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Abstract

This document describes a mechanism in Transport Layer Security

(TLS) for encrypting a ClientHello message under a server public

key.
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1. Introduction

DISCLAIMER: This draft is work-in-progress and has not yet seen

significant (or really any) security analysis. It should not be used

as a basis for building production systems. This published version

of the draft has been designated an "implementation draft" for

testing and interop purposes.

Although TLS 1.3 [RFC8446] encrypts most of the handshake, including

the server certificate, there are several ways in which an on-path

attacker can learn private information about the connection. The

plaintext Server Name Indication (SNI) extension in ClientHello
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messages, which leaks the target domain for a given connection, is

perhaps the most sensitive, unencrypted information in TLS 1.3.

The target domain may also be visible through other channels, such

as plaintext client DNS queries or visible server IP addresses.

However, DoH [RFC8484] and DPRIVE [RFC7858] [RFC8094] provide

mechanisms for clients to conceal DNS lookups from network

inspection, and many TLS servers host multiple domains on the same

IP address. Private origins may also be deployed behind a common

provider, such as a reverse proxy. In such environments, the SNI

remains the primary explicit signal used to determine the server's

identity.

This document specifies a new TLS extension, called Encrypted Client

Hello (ECH), that allows clients to encrypt their ClientHello to

such a deployment. This protects the SNI and other potentially

sensitive fields, such as the ALPN list [RFC7301]. Co-located

servers with consistent externally visible TLS configurations,

including supported versions and cipher suites, form an anonymity

set. Usage of this mechanism reveals that a client is connecting to

a particular service provider, but does not reveal which server from

the anonymity set terminates the connection.

ECH is only supported with (D)TLS 1.3 [RFC8446] and newer versions

of the protocol.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here. All TLS notation comes from [RFC8446], 

Section 3.

3. Overview

This protocol is designed to operate in one of two topologies

illustrated below, which we call "Shared Mode" and "Split Mode".

3.1. Topologies
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Figure 1: Shared Mode Topology

In Shared Mode, the provider is the origin server for all the

domains whose DNS records point to it. In this mode, the TLS

connection is terminated by the provider.

Figure 2: Split Mode Topology

In Split Mode, the provider is not the origin server for private

domains. Rather, the DNS records for private domains point to the

provider, and the provider's server relays the connection back to

the origin server, who terminates the TLS connection with the

client. Importantly, the service provider does not have access to

the plaintext of the connection beyond the unencrypted portions of

the handshake.

In the remainder of this document, we will refer to the ECH-service

provider as the "client-facing server" and to the TLS terminator as

the "backend server". These are the same entity in Shared Mode, but

in Split Mode, the client-facing and backend servers are physically

separated.

3.2. Encrypted ClientHello (ECH)

A client-facing server enables ECH by publishing an ECH

configuration, which is an encryption public key and associated

metadata. The server must publish this for all the domains it serves

via Shared or Split Mode. This document defines the ECH

                +---------------------+

                |                     |

                |   2001:DB8::1111    |

                |                     |

Client <----->  | private.example.org |

                |                     |

                | public.example.com  |

                |                     |

                +---------------------+

                        Server

          (Client-Facing and Backend Combined)

¶

           +--------------------+     +---------------------+

           |                    |     |                     |

           |   2001:DB8::1111   |     |   2001:DB8::EEEE    |

Client <----------------------------->|                     |

           | public.example.com |     | private.example.com |

           |                    |     |                     |

           +--------------------+     +---------------------+

            Client-Facing Server            Backend Server

¶

¶



configuration's format, but delegates DNS publication details to 

[HTTPS-RR]. Other delivery mechanisms are also possible. For

example, the client may have the ECH configuration preconfigured.

When a client wants to establish a TLS session with some backend

server, it constructs a private ClientHello, referred to as the

ClientHelloInner. The client then constructs a public ClientHello,

referred to as the ClientHelloOuter. The ClientHelloOuter contains

innocuous values for sensitive extensions and an

"encrypted_client_hello" extension (Section 5), which carries the

encrypted ClientHelloInner. Finally, the client sends

ClientHelloOuter to the server.

The server takes one of the following actions:

If it does not support ECH or cannot decrypt the extension, it

completes the handshake with ClientHelloOuter. This is referred

to as rejecting ECH.

If it successfully decrypts the extension, it forwards the

ClientHelloInner to the backend server, which completes the

handshake. This is referred to as accepting ECH.

Upon receiving the server's response, the client determines whether

or not ECH was accepted (Section 6.1.4) and proceeds with the

handshake accordingly. When ECH is rejected, the resulting

connection is not usable by the client for application data.

Instead, ECH rejection allows the client to retry with up-to-date

configuration (Section 6.1.6).

The primary goal of ECH is to ensure that connections to servers in

the same anonymity set are indistinguishable from one another.

Moreover, it should achieve this goal without affecting any existing

security properties of TLS 1.3. See Section 10.1 for more details

about the ECH security and privacy goals.

4. Encrypted ClientHello Configuration

ECH uses HPKE for public key encryption [I-D.irtf-cfrg-hpke]. The

ECH configuration is defined by the following ECHConfig structure.
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version

length

contents

The structure contains the following fields:

The version of ECH for which this configuration is used.

Beginning with draft-08, the version is the same as the code

point for the "encrypted_client_hello" extension. Clients MUST

ignore any ECHConfig structure with a version they do not

support.

The length, in bytes, of the next field. This length field

allows implementations to skip over the elements in such a list

where they cannot parse the specific version of ECHConfig.

An opaque byte string whose contents depend on the

version. For this specification, the contents are an 

ECHConfigContents structure.

The ECHConfigContents structure contains the following fields:

    opaque HpkePublicKey<1..2^16-1>;

    uint16 HpkeKemId;  // Defined in I-D.irtf-cfrg-hpke

    uint16 HpkeKdfId;  // Defined in I-D.irtf-cfrg-hpke

    uint16 HpkeAeadId; // Defined in I-D.irtf-cfrg-hpke

    struct {

        HpkeKdfId kdf_id;

        HpkeAeadId aead_id;

    } HpkeSymmetricCipherSuite;

    struct {

        uint8 config_id;

        HpkeKemId kem_id;

        HpkePublicKey public_key;

        HpkeSymmetricCipherSuite cipher_suites<4..2^16-4>;

    } HpkeKeyConfig;

    struct {

        HpkeKeyConfig key_config;

        uint8 maximum_name_length;

        opaque public_name<1..255>;

        Extension extensions<0..2^16-1>;

    } ECHConfigContents;

    struct {

        uint16 version;

        uint16 length;

        select (ECHConfig.version) {

          case 0xfe0d: ECHConfigContents contents;

        }

    } ECHConfig;

¶
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key_config

maximum_name_length

public_name

extensions

config_id

kem_id

public_key

A HpkeKeyConfig structure carrying the configuration

information associated with the HPKE public key. Note that this

structure contains the config_id field, which applies to the

entire ECHConfigContents.

The longest name of a backend server, if known.

If not known, this value can be set to zero. It is used to

compute padding (Section 6.1.3) and does not constrain server

name lengths. Names may exceed this length if, e.g., the server

uses wildcard names or added new names to the anonymity set.

The DNS name of the client-facing server, i.e., the

entity trusted to update the ECH configuration. This is used to

correct misconfigured clients, as described in Section 6.1.6.

Clients MUST ignore any ECHConfig structure whose public_name is

not parsable as a dot-separated sequence of LDH labels, as

defined in [RFC5890], Section 2.3.1 or which begins or end with

an ASCII dot.

Clients SHOULD ignore the ECHConfig if it contains an encoded

IPv4 address. To determine if a public_name value is an IPv4

address, clients can invoke the IPv4 parser algorithm in [WHATWG-

IPV4]. It returns a value when the input is an IPv4 address.

See Section 6.1.7 for how the client interprets and validates the

public_name.

A list of extensions that the client must take into

consideration when generating a ClientHello message. These are

described below (Section 4.2).

[[OPEN ISSUE: determine if clients should enforce a 63-octet label

limit for public_name]] [[OPEN ISSUE: fix reference to WHATWG-IPV4]]

The HpkeKeyConfig structure contains the following fields:

A one-byte identifier for the given HPKE key

configuration. This is used by clients to indicate the key used

for ClientHello encryption. Section 4.1 describes how client-

facing servers allocate this value.

The HPKE KEM identifier corresponding to public_key. Clients

MUST ignore any ECHConfig structure with a key using a KEM they

do not support.

The HPKE public key used by the client to encrypt

ClientHelloInner.
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cipher_suites
The list of HPKE KDF and AEAD identifier pairs

clients can use for encrypting ClientHelloInner. See Section 6.1

for how clients choose from this list.

The client-facing server advertises a sequence of ECH configurations

to clients, serialized as follows.

The ECHConfigList structure contains one or more ECHConfig

structures in decreasing order of preference. This allows a server

to support multiple versions of ECH and multiple sets of ECH

parameters.

4.1. Configuration Identifiers

A client-facing server has a set of known ECHConfig values, with

corresponding private keys. This set SHOULD contain the currently

published values, as well as previous values that may still be in

use, since clients may cache DNS records up to a TTL or longer.

Section 7.1 describes a trial decryption process for decrypting the

ClientHello. This can impact performance when the client-facing

server maintains many known ECHConfig values. To avoid this, the

client-facing server SHOULD allocate distinct config_id values for

each ECHConfig in its known set. The RECOMMENDED strategy is via

rejection sampling, i.e., to randomly select config_id repeatedly

until it does not match any known ECHConfig.

It is not necessary for config_id values across different client-

facing servers to be distinct. A backend server may be hosted behind

two different client-facing servers with colliding config_id values

without any performance impact. Values may also be reused if the

previous ECHConfig is no longer in the known set.

4.2. Configuration Extensions

ECH configuration extensions are used to provide room for additional

functionality as needed. See Section 12 for guidance on which types

of extensions are appropriate for this structure.

The format is as defined in [RFC8446], Section 4.2. The same

interpretation rules apply: extensions MAY appear in any order, but

there MUST NOT be more than one extension of the same type in the

extensions block. An extension can be tagged as mandatory by using

an extension type codepoint with the high order bit set to 1.

¶
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    ECHConfig ECHConfigList<1..2^16-1>;¶
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config_id

cipher_suite

enc

payload

Clients MUST parse the extension list and check for unsupported

mandatory extensions. If an unsupported mandatory extension is

present, clients MUST ignore the ECHConfig.

5. The "encrypted_client_hello" Extension

To offer ECH, the client sends an "encrypted_client_hello" extension

in the ClientHelloOuter. When it does, it MUST also send the

extension in ClientHelloInner.

The payload of the extension has the following structure:

The outer extension uses the outer variant and the inner extension

uses the inner variant. The inner extension has an empty payload.

The outer extension has the following fields:

The ECHConfigContents.key_config.config_id for the chosen

ECHConfig.

The cipher suite used to encrypt ClientHelloInner.

This MUST match a value provided in the corresponding 

ECHConfigContents.cipher_suites list.

The HPKE encapsulated key, used by servers to decrypt the

corresponding payload field. This field is empty in a

ClientHelloOuter sent in response to HelloRetryRequest.

The serialized and encrypted ClientHelloInner structure,

encrypted using HPKE as described in Section 6.1.

¶

¶

    enum {

       encrypted_client_hello(0xfe0d), (65535)

    } ExtensionType;

¶

¶

    enum { outer(0), inner(1) } ECHClientHelloType;

    struct {

       ECHClientHelloType type;

       select (ECHClientHello.type) {

           case outer:

               HpkeSymmetricCipherSuite cipher_suite;

               uint8 config_id;

               opaque enc<0..2^16-1>;

               opaque payload<1..2^16-1>;

           case inner:

               Empty;

       };

    } ECHClientHello;

¶

¶
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retry_configs

When a client offers the outer version of an

"encrypted_client_hello" extension, the server MAY include an

"encrypted_client_hello" extension in its EncryptedExtensions

message, as described in Section 7.1, with the following payload:

The response is valid only when the server used the

ClientHelloOuter. If the server sent this extension in response to

the inner variant, then the client MUST abort with an

"unsupported_extension" alert.

An ECHConfigList structure containing one or more

ECHConfig structures, in decreasing order of preference, to be

used by the client as described in Section 6.1.6. These are known

as the server's "retry configurations".

Finally, when the client offers the "encrypted_client_hello", if the

payload is the inner variant and the server responds with

HelloRetryRequest, it MUST include an "encrypted_client_hello"

extension with the following payload:

The value of ECHHelloRetryRequest.confirmation is set to 

hrr_accept_confirmation as described in Section 7.2.1.

This document also defines the "ech_required" alert, which the

client MUST send when it offered an "encrypted_client_hello"

extension that was not accepted by the server. (See Section 11.2.)

5.1. Encoding the ClientHelloInner

Before encrypting, the client pads and optionally compresses

ClientHelloInner into a EncodedClientHelloInner structure, defined

below:

The client_hello field is computed by first making a copy of

ClientHelloInner and setting the legacy_session_id field to the

empty string. Note this field uses the ClientHello structure,

defined in Section 4.1.2 of [RFC8446] which does not include the

¶

    struct {

       ECHConfigList retry_configs;

    } ECHEncryptedExtensions;

¶

¶

¶

¶

    struct {

       opaque confirmation[8];

    } ECHHelloRetryRequest;

¶

¶

¶

¶

    struct {

        ClientHello client_hello;

        uint8 zeros[length_of_padding];

    } EncodedClientHelloInner;

¶
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Handshake structure's four byte header. The zeros field MUST be all

zeroes.

Repeating large extensions, such as "key_share" with post-quantum

algorithms, between ClientHelloInner and ClientHelloOuter can lead

to excessive size. To reduce the size impact, the client MAY

substitute extensions which it knows will be duplicated in

ClientHelloOuter. It does so by removing and replacing extensions

from EncodedClientHelloInner with a single "ech_outer_extensions"

extension, defined as follows:

OuterExtensions contains the removed ExtensionType values. Each

value references the matching extension in ClientHelloOuter. The

values MUST be ordered contiguously in ClientHelloInner, and the

"ech_outer_extensions" extension MUST be inserted in the

corresponding position in EncodedClientHelloInner. Additionally, the

extensions MUST appear in ClientHelloOuter in the same relative

order. However, there is no requirement that they be contiguous. For

example, OuterExtensions may contain extensions A, B, C, while

ClientHelloOuter contains extensions A, D, B, C, E, F.

The "ech_outer_extensions" extension can only be included in

EncodedClientHelloInner, and MUST NOT appear in either

ClientHelloOuter or ClientHelloInner.

Finally, the client pads the message by setting the zeros field to a

byte string whose contents are all zeros and whose length is the

amount of padding to add. Section 6.1.3 describes a recommended

padding scheme.

The client-facing server computes ClientHelloInner by reversing this

process. First it parses EncodedClientHelloInner, interpreting all

bytes after client_hello as padding. If any padding byte is non-

zero, the server MUST abort the connection with an

"illegal_parameter" alert.

Next it makes a copy of the client_hello field and copies the 

legacy_session_id field from ClientHelloOuter. It then looks for an

"ech_outer_extensions" extension. If found, it replaces the

extension with the corresponding sequence of extensions in the

ClientHelloOuter. The server MUST abort the connection with an

"illegal_parameter" alert if any of the following are true:

Any referenced extension is missing in ClientHelloOuter.

¶

¶

    enum {

       ech_outer_extensions(0xfd00), (65535)

    } ExtensionType;

    ExtensionType OuterExtensions<2..254>;

¶

¶

¶

¶

¶
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Any extension is referenced in OuterExtensions more than once.

"encrypted_client_hello" is referenced in OuterExtensions.

The extensions in ClientHelloOuter corresponding to those in

OuterExtensions do not occur in the same order.

These requirements prevent an attacker from performing a packet

amplification attack, by crafting a ClientHelloOuter which

decompresses to a much larger ClientHelloInner. This is discussed

further in Section 10.11.4.

Implementations SHOULD bound the time to compute a ClientHelloInner

proportionally to the ClientHelloOuter size. If the cost is

disproportionately large, a malicious client could exploit this in a

denial of service attack. Appendix B describes a linear-time

procedure that may be used for this purpose.

5.2. Authenticating the ClientHelloOuter

To prevent a network attacker from modifying the reconstructed

ClientHelloInner (see Section 10.11.3), ECH authenticates

ClientHelloOuter by passing ClientHelloOuterAAD as the associated

data for HPKE sealing and opening operations. The

ClientHelloOuterAAD is a serialized ClientHello structure, defined

in Section 4.1.2 of [RFC8446], which matches the ClientHelloOuter

except the payload field of the "encrypted_client_hello" is replaced

with a byte string of the same length but whose contents are zeros.

This value does not include the four-byte header from the Handshake

structure.

The client follows the procedure in Section 6.1.1 to first construct

ClientHelloOuterAAD with a placeholder payload field, then replace

the field with the encrypted value to compute ClientHelloOuter.

The server then receives ClientHelloOuter and computes

ClientHelloOuterAAD by making a copy and replacing the portion

corresponding to the payload field with zeros.

The payload and the placeholder strings have the same length, so it

is not necessary for either side to recompute length prefixes when

applying the above transformations.

The decompression process in Section 5.1 forbids

"encrypted_client_hello" in OuterExtensions. This ensures the

unauthenticated portion of ClientHelloOuter is not incorporated into

ClientHelloInner.

* ¶

* ¶

*
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6. Client Behavior

Clients that implement the ECH extension behave in one of two ways:

either they offer a real ECH extension, as described in Section 6.1;

or they send a GREASE ECH extension, as described in Section 6.2.

Clients of the latter type do not negotiate ECH. Instead, they

generate a dummy ECH extension that is ignored by the server. (See 

Section 10.9.4 for an explanation.) The client offers ECH if it is

in possession of a compatible ECH configuration and sends GREASE ECH

otherwise.

6.1. Offering ECH

To offer ECH, the client first chooses a suitable ECHConfig from the

server's ECHConfigList. To determine if a given ECHConfig is

suitable, it checks that it supports the KEM algorithm identified by

ECHConfig.contents.kem_id, at least one KDF/AEAD algorithm

identified by ECHConfig.contents.cipher_suites, and the version of

ECH indicated by ECHConfig.contents.version. Once a suitable

configuration is found, the client selects the cipher suite it will

use for encryption. It MUST NOT choose a cipher suite or version not

advertised by the configuration. If no compatible configuration is

found, then the client SHOULD proceed as described in Section 6.2.

Next, the client constructs the ClientHelloInner message just as it

does a standard ClientHello, with the exception of the following

rules:

It MUST NOT offer to negotiate TLS 1.2 or below. This is

necessary to ensure the backend server does not negotiate a TLS

version that is incompatible with ECH.

It MUST NOT offer to resume any session for TLS 1.2 and below.

If it intends to compress any extensions (see Section 5.1), it

MUST order those extensions consecutively.

It MUST include the "encrypted_client_hello" extension of type 

inner as described in Section 5. (This requirement is not

applicable when the "encrypted_client_hello" extension is

generated as described in Section 6.2.)

The client then constructs EncodedClientHelloInner as described in 

Section 5.1. It also computes an HPKE encryption context and enc

value as:

¶

¶

¶

1. 

¶

2. ¶

3. 

¶

4. 

¶

¶

    pkR = DeserializePublicKey(ECHConfig.contents.public_key)

    enc, context = SetupBaseS(pkR,

                              "tls ech" || 0x00 || ECHConfig)

¶



Next, it constructs a partial ClientHelloOuterAAD as it does a

standard ClientHello, with the exception of the following rules:

It MUST offer to negotiate TLS 1.3 or above.

If it compressed any extensions in EncodedClientHelloInner, it

MUST copy the corresponding extensions from ClientHelloInner.

The copied extensions additionally MUST be in the same relative

order as in ClientHelloInner.

It MUST copy the legacy_session_id field from ClientHelloInner.

This allows the server to echo the correct session ID for TLS

1.3's compatibility mode (see Appendix D.4 of [RFC8446]) when

ECH is negotiated.

It MAY copy any other field from the ClientHelloInner except

ClientHelloInner.random. Instead, It MUST generate a fresh

ClientHelloOuter.random using a secure random number generator.

(See Section 10.11.1.)

The value of ECHConfig.contents.public_name MUST be placed in

the "server_name" extension.

When the client offers the "pre_shared_key" extension in

ClientHelloInner, it SHOULD also include a GREASE

"pre_shared_key" extension in ClientHelloOuter, generated in

the manner described in Section 6.1.2. The client MUST NOT use

this extension to advertise a PSK to the client-facing server.

(See Section 10.11.3.) When the client includes a GREASE

"pre_shared_key" extension, it MUST also copy the

"psk_key_exchange_modes" from the ClientHelloInner into the

ClientHelloOuter.

When the client offers the "early_data" extension in

ClientHelloInner, it MUST also include the "early_data"

extension in ClientHelloOuter. This allows servers that reject

ECH and use ClientHelloOuter to safely ignore any early data

sent by the client per [RFC8446], Section 4.2.10.

Note that these rules may change in the presence of an application

profile specifying otherwise.

The client might duplicate non-sensitive extensions in both

messages. However, implementations need to take care to ensure that

sensitive extensions are not offered in the ClientHelloOuter. See 

Section 10.5 for additional guidance.

Finally, the client encrypts the EncodedClientHelloInner with the

above values, as described in Section 6.1.1, to construct a
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ClientHelloOuter. It sends this to the server, and processes the

response as described in Section 6.1.4.

6.1.1. Encrypting the ClientHello

Given an EncodedClientHelloInner, an HPKE encryption context and enc

value, and a partial ClientHelloOuterAAD, the client constructs a

ClientHelloOuter as follows.

First, the client determines the length L of encrypting

EncodedClientHelloInner with the selected HPKE AEAD. This is

typically the sum of the plaintext length and the AEAD tag length.

The client then completes the ClientHelloOuterAAD with an

"encrypted_client_hello" extension. This extension value contains

the outer variant of ECHClientHello with the following fields:

config_id, the identifier corresponding to the chosen ECHConfig

structure;

cipher_suite, the client's chosen cipher suite;

enc, as given above; and

payload, a placeholder byte string containing L zeros.

If configuration identifiers (see Section 10.4) are to be ignored, 

config_id SHOULD be set to a randomly generated byte in the first

ClientHelloOuter and, in the event of HRR, MUST be left unchanged

for the second ClientHelloOuter.

The client serializes this structure to construct the

ClientHelloOuterAAD. It then computes the final payload as:

Finally, the client replaces payload with final_payload to obtain

ClientHelloOuter. The two values have the same length, so it is not

necessary to recompute length prefixes in the serialized structure.

Note this construction requires the "encrypted_client_hello" be

computed after all other extensions. This is possible because the

ClientHelloOuter's "pre_shared_key" extension is either omitted, or

uses a random binder (Section 6.1.2).

6.1.2. GREASE PSK

When offering ECH, the client is not permitted to advertise PSK

identities in the ClientHelloOuter. However, the client can send a

"pre_shared_key" extension in the ClientHelloInner. In this case,
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    final_payload = context.Seal(ClientHelloOuterAAD,
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when resuming a session with the client, the backend server sends a

"pre_shared_key" extension in its ServerHello. This would appear to

a network observer as if the the server were sending this extension

without solicitation, which would violate the extension rules

described in [RFC8446]. Sending a GREASE "pre_shared_key" extension

in the ClientHelloOuter makes it appear to the network as if the

extension were negotiated properly.

The client generates the extension payload by constructing an 

OfferedPsks structure (see [RFC8446], Section 4.2.11) as follows.

For each PSK identity advertised in the ClientHelloInner, the client

generates a random PSK identity with the same length. It also

generates a random, 32-bit, unsigned integer to use as the 

obfuscated_ticket_age. Likewise, for each inner PSK binder, the

client generates a random string of the same length.

Per the rules of Section 6.1, the server is not permitted to resume

a connection in the outer handshake. If ECH is rejected and the

client-facing server replies with a "pre_shared_key" extension in

its ServerHello, then the client MUST abort the handshake with an

"illegal_parameter" alert.

6.1.3. Recommended Padding Scheme

This section describes a deterministic padding mechanism based on

the following observation: individual extensions can reveal

sensitive information through their length. Thus, each extension in

the inner ClientHello may require different amounts of padding. This

padding may be fully determined by the client's configuration or may

require server input.

By way of example, clients typically support a small number of

application profiles. For instance, a browser might support HTTP

with ALPN values ["http/1.1", "h2"] and WebRTC media with ALPNs

["webrtc", "c-webrtc"]. Clients SHOULD pad this extension by

rounding up to the total size of the longest ALPN extension across

all application profiles. The target padding length of most

ClientHello extensions can be computed in this way.

In contrast, clients do not know the longest SNI value in the

client-facing server's anonymity set without server input. Clients

SHOULD use the ECHConfig's maximum_name_length field as follows,

where L is the maximum_name_length value.

If the ClientHelloInner contained a "server_name" extension

with a name of length D, add max(0, L - D) bytes of padding.

If the ClientHelloInner did not contain a "server_name"

extension (e.g., if the client is connecting to an IP address),
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add L + 9 bytes of padding. This is the length of a

"server_name" extension with an L-byte name.

Finally, the client SHOULD pad the entire message as follows:

Let L be the length of the EncodedClientHelloInner with all the

padding computed so far.

Let N = 31 - ((L - 1) % 32) and add N bytes of padding.

This rounds the length of EncodedClientHelloInner up to a multiple

of 32 bytes, reducing the set of possible lengths across all

clients.

In addition to padding ClientHelloInner, clients and servers will

also need to pad all other handshake messages that have sensitive-

length fields. For example, if a client proposes ALPN values in

ClientHelloInner, the server-selected value will be returned in an

EncryptedExtension, so that handshake message also needs to be

padded using TLS record layer padding.

6.1.4. Determining ECH Acceptance

As described in Section 7, the server may either accept ECH and use

ClientHelloInner or reject it and use ClientHelloOuter. This is

determined by the server's initial message.

If the message does not negotiate TLS 1.3 or higher, the server has

rejected ECH. Otherwise, it is either a ServerHello or

HelloRetryRequest.

If the message is a ServerHello, the client computes 

accept_confirmation as described in Section 7.2. If this value

matches the last 8 bytes of ServerHello.random, the server has

accepted ECH. Otherwise, it has rejected ECH.

If the message is a HelloRetryRequest, the client checks for the

"encrypted_client_hello" extension. If none is found, the server has

rejected ECH. Otherwise, if it has a length other than 8, the client

aborts the handshake with a "decode_error" alert. Otherwise, the

client computes hrr_accept_confirmation as described in Section

7.2.1. If this value matches the extension payload, the server has

accepted ECH. Otherwise, it has rejected ECH.

[[OPEN ISSUE: Depending on what we do for issue#450, it may be

appropriate to change the client behavior if the HRR extension is

present but with the wrong value.]]

If the server accepts ECH, the client handshakes with

ClientHelloInner as described in Section 6.1.5. Otherwise, the
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client handshakes with ClientHelloOuter as described in Section

6.1.6.

6.1.5. Handshaking with ClientHelloInner

If the server accepts ECH, the client proceeds with the connection

as in [RFC8446], with the following modifications:

The client behaves as if it had sent ClientHelloInner as the

ClientHello. That is, it evaluates the handshake using the

ClientHelloInner's preferences, and, when computing the transcript

hash (Section 4.4.1 of [RFC8446]), it uses ClientHelloInner as the

first ClientHello.

If the server responds with a HelloRetryRequest, the client computes

the updated ClientHello message as follows:

It computes a second ClientHelloInner based on the first

ClientHelloInner, as in Section 4.1.4 of [RFC8446]. The

ClientHelloInner's "encrypted_client_hello" extension is left

unmodified.

It constructs EncodedClientHelloInner as described in Section

5.1.

It constructs a second partial ClientHelloOuterAAD message.

This message MUST be syntactically valid. The extensions MAY be

copied from the original ClientHelloOuter unmodified, or

omitted. If not sensitive, the client MAY copy updated

extensions from the second ClientHelloInner for compression.

It encrypts EncodedClientHelloInner as described in Section

6.1.1, using the second partial ClientHelloOuterAAD, to obtain

a second ClientHelloOuter. It reuses the original HPKE

encryption context computed in Section 6.1 and uses the empty

string for enc.

The HPKE context maintains a sequence number, so this operation

internally uses a fresh nonce for each AEAD operation. Reusing

the HPKE context avoids an attack described in Section 10.11.2.

The client then sends the second ClientHelloOuter to the server.

However, as above, it uses the second ClientHelloInner for

preferences, and both the ClientHelloInner messages for the

transcript hash. Additionally, it checks the resulting ServerHello

for ECH acceptance as in Section 6.1.4. If the ServerHello does not

also indicate ECH acceptance, the client MUST terminate the

connection with an "illegal_parameter" alert.
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6.1.6. Handshaking with ClientHelloOuter

If the server rejects ECH, the client proceeds with the handshake,

authenticating for ECHConfig.contents.public_name as described in 

Section 6.1.7. If authentication or the handshake fails, the client

MUST return a failure to the calling application. It MUST NOT use

the retry configurations. It MUST NOT treat this as a secure signal

to disable ECH.

If the server supplied an "encrypted_client_hello" extension in its

EncryptedExtensions message, the client MUST check that it is

syntactically valid and the client MUST abort the connection with a

"decode_error" alert otherwise. If an earlier TLS version was

negotiated, the client MUST NOT enable the False Start optimization 

[RFC7918] for this handshake. If both authentication and the

handshake complete successfully, the client MUST perform the

processing described below then abort the connection with an

"ech_required" alert before sending any application data to the

server.

If the server provided "retry_configs" and if at least one of the

values contains a version supported by the client, the client can

regard the ECH keys as securely replaced by the server. It SHOULD

retry the handshake with a new transport connection, using the retry

configurations supplied by the server. The retry configurations may

only be applied to the retry connection. The client MUST NOT use

retry configurations for connections beyond the retry. This avoids

introducing pinning concerns or a tracking vector, should a

malicious server present client-specific retry configurations in

order to identify the client in a subsequent ECH handshake.

If none of the values provided in "retry_configs" contains a

supported version, or an earlier TLS version was negotiated, the

client can regard ECH as securely disabled by the server, and it

SHOULD retry the handshake with a new transport connection and ECH

disabled.

Clients SHOULD implement a limit on retries caused by receipt of

"retry_configs" or servers which do not acknowledge the

"encrypted_client_hello" extension. If the client does not retry in

either scenario, it MUST report an error to the calling application.

6.1.7. Authenticating for the Public Name

When the server rejects ECH, it continues with the handshake using

the plaintext "server_name" extension instead (see Section 7).
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Clients that offer ECH then authenticate the connection with the

public name, as follows:

The client MUST verify that the certificate is valid for

ECHConfig.contents.public_name. If invalid, it MUST abort the

connection with the appropriate alert.

If the server requests a client certificate, the client MUST

respond with an empty Certificate message, denoting no client

certificate.

In verifying the client-facing server certificate, the client MUST

interpret the public name as a DNS-based reference identity. Clients

that incorporate DNS names and IP addresses into the same syntax

(e.g. [RFC3986], Section 7.4 and [WHATWG-IPV4]) MUST reject names

that would be interpreted as IPv4 addresses. Clients that enforce

this by checking and rejecting encoded IPv4 addresses in

ECHConfig.contents.public_name do not need to repeat the check at

this layer.

Note that authenticating a connection for the public name does not

authenticate it for the origin. The TLS implementation MUST NOT

report such connections as successful to the application. It

additionally MUST ignore all session tickets and session IDs

presented by the server. These connections are only used to trigger

retries, as described in Section 6.1.6. This may be implemented, for

instance, by reporting a failed connection with a dedicated error

code.

6.2. GREASE ECH

If the client attempts to connect to a server and does not have an

ECHConfig structure available for the server, it SHOULD send a

GREASE [RFC8701] "encrypted_client_hello" extension in the first

ClientHello as follows:

Set the config_id field to a random byte.

Set the cipher_suite field to a supported

HpkeSymmetricCipherSuite. The selection SHOULD vary to exercise

all supported configurations, but MAY be held constant for

successive connections to the same server in the same session.

Set the enc field to a randomly-generated valid encapsulated

public key output by the HPKE KEM.

Set the payload field to a randomly-generated string of L+C

bytes, where C is the ciphertext expansion of the selected AEAD

scheme and L is the size of the EncodedClientHelloInner the
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client would compute when offering ECH, padded according to 

Section 6.1.3.

If sending a second ClientHello in response to a HelloRetryRequest,

the client copies the entire "encrypted_client_hello" extension from

the first ClientHello. The identical value will reveal to an

observer that the value of "encrypted_client_hello" was fake, but

this only occurs if there is a HelloRetryRequest.

If the server sends an "encrypted_client_hello" extension in either

HelloRetryRequest or EncryptedExtensions, the client MUST check the

extension syntactically and abort the connection with a

"decode_error" alert if it is invalid. It otherwise ignores the

extension. It MUST NOT save the "retry_config" value in

EncryptedExtensions.

Offering a GREASE extension is not considered offering an encrypted

ClientHello for purposes of requirements in Section 6.1. In

particular, the client MAY offer to resume sessions established

without ECH.

7. Server Behavior

Servers that support ECH play one of two roles, depending on the

payload of the "encrypted_client_hello" extension in the initial

ClientHello:

If ECHClientHello.type is outer, then the server acts as a

client-facing server and proceeds as described in Section 7.1 to

extract a ClientHelloInner, if available.

If ECHClientHello.type is inner, then the server acts as a

backend server and proceeds as described in Section 7.2.

Otherwise, if ECHClientHello.type is not a valid 

ECHClientHelloType, then the server MUST abort with an

"illegal_parameter" alert.

If the "encrypted_client_hello" is not present, then the server

completes the handshake normally, as described in [RFC8446].

7.1. Client-Facing Server

Upon receiving an "encrypted_client_hello" extension in an initial

ClientHello, the client-facing server determines if it will accept

ECH, prior to negotiating any other TLS parameters. Note that

successfully decrypting the extension will result in a new

ClientHello to process, so even the client's TLS version preferences

may have changed.
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First, the server collects a set of candidate ECHConfig values. This

list is determined by one of the two following methods:

Compare ECHClientHello.config_id against identifiers of each

known ECHConfig and select the ones that match, if any, as

candidates.

Collect all known ECHConfig values as candidates, with trial

decryption below determining the final selection.

Some uses of ECH, such as local discovery mode, may randomize the

ECHClientHello.config_id since it can be used as a tracking vector.

In such cases, the second method should be used for matching the

ECHClientHello to a known ECHConfig. See Section 10.4. Unless

specified by the application profile or otherwise externally

configured, implementations MUST use the first method.

The server then iterates over the candidate ECHConfig values,

attempting to decrypt the "encrypted_client_hello" extension:

The server verifies that the ECHConfig supports the cipher suite

indicated by the ECHClientHello.cipher_suite and that the version of

ECH indicated by the client matches the ECHConfig.version. If not,

the server continues to the next candidate ECHConfig.

Next, the server decrypts ECHClientHello.payload, using the private

key skR corresponding to ECHConfig, as follows:

ClientHelloOuterAAD is computed from ClientHelloOuter as described

in Section 5.2. The info parameter to SetupBaseR is the

concatenation "tls ech", a zero byte, and the serialized ECHConfig.

If decryption fails, the server continues to the next candidate

ECHConfig. Otherwise, the server reconstructs ClientHelloInner from

EncodedClientHelloInner, as described in Section 5.1. It then stops

iterating over the candidate ECHConfig values.

Upon determining the ClientHelloInner, the client-facing server

checks that the message includes a well-formed

"encrypted_client_hello" extension of type inner and that it does

not offer TLS 1.2 or below. If either of these checks fails, the

client-facing server MUST abort with an "illegal_parameter" alert.

If these checks succeed, the client-facing server then forwards the

ClientHelloInner to the appropriate backend server, which proceeds

as in Section 7.2. If the backend server responds with a
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    context = SetupBaseR(ECHClientHello.enc, skR,

                         "tls ech" || 0x00 || ECHConfig)

    EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,

                                         ECHClientHello.payload)
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HelloRetryRequest, the client-facing server forwards it, decrypts

the client's second ClientHelloOuter using the procedure in Section

7.1.1, and forwards the resulting second ClientHelloInner. The

client-facing server forwards all other TLS messages between the

client and backend server unmodified.

Otherwise, if all candidate ECHConfig values fail to decrypt the

extension, the client-facing server MUST ignore the extension and

proceed with the connection using ClientHelloOuter, with the

following modifications:

If sending a HelloRetryRequest, the server MAY include an

"encrypted_client_hello" extension with a payload of 8 random

bytes; see Section 10.9.4 for details.

If the server is configured with any ECHConfigs, it MUST include

the "encrypted_client_hello" extension in its EncryptedExtensions

with the "retry_configs" field set to one or more ECHConfig

structures with up-to-date keys. Servers MAY supply multiple

ECHConfig values of different versions. This allows a server to

support multiple versions at once.

Note that decryption failure could indicate a GREASE ECH extension

(see Section 6.2), so it is necessary for servers to proceed with

the connection and rely on the client to abort if ECH was required.

In particular, the unrecognized value alone does not indicate a

misconfigured ECH advertisement (Section 8.1). Instead, servers can

measure occurrences of the "ech_required" alert to detect this case.

7.1.1. Sending HelloRetryRequest

After sending or forwarding a HelloRetryRequest, the client-facing

server does not repeat the steps in Section 7.1 with the second

ClientHelloOuter. Instead, it continues with the ECHConfig selection

from the first ClientHelloOuter as follows:

If the client-facing server accepted ECH, it checks the second

ClientHelloOuter also contains the "encrypted_client_hello"

extension. If not, it MUST abort the handshake with a

"missing_extension" alert. Otherwise, it checks that

ECHClientHello.cipher_suite and ECHClientHello.config_id are

unchanged, and that ECHClientHello.enc is empty. If not, it MUST

abort the handshake with an "illegal_parameter" alert.

Finally, it decrypts the new ECHClientHello.payload as a second

message with the previous HPKE context:
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ClientHelloOuterAAD is computed as described in Section 5.2, but

using the second ClientHelloOuter. If decryption fails, the client-

facing server MUST abort the handshake with a "decrypt_error" alert.

Otherwise, it reconstructs the second ClientHelloInner from the new

EncodedClientHelloInner as described in Section 5.1, using the

second ClientHelloOuter for any referenced extensions.

The client-facing server then forwards the resulting

ClientHelloInner to the backend server. It forwards all subsequent

TLS messages between the client and backend server unmodified.

If the client-facing server rejected ECH, or if the first

ClientHello did not include an "encrypted_client_hello" extension,

the client-facing server proceeds with the connection as usual. The

server does not decrypt the second ClientHello's

ECHClientHello.payload value, if there is one. Moreover, if the

server is configured with any ECHConfigs, it MUST include the

"encrypted_client_hello" extension in its EncryptedExtensions with

the "retry_configs" field set to one or more ECHConfig structures

with up-to-date keys, as described in Section 7.1.

Note that a client-facing server that forwards the first ClientHello

cannot include its own "cookie" extension if the backend server

sends a HelloRetryRequest. This means that the client-facing server

either needs to maintain state for such a connection or it needs to

coordinate with the backend server to include any information it

requires to process the second ClientHello.

7.2. Backend Server

Upon receipt of an "encrypted_client_hello" extension of type inner

in a ClientHello, if the backend server negotiates TLS 1.3 or

higher, then it MUST confirm ECH acceptance to the client by

computing its ServerHello as described here.

The backend server embeds in ServerHello.random a string derived

from the inner handshake. It begins by computing its ServerHello as

usual, except the last 8 bytes of ServerHello.random are set to

zero. It then computes the transcript hash for ClientHelloInner up

to and including the modified ServerHello, as described in 

[RFC8446], Section 4.4.1. Let transcript_ech_conf denote the output.

Finally, the backend server overwrites the last 8 bytes of the

ServerHello.random with the following string:
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   accept_confirmation = HKDF-Expand-Label(

      HKDF-Extract(0, ClientHelloInner.random),

      "ech accept confirmation",

      transcript_ech_conf,

      8)
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where HKDF-Expand-Label is defined in [RFC8446], Section 7.1, "0"

indicates a string of Hash.length bytes set to zero, and Hash is the

hash function used to compute the transcript hash.

The backend server MUST NOT perform this operation if it negotiated

TLS 1.2 or below. Note that doing so would overwrite the downgrade

signal for TLS 1.3 (see [RFC8446], Section 4.1.3).

7.2.1. Sending HelloRetryRequest

When the backend server sends HelloRetryRequest in response to the

ClientHello, it similarly confirms ECH acceptance by adding a

confirmation signal to its HelloRetryRequest. But instead of

embedding the signal in the HelloRetryRequest.random (the value of

which is specified by [RFC8446]), it sends the signal in an

extension.

The backend server begins by computing HelloRetryRequest as usual,

except that it also contains an "encrypted_client_hello" extension

with a payload of 8 zero bytes. It then computes the transcript hash

for the first ClientHelloInner, denoted ClientHelloInner1, up to and

including the modified HelloRetryRequest. Let

transcript_hrr_ech_conf denote the output. Finally, the backend

server overwrites the payload of the "encrypted_client_hello"

extension with the following string:

In the subsequent ServerHello message, the backend server sends the

accept_confirmation value as described in Section 7.2.

8. Compatibility Issues

Unlike most TLS extensions, placing the SNI value in an ECH

extension is not interoperable with existing servers, which expect

the value in the existing plaintext extension. Thus server operators

SHOULD ensure servers understand a given set of ECH keys before

advertising them. Additionally, servers SHOULD retain support for

any previously-advertised keys for the duration of their validity.

However, in more complex deployment scenarios, this may be difficult

to fully guarantee. Thus this protocol was designed to be robust in

case of inconsistencies between systems that advertise ECH keys and

servers, at the cost of extra round-trips due to a retry. Two

specific scenarios are detailed below.
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8.1. Misconfiguration and Deployment Concerns

It is possible for ECH advertisements and servers to become

inconsistent. This may occur, for instance, from DNS

misconfiguration, caching issues, or an incomplete rollout in a

multi-server deployment. This may also occur if a server loses its

ECH keys, or if a deployment of ECH must be rolled back on the

server.

The retry mechanism repairs inconsistencies, provided the server is

authoritative for the public name. If server and advertised keys

mismatch, the server will reject ECH and respond with

"retry_configs". If the server does not understand the

"encrypted_client_hello" extension at all, it will ignore it as

required by Section 4.1.2 of [RFC8446]. Provided the server can

present a certificate valid for the public name, the client can

safely retry with updated settings, as described in Section 6.1.6.

Unless ECH is disabled as a result of successfully establishing a

connection to the public name, the client MUST NOT fall back to

using unencrypted ClientHellos, as this allows a network attacker to

disclose the contents of this ClientHello, including the SNI. It MAY

attempt to use another server from the DNS results, if one is

provided.

8.2. Middleboxes

When connecting through a TLS-terminating proxy that does not

support this extension, [RFC8446], Section 9.3 requires the proxy

still act as a conforming TLS client and server. The proxy must

ignore unknown parameters, and generate its own ClientHello

containing only parameters it understands. Thus, when presenting a

certificate to the client or sending a ClientHello to the server,

the proxy will act as if connecting to the public name, without

echoing the "encrypted_client_hello" extension.

Depending on whether the client is configured to accept the proxy's

certificate as authoritative for the public name, this may trigger

the retry logic described in Section 6.1.6 or result in a connection

failure. A proxy which is not authoritative for the public name

cannot forge a signal to disable ECH.

9. Compliance Requirements

In the absence of an application profile standard specifying

otherwise, a compliant ECH application MUST implement the following

HPKE cipher suite:

KEM: DHKEM(X25519, HKDF-SHA256) (see [I-D.irtf-cfrg-hpke], 

Section 7.1)
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KDF: HKDF-SHA256 (see [I-D.irtf-cfrg-hpke], Section 7.2)

AEAD: AES-128-GCM (see [I-D.irtf-cfrg-hpke], Section 7.3)

10. Security Considerations

10.1. Security and Privacy Goals

ECH considers two types of attackers: passive and active. Passive

attackers can read packets from the network, but they cannot perform

any sort of active behavior such as probing servers or querying DNS.

A middlebox that filters based on plaintext packet contents is one

example of a passive attacker. In contrast, active attackers can

also write packets into the network for malicious purposes, such as

interfering with existing connections, probing servers, and querying

DNS. In short, an active attacker corresponds to the conventional

threat model for TLS 1.3 [RFC8446].

Given these types of attackers, the primary goals of ECH are as

follows.

Security preservation. Use of ECH does not weaken the security

properties of TLS without ECH.

Handshake privacy. TLS connection establishment to a host with

a specific ECHConfig and TLS configuration is indistinguishable

from a connection to any other host with the same ECHConfig and

TLS configuration. (The set of hosts which share the same

ECHConfig and TLS configuration is referred to as the anonymity

set.)

Downgrade resistance. An attacker cannot downgrade a connection

that attempts to use ECH to one that does not use ECH.

These properties were formally proven in [ECH-Analysis].

With regards to handshake privacy, client-facing server

configuration determines the size of the anonymity set. For example,

if a client-facing server uses distinct ECHConfig values for each

host, then each anonymity set has size k = 1. Client-facing servers

SHOULD deploy ECH in such a way so as to maximize the size of the

anonymity set where possible. This means client-facing servers

should use the same ECHConfig for as many hosts as possible. An

attacker can distinguish two hosts that have different ECHConfig

values based on the ECHClientHello.config_id value. This also means

public information in a TLS handshake should be consistent across

hosts. For example, if a client-facing server services many backend

origin hosts, only one of which supports some cipher suite, it may

be possible to identify that host based on the contents of

unencrypted handshake messages.
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Beyond these primary security and privacy goals, ECH also aims to

hide, to some extent, the fact that it is being used at all.

Specifically, the GREASE ECH extension described in Section 6.2 does

not change the security properties of the TLS handshake at all. Its

goal is to provide "cover" for the real ECH protocol (Section 6.1),

as a means of addressing the "do not stick out" requirements of 

[RFC8744]. See Section 10.9.4 for details.

10.2. Unauthenticated and Plaintext DNS

In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource

Records are signed via a server private key, ECH records have no

authenticity or provenance information. This means that any attacker

which can inject DNS responses or poison DNS caches, which is a

common scenario in client access networks, can supply clients with

fake ECH records (so that the client encrypts data to them) or strip

the ECH record from the response. However, in the face of an

attacker that controls DNS, no encryption scheme can work because

the attacker can replace the IP address, thus blocking client

connections, or substitute a unique IP address which is 1:1 with the

DNS name that was looked up (modulo DNS wildcards). Thus, allowing

the ECH records in the clear does not make the situation

significantly worse.

Clearly, DNSSEC (if the client validates and hard fails) is a

defense against this form of attack, but DoH/DPRIVE are also

defenses against DNS attacks by attackers on the local network,

which is a common case where ClientHello and SNI encryption are

desired. Moreover, as noted in the introduction, SNI encryption is

less useful without encryption of DNS queries in transit via DoH or

DPRIVE mechanisms.

10.3. Client Tracking

A malicious client-facing server could distribute unique, per-client

ECHConfig structures as a way of tracking clients across subsequent

connections. On-path adversaries which know about these unique keys

could also track clients in this way by observing TLS connection

attempts.

The cost of this type of attack scales linearly with the desired

number of target clients. Moreover, DNS caching behavior makes

targeting individual users for extended periods of time, e.g., using

per-client ECHConfig structures delivered via HTTPS RRs with high

TTLs, challenging. Clients can help mitigate this problem by

flushing any DNS or ECHConfig state upon changing networks.
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10.4. Ignored Configuration Identifiers and Trial Decryption

Ignoring configuration identifiers may be useful in scenarios where

clients and client-facing servers do not want to reveal information

about the client-facing server in the "encrypted_client_hello"

extension. In such settings, clients send a randomly generated

config_id in the ECHClientHello. Servers in these settings must

perform trial decryption since they cannot identify the client's

chosen ECH key using the config_id value. As a result, ignoring

configuration identifiers may exacerbate DoS attacks. Specifically,

an adversary may send malicious ClientHello messages, i.e., those

which will not decrypt with any known ECH key, in order to force

wasteful decryption. Servers that support this feature should, for

example, implement some form of rate limiting mechanism to limit the

potential damage caused by such attacks.

Unless specified by the application using (D)TLS or externally

configured, implementations MUST NOT use this mode.

10.5. Outer ClientHello

Any information that the client includes in the ClientHelloOuter is

visible to passive observers. The client SHOULD NOT send values in

the ClientHelloOuter which would reveal a sensitive ClientHelloInner

property, such as the true server name. It MAY send values

associated with the public name in the ClientHelloOuter.

In particular, some extensions require the client send a server-

name-specific value in the ClientHello. These values may reveal

information about the true server name. For example, the

"cached_info" ClientHello extension [RFC7924] can contain the hash

of a previously observed server certificate. The client SHOULD NOT

send values associated with the true server name in the

ClientHelloOuter. It MAY send such values in the ClientHelloInner.

A client may also use different preferences in different contexts.

For example, it may send a different ALPN lists to different servers

or in different application contexts. A client that treats this

context as sensitive SHOULD NOT send context-specific values in

ClientHelloOuter.

Values which are independent of the true server name, or other

information the client wishes to protect, MAY be included in

ClientHelloOuter. If they match the corresponding ClientHelloInner,

they MAY be compressed as described in Section 5.1. However, note

the payload length reveals information about which extensions are

compressed, so inner extensions which only sometimes match the

corresponding outer extension SHOULD NOT be compressed.
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Clients MAY include additional extensions in ClientHelloOuter to

avoid signaling unusual behavior to passive observers, provided the

choice of value and value itself are not sensitive. See Section

10.9.4.

10.6. Related Privacy Leaks

ECH requires encrypted DNS to be an effective privacy protection

mechanism. However, verifying the server's identity from the

Certificate message, particularly when using the X509

CertificateType, may result in additional network traffic that may

reveal the server identity. Examples of this traffic may include

requests for revocation information, such as OCSP or CRL traffic, or

requests for repository information, such as

authorityInformationAccess. It may also include implementation-

specific traffic for additional information sources as part of

verification.

Implementations SHOULD avoid leaking information that may identify

the server. Even when sent over an encrypted transport, such

requests may result in indirect exposure of the server's identity,

such as indicating a specific CA or service being used. To mitigate

this risk, servers SHOULD deliver such information in-band when

possible, such as through the use of OCSP stapling, and clients

SHOULD take steps to minimize or protect such requests during

certificate validation.

Attacks that rely on non-ECH traffic to infer server identity in an

ECH connection are out of scope for this document. For example, a

client that connects to a particular host prior to ECH deployment

may later resume a connection to that same host after ECH

deployment. An adversary that observes this can deduce that the ECH-

enabled connection was made to a host that the client previously

connected to and which is within the same anonymity set.

10.7. Cookies

Section 4.2.2 of [RFC8446] defines a cookie value that servers may

send in HelloRetryRequest for clients to echo in the second

ClientHello. While ECH encrypts the cookie in the second

ClientHelloInner, the backend server's HelloRetryRequest is

unencrypted.This means differences in cookies between backend

servers, such as lengths or cleartext components, may leak

information about the server identity.

Backend servers in an anonymity set SHOULD NOT reveal information in

the cookie which identifies the server. This may be done by handling

HelloRetryRequest statefully, thus not sending cookies, or by using

the same cookie construction for all backend servers.
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Note that, if the cookie includes a key name, analogous to Section 4

of [RFC5077], this may leak information if different backend servers

issue cookies with different key names at the time of the

connection. In particular, if the deployment operates in Split Mode,

the backend servers may not share cookie encryption keys. Backend

servers may mitigate this by either handling key rotation with trial

decryption, or coordinating to match key names.

10.8. Attacks Exploiting Acceptance Confirmation

To signal acceptance, the backend server overwrites 8 bytes of its

ServerHello.random with a value derived from the

ClientHelloInner.random. (See Section 7.2 for details.) This

behavior increases the likelihood of the ServerHello.random

colliding with the ServerHello.random of a previous session,

potentially reducing the overall security of the protocol. However,

the remaining 24 bytes provide enough entropy to ensure this is not

a practical avenue of attack.

On the other hand, the probability that two 8-byte strings are the

same is non-negligible. This poses a modest operational risk.

Suppose the client-facing server terminates the connection (i.e.,

ECH is rejected or bypassed): if the last 8 bytes of its

ServerHello.random coincide with the confirmation signal, then the

client will incorrectly presume acceptance and proceed as if the

backend server terminated the connection. However, the probability

of a false positive occurring for a given connection is only 1 in

2^64. This value is smaller than the probability of network

connection failures in practice.

Note that the same bytes of the ServerHello.random are used to

implement downgrade protection for TLS 1.3 (see [RFC8446], 

Section 4.1.3). These mechanisms do not interfere because the

backend server only signals ECH acceptance in TLS 1.3 or higher.

10.9. Comparison Against Criteria

[RFC8744] lists several requirements for SNI encryption. In this

section, we re-iterate these requirements and assess the ECH design

against them.

10.9.1. Mitigate Cut-and-Paste Attacks

Since servers process either ClientHelloInner or ClientHelloOuter,

and because ClientHelloInner.random is encrypted, it is not possible

for an attacker to "cut and paste" the ECH value in a different

Client Hello and learn information from ClientHelloInner.
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10.9.2. Avoid Widely Shared Secrets

This design depends upon DNS as a vehicle for semi-static public key

distribution. Server operators may partition their private keys

however they see fit provided each server behind an IP address has

the corresponding private key to decrypt a key. Thus, when one ECH

key is provided, sharing is optimally bound by the number of hosts

that share an IP address. Server operators may further limit sharing

by publishing different DNS records containing ECHConfig values with

different keys using a short TTL.

10.9.3. Prevent SNI-Based Denial-of-Service Attacks

This design requires servers to decrypt ClientHello messages with

ECHClientHello extensions carrying valid digests. Thus, it is

possible for an attacker to force decryption operations on the

server. This attack is bound by the number of valid TCP connections

an attacker can open.

10.9.4. Do Not Stick Out

As a means of reducing the impact of network ossification, [RFC8744]

recommends SNI-protection mechanisms be designed in such a way that

network operators do not differentiate connections using the

mechanism from connections not using the mechanism. To that end, ECH

is designed to resemble a standard TLS handshake as much as

possible. The most obvious difference is the extension itself: as

long as middleboxes ignore it, as required by [RFC8446], the rest of

the handshake is designed to look very much as usual.

The GREASE ECH protocol described in Section 6.2 provides a low-risk

way to evaluate the deployability of ECH. It is designed to mimic

the real ECH protocol (Section 6.1) without changing the security

properties of the handshake. The underlying theory is that if GREASE

ECH is deployable without triggering middlebox misbehavior, and real

ECH looks enough like GREASE ECH, then ECH should be deployable as

well. Thus, our strategy for mitigating network ossification is to

deploy GREASE ECH widely enough to disincentivize differential

treatment of the real ECH protocol by the network.

Ensuring that networks do not differentiate between real ECH and

GREASE ECH may not be feasible for all implementations. While most

middleboxes will not treat them differently, some operators may wish

to block real ECH usage but allow GREASE ECH. This specification

aims to provide a baseline security level that most deployments can

achieve easily, while providing implementations enough flexibility

to achieve stronger security where possible. Minimally, real ECH is
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designed to be indifferentiable from GREASE ECH for passive

adversaries with following capabilities:

The attacker does not know the ECHConfigList used by the

server.

The attacker keeps per-connection state only. In particular, it

does not track endpoints across connections.

ECH and GREASE ECH are designed so that the following features

do not vary: the code points of extensions negotiated in the

clear; the length of messages; and the values of plaintext

alert messages.

This leaves a variety of practical differentiators out-of-scope.

including, though not limited to, the following:

the value of the configuration identifier;

the value of the outer SNI;

the TLS version negotiated, which may depend on ECH acceptance;

client authentication, which may depend on ECH acceptance; and

HRR issuance, which may depend on ECH acceptance.

These can be addressed with more sophisticated implementations, but

some mitigations require coordination between the client and server.

These mitigations are out-of-scope for this specification.

10.9.5. Maintain Forward Secrecy

This design is not forward secret because the server's ECH key is

static. However, the window of exposure is bound by the key

lifetime. It is RECOMMENDED that servers rotate keys frequently.

10.9.6. Enable Multi-party Security Contexts

This design permits servers operating in Split Mode to forward

connections directly to backend origin servers. The client

authenticates the identity of the backend origin server, thereby

avoiding unnecessary MiTM attacks.

Conversely, assuming ECH records retrieved from DNS are

authenticated, e.g., via DNSSEC or fetched from a trusted Recursive

Resolver, spoofing a client-facing server operating in Split Mode is

not possible. See Section 10.2 for more details regarding plaintext

DNS.
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Authenticating the ECHConfig structure naturally authenticates the

included public name. This also authenticates any retry signals from

the client-facing server because the client validates the server

certificate against the public name before retrying.

10.9.7. Support Multiple Protocols

This design has no impact on application layer protocol negotiation.

It may affect connection routing, server certificate selection, and

client certificate verification. Thus, it is compatible with

multiple application and transport protocols. By encrypting the

entire ClientHello, this design additionally supports encrypting the

ALPN extension.

10.10. Padding Policy

Variations in the length of the ClientHelloInner ciphertext could

leak information about the corresponding plaintext. Section 6.1.3

describes a RECOMMENDED padding mechanism for clients aimed at

reducing potential information leakage.

10.11. Active Attack Mitigations

This section describes the rationale for ECH properties and

mechanics as defenses against active attacks. In all the attacks

below, the attacker is on-path between the target client and server.

The goal of the attacker is to learn private information about the

inner ClientHello, such as the true SNI value.

10.11.1. Client Reaction Attack Mitigation

This attack uses the client's reaction to an incorrect certificate

as an oracle. The attacker intercepts a legitimate ClientHello and

replies with a ServerHello, Certificate, CertificateVerify, and

Finished messages, wherein the Certificate message contains a "test"

certificate for the domain name it wishes to query. If the client

decrypted the Certificate and failed verification (or leaked

information about its verification process by a timing side

channel), the attacker learns that its test certificate name was

incorrect. As an example, suppose the client's SNI value in its

inner ClientHello is "example.com," and the attacker replied with a

Certificate for "test.com". If the client produces a verification

failure alert because of the mismatch faster than it would due to

the Certificate signature validation, information about the name

leaks. Note that the attacker can also withhold the

CertificateVerify message. In that scenario, a client which first

verifies the Certificate would then respond similarly and leak the

same information.
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Figure 3: Client reaction attack

ClientHelloInner.random prevents this attack. In particular, since

the attacker does not have access to this value, it cannot produce

the right transcript and handshake keys needed for encrypting the

Certificate message. Thus, the client will fail to decrypt the

Certificate and abort the connection.

10.11.2. HelloRetryRequest Hijack Mitigation

This attack aims to exploit server HRR state management to recover

information about a legitimate ClientHello using its own attacker-

controlled ClientHello. To begin, the attacker intercepts and

forwards a legitimate ClientHello with an "encrypted_client_hello"

(ech) extension to the server, which triggers a legitimate

HelloRetryRequest in return. Rather than forward the retry to the

client, the attacker attempts to generate its own ClientHello in

response based on the contents of the first ClientHello and

HelloRetryRequest exchange with the result that the server encrypts

the Certificate to the attacker. If the server used the SNI from the

first ClientHello and the key share from the second (attacker-

controlled) ClientHello, the Certificate produced would leak the

client's chosen SNI to the attacker.

 Client                         Attacker               Server

   ClientHello

   + key_share

   + ech         ------>      (intercept)     -----> X (drop)

                             ServerHello

                             + key_share

                   {EncryptedExtensions}

                   {CertificateRequest*}

                          {Certificate*}

                    {CertificateVerify*}

                 <------

   Alert

                 ------>
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Figure 4: HelloRetryRequest hijack attack

This attack is mitigated by using the same HPKE context for both

ClientHello messages. The attacker does not possess the context's

keys, so it cannot generate a valid encryption of the second inner

ClientHello.

If the attacker could manipulate the second ClientHello, it might be

possible for the server to act as an oracle if it required

parameters from the first ClientHello to match that of the second

ClientHello. For example, imagine the client's original SNI value in

the inner ClientHello is "example.com", and the attacker's hijacked

SNI value in its inner ClientHello is "test.com". A server which

checks these for equality and changes behavior based on the result

can be used as an oracle to learn the client's SNI.

10.11.3. ClientHello Malleability Mitigation

This attack aims to leak information about secret parts of the

encrypted ClientHello by adding attacker-controlled parameters and

observing the server's response. In particular, the compression

mechanism described in Section 5.1 references parts of a potentially

attacker-controlled ClientHelloOuter to construct ClientHelloInner,

or a buggy server may incorrectly apply parameters from

ClientHelloOuter to the handshake.

To begin, the attacker first interacts with a server to obtain a

resumption ticket for a given test domain, such as "example.com".

 Client                         Attacker                   Server

   ClientHello

   + key_share

   + ech         ------>       (forward)        ------->

                                              HelloRetryRequest

                                                    + key_share

                              (intercept)       <-------

                              ClientHello

                              + key_share'

                              + ech'           ------->

                                                    ServerHello

                                                    + key_share

                                          {EncryptedExtensions}

                                          {CertificateRequest*}

                                                 {Certificate*}

                                           {CertificateVerify*}

                                                     {Finished}

                                                <-------

                         (process server flight)
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Later, upon receipt of a ClientHelloOuter, it modifies it such that

the server will process the resumption ticket with ClientHelloInner.

If the server only accepts resumption PSKs that match the server

name, it will fail the PSK binder check with an alert when

ClientHelloInner is for "example.com" but silently ignore the PSK

and continue when ClientHelloInner is for any other name. This

introduces an oracle for testing encrypted SNI values.

Figure 5: Message flow for malleable ClientHello

This attack may be generalized to any parameter which the server

varies by server name, such as ALPN preferences.

ECH mitigates this attack by only negotiating TLS parameters from

ClientHelloInner and authenticating all inputs to the

ClientHelloInner (EncodedClientHelloInner and ClientHelloOuter) with

the HPKE AEAD. See Section 5.2. An earlier iteration of this

specification only encrypted and authenticated the "server_name"

extension, which left the overall ClientHello vulnerable to an

analogue of this attack.

¶

      Client              Attacker                       Server

                                    handshake and ticket

                                       for "example.com"

                                       <-------->

      ClientHello

      + key_share

      + ech

      + ech_outer_extensions(pre_shared_key)

      + pre_shared_key

                  -------->

                        (intercept)

                        ClientHello

                        + key_share

                        + ech

                           + ech_outer_extensions(pre_shared_key)

                        + pre_shared_key'

                                          -------->

                                                         Alert

                                                         -or-

                                                   ServerHello

                                                            ...

                                                      Finished

                                          <--------
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10.11.4. ClientHelloInner Packet Amplification Mitigation

Client-facing servers must decompress EncodedClientHelloInners. A

malicious attacker may craft a packet which takes excessive

resources to decompress or may be much larger than the incoming

packet:

If looking up a ClientHelloOuter extension takes time linear in

the number of extensions, the overall decoding process would take

O(M*N) time, where M is the number of extensions in

ClientHelloOuter and N is the size of OuterExtensions.

If the same ClientHelloOuter extension can be copied multiple

times, an attacker could cause the client-facing server to

construct a large ClientHelloInner by including a large extension

in ClientHelloOuter, of length L, and an OuterExtensions list

referencing N copies of that extension. The client-facing server

would then use O(N*L) memory in response to O(N+L) bandwidth from

the client. In split-mode, an O(N*L) sized packet would then be

transmitted to the backend server.

ECH mitigates this attack by requiring that OuterExtensions be

referenced in order, that duplicate references be rejected, and by

recommending that client-facing servers use a linear scan to perform

decompression. These requirements are detailed in Section 5.1.

11. IANA Considerations

11.1. Update of the TLS ExtensionType Registry

IANA is requested to create the following entries in the existing

registry for ExtensionType (defined in [RFC8446]):

encrypted_client_hello(0xfe0d), with "TLS 1.3" column values

set to "CH, HRR, EE", and "Recommended" column set to "Yes".

ech_outer_extensions(0xfd00), with the "TLS 1.3" column values

set to "", and "Recommended" column set to "Yes".

11.2. Update of the TLS Alert Registry

IANA is requested to create an entry, ech_required(121) in the

existing registry for Alerts (defined in [RFC8446]), with the "DTLS-

OK" column set to "Y".

12. ECHConfig Extension Guidance

Any future information or hints that influence ClientHelloOuter

SHOULD be specified as ECHConfig extensions. This is primarily

because the outer ClientHello exists only in support of ECH. Namely,
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[HTTPS-RR]

[I-D.ietf-tls-exported-authenticator]

[I-D.irtf-cfrg-hpke]

[RFC2119]

[RFC5890]

[RFC7918]

it is both an envelope for the encrypted inner ClientHello and

enabler for authenticated key mismatch signals (see Section 7). In

contrast, the inner ClientHello is the true ClientHello used upon

ECH negotiation.
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Appendix A. Alternative SNI Protection Designs

Alternative approaches to encrypted SNI may be implemented at the

TLS or application layer. In this section we describe several

alternatives and discuss drawbacks in comparison to the design in

this document.

A.1. TLS-layer

A.1.1. TLS in Early Data

In this variant, TLS Client Hellos are tunneled within early data

payloads belonging to outer TLS connections established with the

client-facing server. This requires clients to have established a

previous session --- and obtained PSKs --- with the server. The

client-facing server decrypts early data payloads to uncover Client

Hellos destined for the backend server, and forwards them onwards as

necessary. Afterwards, all records to and from backend servers are

forwarded by the client-facing server -- unmodified. This avoids

double encryption of TLS records.

Problems with this approach are: (1) servers may not always be able

to distinguish inner Client Hellos from legitimate application data,

(2) nested 0-RTT data may not function correctly, (3) 0-RTT data may

not be supported -- especially under DoS -- leading to availability
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concerns, and (4) clients must bootstrap tunnels (sessions), costing

an additional round trip and potentially revealing the SNI during

the initial connection. In contrast, encrypted SNI protects the SNI

in a distinct Client Hello extension and neither abuses early data

nor requires a bootstrapping connection.

A.1.2. Combined Tickets

In this variant, client-facing and backend servers coordinate to

produce "combined tickets" that are consumable by both. Clients

offer combined tickets to client-facing servers. The latter parse

them to determine the correct backend server to which the Client

Hello should be forwarded. This approach is problematic due to non-

trivial coordination between client-facing and backend servers for

ticket construction and consumption. Moreover, it requires a

bootstrapping step similar to that of the previous variant. In

contrast, encrypted SNI requires no such coordination.

A.2. Application-layer

A.2.1. HTTP/2 CERTIFICATE Frames

In this variant, clients request secondary certificates with

CERTIFICATE_REQUEST HTTP/2 frames after TLS connection completion.

In response, servers supply certificates via TLS exported

authenticators [I-D.ietf-tls-exported-authenticator] in CERTIFICATE

frames. Clients use a generic SNI for the underlying client-facing

server TLS connection. Problems with this approach include: (1) one

additional round trip before peer authentication, (2) non-trivial

application-layer dependencies and interaction, and (3) obtaining

the generic SNI to bootstrap the connection. In contrast, encrypted

SNI induces no additional round trip and operates below the

application layer.

Appendix B. Linear-time Outer Extension Processing

The following procedure processes the "ech_outer_extensions"

extension (see Section 5.1) in linear time, ensuring that each

referenced extension in the ClientHelloOuter is included at most

once:

Let I be zero and N be the number of extensions in

ClientHelloOuter.

For each extension type, E, in OuterExtensions:

If E is "encrypted_client_hello", abort the connection with

an "illegal_parameter" alert and terminate this procedure.
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While I is less than N and the I-th extension of

ClientHelloOuter does not have type E, increment I.

If I is equal to N, abort the connection with an

"illegal_parameter" alert and terminate this procedure.

Otherwise, the I-th extension of ClientHelloOuter has type

E. Copy it to the EncodedClientHelloInner and increment I.
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