
Workgroup: tls

Internet-Draft:

draft-ietf-tls-external-psk-importer-04

Published: 8 April 2020

Intended Status: Standards Track

Expires: 10 October 2020

Authors: D. Benjamin

Google, LLC.

C.A. Wood

Importing External PSKs for TLS

Abstract

This document describes an interface for importing external Pre-

Shared Keys (PSKs) into TLS 1.3.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 October 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Overview

3.1. Terminology

4. PSK Import

4.1. External PSK Diversification

4.2. Binder Key Derivation

5. Deprecating Hash Functions

6. Incremental Deployment

7. Security Considerations

8. Privacy Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Acknowledgements

Appendix B. Addressing Selfie

Authors' Addresses

1. Introduction

TLS 1.3 [RFC8446] supports Pre-Shared Key (PSK) authentication,

wherein PSKs can be established via session tickets from prior

connections or externally via some out-of-band mechanism. The

protocol mandates that each PSK only be used with a single hash

function. This was done to simplify protocol analysis. TLS 1.2

[RFC5246], in contrast, has no such requirement, as a PSK may be

used with any hash algorithm and the TLS 1.2 PRF. This means that

external PSKs could possibly be re-used in two different contexts

with the same hash functions during key derivation. Moreover, it

requires external PSKs to be provisioned for specific hash

functions.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

To mitigate these problems, this document specifies a PSK Importer

interface by which external PSKs may be imported and subsequently

bound to a specific KDF and hash function for use in TLS 1.3. In

particular, it describes a mechanism for differentiating external

PSKs by the target KDF, (D)TLS protocol version, and an optional

context string. This process yields a set of candidate PSKs, each of

which are bound to a target KDF and protocol. This expands what

would normally have been a single PSK and identity into a set of

PSKs and identities.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Overview

The PSK Importer interface mirrors that of the TLS Exporters

interface in that it diversifies a key based on some contextual

information. In contrast to the Exporters interface, wherein

differentiation is done via an explicit label and context string,

the PSK Importer interface defined herein takes an external PSK and

identity and "imports" it into TLS, creating a set of "derived" PSKs

and identities. Each of these derived PSKs are bound a target

protocol, KDF identifier, and optional context string. Additionally,

the resulting PSK binder keys are modified with a new derivation

label to prevent confusion with non-imported PSKs.

Imported keys do not require negotiation for use since a client and

server will not agree upon identities if imported incorrectly.

Endpoints may incrementally deploy PSK Importer support by offering

non-imported keys for TLS versions prior to TLS 1.3. Non-imported

and imported PSKs are distinct since their identities are different

on the wire. See Section 6 for more details.

Clients which import external keys MUST NOT use either the external

keys or the derived keys for any other purpose. Moreover, each

external PSK MUST be associated with at most one hash function, as

per the rules in Section 4.2.11 from [RFC8446]. See Section 7 for

more discussion.

3.1. Terminology

External PSK (EPSK): A PSK established or provisioned out-of-

band, i.e., not from a TLS connection, which is a tuple of (Base

Key, External Identity, Hash).

¶

¶

¶

¶

¶

*

¶

Base Key: The secret value of an EPSK.

External Identity: A sequence of bytes used to identify an EPSK.

Target protocol: The protocol for which a PSK is imported for

use.

Target KDF: The KDF for which a PSK is imported for use.

Imported PSK (IPSK): A PSK derived from an EPSK, External

Identity, optional context string, and target protocol and KDF.

Imported Identity: A sequence of bytes used to identify an IPSK.

4. PSK Import

This section describes the PSK Importer interface and its underlying

diversification mechanism and binder key computation modification.

4.1. External PSK Diversification

The PSK Importer interface takes as input an EPSK with External

Identity external_identity and base key epsk, as defined in Section

3.1, along with an optional context, and transforms it into a set of

PSKs and imported identities for use in a connection based on target

protocols and KDFs. In particular, for each supported target

protocol target_protocol and KDF target_kdf, the importer constructs

an ImportedIdentity structure as follows:

The list of target_kdf values is maintained by IANA as described in

Section 9. External PSKs MUST NOT be imported for (D)TLS 1.2 or

prior versions. See Section 6 for discussion on how imported PSKs

for TLS 1.3 and non-imported PSKs for earlier versions co-exist for

incremental deployment.

ImportedIdentity.context MUST include the context used to derive the

EPSK, if any exists. For example, ImportedIdentity.context may

include information about peer roles or identities to mitigate

Selfie-style reflection attacks. See Appendix B for more details. If

the EPSK is a key derived from some other protocol or sequence of

protocols, ImportedIdentity.context MUST include a channel binding

for the deriving protocols [RFC5056].

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

¶

¶

struct {

 opaque external_identity<1...2^16-1>;

 opaque context<0..2^16-1>;

 uint16 target_protocol;

 uint16 target_kdf;

} ImportedIdentity;

¶

¶

¶

ImportedIdentity.target_protocol MUST be the (D)TLS protocol version

for which the PSK is being imported. For example, TLS 1.3 [RFC8446]

and QUICv1 [QUIC] use 0x0304. Note that this means future versions

of TLS will increase the number of PSKs derived from an external

PSK.

Given an ImportedIdentity and corresponding EPSK with base key epsk,

an Imported PSK IPSK with base key ipskx is computed as follows:

L corresponds to the KDF output length of

ImportedIdentity.target_kdf as defined in Section 9. For hash-based

KDFs, such as HKDF_SHA256(0x0001), this is the length of the hash

function output, i.e., 32 octets. This is required for the IPSK to

be of length suitable for supported ciphersuites.

The identity of ipskx as sent on the wire is ImportedIdentity, i.e.,

the serialized content of ImportedIdentity is used as the content of

PskIdentity.identity in the PSK extension. The corresponding TLS 1.3

binder key is ipskx.

The hash function used for HKDF [RFC5869] is that which is

associated with the EPSK. It is not the hash function associated

with ImportedIdentity.target_kdf. If no hash function is specified,

SHA-256 MUST be used. Diversifying EPSK by

ImportedIdentity.target_kdf ensures that an IPSK is only used as

input keying material to at most one KDF, thus satisfying the

requirements in [RFC8446]. See Section 7 for more details.

Endpoints SHOULD generate a compatible ipskx for each target

ciphersuite they offer. For example, importing a key for

TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384 would yield two

PSKs, one for HKDF-SHA256 and another for HKDF-SHA384. In contrast,

if TLS_AES_128_GCM_SHA256 and TLS_CHACHA20_POLY1305_SHA256 are

supported, only one derived key is necessary.

EPSKs may be imported before the start of a connection if the target

KDFs, protocols, and context string(s) are known a priori. EPSKs may

also be imported for early data use if they are bound to protocol

settings and configurations that would otherwise be required for

early data with normal (ticket-based PSK) resumption. Minimally,

that means ALPN, QUIC transport parameters (if used for QUIC), etc.,

must be provisioned alongside these EPSKs.

¶

¶

 epskx = HKDF-Extract(0, epsk)

 ipskx = HKDF-Expand-Label(epskx, "derived psk",

 Hash(ImportedIdentity), L)

¶

¶

¶

¶

¶

¶

4.2. Binder Key Derivation

To prevent confusion between imported and non-imported PSKs,

imported PSKs change the PSK binder key derivation label. In

particular, the standard TLS 1.3 PSK binder key computation is

defined as follows:

Imported PSKs replace the string "ext binder" with "imp binder" when

deriving binder_key. This means the binder key is computed as

follows:

This new label ensures a client and server will negotiate use of an

external PSK if and only if (a) both endpoints import the PSK or (b)

neither endpoint imports the PSK. As binder_key is a leaf key,

changing its computation does not affect any other key.

5. Deprecating Hash Functions

If a client or server wish to deprecate a hash function and no

longer use it for TLS 1.3, they remove the corresponding KDF from

the set of target KDFs used for importing keys. This does not affect

the KDF operation used to derive Imported PSKs.

6. Incremental Deployment

Recall that TLS 1.2 permits computing the TLS PRF with any hash

algorithm and PSK. Thus, an EPSK may be used with the same KDF (and

underlying HMAC hash algorithm) as TLS 1.3 with importers. However,

critically, the derived PSK will not be the same since the importer

differentiates the PSK via the identity and target KDF and protocol.

¶

 0

 |

 v

 PSK -> HKDF-Extract = Early Secret

 |

 +-----> Derive-Secret(., "ext binder" | "res binder", "")

 | = binder_key

 V

¶

¶

 0

 |

 v

 PSK -> HKDF-Extract = Early Secret

 |

 +-----> Derive-Secret(., "ext binder"

 | | "res binder"

 | | "imp binder", "")

 | = binder_key

 V

¶

¶

¶

Thus, PSKs imported for TLS 1.3 are distinct from those used in TLS

1.2, and thereby avoid cross-protocol collisions. Note that this

does not preclude endpoints from using non-imported PSKs for TLS

1.2. Indeed, this is necessary for incremental deployment.

7. Security Considerations

The PSK Importer security goals can be roughly stated as follows:

avoid PSK re-use across KDFs while properly authenticating

endpoints. When modeled as computational extractors, KDFs assume

that input keying material (IKM) is sampled from some "source"

probability distribution and that any two IKM values are chosen

independently of each other [Kraw10]. This source-independence

requirement implies that the same IKM value cannot be used for two

different KDFs.

PSK-based authentication is functionally equivalent to session

resumption in that a connection uses existing key material to

authenticate both endpoints. Following the work of [BAA15], this is

a form of compound authentication. Loosely speaking, compound

authentication is the property that an execution of multiple

authentication protocols, wherein at least one is uncompromised,

jointly authenticates all protocols. Authenticating with an

externally provisioned PSK, therefore, should ideally authenticate

both the TLS connection and the external provisioning process.

Typically, the external provision process produces a PSK and

corresponding context from which the PSK was derived and in which it

should be used. If available, this is used as the

ImportedIdentity.context value. We refer to an external PSK without

such context as "context-free".

Thus, in considering the source-independence and compound

authentication requirements, the PSK Import interface described in

this document aims to achieve the following goals:

Externally provisioned PSKs imported into a TLS connection

achieve compound authentication of the provisioning process and

connection.

Context-free PSKs only achieve authentication within the

context of a single connection.

Imported PSKs are not used as IKM for two different KDFs.

Imported PSKs do not collide with existing PSKs used for TLS

1.2 and below.

Imported PSKs do not collide with future protocol versions and

KDFs.

¶

¶

¶

¶

1.

¶

2.

¶

3. ¶

4.

¶

5.

¶

[QUIC]

[RFC1035]

[RFC2119]

8. Privacy Considerations

External PSK identities are typically static by design so that

endpoints may use them to lookup keying material. However, for some

systems and use cases, this identity may become a persistent

tracking identifier.

9. IANA Considerations

This specification introduces a new registry for TLS KDF identifiers

and defines the following target KDF values:

KDF Description Value

Reserved 0x0000

HKDF_SHA256 0x0001

HKDF_SHA384 0x0002

Table 1: Target KDF

Registry

New target KDF values are allocated according to the following

process:

Values in the range 0x0000-0xfeff are assigned via Specification

Required [RFC8126].

Values in the range 0xff00-0xffff are reserved for Private Use

[RFC8126].

10. References

10.1. Normative References

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-27, 21 February

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-27.txt>.

Mockapetris, P.V., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

*

¶

*

¶

http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
https://www.rfc-editor.org/info/rfc1035

[RFC5056]

[RFC5246]

[RFC5869]

[RFC6234]

[RFC8126]

[RFC8174]

[RFC8446]

[BAA15]

[CCB]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Williams, N., "On the Use of Channel Bindings to Secure

Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

<https://www.rfc-editor.org/info/rfc5056>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

Bhargavan, K., Delignat-Lavaud, A., and A. Pironti,

"Verified Contributive Channel Bindings for Compound

Authentication", DOI 10.14722/ndss.2015.23277,

Proceedings 2015 Network and Distributed System Security

Symposium, 2015, <https://doi.org/10.14722/ndss.

2015.23277>.

Bhargavan, K., Delignat-Lavaud, A., and A. Pironti,

"Verified Contributive Channel Bindings for Compound

Authentication", DOI 10.14722/ndss.2015.23277,

Proceedings 2015 Network and Distributed System Security

Symposium, 2015, <https://doi.org/10.14722/ndss.

2015.23277>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.14722/ndss.2015.23277
https://doi.org/10.14722/ndss.2015.23277
https://doi.org/10.14722/ndss.2015.23277
https://doi.org/10.14722/ndss.2015.23277

[Kraw10]

[Selfie]

Krawczyk, H., "Cryptographic Extraction and Key

Derivation: The HKDF Scheme", Proceedings of CRYPTO 2010

, 2010, <https://eprint.iacr.org/2010/264>.

Drucker, N. and S. Gueron, "Selfie: reflections on TLS

1.3 with PSK", 2019, <https://eprint.iacr.org/

2019/347.pdf>.

Appendix A. Acknowledgements

The authors thank Eric Rescorla and Martin Thomson for discussions

that led to the production of this document, as well as Christian

Huitema for input regarding privacy considerations of external PSKs.

John Mattsson provided input regarding PSK importer deployment

considerations. Hugo Krawczyk provided guidance for the security

considerations.

Appendix B. Addressing Selfie

The Selfie attack [Selfie] relies on a misuse of the PSK interface.

The PSK interface makes the implicit assumption that each PSK is

known only to one client and one server. If multiple clients or

multiple servers with distinct roles share a PSK, TLS only

authenticates the entire group. A node successfully authenticates

its peer as being in the group whether the peer is another node or

itself.

Applications which require authenticating finer-grained roles while

still configuring a single shared PSK across all nodes can resolve

this mismatch either by exchanging roles over the TLS connection

after the handshake or by incorporating the roles of both the client

and server into the IPSK context string. For instance, if an

application identifies each node by MAC address, it could use the

following context string.

If an attacker then redirects a ClientHello intended for one node to

a different node, the receiver will compute a different context

string and the handshake will not complete.

Note that, in this scenario, there is still a single shared PSK

across all nodes, so each node must be trusted not to impersonate

another node's role.

¶

¶

¶

 struct {

 opaque client_mac<0..2^16-1>;

 opaque server_mac<0..2^16-1>;

 } Context;

¶

¶

¶

https://eprint.iacr.org/2010/264
https://eprint.iacr.org/2019/347.pdf
https://eprint.iacr.org/2019/347.pdf

Authors' Addresses

David Benjamin

Google, LLC.

Email: davidben@google.com

Christopher A. Wood

Email: caw@heapingbits.net

mailto:davidben@google.com
mailto:caw@heapingbits.net

	Importing External PSKs for TLS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Overview
	3.1. Terminology

	4. PSK Import
	4.1. External PSK Diversification
	4.2. Binder Key Derivation

	5. Deprecating Hash Functions
	6. Incremental Deployment
	7. Security Considerations
	8. Privacy Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Acknowledgements
	Appendix B. Addressing Selfie
	Authors' Addresses

