 5.1), it

MUST order those extensions consecutively.

It MUST include the "ech_is_inner" extension as defined in

Section 6.1.1. (This requirement is not applicable when the

"encrypted_client_hello" extension is generated as described in

Section 6.2.)

The client then constructs EncodedClientHelloInner as described in

Section 5.1. Finally, it constructs the ClientHelloOuter message

just as it does a standard ClientHello, with the exception of the

following rules:

It MUST offer to negotiate TLS 1.3 or above.

If it compressed any extensions in EncodedClientHelloInner, it

MUST copy the corresponding extensions from ClientHelloInner.

It MUST ensure that all extensions or parameters in

ClientHelloInner that might change in response to receiving

HelloRetryRequest match that in ClientHelloOuter. See Section

6.1.4 for more information.

It MUST copy the legacy_session_id field from ClientHelloInner.

This allows the server to echo the correct session ID for TLS

1.3's compatibility mode (see Appendix D.4 of [RFC8446]) when

ECH is negotiated.

It MAY copy any other field from the ClientHelloInner except

ClientHelloInner.random. Instead, It MUST generate a fresh

ClientHelloOuter.random using a secure random number generator.

(See Section 10.10.1.)

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

It MUST include an "encrypted_client_hello" extension with a

payload constructed as described below.

The value of ECHConfig.contents.public_name MUST be placed in

the "server_name" extension.

It MUST NOT include the "pre_shared_key" extension. (See

Section 10.10.3.)

[[OPEN ISSUE: We currently require HRR-sensitive parameters to match

in ClientHelloInner and ClientHelloOuter in order to simplify

client-side logic in the event of HRR. See https://github.com/tlswg/

draft-ietf-tls-esni/pull/316 for more information. We might also

solve this by including an explicit signal in HRR noting ECH

acceptance. We need to decide if inner/outer variance is important

for HRR-sensitive parameters, and if so, how to best deal with it

without complicated client logic.]]

The client might duplicate non-sensitive extensions in both

messages. However, implementations need to take care to ensure that

sensitive extensions are not offered in the ClientHelloOuter. See

Section 10.5 for additional guidance.

To encrypt EncodedClientHelloInner, the client first computes

ClientHelloOuterAAD as described in Section 5.2. Note this requires

the "encrypted_client_hello" be computed after all other extensions.

In particular, this is possible because the "pre_shared_key"

extension is forbidden in ClientHelloOuter.

The client then generates the HPKE encryption context and computes

the encapsulated key, context, and payload as:

Note that the HPKE functions Deserialize and SetupBaseS are those

which match ECHConfig.contents.kem_id and the AEAD/KDF used with

context are those which match the client's chosen preference from

ECHConfig.contents.cipher_suites. The info parameter to SetupBaseS

is the concatenation of "tls ech", a zero byte, and the serialized

ECHConfig.

The value of the "encrypted_client_hello" extension in the

ClientHelloOuter is a ClientECH with the following values:

cipher_suite, the client's chosen cipher suite;

6.

¶

7.

¶

8.

¶

¶

¶

¶

¶

 pkR = Deserialize(ECHConfig.contents.public_key)

 enc, context = SetupBaseS(pkR,

 "tls ech" || 0x00 || ECHConfig)

 payload = context.Seal(ClientHelloOuterAAD,

 EncodedClientHelloInner)

¶

¶

¶

* ¶

config_id, the identifier of the chosen ECHConfig structure;

enc, as computed above; and

payload, as computed above.

If optional configuration identifiers (see Section 10.4)) are used,

the config_id field MAY be empty or randomly generated. Unless

specified by the application using (D)TLS or externally configured

on both sides, implementations MUST compute the field as specified

in Section 5.

6.1.1. ClientHelloInner Indication Extension

If, in a ClientHello, the "encrypted_client_hello" extension is not

present and an "ech_is_inner" extension is present, the ClientHello

is a ClientHelloInner. This extension MUST only be sent in the

ClientHello message.

The "extension_data" field of the "ech_is_inner" extension is zero

length.

Backend servers (as described in Section 7) MUST support the

"ech_is_inner" extension.

6.1.2. Recommended Padding Scheme

This section describes a deterministic padding mechanism based on

the following observation: individual extensions can reveal

sensitive information through their length. Thus, each extension in

the inner ClientHello may require different amounts of padding. This

padding may be fully determined by the client's configuration or may

require server input.

By way of example, clients typically support a small number of

application profiles. For instance, a browser might support HTTP

with ALPN values ["http/1.1, "h2"] and WebRTC media with ALPNs

["webrtc", "c-webrtc"]. Clients SHOULD pad this extension by

rounding up to the total size of the longest ALPN extension across

all application profiles. The target padding length of most

ClientHello extensions can be computed in this way.

In contrast, clients do not know the longest SNI value in the

client-facing server's anonymity set without server input. For the

"server_name" extension with length D, clients SHOULD use the

* ¶

* ¶

* ¶

¶

¶

 enum {

 ech_is_inner(0xda09), (65535)

 } ExtensionType;

¶

¶

¶

¶

¶

server's length hint L (ECHConfig.contents.maximum_name_length) when

computing the padding as follows:

If L >= D, add L - D bytes of padding. This rounds to the

server's advertised hint, i.e.,

ECHConfig.contents.maximum_name_length.

Otherwise, let P = 31 - ((D - 1) % 32), and add P bytes of

padding, plus an additional 32 bytes if D + P < L + 32. This

rounds D up to the nearest multiple of 32 bytes that permits at

least 32 bytes of length ambiguity.

In addition to padding ClientHelloInner, clients and servers will

also need to pad all other handshake messages that have sensitive-

length fields. For example, if a client proposes ALPN values in

ClientHelloInner, the server-selected value will be returned in an

EncryptedExtension, so that handshake message also needs to be

padded using TLS record layer padding.

6.1.3. Handling the Server Response

As described in Section 7, the server MAY either accept ECH and use

ClientHelloInner or reject it and use ClientHelloOuter. In handling

the server's response, the client's first step is to determine which

value was used. The client presumes acceptance if the last 8 bytes

of ServerHello.random are equal to the first 8 bytes of

accept_confirmation as defined in Section 7.2. Otherwise, it

presumes rejection.

6.1.3.1. Accepted ECH

If the server used ClientHelloInner, the client proceeds with the

connection as usual, authenticating the connection for the true

server name.

6.1.3.2. Rejected ECH

If the server used ClientHelloOuter, the client proceeds with the

handshake, authenticating for ECHConfig.contents.public_name as

described in Section 6.1.3.3. If authentication or the handshake

fails, the client MUST return a failure to the calling application.

It MUST NOT use the retry keys.

Otherwise, when the handshake completes successfully with the public

name authenticated, the client MUST abort the connection with an

"ech_required" alert. It then processes the "retry_configs" field

from the server's "encrypted_client_hello" extension.

If at least one of the values contains a version supported by the

client, it can regard the ECH keys as securely replaced by the

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

server. It SHOULD retry the handshake with a new transport

connection, using the retry configurations supplied by the server.

The retry configurations may only be applied to the retry

connection. The client MUST continue to use the previously-

advertised configurations for subsequent connections. This avoids

introducing pinning concerns or a tracking vector, should a

malicious server present client-specific retry keys in order to

identify the client in a subsequent ECH handshake.

If none of the values provided in "retry_configs" contains a

supported version, the client can regard ECH as securely disabled by

the server. As below, it SHOULD then retry the handshake with a new

transport connection and ECH disabled.

If the field contains any other value, the client MUST abort the

connection with an "illegal_parameter" alert.

If the server negotiates an earlier version of TLS, or if it does

not provide an "encrypted_client_hello" extension in

EncryptedExtensions, the client proceeds with the handshake,

authenticating for ECHConfig.contents.public_name as described in

Section 6.1.3.3. If an earlier version was negotiated, the client

MUST NOT enable the False Start optimization [RFC7918] for this

handshake. If authentication or the handshake fails, the client MUST

return a failure to the calling application. It MUST NOT treat this

as a secure signal to disable ECH.

Otherwise, when the handshake completes successfully with the public

name authenticated, the client MUST abort the connection with an

"ech_required" alert. The client can then regard ECH as securely

disabled by the server. It SHOULD retry the handshake with a new

transport connection and ECH disabled.

Clients SHOULD implement a limit on retries caused by

"ech_retry_request" or servers which do not acknowledge the

"encrypted_client_hello" extension. If the client does not retry in

either scenario, it MUST report an error to the calling application.

6.1.3.3. Authenticating for the Public Name

When the server rejects ECH or otherwise ignores

"encrypted_client_hello" extension, it continues with the handshake

using the plaintext "server_name" extension instead (see Section 7).

Clients that offer ECH then authenticate the connection with the

public name, as follows:

The client MUST verify that the certificate is valid for

ECHConfig.contents.public_name. If invalid, it MUST abort the

connection with the appropriate alert.

¶

¶

¶

¶

¶

¶

¶

*

¶

If the server requests a client certificate, the client MUST

respond with an empty Certificate message, denoting no client

certificate.

Note that authenticating a connection for the public name does not

authenticate it for the origin. The TLS implementation MUST NOT

report such connections as successful to the application. It

additionally MUST ignore all session tickets and session IDs

presented by the server. These connections are only used to trigger

retries, as described in Section 6.1.3. This may be implemented, for

instance, by reporting a failed connection with a dedicated error

code.

6.1.4. Handling HelloRetryRequest

As required in Section 6.1, clients offering ECH MUST ensure that

all extensions or parameters that might change in response to

receiving a HelloRetryRequest have the same values in

ClientHelloInner and ClientHelloOuter. That is, if a

HelloRetryRequest causes a parameter to be changed, the same change

is applied to both ClientHelloInner and ClientHelloOuter. Applicable

parameters include:

TLS 1.3 [RFC8446] ciphersuites in the ClientHello.cipher_suites

list.

The "key_share" and "supported_groups" extensions [RFC8446].

(These extensions may be copied from ClientHelloOuter into

ClientHelloInner as described in Section 6.1.)

Versions in the "supported_versions" extension, excluding TLS

1.2 and earlier. Note the ClientHelloOuter MAY include these

older versions, while the ClientHelloInner MUST omit them.

Future extensions that might change across first and second

ClientHello messages in response to a HelloRetryRequest MUST have

the same value.

If the server sends a HelloRetryRequest in response to the

ClientHello, the client sends a second updated ClientHello per the

rules in [RFC8446]. However, at this point, the client does not know

whether the server processed ClientHelloOuter or ClientHelloInner,

and MUST regenerate both values to be acceptable. Note: if

ClientHelloOuter and ClientHelloInner use different groups for their

key shares or differ in some other way, then the HelloRetryRequest

may actually be invalid for one or the other ClientHello, in which

case a fresh ClientHello MUST be generated, ignoring the

instructions in HelloRetryRequest. Otherwise, the usual rules for

HelloRetryRequest processing apply.

*

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

The client encodes the second ClientHelloInner as in Section 5.1,

using the second ClientHelloOuter for any referenced extensions. It

then encrypts the new EncodedClientHelloInner value as a second

message with the previous HPKE context:

ClientHelloOuterAAD is computed as described in Section 5.2, but

again using the second ClientHelloOuter. Note that the HPKE context

maintains a sequence number, so this operation internally uses a

fresh nonce for each AEAD operation. Reusing the HPKE context avoids

an attack described in Section 10.10.2.

The client then modifies the "encrypted_client_hello" extension in

ClientHelloOuter as follows:

cipher_suite is unchanged and contains the client's chosen HPKE

cipher suite.

config_id is replaced with the empty string.

enc is replaced with the empty string.

payload is replaced with the value computed above.

If the client offered ECH in the first ClientHello, then it MUST

offer ECH in the second. Likewise, if the client did not offer ECH

in the first ClientHello, then it MUST NOT not offer ECH in the

second.

6.2. GREASE ECH

If the client attempts to connect to a server and does not have an

ECHConfig structure available for the server, it SHOULD send a

GREASE [RFC8701] "encrypted_client_hello" extension in the first

ClientHello as follows:

Set the cipher_suite field to a supported ECHCipherSuite. The

selection SHOULD vary to exercise all supported configurations,

but MAY be held constant for successive connections to the same

server in the same session.

Set the config_id field to a randomly-generated 8-byte string.

Set the enc field to a randomly-generated valid encapsulated

public key output by the HPKE KEM.

Set the payload field to a randomly-generated string of L+C

bytes, where C is the ciphertext expansion of the selected AEAD

¶

 payload = context.Seal(ClientHelloOuterAAD,

 EncodedClientHelloInner)

¶

¶

¶

*

¶

* ¶

* ¶

* ¶

¶

¶

*

¶

* ¶

*

¶

*

scheme and L is the size of the EncodedClientHelloInner the

client would compute when offering ECH, padded according to

Section 6.1.2.

When sending a second ClientHello in response to a

HelloRetryRequest, the client copies the entire

"encrypted_client_hello" extension from the first ClientHello.

[[OPEN ISSUE: The above doesn't match HRR handling for either ECH

acceptance or rejection. See issue https://github.com/tlswg/draft-

ietf-tls-esni/issues/358.]]

If the server sends an "encrypted_client_hello" extension, the

client MUST check the extension syntactically and abort the

connection with a "decode_error" alert if it is invalid. It

otherwise ignores the extension and MUST NOT use the retry keys.

[[OPEN ISSUE: if the client sends a GREASE "encrypted_client_hello"

extension, should it also send a GREASE "pre_shared_key" extension?

If not, GREASE+ticket is a trivial distinguisher.]]

Offering a GREASE extension is not considered offering an encrypted

ClientHello for purposes of requirements in Section 6. In

particular, the client MAY offer to resume sessions established

without ECH.

7. Server Behavior

Servers that support ECH play one of two roles, depending on which

of the "ech_is_inner" (Section 6.1.1) and "encrypted_client_hello"

(Section 5) extensions are present in the ClientHello:

If both the "ech_is_inner" and "encrypted_client_hello"

extensions are present in the ClientHello, the backend server

MUST abort with an "illegal_parameter" alert.

If only the "encrypted_client_hello" extension is present, the

server acts as a client-facing server and proceeds as described

in Section 7.1 to extract a ClientHelloInner, if available.

If only the "ech_is_inner" extension is present and the

"encrypted_client_hello" extension is not present, the server

acts as a backend server and proceeds as described in Section

7.2.

If neither extension is present, the server completes the

handshake normally, as described in [RFC8446].

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

7.1. Client-Facing Server

Upon receiving an "encrypted_client_hello" extension in an initial

ClientHello, the client-facing server determines if it will accept

ECH, prior to negotiating any other TLS parameters. Note that

successfully decrypting the extension will result in a new

ClientHello to process, so even the client's TLS version preferences

may have changed.

If the client offers the "ech_is_inner" extension (Section 6.1.1) in

addition to the "encrypted_client_hello" extension, the server MUST

abort with an "illegal_parameter" alert.

First, the server collects a set of candidate ECHConfigs. This set

is determined by one of the two following methods:

Compare ClientECH.config_id against identifiers of known

ECHConfigs and select the ones that match, if any, as

candidates.

Collect all known ECHConfigs as candidates, with trial

decryption below determining the final selection.

Some uses of ECH, such as local discovery mode, may omit the

ClientECH.config_id since it can be used as a tracking vector. In

such cases, the second method should be used for matching ClientECH

to known ECHConfig. See Section 10.4. Unless specified by the

application using (D)TLS or externally configured on both sides,

implementations MUST use the first method.

The server then iterates over all candidate ECHConfigs, attempting

to decrypt the "encrypted_client_hello" extension:

The server verifies that the ECHConfig supports the cipher suite

indicated by the ClientECH.cipher_suite and that the version of ECH

indicated by the client matches the ECHConfig.version. If not, the

server continues to the next candidate ECHConfig.

Next, the server decrypts ClientECH.payload, using the private key

skR corresponding to ECHConfig, as follows:

ClientHelloOuterAAD is computed from ClientHelloOuter as described

in Section 5.2. The info parameter to SetupBaseS is the

concatenation "tls ech", a zero byte, and the serialized ECHConfig.

If decryption fails, the server continues to the next candidate

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

 context = SetupBaseR(ClientECH.enc, skR,

 "tls ech" || 0x00 || ECHConfig)

 EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,

 ClientECH.payload)

¶

ECHConfig. Otherwise, the server reconstructs ClientHelloInner from

EncodedClientHelloInner, as described in Section 5.1. It then stops

considering candidate ECHConfigs.

Upon determining the ClientHelloInner, the client-facing server then

forwards the ClientHelloInner to the appropriate backend server,

which proceeds as in Section 7.2. If the backend server responds

with a HelloRetryRequest, the client-facing server forwards it,

decrypts the client's second ClientHelloOuter using the procedure in

Section 7.1.1, and forwards the resulting second ClientHelloInner.

The client-facing server forwards all other TLS messages between the

client and backend server unmodified.

Otherwise, if all candidate ECHConfigs fail to decrypt the

extension, the client-facing server MUST ignore the extension and

proceed with the connection using ClientHelloOuter. This connection

proceeds as usual, except the server MUST include the

"encrypted_client_hello" extension in its EncryptedExtensions with

the "retry_configs" field set to one or more ECHConfig structures

with up-to-date keys. Servers MAY supply multiple ECHConfig values

of different versions. This allows a server to support multiple

versions at once.

Note that decryption failure could indicate a GREASE ECH extension

(see Section 6.2), so it is necessary for servers to proceed with

the connection and rely on the client to abort if ECH was required.

In particular, the unrecognized value alone does not indicate a

misconfigured ECH advertisement (Section 8.1). Instead, servers can

measure occurrences of the "ech_required" alert to detect this case.

7.1.1. Handling HelloRetryRequest

After sending or forwarding a HelloRetryRequest, the client-facing

server does not repeat the steps in Section 7.1 with the second

ClientHelloOuter. Instead, it continues with the ECHConfig selection

from the first ClientHelloOuter as follows:

If the client-facing server accepted ECH, it checks the second

ClientHelloOuter also contains the "encrypted_client_hello"

extension. If not, it MUST abort the handshake with a

"missing_extension" alert. Otherwise, it checks that

ClientECH.cipher_suite is unchanged, and that ClientECH.config_id

and ClientECH.enc are empty. If not, it MUST abort the handshake

with an "illegal_parameter" alert.

Finally, it decrypts the new ClientECH.payload as a second message

with the previous HPKE context:

¶

¶

¶

¶

¶

¶

¶

 EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,

 ClientECH.payload)

¶

ClientHelloOuterAAD is computed as described in Section 5.2, but

using the second ClientHelloOuter. If decryption fails, the client-

facing server MUST abort the handshake with a "decrypt_error" alert.

Otherwise, it reconstructs the second ClientHelloInner from the new

EncodedClientHelloInner as described in Section 5.1, using the

second ClientHelloOuter for any referenced extensions.

The client-facing server then forwards the resulting

ClientHelloInner to the backend server. It forwards all subsequent

TLS messages between the client and backend server unmodified.

If the client-facing server rejected ECH, or if the first

ClientHello did not include an "encrypted_client_hello" extension,

the client-facing server proceeds with the connection as usual. The

server does not decrypt the second ClientHello's ClientECH.payload

value, if there is one.

[[OPEN ISSUE: If the client-facing server implements stateless HRR,

it has no way to send a cookie, short of as-yet-unspecified

integration with the backend server. Stateful HRR on the client-

facing server works fine, however. See issue https://github.com/

tlswg/draft-ietf-tls-esni/issues/333.]]

7.2. Backend Server

Upon receipt of an "ech_is_inner" extension in a ClientHello, if the

backend server negotiates TLS 1.3 or higher, then it MUST confirm

ECH acceptance to the client by computing its ServerHello as

described here.

The backend server begins by generating a message

ServerHelloECHConf, which is identical in content to a ServerHello

message with the exception that ServerHelloECHConf.random is equal

to 24 random bytes followed by 8 zero bytes. It then computes a

string

where Derive-Secret and Handshake Secret are as specified in

[RFC8446], Section 7.1, and ClientHelloInner...ServerHelloECHConf

refers to the sequence of handshake messages beginning with the

first ClientHello and ending with ServerHelloECHConf. Finally, the

backend server constructs its ServerHello message so that it is

equal to ServerHelloECHConf but with the last 8 bytes of

ServerHello.random set to the first 8 bytes of accept_confirmation.

¶

¶

¶

¶

¶

¶

 accept_confirmation =

 Derive-Secret(Handshake Secret,

 "ech accept confirmation",

 ClientHelloInner...ServerHelloECHConf)

¶

¶

The backend server MUST NOT perform this operation if it negotiated

TLS 1.2 or below. Note that doing so would overwrite the downgrade

signal for TLS 1.3 (see [RFC8446], Section 4.1.3).

The "ech_is_inner" is expected to have an empty payload. If the

payload is non-empty (i.e., the length of the "extension_data" field

is non-zero) then the backend server MUST abort the handshake with

an "illegal_parameter" alert.

8. Compatibility Issues

Unlike most TLS extensions, placing the SNI value in an ECH

extension is not interoperable with existing servers, which expect

the value in the existing plaintext extension. Thus server operators

SHOULD ensure servers understand a given set of ECH keys before

advertising them. Additionally, servers SHOULD retain support for

any previously-advertised keys for the duration of their validity

However, in more complex deployment scenarios, this may be difficult

to fully guarantee. Thus this protocol was designed to be robust in

case of inconsistencies between systems that advertise ECH keys and

servers, at the cost of extra round-trips due to a retry. Two

specific scenarios are detailed below.

8.1. Misconfiguration and Deployment Concerns

It is possible for ECH advertisements and servers to become

inconsistent. This may occur, for instance, from DNS

misconfiguration, caching issues, or an incomplete rollout in a

multi-server deployment. This may also occur if a server loses its

ECH keys, or if a deployment of ECH must be rolled back on the

server.

The retry mechanism repairs inconsistencies, provided the server is

authoritative for the public name. If server and advertised keys

mismatch, the server will respond with ech_retry_requested. If the

server does not understand the "encrypted_client_hello" extension at

all, it will ignore it as required by [RFC8446]; Section 4.1.2.

Provided the server can present a certificate valid for the public

name, the client can safely retry with updated settings, as

described in Section 6.1.3.

Unless ECH is disabled as a result of successfully establishing a

connection to the public name, the client MUST NOT fall back to

using unencrypted ClientHellos, as this allows a network attacker to

disclose the contents of this ClientHello, including the SNI. It MAY

attempt to use another server from the DNS results, if one is

provided.

¶

¶

¶

¶

¶

¶

¶

8.2. Middleboxes

A more serious problem is MITM proxies which do not support this

extension. [RFC8446], Section 9.3 requires that such proxies remove

any extensions they do not understand. The handshake will then

present a certificate based on the public name, without echoing the

"encrypted_client_hello" extension to the client.

Depending on whether the client is configured to accept the proxy's

certificate as authoritative for the public name, this may trigger

the retry logic described in Section 6.1.3 or result in a connection

failure. A proxy which is not authoritative for the public name

cannot forge a signal to disable ECH.

A non-conformant MITM proxy which instead forwards the ECH

extension, substituting its own KeyShare value, will result in the

client-facing server recognizing the key, but failing to decrypt the

SNI. This causes a hard failure. Clients SHOULD NOT attempt to

repair the connection in this case.

9. Compliance Requirements

In the absence of an application profile standard specifying

otherwise, a compliant ECH application MUST implement the following

HPKE cipher suite:

KEM: DHKEM(X25519, HKDF-SHA256) (see [I-D.irtf-cfrg-hpke],

Section 7.1)

KDF: HKDF-SHA256 (see [I-D.irtf-cfrg-hpke], Section 7.2)

AEAD: AES-128-GCM (see [I-D.irtf-cfrg-hpke], Section 7.3)

10. Security Considerations

10.1. Security and Privacy Goals

ECH considers two types of attackers: passive and active. Passive

attackers can read packets from the network. They cannot perform any

sort of active behavior such as probing servers or querying DNS. A

middlebox that filters based on plaintext packet contents is one

example of a passive attacker. In contrast, active attackers can

write packets into the network for malicious purposes, such as

interfering with existing connections, probing servers, and querying

DNS. In short, an active attacker corresponds to the conventional

threat model for TLS 1.3 [RFC8446].

¶

¶

¶

¶

*

¶

* ¶

* ¶

¶

Given these types of attackers, the primary goals of ECH are as

follows.

Use of ECH does not weaken the security properties of TLS

without ECH.

TLS connection establishment to a host with a specific

ECHConfig and TLS configuration is indistinguishable from a

connection to any other host with the same ECHConfig and TLS

configuration. (The set of hosts which share the same ECHConfig

and TLS configuration is referred to as the anonymity set.)

Client-facing server configuration determines the size of the

anonymity set. For example, if a client-facing server uses distinct

ECHConfig values for each host, then each anonymity set has size k =

1. Client-facing servers SHOULD deploy ECH in such a way so as to

maximize the size of the anonymity set where possible. This means

client-facing servers should use the same ECHConfig for as many

hosts as possible. An attacker can distinguish two hosts that have

different ECHConfig values based on the ClientECH.config_id value.

This also means public information in a TLS handshake is also

consistent across hosts. For example, if a client-facing server

services many backend origin hosts, only one of which supports some

cipher suite, it may be possible to identify that host based on the

contents of unencrypted handshake messages.

Beyond these primary security and privacy goals, ECH also aims to

hide, to some extent, (a) whether or not a specific server supports

ECH and (b) whether or not ECH was accepted for a particular

connection. ECH aims to achieve both properties, assuming the

attacker is passive and does not know the set of ECH configurations

offered by the client-facing server. It does not achieve these

properties for active attackers. More specifically:

Passive attackers with a known ECH configuration can distinguish

between a connection that negotiates ECH with that configuration

and one which does not, because the latter used a GREASE

"encrypted_client_hello" extension (as specified in Section 6.2)

or a different ECH configuration.

Passive attackers without the ECH configuration cannot

distinguish between a connection that negotiates ECH and one

which uses a GREASE "encrypted_client_hello" extension.

Active attackers can distinguish between a connection that

negotiates ECH and one which uses a GREASE

"encrypted_client_hello" extension.

See Section 10.8.4 for more discussion about the "do not stick out"

criteria from [RFC8744].

¶

1.

¶

2.

¶

¶

¶

*

¶

*

¶

*

¶

¶

10.2. Unauthenticated and Plaintext DNS

In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource

Records are signed via a server private key, ECH records have no

authenticity or provenance information. This means that any attacker

which can inject DNS responses or poison DNS caches, which is a

common scenario in client access networks, can supply clients with

fake ECH records (so that the client encrypts data to them) or strip

the ECH record from the response. However, in the face of an

attacker that controls DNS, no encryption scheme can work because

the attacker can replace the IP address, thus blocking client

connections, or substituting a unique IP address which is 1:1 with

the DNS name that was looked up (modulo DNS wildcards). Thus,

allowing the ECH records in the clear does not make the situation

significantly worse.

Clearly, DNSSEC (if the client validates and hard fails) is a

defense against this form of attack, but DoH/DPRIVE are also

defenses against DNS attacks by attackers on the local network,

which is a common case where ClientHello and SNI encryption are

desired. Moreover, as noted in the introduction, SNI encryption is

less useful without encryption of DNS queries in transit via DoH or

DPRIVE mechanisms.

10.3. Client Tracking

A malicious client-facing server could distribute unique, per-client

ECHConfig structures as a way of tracking clients across subsequent

connections. On-path adversaries which know about these unique keys

could also track clients in this way by observing TLS connection

attempts.

The cost of this type of attack scales linearly with the desired

number of target clients. Moreover, DNS caching behavior makes

targeting individual users for extended periods of time, e.g., using

per-client ECHConfig structures delivered via HTTPS RRs with high

TTLs, challenging. Clients can help mitigate this problem by

flushing any DNS or ECHConfig state upon changing networks.

10.4. Optional Configuration Identifiers and Trial Decryption

Optional configuration identifiers may be useful in scenarios where

clients and client-facing servers do not want to reveal information

about the client-facing server in the "encrypted_client_hello"

extension. In such settings, clients send either an empty config_id

or a randomly generated config_id in the ClientECH. (The precise

implementation choice for this mechanism is out of scope for this

document.) Servers in these settings must perform trial decryption

since they cannot identify the client's chosen ECH key using the

¶

¶

¶

¶

config_id value. As a result, support for optional configuration

identifiers may exacerbate DoS attacks. Specifically, an adversary

may send malicious ClientHello messages, i.e., those which will not

decrypt with any known ECH key, in order to force wasteful

decryption. Servers that support this feature should, for example,

implement some form of rate limiting mechanism to limit the damage

caused by such attacks.

10.5. Outer ClientHello

Any information that the client includes in the ClientHelloOuter is

visible to passive observers. The client SHOULD NOT send values in

the ClientHelloOuter which would reveal a sensitive ClientHelloInner

property, such as the true server name. It MAY send values

associated with the public name in the ClientHelloOuter.

In particular, some extensions require the client send a server-

name-specific value in the ClientHello. These values may reveal

information about the true server name. For example, the

"cached_info" ClientHello extension [RFC7924] can contain the hash

of a previously observed server certificate. The client SHOULD NOT

send values associated with the true server name in the

ClientHelloOuter. It MAY send such values in the ClientHelloInner.

A client may also use different preferences in different contexts.

For example, it may send a different ALPN lists to different servers

or in different application contexts. A client that treats this

context as sensitive SHOULD NOT send context-specific values in

ClientHelloOuter.

Values which are independent of the true server name, or other

information the client wishes to protect, MAY be included in

ClientHelloOuter. If they match the corresponding ClientHelloInner,

they MAY be compressed as described in Section 5.1. However, note

the payload length reveals information about which extensions are

compressed, so inner extensions which only sometimes match the

corresponding outer extension SHOULD NOT be compressed.

Clients MAY include additional extensions in ClientHelloOuter to

avoid signaling unusual behavior to passive observers, provided the

choice of value and value itself are not sensitive. See Section

10.8.4.

10.6. Related Privacy Leaks

ECH requires encrypted DNS to be an effective privacy protection

mechanism. However, verifying the server's identity from the

Certificate message, particularly when using the X509

CertificateType, may result in additional network traffic that may

reveal the server identity. Examples of this traffic may include

¶

¶

¶

¶

¶

¶

requests for revocation information, such as OCSP or CRL traffic, or

requests for repository information, such as

authorityInformationAccess. It may also include implementation-

specific traffic for additional information sources as part of

verification.

Implementations SHOULD avoid leaking information that may identify

the server. Even when sent over an encrypted transport, such

requests may result in indirect exposure of the server's identity,

such as indicating a specific CA or service being used. To mitigate

this risk, servers SHOULD deliver such information in-band when

possible, such as through the use of OCSP stapling, and clients

SHOULD take steps to minimize or protect such requests during

certificate validation.

Attacks that rely on non-ECH traffic to infer server identity in an

ECH connection are out of scope for this document. For example, a

client that connects to a particular host prior to ECH deployment

may later resume a connection to that same host after ECH

deployment, thereby linking the resulting ECH connection to the

original non-ECH connection.

10.7. Attacks Exploiting Acceptance Confirmation

To signal acceptance, the backend server overwrites 8 bytes of its

ServerHello.random with a value derived from the

ClientHelloInner.random. (See Section 7.2 for details.) This

behavior increases the likelihood of the ServerHello.random

colliding with the ServerHello.random of a previous session,

potentially reducing the overall security of the protocol. However,

the remaining 24 bytes provide enough entropy to ensure this is not

a practical avenue of attack.

On the other hand, the probability that two 8-byte strings are the

same is non-negligible. This poses a modest operational risk.

Suppose the client-facing server terminates the connection (i.e.,

ECH is rejected or bypassed): if the last 8 bytes of its

ServerHello.random coincide with the confirmation signal, then the

client will incorrectly presume acceptance and proceed as if the

backend server terminated the connection. However, the probability

of a false positive occurring for a given connection is only 1 in

2^64. This value is smaller than the probability of network

connection failures in practice.

Note that the same bytes of the ServerHello.random are used to

implement downgrade protection for TLS 1.3 (see [RFC8446], Section

4.1.3). These mechanisms do not interfere because the backend server

only signals ECH acceptance in TLS 1.3 or higher.

¶

¶

¶

¶

¶

¶

10.8. Comparison Against Criteria

[RFC8744] lists several requirements for SNI encryption. In this

section, we re-iterate these requirements and assess the ECH design

against them.

10.8.1. Mitigate Cut-and-Paste Attacks

Since servers process either ClientHelloInner or ClientHelloOuter,

and because ClientHelloInner.random is encrypted, it is not possible

for an attacker to "cut and paste" the ECH value in a different

Client Hello and learn information from ClientHelloInner.

10.8.2. Avoid Widely Shared Secrets

This design depends upon DNS as a vehicle for semi-static public key

distribution. Server operators may partition their private keys

however they see fit provided each server behind an IP address has

the corresponding private key to decrypt a key. Thus, when one ECH

key is provided, sharing is optimally bound by the number of hosts

that share an IP address. Server operators may further limit sharing

by publishing different DNS records containing ECHConfig values with

different keys using a short TTL.

10.8.3. Prevent SNI-Based Denial-of-Service Attacks

This design requires servers to decrypt ClientHello messages with

ClientECH extensions carrying valid digests. Thus, it is possible

for an attacker to force decryption operations on the server. This

attack is bound by the number of valid TCP connections an attacker

can open.

10.8.4. Do Not Stick Out

The only explicit signal indicating possible use of ECH is the

ClientHello "encrypted_client_hello" extension. Server handshake

messages do not contain any signal indicating use or negotiation of

ECH. Clients MAY GREASE the "encrypted_client_hello" extension, as

described in Section 6.2, which helps ensure the ecosystem handles

ECH correctly. Moreover, as more clients enable ECH support, e.g.,

as normal part of Web browser functionality, with keys supplied by

shared hosting providers, the presence of ECH extensions becomes

less unusual and part of typical client behavior. In other words, if

all Web browsers start using ECH, the presence of this value will

not signal unusual behavior to passive eavesdroppers.

¶

¶

¶

¶

¶

10.8.5. Maintain Forward Secrecy

This design is not forward secret because the server's ECH key is

static. However, the window of exposure is bound by the key

lifetime. It is RECOMMENDED that servers rotate keys frequently.

10.8.6. Enable Multi-party Security Contexts

This design permits servers operating in Split Mode to forward

connections directly to backend origin servers. The client

authenticates the identity of the backend origin server, thereby

avoiding unnecessary MiTM attacks.

Conversely, assuming ECH records retrieved from DNS are

authenticated, e.g., via DNSSEC or fetched from a trusted Recursive

Resolver, spoofing a client-facing server operating in Split Mode is

not possible. See Section 10.2 for more details regarding plaintext

DNS.

Authenticating the ECHConfigs structure naturally authenticates the

included public name. This also authenticates any retry signals from

the client-facing server because the client validates the server

certificate against the public name before retrying.

10.8.7. Support Multiple Protocols

This design has no impact on application layer protocol negotiation.

It may affect connection routing, server certificate selection, and

client certificate verification. Thus, it is compatible with

multiple application and transport protocols. By encrypting the

entire ClientHello, this design additionally supports encrypting the

ALPN extension.

10.9. Padding Policy

Variations in the length of the ClientHelloInner ciphertext could

leak information about the corresponding plaintext. Section 6.1.2

describes a RECOMMENDED padding mechanism for clients aimed at

reducing potential information leakage.

10.10. Active Attack Mitigations

This section describes the rationale for ECH properties and

mechanics as defenses against active attacks. In all the attacks

below, the attacker is on-path between the target client and server.

The goal of the attacker is to learn private information about the

inner ClientHello, such as the true SNI value.

¶

¶

¶

¶

¶

¶

¶

10.10.1. Client Reaction Attack Mitigation

This attack uses the client's reaction to an incorrect certificate

as an oracle. The attacker intercepts a legitimate ClientHello and

replies with a ServerHello, Certificate, CertificateVerify, and

Finished messages, wherein the Certificate message contains a "test"

certificate for the domain name it wishes to query. If the client

decrypted the Certificate and failed verification (or leaked

information about its verification process by a timing side

channel), the attacker learns that its test certificate name was

incorrect. As an example, suppose the client's SNI value in its

inner ClientHello is "example.com," and the attacker replied with a

Certificate for "test.com". If the client produces a verification

failure alert because of the mismatch faster than it would due to

the Certificate signature validation, information about the name

leaks. Note that the attacker can also withhold the

CertificateVerify message. In that scenario, a client which first

verifies the Certificate would then respond similarly and leak the

same information.

Figure 3: Client reaction attack

ClientHelloInner.random prevents this attack. In particular, since

the attacker does not have access to this value, it cannot produce

the right transcript and handshake keys needed for encrypting the

Certificate message. Thus, the client will fail to decrypt the

Certificate and abort the connection.

10.10.2. HelloRetryRequest Hijack Mitigation

This attack aims to exploit server HRR state management to recover

information about a legitimate ClientHello using its own attacker-

controlled ClientHello. To begin, the attacker intercepts and

forwards a legitimate ClientHello with an "encrypted_client_hello"

¶

 Client Attacker Server

 ClientHello

 + key_share

 + ech ------> (intercept) -----> X (drop)

 ServerHello

 + key_share

 {EncryptedExtensions}

 {CertificateRequest*}

 {Certificate*}

 {CertificateVerify*}

 <------

 Alert

 ------>

¶

(ech) extension to the server, which triggers a legitimate

HelloRetryRequest in return. Rather than forward the retry to the

client, the attacker, attempts to generate its own ClientHello in

response based on the contents of the first ClientHello and

HelloRetryRequest exchange with the result that the server encrypts

the Certificate to the attacker. If the server used the SNI from the

first ClientHello and the key share from the second (attacker-

controlled) ClientHello, the Certificate produced would leak the

client's chosen SNI to the attacker.

Figure 4: HelloRetryRequest hijack attack

This attack is mitigated by using the same HPKE context for both

ClientHello messages. The attacker does not possess the context's

keys, so it cannot generate a valid encryption of the second inner

ClientHello.

If the attacker could manipulate the second ClientHello, it might be

possible for the server to act as an oracle if it required

parameters from the first ClientHello to match that of the second

ClientHello. For example, imagine the client's original SNI value in

the inner ClientHello is "example.com", and the attacker's hijacked

SNI value in its inner ClientHello is "test.com". A server which

checks these for equality and changes behavior based on the result

can be used as an oracle to learn the client's SNI.

¶

 Client Attacker Server

 ClientHello

 + key_share

 + ech ------> (forward) ------->

 HelloRetryRequest

 + key_share

 (intercept) <-------

 ClientHello

 + key_share'

 + ech' ------->

 ServerHello

 + key_share

 {EncryptedExtensions}

 {CertificateRequest*}

 {Certificate*}

 {CertificateVerify*}

 {Finished}

 <-------

 (process server flight)

¶

¶

10.10.3. ClientHello Malleability Mitigation

This attack aims to leak information about secret parts of the

encrypted ClientHello by adding attacker-controlled parameters and

observing the server's response. In particular, the compression

mechanism described in Section 5.1 references parts of a potentially

attacker-controlled ClientHelloOuter to construct ClientHelloInner,

or a buggy server may incorrectly apply parameters from

ClientHelloOuter to the handshake.

To begin, the attacker first interacts with a server to obtain a

resumption ticket for a given test domain, such as "example.com".

Later, upon receipt of a ClientHelloOuter, it modifies it such that

the server will process the resumption ticket with ClientHelloInner.

If the server only accepts resumption PSKs that match the server

name, it will fail the PSK binder check with an alert when

ClientHelloInner is for "example.com" but silently ignore the PSK

and continue when ClientHelloInner is for any other name. This

introduces an oracle for testing encrypted SNI values.

Figure 5: Message flow for malleable ClientHello

¶

¶

 Client Attacker Server

 handshake and ticket

 for "example.com"

 <-------->

 ClientHello

 + key_share

 + ech

 + ech_outer_extensions(pre_shared_key)

 + pre_shared_key

 -------->

 (intercept)

 ClientHello

 + key_share

 + ech

 + ech_outer_extensions(pre_shared_key)

 + pre_shared_key'

 -------->

 Alert

 -or-

 ServerHello

 ...

 Finished

 <--------

[HTTPS-RR]

This attack may be generalized to any parameter which the server

varies by server name, such as ALPN preferences.

ECH mitigates this attack by only negotiating TLS parameters from

ClientHelloInner and authenticating all inputs to the

ClientHelloInner (EncodedClientHelloInner and ClientHelloOuter) with

the HPKE AEAD. See Section 5.2. An earlier iteration of this

specification only encrypted and authenticated the "server_name"

extension, which left the overall ClientHello vulnerable to an

analogue of this attack.

11. IANA Considerations

11.1. Update of the TLS ExtensionType Registry

IANA is requested to create the following three entries in the

existing registry for ExtensionType (defined in [RFC8446]):

encrypted_client_hello(0xfe09), with "TLS 1.3" column values

set to "CH, EE", and "Recommended" column set to "Yes".

ech_is_inner (0xda09), with "TLS 1.3" column values set to

"CH", and "Recommended" column set to "Yes".

ech_outer_extensions(0xfd00), with the "TLS 1.3" column values

set to "", and "Recommended" column set to "Yes".

11.2. Update of the TLS Alert Registry

IANA is requested to create an entry, ech_required(121) in the

existing registry for Alerts (defined in [RFC8446]), with the "DTLS-

OK" column set to "Y".

12. ECHConfig Extension Guidance

Any future information or hints that influence ClientHelloOuter

SHOULD be specified as ECHConfig extensions. This is primarily

because the outer ClientHello exists only in support of ECH. Namely,

it is both an envelope for the encrypted inner ClientHello and

enabler for authenticated key mismatch signals (see Section 7). In

contrast, the inner ClientHello is the true ClientHello used upon

ECH negotiation.

13. References

13.1. Normative References

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPS RRs)", Work in Progress, Internet-Draft, draft-

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

[I-D.ietf-tls-exported-authenticator]

[I-D.irtf-cfrg-hpke]

[RFC2119]

[RFC7685]

[RFC7918]

[RFC8174]

[RFC8446]

[I-D.kazuho-protected-sni]

[RFC7301]

ietf-dnsop-svcb-https-02, 2 November 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-

https-02.txt>.

Sullivan, N., "Exported Authenticators in TLS", Work in

Progress, Internet-Draft, draft-ietf-tls-exported-

authenticator-13, 26 June 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-tls-exported-

authenticator-13.txt>.

Barnes, R., Bhargavan, K., Lipp, B., and C.

Wood, "Hybrid Public Key Encryption", Work in Progress,

Internet-Draft, draft-irtf-cfrg-hpke-06, 23 October 2020,

<http://www.ietf.org/internet-drafts/draft-irtf-cfrg-

hpke-06.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Langley, A., "A Transport Layer Security (TLS)

ClientHello Padding Extension", RFC 7685, DOI 10.17487/

RFC7685, October 2015, <https://www.rfc-editor.org/info/

rfc7685>.

Langley, A., Modadugu, N., and B. Moeller, "Transport

Layer Security (TLS) False Start", RFC 7918, DOI

10.17487/RFC7918, August 2016, <https://www.rfc-

editor.org/info/rfc7918>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

13.2. Informative References

Oku, K., "TLS Extensions for Protecting

SNI", Work in Progress, Internet-Draft, draft-kazuho-

protected-sni-00, 18 July 2017, <http://www.ietf.org/

internet-drafts/draft-kazuho-protected-sni-00.txt>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

http://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-https-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-https-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-https-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-exported-authenticator-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-exported-authenticator-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-exported-authenticator-13.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-hpke-06.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-hpke-06.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7685
https://www.rfc-editor.org/info/rfc7685
https://www.rfc-editor.org/info/rfc7918
https://www.rfc-editor.org/info/rfc7918
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
http://www.ietf.org/internet-drafts/draft-kazuho-protected-sni-00.txt
http://www.ietf.org/internet-drafts/draft-kazuho-protected-sni-00.txt

[RFC7858]

[RFC7924]

[RFC8094]

[RFC8484]

[RFC8701]

[RFC8744]

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

and P. Hoffman, "Specification for DNS over Transport

Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858,

May 2016, <https://www.rfc-editor.org/info/rfc7858>.

Santesson, S. and H. Tschofenig, "Transport Layer

Security (TLS) Cached Information Extension", RFC 7924,

DOI 10.17487/RFC7924, July 2016, <https://www.rfc-

editor.org/info/rfc7924>.

Reddy, T., Wing, D., and P. Patil, "DNS over Datagram

Transport Layer Security (DTLS)", RFC 8094, DOI 10.17487/

RFC8094, February 2017, <https://www.rfc-editor.org/info/

rfc8094>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/info/rfc8484>.

Benjamin, D., "Applying Generate Random Extensions And

Sustain Extensibility (GREASE) to TLS Extensibility", RFC

8701, DOI 10.17487/RFC8701, January 2020, <https://

www.rfc-editor.org/info/rfc8701>.

Huitema, C., "Issues and Requirements for Server Name

Identification (SNI) Encryption in TLS", RFC 8744, DOI

10.17487/RFC8744, July 2020, <https://www.rfc-editor.org/

info/rfc8744>.

Appendix A. Alternative SNI Protection Designs

Alternative approaches to encrypted SNI may be implemented at the

TLS or application layer. In this section we describe several

alternatives and discuss drawbacks in comparison to the design in

this document.

A.1. TLS-layer

A.1.1. TLS in Early Data

In this variant, TLS Client Hellos are tunneled within early data

payloads belonging to outer TLS connections established with the

client-facing server. This requires clients to have established a

previous session --- and obtained PSKs --- with the server. The

client-facing server decrypts early data payloads to uncover Client

Hellos destined for the backend server, and forwards them onwards as

necessary. Afterwards, all records to and from backend servers are

¶

https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc8094
https://www.rfc-editor.org/info/rfc8094
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8701
https://www.rfc-editor.org/info/rfc8701
https://www.rfc-editor.org/info/rfc8744
https://www.rfc-editor.org/info/rfc8744

forwarded by the client-facing server - unmodified. This avoids

double encryption of TLS records.

Problems with this approach are: (1) servers may not always be able

to distinguish inner Client Hellos from legitimate application data,

(2) nested 0-RTT data may not function correctly, (3) 0-RTT data may

not be supported - especially under DoS - leading to availability

concerns, and (4) clients must bootstrap tunnels (sessions), costing

an additional round trip and potentially revealing the SNI during

the initial connection. In contrast, encrypted SNI protects the SNI

in a distinct Client Hello extension and neither abuses early data

nor requires a bootstrapping connection.

A.1.2. Combined Tickets

In this variant, client-facing and backend servers coordinate to

produce "combined tickets" that are consumable by both. Clients

offer combined tickets to client-facing servers. The latter parse

them to determine the correct backend server to which the Client

Hello should be forwarded. This approach is problematic due to non-

trivial coordination between client-facing and backend servers for

ticket construction and consumption. Moreover, it requires a

bootstrapping step similar to that of the previous variant. In

contrast, encrypted SNI requires no such coordination.

A.2. Application-layer

A.2.1. HTTP/2 CERTIFICATE Frames

In this variant, clients request secondary certificates with

CERTIFICATE_REQUEST HTTP/2 frames after TLS connection completion.

In response, servers supply certificates via TLS exported

authenticators [I-D.ietf-tls-exported-authenticator] in CERTIFICATE

frames. Clients use a generic SNI for the underlying client-facing

server TLS connection. Problems with this approach include: (1) one

additional round trip before peer authentication, (2) non-trivial

application-layer dependencies and interaction, and (3) obtaining

the generic SNI to bootstrap the connection. In contrast, encrypted

SNI induces no additional round trip and operates below the

application layer.

Appendix B. Acknowledgements

This document draws extensively from ideas in [I-D.kazuho-protected-

sni], but is a much more limited mechanism because it depends on the

DNS for the protection of the ECH key. Richard Barnes, Christian

Huitema, Patrick McManus, Matthew Prince, Nick Sullivan, Martin

Thomson, and David Benjamin also provided important ideas and

contributions.

¶

¶

¶

¶

¶

Authors' Addresses

Eric Rescorla

RTFM, Inc.

Email: ekr@rtfm.com

Kazuho Oku

Fastly

Email: kazuhooku@gmail.com

Nick Sullivan

Cloudflare

Email: nick@cloudflare.com

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

mailto:ekr@rtfm.com
mailto:kazuhooku@gmail.com
mailto:nick@cloudflare.com
mailto:caw@heapingbits.net

	TLS Encrypted Client Hello
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Overview
	3.1. Topologies
	3.2. Encrypted ClientHello (ECH)

	4. Encrypted ClientHello Configuration
	4.1. Configuration Extensions

	5. The "encrypted_client_hello" Extension
	5.1. Encoding the ClientHelloInner
	5.2. Authenticating the ClientHelloOuter

	6. Client Behavior
	6.1. Offering ECH
	6.1.1. ClientHelloInner Indication Extension
	6.1.2. Recommended Padding Scheme
	6.1.3. Handling the Server Response
	6.1.3.1. Accepted ECH
	6.1.3.2. Rejected ECH
	6.1.3.3. Authenticating for the Public Name

	6.1.4. Handling HelloRetryRequest

	6.2. GREASE ECH

	7. Server Behavior
	7.1. Client-Facing Server
	7.1.1. Handling HelloRetryRequest

	7.2. Backend Server

	8. Compatibility Issues
	8.1. Misconfiguration and Deployment Concerns
	8.2. Middleboxes

	9. Compliance Requirements
	10. Security Considerations
	10.1. Security and Privacy Goals
	10.2. Unauthenticated and Plaintext DNS
	10.3. Client Tracking
	10.4. Optional Configuration Identifiers and Trial Decryption
	10.5. Outer ClientHello
	10.6. Related Privacy Leaks
	10.7. Attacks Exploiting Acceptance Confirmation
	10.8. Comparison Against Criteria
	10.8.1. Mitigate Cut-and-Paste Attacks
	10.8.2. Avoid Widely Shared Secrets
	10.8.3. Prevent SNI-Based Denial-of-Service Attacks
	10.8.4. Do Not Stick Out
	10.8.5. Maintain Forward Secrecy
	10.8.6. Enable Multi-party Security Contexts
	10.8.7. Support Multiple Protocols

	10.9. Padding Policy
	10.10. Active Attack Mitigations
	10.10.1. Client Reaction Attack Mitigation
	10.10.2. HelloRetryRequest Hijack Mitigation
	10.10.3. ClientHello Malleability Mitigation

	11. IANA Considerations
	11.1. Update of the TLS ExtensionType Registry
	11.2. Update of the TLS Alert Registry

	12. ECHConfig Extension Guidance
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Alternative SNI Protection Designs
	A.1. TLS-layer
	A.1.1. TLS in Early Data
	A.1.2. Combined Tickets

	A.2. Application-layer
	A.2.1. HTTP/2 CERTIFICATE Frames

	Appendix B. Acknowledgements
	Authors' Addresses

