
TLS N. Sullivan
Internet-Draft Cloudflare Inc.
Intended status: Standards Track December 13, 2017
Expires: June 16, 2018

Exported Authenticators in TLS
draft-ietf-tls-exported-authenticator-05

Abstract

 This document describes a mechanism in Transport Layer Security (TLS)
 to provide an exportable proof of ownership of a certificate that can
 be transmitted out of band and verified by the other party.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 16, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Sullivan Expires June 16, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS Exported Authenticator December 2017

Table of Contents

1. Introduction . 2
2. Conventions and Terminology 3
3. Authenticator Request . 3
4. Authenticator . 4
5. API considerations . 6
6. IANA Considerations . 7
7. Security Considerations 7
8. Acknowledgements . 8
9. References . 8
9.1. Normative References 8
9.2. Informative References 9

 Author's Address . 9

1. Introduction

 This document provides a way to authenticate one party of a Transport
 Layer Security (TLS) communication to another using a certificate
 after the session has been established. This allows both the client
 and server to prove ownership of additional identities at any time
 after the handshake has completed. This proof of authentication can
 be exported and transmitted out of band from one party to be
 validated by the other party.

 This mechanism provides two advantages over the authentication that
 TLS natively provides:

 multiple identities - Endpoints that are authoritative for multiple
 identities - but do not have a single certificate that includes
 all of the identities - can authenticate with those identities
 over a single connection.

 spontaneous authentication - Endpoints can authenticate after a
 connection is established, in response to events in a higher-layer
 protocol, as well as integrating more context.

 This document intends to replace much of the functionality of
 renegotiation in previous versions of TLS. It has the advantages
 over renegotiation of not requiring additional on-the-wire changes
 during a connection. For simplicity, only TLS 1.2 and later are
 supported.

 Post-handshake authentication is defined in TLS 1.3, but it has the
 disadvantage of requiring additional state to be stored in the TLS
 state machine and it composes poorly with multiplexed connection
 protocols like HTTP/2. It is also only available for client

Sullivan Expires June 16, 2018 [Page 2]

Internet-Draft TLS Exported Authenticator December 2017

 authentication. This mechanism is intended to be used as part of a
 replacement for post-handshake authentication in applications.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

3. Authenticator Request

 The authenticator request is a structured message that can be
 exported from either party of a TLS connection. It can be
 transmitted to the other party of the TLS connection at the
 application layer. The application layer protocol used to send the
 authenticator SHOULD use TLS as its underlying transport to keep the
 request confidential.

 An authenticator request message can be constructed by either the
 client or the server. This authenticator request uses the
 CertificateRequest message structure from Section 4.3.2 of [TLS13].
 This message does not include the TLS record layer and is therefore
 not encrypted with a handshake key.

 CertificateRequest This message is used to define the parameters in
 a request for an authenticator.

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<2..2^16-1>;
 } CertificateRequest;

 certificate_request_context An opaque string which identifies the
 certificate request and which will be echoed in the authenticator
 message. The certificate_request_context MUST be unique within
 the scope of this connection (thus preventing replay of
 authenticators). The certificate_request_context SHOULD be chosen
 to be unpredictable to the peer (e.g., by randomly generating it)
 in order to prevent an attacker who has temporary access to the
 peer's private key from pre-computing valid authenticators.

 extensions The extensions that are allowed in this structure include
 the extensions defined for CertificateRequest messages defined in
 Section 4.2. of [TLS13] and the server_name [RFC6066] extension,
 which is allowed for client-generated authenticator requests.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6066

Sullivan Expires June 16, 2018 [Page 3]

Internet-Draft TLS Exported Authenticator December 2017

4. Authenticator

 The authenticator is a structured message that can be exported from
 either party of a TLS connection. It can be transmitted to the other
 party of the TLS connection at the application layer. The
 application layer protocol used to send the authenticator SHOULD use
 TLS as its underlying transport to keep the certificate confidential.

 An authenticator message can be constructed by either the client or
 the server given an established TLS connection, a certificate, and a
 corresponding private key. For clients, an authenticator request is
 required; for servers an authenticator request is optional. The
 authenticator uses the message structures from Section 4.4 of
 [TLS13], but different parameters. These messages do not include the
 TLS record layer and are therefore not encrypted with a handshake
 key.

 Each authenticator is computed using a Handshake Context and Finished
 MAC Key derived from the TLS session. These values are derived using
 an exporter as described in [RFC5705] (for TLS 1.2) or [TLS13] (for
 TLS 1.3). These values use different labels depending on the role of
 the sender:

 o The Handshake Context is an exporter value that is derived using
 the label "EXPORTER-client authenticator handshake context" or
 "EXPORTER-server authenticator handshake context" for
 authenticators sent by the client and server respectively.

 o The Finished MAC Key is an exporter value derived using the label
 "EXPORTER-client authenticator finished key" or "EXPORTER-server
 authenticator finished key" for authenticators sent by the client
 and server respectively.

 The context_value used for the exporter is absent (length zero) for
 all four values. The length of the exported value is equal to the
 length of the output of the hash function selected in TLS for the
 pseudorandom function (PRF). Cipher suites that do not use the TLS
 PRF MUST define a hash function that can be used for this purpose or
 they cannot be used.

 If the connection is TLS 1.2, the master secret MUST have been
 computed with the extended master secret [RFC7627] to avoid key
 synchronization attacks.

 Certificate The certificate to be used for authentication and any
 supporting certificates in the chain. This structure is defined
 in [TLS13], Section 4.4.2.

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc7627

Sullivan Expires June 16, 2018 [Page 4]

Internet-Draft TLS Exported Authenticator December 2017

 The certificate message contains an opaque string called
 certificate_request_context, which is extracted from the
 authenticator request if present. If no authenticator request is
 provided, it is zero-length.

 CertificateVerify This message is used to provide explicit proof
 that an endpoint possesses the private key corresponding to its
 certificate.

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 The algorithm field specifies the signature algorithm used (see
 Section 4.2.3 of [TLS13] for the definition of this field). The
 signature is a digital signature using that algorithm. The signature
 scheme MUST be a valid signature scheme for TLS 1.3. This excludes
 all RSASSA-PKCS1-v1_5 algorithms and ECDSA algorithms that are not
 supported in TLS 1.3. If an authenticator request is present, the
 signature algorithm MUST be chosen from one of the signature schemes
 in the authenticator request. Otherwise, the signature algorithm
 used should be chosen from the "signature_algorithms" extension of
 the ClientHello used in the connection handshake.

 The signature is computed using the over the concatenation of:

 o A string that consists of octet 32 (0x20) repeated 64 times

 o The context string "Exported Authenticator" (which is not NULL-
 terminated)

 o A single 0 byte which serves as the separator

 o If the authenticator request is present, the value "Hash(Handshake
 Context || authenticator request || Certificate)"

 o If an authenticator request is not present, the value
 "Hash(Handshake Context || Certificate)"

 where Hash is the hash function for the handshake.

 Finished A HMAC over the value Hash(Handshake Context ||
 Certificate || CertificateVerify) if an authenticator is present,
 or Hash(Handshake Context || authenticator request ||
 Certificate || CertificateVerify) where Hash is the hash function
 for the handshake, and the HMAC is computed using the hash
 function from the handshake and the Finished MAC Key as a key.

Sullivan Expires June 16, 2018 [Page 5]

Internet-Draft TLS Exported Authenticator December 2017

 The certificates chosen in the Certificate message MUST conform to
 the requirements of a Certificate message in the version of TLS
 negotiated. If an authenticator request is present, the signature
 algorithms used to choose the algorithm are taken from the
 "signature_algorithms" in the from the authenticator. If there is no
 authenticator request, the signature algorithms are chosen from the
 "signature_algorithms" extension from the ClientHello used in the
 connection. This is described in Section 4.2.3 of [TLS13] and
 Sections 7.4.2 and 7.4.6 of [RFC5246]. Alternative certificate
 formats such as [RFC7250] Raw Public Keys are not supported. The
 "server_name" [RFC6066], "certificate_authorities" (Section 4.2.4. of
 [TLS13]), or "oid_filters" (Section 4.2.5. of [TLS13]) extensions are
 used to guide certificate selection, with the extensions provided in
 the authenticator request taking precedence over the extensions
 provided in the connection handshake.

 If an authenticator request was provided, the Certificate message
 MUST contain only extensions present in the authenticator request.
 Otherwise, the Certificate message MUST contain only extensions
 present in the ClientHello.

 The authenticator message is the concatenation of messages:
 Certificate || CertificateVerify || Finished

 A given authenticator can be validated by checking the validity of
 the CertificateVerify message given the authenticator request (if
 used) and recomputing the Finished message to see if it matches.

5. API considerations

 The creation and validation of both authenticator requests and
 authenticators SHOULD be implemented inside the TLS library even if
 it is possible to implement it at the application layer. TLS
 implementations supporting the use of exported authenticators MUST
 provide application programming interfaces by which clients and
 servers may request and verify exported authenticator messages.

 Given an established connection, the application SHOULD be able to
 call the following APIs:

 "request", which takes as input:

 o certificate_request_context (from 0 to 255 bytes)

 o set of extensions to include (this MUST include
 signature_algorithms)

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc6066

Sullivan Expires June 16, 2018 [Page 6]

Internet-Draft TLS Exported Authenticator December 2017

 It returns an authenticator request, which is a sequence of octets
 that includes a CertificateRequest message.

 "get context", which takes as input

 o authenticator

 It returns the certificate_request_context.

 "authenticate", which takes as input:

 o a set of certificate chains and associated extensions (OCSP, SCT,
 etc.)

 o a signer (either the private key associated with the certificate,
 or interface to perform private key operation) for each chain

 o an optional authenticator request

 It returns the exported authenticator as output. It is RECOMMENDED
 that the logic for selecting the certificates and extensions to
 include in the exporter is implemented in the TLS library.
 Implementing this in the TLS library lets the implementer take
 advantage of existing extension and certificate selection logic.

 It is also possible to implement this API outside of the TLS library
 using TLS exporters. This may be preferable in cases where the
 application does not have access to a TLS library with these APIs or
 when TLS is handled independently of the application layer protocol.

 "validate", which takes as input: * an optional authenticator request
 * an authenticator

 It returns the certificate chain and extensions.

6. IANA Considerations

 This document has no IANA actions.

7. Security Considerations

 The Certificate/Verify/Finished pattern intentionally looks like the
 TLS 1.3 pattern which now has been analyzed several times. In the
 case where the client presents an authenticator to a server, [SIGMAC]
 presents a relevant framework for analysis.

Sullivan Expires June 16, 2018 [Page 7]

Internet-Draft TLS Exported Authenticator December 2017

 Authenticators are independent and unidirectional. There is no
 explicit state change inside TLS when an authenticator is either
 created or validated.

 o This property makes it difficult to formally prove that a server
 is jointly authoritative over multiple certificates, rather than
 individually authoritative over each.

 o There is no indication in the TLS layer about which point in time
 an authenticator was computed. Any feedback about the time of
 creation or validation of the authenticator should be tracked as
 part of the application layer semantics if required.

 The signatures generated with this API cover the context string
 "Exported Authenticator" and therefore cannot be transplanted into
 other protocols.

8. Acknowledgements

 Comments on this proposal were provided by Martin Thomson.
 Suggestions for Section 7 were provided by Karthikeyan Bhargavan.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-

editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066

Sullivan Expires June 16, 2018 [Page 8]

Internet-Draft TLS Exported Authenticator December 2017

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-22 (work in progress),
 November 2017.

9.2. Informative References

 [SIGMAC] Krawczyk, H., "A Unilateral-to-Mutual Authentication
 Compiler for Key Exchange (with Applications to Client
 Authentication in TLS 1.3)", 2016,
 <https://eprint.iacr.org/2016/711.pdf>.

Author's Address

 Nick Sullivan
 Cloudflare Inc.

 Email: nick@cloudflare.com

https://datatracker.ietf.org/doc/html/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-22
https://eprint.iacr.org/2016/711.pdf

Sullivan Expires June 16, 2018 [Page 9]

